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Figure 1: Generated samples with 20 steps inference from stable-diffusion-xl-base-1.0 optimized by
Unified Feedback Learning (UniFL). The last three images of the third row are generated with 4 steps.

Abstract

Latent diffusion models (LDM) have revolutionized text-to-image generation,
leading to the proliferation of various advanced models and diverse downstream
applications. However, despite these significant advancements, current diffusion
models still suffer from several limitations, including inferior visual quality, inade-
quate aesthetic appeal, and inefficient inference, without a comprehensive solution
in sight. To address these challenges, we present UniFL, a unified framework that
leverages feedback learning to enhance diffusion models comprehensively. UniFL
stands out as a universal, effective, and generalizable solution applicable to various
diffusion models, such as SD1.5 and SDXL. Notably, UniFL consists of three key
components: perceptual feedback learning, which enhances visual quality; decou-
pled feedback learning, which improves aesthetic appeal; and adversarial feedback
learning, which accelerates inference. In-depth experiments and extensive user
studies validate the superior performance of our method in enhancing generation
quality and inference acceleration. For instance, UniFL surpasses ImageReward
by 17% user preference in terms of generation quality and outperforms LCM and
SDXL Turbo by 57% and 20% general preference with 4-step inference.
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1 Introduction

The emergence of diffusion models has led to remarkable advances in the field of text-to-image
(T2I) generation, marked by notable milestones like DALLE-3 [1], Imagen [2], Midjourney [3], etc,
elevating the generation quality of images to an unprecedented level. Particularly, the introduction
of open-source image generation models, exemplified by latent diffusion model (LDM) [4], has
inaugurated a transformative era of text-to-image generation, triggering numerous downstream
applications such as T2I personalization [5, 6, 7, 8], controllable generation [9, 10, 11] and text-to-
video (T2V) generation [12, 13, 14]. Nevertheless, despite these advancements achieved thus far,
current latent diffusion-based image generation models still exhibit certain limitations. i) Inferior
visual quality: The generated images still suffer from poor visual quality and lack authenticity.
Examples include characters with incomplete limbs or distorted body parts, as well as limited
fidelity in terms of style representation. ii) Inadequate aesthetic appeal: The generated image
tends to lack aesthetic appeal and often fails to align with human preferences, especially in the
abstract aesthetic concepts aspects such as color, lighting, atmosphere, etc. iii) Slow inference
speed: The iterative denoising process employed by diffusion models led to inefficiencies during
inference that significantly impede generation speed, thereby limiting the practicality of these
models in various application scenarios. Recently, numerous works have endeavored to address the
aforementioned challenges. For instance, RAPHAEL [15] resorts to the techniques of Mixture of
Experts) [16, 17, 18] boost the generation performance via stacking the space MoE and time MoE
block. Works [19, 20, 21, 22, 23] represented by ImageReward [23] propose incorporating human
preference feedback to guide diffusion models toward aligning with human preferences. SDXL
Turbo [24], PGD [25], and LCM [26, 27], on the other hand, targets on achieve inference acceleration
through techniques like distillation and consistency models [28]. However, these methods primarily
concentrate on tackling individual problems through specialized designs, which poses a significant
challenge to the elegant integration of these techniques. For example, MoE significantly complicates
the pipeline, making the acceleration method infeasible to apply, and the consistency models [28]
alter the denoising process of the diffusion model, making it arduous to directly apply the ReFL
preference tuning framework proposed by ImageReward [23]. Therefore, a natural question arises:
Can we devise a more effective approach that comprehensively enhances diffusion models in terms of
image quality, aesthetic appearance, and generation speed?

To tackle this issue, we present UniFL, a solution that offers a comprehensive improvement to latent
diffusion models through unified feedback learning formulation. UniFL aims to boost the visual
generation quality, enhance aesthetic attractiveness, and accelerate the inference process. To achieve
these objectives, UniFL features three novel designs upon the unified formulation of feedback learning.
Firstly, we introduce a pioneering perceptual feedback learning (PeFL) framework that effectively
harnesses the extensive knowledge embedded within diverse existing perceptual models to provide
more precise and targeted feedback on the potential visual defects of the generated results. Secondly,
we employ decoupled aesthetic feedback learning to boost the visual appeal, which breaks down the
coarse aesthetic concept into distinct aspects such as color, atmosphere, and texture, simplifying the
challenge of abstract aesthetic optimization. Furthermore, an active prompt selection strategy is also
introduced to choose the more informative and diverse prompt to facilitate more efficient aesthetics
preference learning. Lastly, UniFL develops adversarial feedback learning to achieve inference
acceleration by incorporating the adversarial objective in feedback tuning. We instantiate UniFL with
a two-stage training pipeline and validate its effectiveness with SD1.5 and SDXL, yielding impressive
improvements in generation quality and acceleration. Our contributions are summarized as follows:

• New Insight: Our proposed method, UniFL, introduces a unified framework of feedback
learning to optimize the visual quality, aesthetics, and inference speed of diffusion models.
To the best of our knowledge, UniFL offers the first attempt to address both generation
quality and speed simultaneously, offering a fresh perspective in the field.

• Novelty and Pioneering: In our work, we shed light on the untapped potential of leveraging
existing perceptual models in feedback learning for diffusion models. We highlight the sig-
nificance of decoupled reward models and elucidate the underlying acceleration mechanism
through adversarial training.

• High Effectiveness: Through extensive experiments, we demonstrate the substantial im-
provements achieved by UniFL across various types of diffusion models, including SD1.5
and SDXL, in terms of generation quality and inference acceleration.

2



2 Related Works

Text-to-Image Diffusion Models. Text-to-image generation has gained unprecedented attention
over other traditional tasks [29, 30, 31, 32, 33]. Recently, diffusion models have gained substantial
attention and emerged as the de facto mainstream method for text-to-image generation, surpassing
traditional image generative models like GAN [34] and VAE [35]. Numerous related works have been
proposed, including GLIDE [36], DALL-E2 [1], Imagen [2], CogView [37] etc.. Among these, Latent
Diffusion Models (LDM) [4] extend the diffusion process to the latent space and significantly improve
the training and inference efficiency of the diffusion models, opening the door to diverse applications
such as controllable generation [9, 10], image editing [11, 38, 39], and image personalization [5, 7, 6]
and so on. Even though, current text-to-image diffusion models still have limitations in inferior visual
generation quality, deviations from human aesthetic preferences, and inefficient inference. The target
of this work is to offer a comprehensive solution to address these issues.

Improvements on Text-to-Image Diffusion Models. Given the aforementioned limitations, re-
searchers have proposed various methods to tackle these issues. Notably, [40, 15, 41] focuses on
improving generation quality through more advanced training strategies. Insipred by the success of re-
inforcement learning with human feedback (RLHF) [42, 43] in the field of LLM, [20, 21, 44, 23, 45]
explore the incorporation of human feedback to improve image aesthetic quality. On the other hand,
[25, 24, 28, 27, 26] concentrate on acceleration techniques, such as distillation and consistency mod-
els [28] to achieve inference acceleration. While these methods have demonstrated their effectiveness
in addressing specific challenges, their independent nature makes it challenging to combine them
for comprehensive improvements. In contrast, our study unifies the objective of enhancing visual
quality, aligning with human aesthetic preferences, and acceleration through the feedback learning
framework.

3 Preliminaries

Latent Diffusion Model. Text-to-image latent diffusion models leverage diffusion modeling to
generate high-quality images based on textual prompts, which generate images from Gaussian noise
through a gradual denoising process. During pre-training, a sampled image x is first processed by a
pre-trained VAE encoder to derive its latent representation z. Subsequently, random noise is injected
into the latent representation through a forward diffusion process, following a predefined schedule
{βt}T . This process can be formulated as zt =

√
αtz +

√
1− αtϵ, where ϵ ∈ N (0, 1) is the random

noise with identical dimension to z, αt =
∏t

s=1 αs and αt = 1 − βt. To achieve the denoising
process, a UNet ϵθ is trained to predict the added noise in the forward diffusion process, conditioned
on the noised latent and the text prompt c. Formally, the optimization objective of the UNet is:

L(θ) = Ez,ϵ,c,t[||ϵ− ϵθ(
√
αtz +

√
1− αtϵ, c, t)||22] (1)

Reward Feedback Learning. Reward feedback learning (ReFL) [23] is a preference fine-tuning
framework that aims to improve the diffusion model via human preference feedback. It consists of two
phases: (1) Reward Model Training and (2) Preference Fine-tuning. In the Reward Model Training
phase, human preference data is collected to train a human preference reward model, which serves
as a proxy to provide human preferences. More specifically, considering two candidate generations,
denoted as xw (preferred generation) and xl (unpreferred one), the loss function for training the
human preference reward model rθ can be formulated as follows:

Lrm(θ) = −E(c,xw,xl)∼D[log(σ(rθ(c, xw)− rθ(c, xl)))] (2)
where D denotes the collected feedback data, σ(·) represents the sigmoid function, and c corresponds
to the text prompt. The reward model rθ is optimized to produce a reward score that aligns with
human preferences. In the Preference Fine-tuning phase, ReFL begins with an input prompt c,
initializing a random latent variable xT . The latent variable is then progressively denoised until
reaching a randomly selected timestep t. Then, the denoised image x′

0 is directly predicted from xt.
The reward model obtained from the previous phase is applied to this denoised image, generating the
expected preference score rθ(c, x

′
0). ReFL maximizes such preference scores to make the diffusion

model generate images that align more closely with human preferences:
Lrefl(θ) = Ec∼p(c)Ex′

0∼p(x′
0|c)[−r(x

′
0, c)] (3)

Our method follows a similar learning framework to ReFL but devises several novel components to
enable comprehensive improvements.
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Figure 2: Overview of UniFL. We leverage a unified feedback learning framework to enhance the
model performance and inference speed comprehensively. The training process of UniFL is divided
into two stages, the first stage aims to improve visual quality and aesthetics, and the second stage
speeds up model inference.

4 UniFL: Unified Feedback Learning

Our proposed method, UniFL, aims to improve the latent diffusion models in various aspects,
including visual generation quality, human aesthetic quality, and inference efficiency. our method
takes a unified feedback learning perspective, offering a comprehensive and streamlined solution. An
overview of UniFL is illustrated in Fig.2. In the following subsections, we delve into the details of
three key components: perceptual feedback learning to enhance visual generation quality (section 4.1);
decoupled feedback learning to improve aesthetic appeal (section 4.2); and adversarial feedback
learning to facilitate inference acceleration (section 4.3).

4.1 Perceptual Feedback Learning

Current diffusion models exhibit limitations in achieving high-fidelity visual generation, for example,
object structure distortion. These limitations stem from the reliance on reconstruction loss(MSE
loss) solely in the latent space, which lacks structural supervision on the high-level visual quality.
To address this issue, we propose perceptual feedback learning (PeFL). Our key insight is that
various visual perception models already embed rich visual priors, which can be exploited to provide
feedback for visual generation and fine-tune the diffusion model. The complete PeFL process is
summarized in Algorithm 1. In contrast to ReFL, which starts from a randomly initialized latent
representation and only considers the text prompt as a condition, PeFL incorporates image content as
an additional visual condition for perceptual guidance. Specifically, given a text-image pair, (c, x),
we first select a forward step Ta and inject noise into the ground truth image to obtain a conditional
latent x0 → xTa . Subsequently, we randomly select a denoising time step t and denoising from xTa ,
yielding xTa → xTa−1... → xt. Next, we directly predict xt → x′

0. By incorporating the visual
condition input, the denoised image is expected to restore the same high-level visual characteristics,
such as object structure, and style, which existing perception models can capture. For instance,
in the case of object structure, the instance segmentation model can serve as a valuable resource
as it provides essential descriptions of object structure through instance masks. Consequently, the
feedback on the generation of such visual characteristics on x′

0 can be obtained by comparing it with
the ground truth segmentation mask via:

Lstruct
pefl (θ) = Ex0∼D,x′

0∼G(xta )
Linstance(mI(x

′

0),GT(x0)) (4)

where mI is the instance segmentation model, GT(x0) is the ground truth instance segmentation
mask and Linstance is the instance segmentation loss. Note that our PeFL differs from ReFL as
indicated by the red font in Algorithm 1. With the visual condition input and perception model, the
diffusion model is allowed to get a detailed and focused feedback signal on a specific aspect, instead
of the general quality feedback offered by ReFL. Moreover, the flexibility of PeFL allows us to
leverage various existing visual perceptual models, more examples can be found in the Appendix A.

4.2 Decoupled Feedback Learning

Decoupled Aesthetic Fine-tuning. Existing text-to-image diffusion models exhibit shortcomings
in images that satisfy human aesthetic preferences. While PeFL prioritizes objective visual quality,
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aesthetic quality is inherently subjective and abstract, requiring human aesthetic feedback to steer
the generation process. Despite ImageReward’s attempt to incorporate human aesthetic preferences
through a reward model, its performance is hindered by oversimplified modeling that fails to capture
the multidimensional nature of human aesthetic preferences. Generally, humans consider the aesthetic
attractiveness of an image from various aspects, such as color, lighting, etc, and conflating these
aspects without distinguishing during preference tuning would encounter optimization conflicts as
evidenced in [46]. To address this issue, we follow [23] to achieve aesthetic preference tuning but
suggest decoupling the various aesthetic aspects when constructing preference reward models. Specif-
ically, we decomposed the general aesthetic concept into representative dimensions and collected the
corresponding annotated data, respectively. These dimensions include color, layout, lighting, and
detail. Subsequently, we train a separate aesthetic preference reward model for each annotated data
according to Eq.2. Finally, we leveraged these reward models for aesthetic preference tuning:

Laes(θ) =

K∑
d

Ec∼p(c)Ex′
0∼p(x′

0|c)[ReLU(αd − rd(x
′
0, c))] (5)

rd is the aesthetic reward model on d dimension, d ∈ {color, layout, detail, lighting}, αd is the
dimension-aware hinge coefficient, and K is the number of fine-grained aesthetic dimension.

Algorithm 1 Perceptual Feedback Learning (PeFL)

1: Dataset: Captioned perceptual text-image dataset with
D = {(txt1, img1), ...(txtn, imgn)}

2: Input: LDM with pre-trained parameters w0, perceptual
model m·, perceptual loss function Φ, loss weight λ

3: Initialization: The number of noise scheduler time steps
T , add noise timestep Ta, denoising time step t.

4: for perceptual data point (txti, imgi) ∈ D do
5: x0← VaeEnc(imgi) // From image to latent
6: xTa ← AddNoise(x0) // Add noise to latent
7: for j = Ta, ..., t+ 1 do
8: no grad: xj−1 ← LDMwi{xj}
9: end for

10: with grad: xt−1 ← LDMwi{xt}
11: x

′
0 ← xt−1 // Predict the denoised latent

12: img
′

i ← VaeDec(x
′
0) // From latent to image

13: Lpefl ← λΦ(m(img
′

i),GT(imgi) // PeFL loss by per-
ceptual model

14: wi+1 ← wi // Update LDMwi using PeFL loss
15: end for

Active Prompt Selection. We observed
that when using randomly selected prompts
for aesthetic preference fine-tuning, the dif-
fusion model tends to rapidly overfit the
reward model due to the limited seman-
tic richness, leading to diminished effec-
tiveness of the reward model. To address
this issue, we further propose an active
prompt selection strategy, which selects
the most informative and diverse prompt
from a prompt database. This selection
process involves two key components: a
semantic-based prompt filter and nearest
neighbor prompt compression. By lever-
aging these techniques, the overfitting can
be greatly mitigated, achieving more effi-
cient aesthetic reward fine-tuning. More
details of this strategy are presented in the
Appendix.B.2.

4.3 Adversarial Feedback Learning

The inherent iterative denoising process of diffusion models significantly hinders their inference
speed. To address this limitation, we introduce adversarial feedback learning to reduce the denoising
steps during inference. Specifically, to achieve inference acceleration, we exploit a general reward
model ra(·) to improve the generation quality of fewer denoising steps. However, as studied in [23],
the samples under low inference steps tend to be too noisy to obtain the correct rewarding scores.
To tackle this problem, rather than freeze the reward model during fine-tuning, we incorporate an
extra adversarial optimization objective by treating ra(·) as a discriminator and update it together
with the diffusion model. Concretely, we follow a similar way with PeFL to take an image as input
and execute the diffusion and denoising consecutively. Afterward, in addition to maximizing the
reward score of the denoised image, we also update the reward model in an adversarial manner. The
optimization objective is formulated as:

LG(θ) = Ec∼p(c)Ex′
0∼p(x′

0|c)[−ra(x
′
0, c)],

LD(ϕ) = −E(x0,x′
0,c)∼Dtrain,t∼[1,T ][log σ(ra(x0)) + log(1− σ(ra(x

′
0)))].

(6)

where θ and ϕ are the parameters of the diffusion model and discriminator. With the adversarial
objective, the reward model is always aligned with the distribution of the denoised images with
various denoised steps, enabling the reward model to function well across all the timesteps. Note that
our method is distinct from the existing adversarial diffusion methods like SDXL-Turbo [24]. These
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methods take the adversarial distillation manner to accelerate the inference, which tends to require
another LDM as the teacher model to realize distillation, incurring considerable memory costs. By
contrast, we follow the reward feedback learning formulation, which integrates adversarial training
with the reward tuning and achieves the adversarial reward feedback tuning via the lightweight reward
model.

4.4 Training Objective

We employ a two-stage training pipeline to implement UniFL. The first stage focuses on improving
generation quality, leveraging perceptual feedback learning and decoupled feedback learning to boost
visual fidelity and aesthetic appeal. In the second stage, we apply adversarial feedback learning to
accelerate the diffusion inference speed. To prevent potential degradation, we also include decoupled
feedback learning to maintain aesthetics. The training objectives of each stage are summarized as
follows:

L1(θ) = Lpefl(θ) + Laes(θ); L2(θ, ϕ) = LG(θ) + LD(ϕ) + Laes(θ) (7)

5 Experiments

5.1 Implementation Details and Metrics

Dataset. We utilized the COCO2017 [47] train split dataset with instance annotations and captions
for structure optimization with PeFL. Additionally, we collected the human preference dataset for
the decoupled aesthetic feedback learning from diverse aspects (such as color, layout, detail, and
lighting). 100,000 prompts are selected for aesthetic optimization from DiffusionDB [48] via active
prompt selection. During the adversarial feedback learning, we use data from the aesthetic subset of
LAION [49] with image aesthetic scores above 5.

Training Setting. We utilize the SOLO [50] as the instance segmentation model. We utilize the
DDIM [51] scheduler with a total of 20 inference steps. Ta = 10 and the optimization steps t ∈ [0, 5]
during PeFL training. For adversarial feedback learning, we initialize the adversarial reward model
with the weight of the aesthetic preference reward model of details. During adversarial training, the
optimization step is set to t ∈ [0, 20] encompassing the entire diffusion process. Our training per
stage costs around 200 A100 GPU hours.

Baseline Models. We choose two representative text-to-image diffusion models with distinct gen-
eration capacities to comprehensively evaluate the effectiveness of UniFL, including (i) SD1.5 [4];
(ii) SDXL [40]. Based on these models, we pick up several state-of-the-art methods(i.e. Im-
ageReward [23], Dreamshaper [52], and DPO [22] for generation quality enhancement, LCM [27],
SDXL-Turbo [24], and SDXL-Lightning [53] for inference acceleration) to compare the effectiveness
of quality improvement and acceleration. All results of these methods are reimplemented with the
official code provided by the authors.

Evaluation Metrics. We generate the 5K image with the prompt from the COCO2017 validation
split to report the Fréchet Inception Distance (FID) [54] as the overall visual quality metric. We also
report the CLIP score with ViT-B-32 [55] and the aesthetic score with LAION aesthetic predictor
to evaluate the text-to-image alignment and aesthetic quality of the generated images, respectively.
Given the subjective nature of quality evaluations, we further conducted comprehensive user studies
to obtain a more accurate evaluation.

5.2 Main Results

Quantitative Comparison. Tab.1 summarize the quantitative comparisons with competitive ap-
proaches on SD1.5 and SDXL. Generally, UniFL exhibits consistent performance improvement on
both architectures and surpasses the existing methods of focus on improving generation quality or
acceleration. Specifically, for the generation quality, UniFL surpasses both DreamShaper (DS) and
ImageReward (IR) across all metrics, where the former relies on high-quality training images while
the latter exploits the human preference for fine-tuning. It is also the case when compared with the
recently proposed preference tuning method DPO. In terms of acceleration, UniFL also exhibits
notable performance advantages, surpassing the LCM with the same 4-step inference on both SD1.5
and SDXL. Surprisingly, we found that UniFL sometimes obtained even better aesthetic quality
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Figure 3: User study about UniFL and other methods with 10 users on the generation of 500 prompts
in generation quality (left) and inference acceleration (right).

SDXL  +
ImageReward

SDXL  + 
DPO

SDXL  + 
UniFL(4 steps)

SDXL  + 
Turbo(4 steps)

SDXL  + 
LCM(4 steps)SDXL

SDXL  + 
UniFL

A bloody mary cocktai

A high-contrast photo of a panda riding a horse. The panda is wearing a wizard hat and is reading a book.

Figure 4: Qualitive comparison of the generation results of different methods based on SDXL.

with fewer inference steps. For example, when applied to SD1.5, the aesthetic score is first boosted
from 5.26 to 5.54 without acceleration, and then further improved to 5.88 after being optimized
by adversarial feedback learning. This demonstrates the superiority of our method in acceleration.

Model Step FID↓ CLIP Score↑ Aes Score↑

SD15-Base 20 37.99 0.308 5.26
SD15-IR [23] 20 32.31 0.312 5.37
SD15-DS [52] 20 34.21 0.313 5.44

SD15-DPO [22] 20 32.83 0.308 5.22
SD15-UniFL 20 31.14 0.318 5.54
SD15-Base 4 42.91 0.279 5.16

SD15-LCM [27] 4 42.65 0.314 5.71
SD15-DS LCM [26] 4 35.48 0.314 5.58

SD15-UniFL 4 33.54 0.316 5.88

SDXL-Base 25 27.92 0.321 5.65
SDXL-IR [23] 25 26.71 0.319 5.81
SDXL-DS [52] 25 28.53 0.321 5.65

SDXL-DPO [22] 25 35.30 0.325 5.64
SDXL-UniFL 25 25.54 0.328 5.98
SDXL-Base 4 125.89 0.256 5.18

SDXL-LCM [27] 4 27.23 0.322 5.48
SDXL-Turbo [24] 4 30.43 0.325 5.60

SDXL-Lighting [53] 4 28.48 0.323 5.66
SDXL-UniFL 4 26.25 0.325 5.87

Table 1: Quantitative comparison between our method and other meth-
ods on SD1.5 and SDXL architecture. The best performance is high-
lighted with bold font, and the second-best is underlined.

We also compared the two latest acceleration
methods on SDXL, including the SDXL Turbo
and SDXL Lightning. Although retaining the
high text-to-image alignment, we found that the
image generated by SDXL Turbo tends to lack
fidelity, leading to an inferior FID score. SDXL
Lightning achieves the most balanced perfor-
mance in all of these aspects and reaches im-
pressive aesthetic quality in 4-step inference.
However, UniFL still obtains slightly better per-
formance on these metrics.

User Study. We conducted a comprehensive
user study using SDXL to evaluate the effec-
tiveness of our method in enhancing generation
quality and acceleration. As illustrated in Fig.3,
our method significantly improves the original
SDXL in terms of generation quality with a 68%
preference rate and outperforms DreamShaper
and DPO by 36% and 25% preference rate, re-
spectively. Thanks to PeFL and decoupled aesthetic feedback learning, our method exhibits improve-
ment even when compared to the competitive ImageReward, and is preferred by 17% additional
people. In terms of acceleration, our method surpasses the widely used LCM by a substantial margin
of 57% with 4-step inference. Even when compared to the latest acceleration methods like SDXL-
Turbo and SDXL-Lightning, UniFL still demonstrates superiority and obtains more preference. This
highlights the effectiveness of adversarial feedback learning in achieving acceleration.

Qualitative Comparison. As shown in Fig.4, UniFL achieves superior generation results compared
with other methods. For example, when compared to ImageReward, UniFL generates images that
exhibit a more coherent object structure (e.g., the horse), and a more captivating aesthetic quality
(e.g., the cocktail). Notably, even with fewer inference steps, UniFL consistently showcases higher
generation quality, outperforming other methods. It is worth noting that SDXL-Turbo, due to its
modification of the diffusion hypothesis, tends to produce images with a distinct style.
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Figure 5: (a) Illustration of PeFL with instance segmentation model (SOLO). (b) Visualization of the
effect of PeFL on structure optimization.
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A close-up of a lady with sunglasses

A majestic lion stands proudly on a rock …
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(a) (b)
Figure 6: (a) Design components ablation of UniFL. (b) Visualization of decoupled and non-decoupled
aesthetic feedback learning results.

5.3 Ablation Study

To validate the effectiveness of our design, we systematically remove one component at a time and
conduct a user study. The results are summarized in Fig.6 (a). In the subsequent sections, we will
further analyze each component. More results are presented in the Appendix.

Superiority of PeFL. As depicted in Fig.5 (a), PeFL leverages the instance segmentation model to
capture the overall structure of the generated object effectively. By identifying structural defects,
such as the distorted limbs of the little girl, the broken elephant, and the missing skateboard, PeFL
provides more precise feedback signals for diffusion models. Such fine-grained flaws can not be
recognized well with ReFL due to its global and coarse preference feedback, instead, the exploited
professional visual perception provides more detailed and targeted feedback. As presented in Fig.5
(b), the PeFL significantly boosts the object structure generation (e.g. the woman’s glasses, ballet
dancer’s legs). It is also demonstrated by the notable performance drop (71.9% vs 28.1%) when
disabling the PeFL.

Multiple aspects optimization with PeFL. PeFL exploits various perceptual models to improve
some particular visual aspects of the diffusion model and can easily be extended to multi-aspect
optimization. As illustrated in Fig.8, the simultaneous incorporation of two distinct optimization
objectives (style and structure optimization) does not compromise the effectiveness of each other.
Take the prompt a baby Swan, graffiti as an example, integrating the style optimization via PeFL upon
the base model successfully aligns the image with the target style. Further integrating the structure
optimization objective preserves the intended style while enhancing the overall structural details (e.g.
the feet of the Swan).

Necessity of decoupling design. We conducted an experiment that finetuned the SD1.5 using the
same prompt set but a global aesthetic reward model trained with all dimensions’ collected aesthetic
preference data. As depicted in Fig.6 (b), the generated images are more harmonious and have
an artistic atmosphere with the decoupled aesthetic reward tuning and are preferred by more 17%
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𝜶𝒄𝒐𝒍𝒐𝒓 = 𝟏. 𝟖 𝜶𝒅𝒆𝒕𝒂𝒊𝒍 = 𝟎. 𝟎

𝜶𝒍𝒂𝒚𝒐𝒖𝒕 = 𝟎. 𝟐𝟓 𝜶𝒍𝒊𝒈𝒉𝒕𝒊𝒏𝒈 = 𝟎. 𝟔𝟓

a dolphin leaps through the waves, set against a backdrop of bright blues and teal hues

SDXL 𝜶𝒄𝒐𝒍𝒐𝒓 = 𝟎. 𝟓 𝜶𝒄𝒐𝒍𝒐𝒓 = 𝟏. 𝟖 𝜶𝒄𝒐𝒍𝒐𝒓 = 𝟑. 𝟎

𝜶𝒅𝒆𝒕𝒂𝒊𝒍 = 𝟎. 𝟎

a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns

SDXLSDXL 𝜶𝒅𝒆𝒕𝒂𝒊𝒍 = 𝟑. 𝟓 𝜶𝒅𝒆𝒕𝒂𝒊𝒍 = 𝟒. 𝟓

Figure 7: Analysis on the αd. Left: reward scores distribution on 5k validation preference image
pairs with our final chosen values highlighted. Right: ablation on the αd on color and detail reward.

SDXL + PeFL Style

a baby Swan, graffiti

+  PeFL Style & PeFL StructureSDXL + PeFL Structure +  PeFL Structure & PeFL Style

a strong American cowboy with dark skin stands in front of a chair

Figure 8: Incorporating the style and structure optimization objectives simultaneously with PeFL
results in no effectiveness degeneration of each other.

individuals than the non-decoupled counterpart. This can be attributed to the ease of abstract aesthetic
learning with the decoupling design. Moreover, it also can be found that aesthetic feedback learning
with actively selected prompts leads to a higher preference rate (54.6% vs 45.4%) compared with the
random prompts. Further analysis of the prompt selection can be found in the Appendix.B.2.

Selection of hinge coefficient αd. We select the hinge coefficient for each aesthetic reward model
based on their reward distributions on the validation set. As illustrated in Fig.7 (left). there are clear
margins in the reward scores between preferred and unpreferred samples. Moreover, such margin
varies across these dimensions, emphasizing the necessity of the decoupled design. Empirically, we
set αd to the average reward scores of the preferred samples to encourage the diffusion model to
prioritize generating samples with higher reward scores. Fig.7 (right) demonstrates that setting a small
hinge for the "color" reward resulted in only minor improvement, while substantial coefficients led to
image oversaturation. Optimal results were achieved by selecting a coefficient close to the average
reward score of the preferred samples. A similar trend was observed for layout and lighting aesthetics
from our experiments, except for the "detail" dimension. Interestingly, a slightly lower coefficient
sufficed for satisfactory detail optimization, as a higher coefficient introduced more background
noise. This could be attributed to the significant reward score difference between preferred and
unpreferred samples, where a high coefficient could excessively guide the model toward the target
reward dimension.

Analysis on adversarial feedback learning. We analyzed the mechanism for the acceleration behind
our adversarial feedback learning and found that (i) Adversarial training enables the reward model
to provide guidance continuously. As shown in Fig.9 (a), the diffusion model offer suffers rapid
overfitting when frozen reward models, known as reward hacks. By employing adversarial feedback
learning, the trainable reward model (acting as the discriminator) can swiftly adapt to the distribution
shift of the diffusion model output, significantly mitigating the over-optimization phenomenon, and
allowing the reward to provide effective guidance for a longer duration. (ii) Adversarial training
expands the time step of feedback learning optimization. The adversarial objective poses a strong
constraint to force high-noise timesteps to generate clearer images, which allows the samples across
all denoising steps to be rewarded properly. As presented in Fig.9 (b), when disabling the adversarial
objective while retaining the full optimization timesteps during rewarding, the reward model fails to
provide effective guidance for samples under fewer denoising steps due to the high-level noise, which
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A majestic lion stands proudly on a rock, overlooking the vast African savannah Its
golden mane is flying in the wind, bathed in the warm colors of the sunset

A street

4-Step Inference

A young badger delicately sniffing 
a yellow rose

A close-up of a lady with sunglasses
(b)(a)

Training Steps Training Steps

Figure 9: Analysis of the benefits of adversarial training. (a) It enables a longer optimization time
for the reward model. (b) It enables the image under low denoising steps to be rewarded correctly.
The red rectangle means incorporating the adversarial training objective.

UniFL
8 Steps 4 Steps 2 Steps 1 Steps

A photo of a light bulb in outer space traveling the galaxy with a sailing boat inside
the light bulb.

LCM
8 Steps 4 Steps 2 Steps 1 Steps

SDXL-Turbo
8 Steps 4 Steps 2 Steps 1 Steps

UniFL
8 Steps 4 Steps 2 Steps 1 Steps

LCM
8 Steps 4 Steps 2 Steps 1 Steps

SDXL-Turbo
8 Steps 4 Steps 2 Steps 1 Steps

A cream-colored labradoodle wearing glasses and black beret teaching calculus at a
blackboard

SDXL
25 Steps

SDXL
25 Steps

SDXL
25 Steps

SDXL
25 Steps

SDXL
25 Steps

SDXL
25 Steps

Figure 10: Ablation on different inference steps of UniFL.

results in poor generation results. With these two benefits, adversarial feedback learning significantly
improves the generation quality of samples in lower inference steps and achieves superior acceleration
performance ultimately. Notably, as shown in Fig.6 (a), the image generated with 4-step inference
retains similar visual quality with 20-step inference (52.5% vs 47.4%) after going through the second
stage training, which demonstrates the superiority of UniFL in acceleration.

Ablation on Acceleration Steps. We examine the acceleration capacity of UniFL under various
inference steps, ranging from 1 to 8 as illustrated in Fig.10. Generally, UniFL performs exceptionally
well with 2 to 8 inference steps with superior text-to-image alignment and higher aesthetic quality.
The LCM method is prone to generate blurred images when using fewer inference steps and requires
more steps (e.g., 8 steps) to produce satisfied images. However, both UniFL and LCM struggle to
generate high-fidelity images with just 1-step inference, exhibiting a noticeable gap compared to
SDXL-Turbo (e.g., the Labradoodle), which is intentionally designed and optimized for an extremely
low-step inference regime. Therefore, there is still room for further exploration to enhance the
acceleration capabilities of UniFL towards 1-step inference.

6 Conclusion

We propose UniFL, a framework that enhances visual quality, aesthetic appeal, and inference effi-
ciency for latent diffusion models from the unified feedback learning perspective. By incorporating
perceptual, decoupled, and adversarial feedback learning, UniFL can be applied to various latent
diffusion models, such as SD1.5 and SDXL, and exceeds existing methods in terms of both generation
quality enhancement and inference acceleration.
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A Extend Details of Perceptual Feedback Learning

A.1 Additional Examples of PeFL

The proposed perceptual feedback learning (PeFL) is highly flexible, allowing it to utilize different
existing visual perception models to offer targeted visual quality feedback on particular aspects. To
showcase the scalability of PeFL, we present two additional case studies where PeFL is employed to
optimize style and layout generation.

i) Style: To effectively capture image style and provide feedback on style generation, we utilize the
VGG-16 [56] model to encode image features and extract visual style using the well-established gram
matrix in style transfer. Furthermore, we have curated a substantial dataset of approximately 150,000
high-quality artist-style text images. We leverage this dataset to conduct PeFL for style optimization.
The objective of the optimization can be formulated as follows:

Lstyle
pefl (θ) = Ex0∼D,x′

0∼G(xta )
∥Gram(V (x′

0))−Gram(V (x0))∥2, (8)

where V is the VGG network, and Gram is the calculation of the gram matrix. We validate the effect
of PeFL in style optimization based on SD1.5 and SDXL. Note that due to the newly introduced
artist-style dataset, we compare our method with the DMs fine-tuned with the same style dataset via
pre-train loss to ensure a fair comparison. As depicted in Fig.11, the PeFL significantly boosts style
generation (e.g. ’frescos’, ’impasto’ style), enabling the model to generate the image with a more
aligned style compared with applied pre-train loss (MSE loss). We further conduct the quantitive
experiment to evaluate the effectiveness of PeFL on style optimization. Specifically, we collect 90
prompts about style generation and generate 8 images for each prompt. Then, we manually statistic
the rate of correctly responded generation to calculate the style response rate. As shown in Tab.2,
it is clear that the style PeFL greatly boosts the style generation on both architectures thanks to the
superior style feedback provided by the VGG extracted feature, especially for SD1.5 with about 15%
improvement. In contrast, leveraging naive diffusion pre-train loss for fine-tuning with the same
collected style dataset suffers limited improvement due to stylistic abstraction missing in latent space.

A girl, frescos

a family, impasto

SD 1.5
SD 1.5 + 

Pretrain Style
SD 1.5 + 

PeFL Style SDXL
SDXL + 

Pretrain Style
SDXL +

 PeFL Style

A tree, oil painting

Woman wearing a dress, victorian

Figure 11: Style optimization of PeFL on SD1.5 and SDXL.

Model Style
Response Rate

SD1.5 30.55%
SD1.5 + Style Pretrain 35.25%
SD1.5 + Style PeFL 45.14%

SDXL 66.67%
SDXL + Style Pretrain 68.34 %
SDXL + Style PeFL 75.27%

Table 2: Quantitive performance
of PeFL in style generation.

ii) Layout: Generally, the semantic segmentation map characterizes the overall layout of the image as
shown in Fig.12 (a). Therefore, semantic segmentation models can serve as a better layout feedback
provider. Specifically, we utilize the visual semantic segmentation model to execute semantic
segmentation on the denoised image x′

0 to capture the current generated layout and supervise it with
the ground truth segmentation mask and calculate semantic segmentation loss as the feedback on the
layout generation:

Llayout
pefl (θ) = Ex0∼D,x′

0∼G(xta )
Lsemantic(ms(x

′

0),GT(x0)) (9)

where ms represents the semantic segmentation model, GT(x0) is the ground truth semantic seg-
mentation annotation and the Lsemantic is the semantic segmentation loss depending on the specific
semantic segmentation model. We conducted an experiment on PeFL layout optimization based
on SD1.5. Specifically, we utilize the COCO Stuff [57] with semantic segmentation annotation
as the semantic layout dataset and DeepLab-V3 [58] as the semantic segmentation model. The
results are presented in Fig.12 (b). It demonstrates that the PeFL significantly improves the layout
of the generated image, for instance, the bear on the bed in a diagonal layout. Note that here we
focus on the objective layout generation that is explicitly mentioned in the prompts, for example,
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‘stands‘, ‘overlooking‘, and ‘sit at‘. As a comparison, the layout reward model used in aesthetic
feedback learning primarily emphasizes the subjective composition from the aesthetic angle, which
may not be described clearly by the textual prompt. We further conduct the user study to evaluate
the effectiveness of PeFL with the semantic segmentation model quantitatively. As shown in Fig.13
(b), we are surprised to find that the image details also observed a significant boost in addition to the
improvement in the layout generation. This probably stems from the dense per-pixel feedback from
the semantic segmentation objective.

SD1.5
SD1.5 +

Pretrain Seg
SD1.5 +

PeFL Seg

A majestic lion stands proudly on a rock, overlooking 
the vast African savannah

A pair of worn running shoes sits at the door

A photo of a soft, plush teddy bear sits on a child's bed
Diagonal composition

GT Image GT Mask Generated Image
Generated Image
Predicted Mask

A woman standing on a dock with a pink umbrella in her hand.

Two people riding on the back of two horses in a green field.

A man and a woman standing in front of a red and white flag, holding
large scissors as if they are cutting the flag..

(a) (b)

Figure 12: (a) The illustration of the PeFL on the layout optimization. The semantic segmentation
model captures the layout and text-to-image misalignment between the ground truth image and the
generated image (DeepLab-V3 [58] is taken as the segmentation model). (b) The layout optimization
effect of the PeFL with semantic segmentation model on SD1.5.

Indeed, PeFL is an incredibly versatile framework that can exploit a wide range of visual perceptual
models, such as OCR models [59, 60] and edge detection models [61, 62], to boost the performance
of LDMs. Furthermore, we are actively delving into utilizing the visual foundation model, such
as SAM [63], which holds promising potential in addressing various visual limitations observed in
current diffusion models.

A.2 Ablation on Visual Perceptual Model

PeFL utilizes various visual perceptual models to provide visual feedback in specific dimensions to
improve the visual generation quality on particular aspects. Different visual perceptual models of
a certain dimension may have different impacts on the performance of PeFL. Taking the structure
optimization of PeFL as an example, we investigated the impact of the accuracy of instance segmen-
tation models on PeFL performance. Naturally, the higher the precision of the instance segmentation,
the better the performance of structure optimization. To this end, we choose the Mask2Former [64],
another representative instance segmentation model with state-of-the-art performance to achieve
structure optimization with PeFL. The results are shown in Fig.16 (a) and Fig.13 (a). It is intriguing to
note that the utilization of a higher precision instance segmentation model does not yield significantly
improved results in terms of performance. We speculate it lies in the different architectures of the
instance segmentation of these two models. In SOLO [50], the instance segmentation is formulated
as a pixel-wise classification, where each pixel will be responsible for a particular instance or the
background. Such dense supervision fashion enables the feedback signal to better cover the whole
image during generation. In contrast, Mask2Former [64] takes the query-based instance segmentation
paradigm, where only a sparse query is used to aggregate the instance-related feature and execute
segmentation. This sparse nature of the query-based method makes the feedback insufficient and leads
to inferior fine-tuning results. We leave further exploration of how to choose the most appropriate
visual perceptual model for feedback tuning to future work.
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(a) (b)

Figure 13: (a) The user study results on the ablation of different instance segmentation models in
PeFL during structure optimization. PeFL (SOLO): PeFL fine-tune SD1.5 with SOLO as the instance
segmentation model. PeFL (Mask2Former): PeFL fine-tune SD1.5 with Mask2Former as the instance
segmentation model. (b) The user study results on the effect of PeFL layout optimization. Dark
Green: SD1.5 with PeFL, Light Green: SD1.5 without PeFL.

a robot kicking a soccer balla girl riding an ostrich

a tennis court with three yellow cones on it
a paranoid android freaking out and jumping into the 
air because it is surrounded by colorful Easter eggs

SDXL + PeFL Structure(SOLO) SDXL + PeFL Structure(SOLO)

Figure 14: Generalization of PeFL with SOLO. The generation of the concepts not included in
COCO (e.g. ostrich, robot, cones) is also improved after PeFL optimization.

A.3 Generalization of PeFL with Close-set Perceptual models

We utilize the SOLO instance segmentation model trained with close-set dataset COCO for PeFL
structure optimization. One may be concerned that this will lead to limited concepts that PeFL can
optimize (i.e. only the COCO concept). However, on the one hand, although we apply the SOLO
instance segmentation model trained on the COCO dataset (80 categories), we observe that PeFL
exhibits exceptional generalization capability and the generation performance of many concepts not
shown in the COCO dataset is also boosted significantly as shown in Fig.14. We believe LDM can be
guided to learn general and reasonable structure generation via PeFL optimization. On the other hand,
the proposed perceptual feedback learning is a very flexible framework, and it is very straightforward
to replace the close-set model SOLO with other open-set instance segmentation models such as
Ground-SAM to achieve further improvement for the concepts in the wild(e.g. concepts in LAION
dataset).
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Roses of black color surround a black-painted
goat skull, black and white coloring page,
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A female sleuth with a hat, ultrhigh resolution 
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Figure 15: Visualization of the decoupled aesthetic feedback data. The preferred samples are
highlighted with red rectangles.

B Extend Details of Decoupled Feedback Learning

B.1 Aesthetic Preference Data Collection

We break down the general and coarse aesthetic concept into more specific dimensions including
color, layout, detail, and lighting to ease the challenge of aesthetic fine-tuning. We then collect the
human preference dataset along each dimension. Specifically, we employ the SDXL [40] as the
base model and utilize the prompts from the MidJourney [3, 65] as input, generating two images for
each prompt. Subsequently, we enlist the expertise of 4 to 5 professional annotators to assess and
determine the superior image among the generated pair. Given the inherently subjective nature of
the judgment process, we have adopted a voting approach to ascertain the final preference results for
each prompt. Finally, we curate 30,000, 32,000, 30,000, and 30,000 data pairs for the color, layout,
detail, and lighting dimensions, respectively. Examples of the collected aesthetic feedback data of
different dimensions are visually presented in Fig.15.

B.2 Active Prompt Selection

Prompt Selection Process. We introduce an active prompt selection strategy designed to choose
the most informative and diverse prompts from a vast prompt database. The comprehensive imple-
mentation of this selection strategy is outlined in the Algorithm.2. Our strategy’s primary objective
is to select prompts that offer maximum information and diversity. To accomplish this, we have
devised two key components: the Semantic-based Prompt Filter and the Nearest Neighbor Prompt
Compression. The semantic-based prompt filter is designed to assess the semantic relationship
embedded within the prompts and eliminate prompts that lack substantial information. To accomplish
this, we utilize an existing scene graph parser2 as a tool to parse the grammatical components, such
as the subjective and objective elements.

The scene graph parser also generates various relationships associated with the subjective and
objective, including attributes and actions. We then calculate the number of relationships for each
subjective and objective and select the maximum number of relationships as the measurement of
the information amount encoded in the prompt. A higher number of relationships indicates that the
prompt contains more information. We filter out prompts that have fewer than τ1 = 1 relationships,
which discard the meaningless prompt like ‘ff 0 0 0 0‘ to reduce the noise of the prompt set.
Upon completing the filtration process, our next objective is to select a predetermined number of
prompts that exhibit maximum diversity. To achieve this, we adopt an iterative process to achieve
this objective. In each iteration, we randomly select a seed prompt and subsequently suppress its
nearest neighbor3 prompts that have a similarity greater than τ2 = 0.8 as illustrated in Fig.16 (b). The

2https://github.com/vacancy/SceneGraphParser
3https://github.com/facebookresearch/faiss
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Algorithm 2 Active prompt selection for decoupled aesthetic feedback learning

Input: Initial prompt database: D; number of
desired prompts: N ; τ1 and τ2: relation and
similarity threshold.

Output: The selected prompt set: SP
1: P = ∅
2: # Semantic-based Prompt Filter
3: for pi ∈ D do
4: SR← SemanticParser(pi)
5: if |SR| > τ1 then
6: P ← pi // choose informative prompt
7: end if
8: end for
9: # Nearest Neighbor Prompt Compression

10: I ← shuffle(range(len(| P |)))
11: R← False // set the removed prompt array
12: S ← ∅ // set the selected prompt index
13: Dist, Inds← KNN(R, k) // K-nearest neigh-

bor of each prompt

14: for index Ii ∈ I do
15: if not R[Ii] and Ii not in S then
16: S ← Ii // append the selected prompt
17: dist, inds = Dists[Ii], Inds[Ii] // K-

nearest neighbor similarities
18: for index di ∈ inds do
19: if dist[di] > τ2 then
20: R[di] = True
21: end if
22: end for
23: end if
24: end for
25: SP ← RandomSelect(P , S, N ) // randomly

select N diverse prompts according the re-
tained index

26: return SP

next iteration commences with the remaining prompts, and we repeat this process until the similarity
between the nearest neighbors of all prompts falls below the threshold τ2. Finally, we randomly select
the prompts, adhering to the fixed number required for preference fine-tuning.

Analysis of the active prompts. As illustrated in Fig.6 (a) in the main paper, our strategically
chosen prompts yield superior performance in aesthetic feedback learning. To further comprehend the
advantage of this design, we present the training loss curve in Fig.16 (c), comparing the use of actively
selected prompts versus random prompts. It clearly shows that the diffusion model rapidly overfits
the guidance provided by the reward model when using the randomly selected prompts, ultimately
resulting in the loss of effectiveness of the reward model quickly. One contributing factor to this
phenomenon is the distribution of prompts for optimization. If the prompts are too closely distributed,
the reward model is forced to frequently provide reward signals on similar data points, leading to the
diffusion model rapidly overfitting and collapsing within a limited number of optimization steps. We
statistic the average nearest embedding similarity (ANS) of the 100K prompts randomly selected
from DiffusionDB [48] by calculating the cosine similarity between each prompt with its most similar
prompt within the embedding space and taking the average over all the prompts. The ANS of the
randomly selected prompts is approximately 0.89, which delivery highly redundant. As a comparison,
the prompts selected by our strategy exhibit considerable diversity with ANS of 0.73, enabling a
more balanced and broad reward calculation, which eases the over-fit significantly. Therefore, with
the actively selected prompts, the diffusion model obtains a more comprehensive feedback signal and
can be optimized toward human preference more efficiently.

C Generalization Study

To further verify the generalization of UniFL, we performed downstream tasks including LoRA,
and ControlNet Specifically, we selected several popular styles of LoRAs [7], and several types of
ControlNet [9] and inserted them into our models respectively to perform corresponding tasks. As
shown in Fig.17, our model demonstrates excellent capabilities in style adaptation and controllable
generation.

D More Visualization Results

We present more visual comparison between different methods in Fig.18. It demonstrates the
superiority of UniFL in both the generation quality and the acceleration. In terms of generation
quality, UniFL exhibits more details (e.g. the hands of the chimpanzee), more complete structure (e.g.
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Superhero, modeling in Venice, Italy, with a confident smile.

An owl perches quietly on a twisted branch deep within an
ancient forest.

A delicate porcelain teacup sits on a saucer, its surface
adorned with intricate blue patterns.

SD1.5
SD1.5 + 

PeFL(Mask2Former)
SD1.5 + 

PeFL(SOLO)

（a)

K-nearest Neighbors

（c)

（b)

Figure 16: (a) The visual comparison between the PeFL structure optimization with different instance
segmentation models. (b) Illustration of Nearest Neighbor Prompt Compression. (c) Training loss
curve when utilizing different prompts for decoupled aesthetic feedback learning.

the dragon), and more aesthetic generation (e.g. the baby sloth and the giraffe) compared with DPO
and ImageReward. In terms of acceleration, the LCM tends to generate a blurred image, while the
SDXL-Turbo generates the image with an unpreferred style and layout. As a comparison, UniFL still
retains the high aesthetic detail and structure under the 4-step inference.

(UniFL + SD1.5 LoRA)
MoXin Anime Lineart

(UniFL + SDXL 4-Step LoRA)
TShirtDesignRedmondV2

Dressed animals

ParchartXL

Pixel Art XLEpi Noiseoffset

(UniFL + SDXL LoRA)

A handsome male model with suit.

(UniFL + SD1.5 ControlNet)

a house stands
with a car parked by.

Figure 17: Both SD1.5 and SDXL still keep high adaptation ability after being enhanced by the
UniFL, even after being accelerated and inference with fewer denoising steps.
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SDXL  +
ImageReward

SDXL  + 
DPO

SDXL  + 
UniFL(4 steps)

SDXL  + 
Turbo(4 steps)

SDXL  + 
LCM(4 steps)SDXL

SDXL  + 
UniFL

a chimpanzee wearing a bowtie and playing a piano

a dragon

A fluffy baby sloth with a knitted hat trying to figure out a laptop, close up, highly detailed, studio lighting

a giraffe made of turtle

An old man

Figure 18: More visual comparison with different methods.

E Discussion and Limitations

UniFL demonstrates promising results in generating high-quality images. However, there are several
avenues for further improvement:

Large Visual Perception Models: We are actively investigating the utilization of advanced large
visual perception models to provide enhanced supervision.

Extreme Acceleration: While the current 1-step model’s performance may be relatively subpar, the
notable success we have achieved in 4-step inference suggests that UniFL holds significant potential
for exploration in one-step inference.

Streamlining into a Single-stage Optimization: Exploring the possibility of simplifying our current
two-stage optimization process into a more streamlined single-stage approach is a promising direction
for further investigation.

F Broader Impact

The proposed framework, UniFL, has the potential to have significant broader impacts in the field
of image generation and related downstream applications. The improved visual quality of image
generation achieved through UniFL can enhance various applications that rely on generated images,
including computer graphics, virtual reality, and content creation. This can lead to the creation of
more realistic and visually appealing virtual environments, improved visual effects in movies and
video games, and better-quality generated content for digital media. However, it is also important to
consider the potential ethical implications and societal impacts of advancements in image generation
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techniques. With the ability to generate highly realistic images, there is a risk of misuse or abuse, such
as the creation of deepfake content for malicious purposes. Researchers, developers, and policymakers
must be vigilant and consider the ethical implications of these advancements, promoting responsible
use and raising awareness about the potential risks associated with synthetic media.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count toward the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way,
we acknowledge that the true answer is often more nuanced, so please just use your best judgment
and write a justification to elaborate. All supporting evidence can appear either in the main paper
or the supplemental material, provided in the appendix. If you answer [Yes] to a question, in the
justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers, and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In both the abstract and the introduction we elaborate on the contributions of
this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitation of this paper is well discussed in Appendix.E

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The details of our proposed PeFL and active prompt selection are clearly
illustrated in the Algorithm.1 and Algorithm.2 respectively.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details can be found in Sec.5.1.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All checkpoints and code to reproduce our results will be publicly available on
our project page upon the acceptance of our paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Implementation details can be found in Sec.5.1. All checkpoints and code to
reproduce our results would be publicly available on our project page as long as our paper is
accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The evaluation metrics adopted in this paper do not measure accuracy but
visual quality, aesthetic appeal, and text-to-image alignment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Implementation details can be found in Sec.5.1.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper definitely does not violate any Code Of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix.F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this paper are explicitly mentioned.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All checkpoints and code to reproduce our results will be publicly available on
our project page when our paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: This paper involved the user study for image quality evaluation in Sec.5.2. The
full text of the instructions given to participants consists of only one sentence: "Given the
two images below, which one do you prefer?"
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: This paper does not have potential risks incurred by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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