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Abstract

Sleep staging is important for monitoring sleep quality and
diagnosing sleep-related disorders. Recently, numerous deep
learning-based models have been proposed for automatic
sleep staging using polysomnography recordings. Most of
them are trained and tested on the same labeled datasets
which results in poor generalization to unseen target domains.
However, they regard the subjects in the target domains as a
whole and overlook the individual discrepancies, which lim-
its the model’s generalization ability to new patients (i.e.,
unseen subjects) and plug-and-play applicability in clinics.
To address this, we propose a novel Source-Free Unsuper-
vised Individual Domain Adaptation (SF-UIDA) framework
for sleep staging, leveraging sequential cross-view contrast-
ing and pseudo-label based fine-tuning. It is actually a two-
step subject-specific adaptation scheme, which enables the
source model to effectively adapt to newly appeared unla-
beled individual without access to the source data. It meets
the practical needs in real-world scenarios, where the per-
sonalized customization can be plug-and-play applied to new
ones. Our framework is applied to three classic sleep staging
models and evaluated on three public sleep datasets, achiev-
ing the state-of-the-art performance.

Introduction
Sleep plays a crucial role in people’s lives and has a signifi-
cant impact on their overall well-being (Humphreys, Sharps,
and Campbell 2005). Sleep staging is important for mon-
itoring sleep quality and serves as a valuable tool to help
diagnose sleep disorders(Wang et al. 2023), which refers
to classify sleep periods into different stages. Recently,
Polysomnography (PSG) has been widely used for sleep
staging in clinics, which records various physiological sig-
nals by the sensors attached to different parts of one body,
such as electroencephalography (EEG), electrooculography
(EOG), and electromyography (EMG). The PSG recordings
are usually divided into consecutive epochs of 30s. Experts
manually identify each epoch into five distinct sleep stages,
namely, W, N1, N2, N3, REM, according to the American
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Figure 1: (a) Traditional Domain Adaptation for a group of
target (new) individuals and (b) Source-free Unsupervised
Personalized Customization for each target (new) individual.

Academy of Sleep Medicine (AASM) (Berry et al. 2012).
Obviously, such process is subjective and time-consuming.

Numerous deep learning-based models have been pro-
posed for automatic sleep staging (Tsinalis et al. 2016;
Mousavi, Afghah, and Acharya 2019; Zhou et al. 2024;
Wang et al. 2024c) in recent years. Such models are usu-
ally trained and tested on the same labeled source data, au-
tomatically classifying different stages. They have achieved
good performance for sleep staging in the valid set, how-
ever, their performance is not so satisfying on unknown
samples. Most of them overlook the individual discrep-
ancies, such as physiological structures (Matsushima, Mi-
nami, and Takadama 2012), physical characteristics (i.e.,
Electrodermal Response) and sleep habits. In clinical prac-
tice, the new patients (unknown subjects) are probably dif-
ferent from the samples used for training the models offline.
This limits the model’s generalization ability to unknown
subjects and dramatically degrades the performance, espe-
cially when they are directly tested on the new patients in
clinics. Therefore, we desperately need to make the model
adapt to new subjects. Unsupervised Domain Adaptation
(UDA) is a suitable method which can transfer knowledge



learned from a labeled dataset (i.e., source domain) to an
unlabeled dataset (i.e., target domain). Traditional UDA ap-
proaches commonly apply a joint training strategy, which
relies on not only the target but also the source data to mit-
igate domain shift through feature alignment. By doing so,
the performance of some target subjects is improved after
adaptation (e.g., S1, S2 subjects in Fig. 1 (a)). However, this
adapting way will lead to the following drawbacks. First, the
target domain is treated as a whole (i.e., a number of sub-
jects), which requires waiting until a batch of target domain
samples are available before conducting the adaptation. This
is impractical in real life, where the arrival of each new indi-
vidual is entirely random. We need a plug-and-play adap-
tation rather than waiting for all the target individuals
to arrive to conduct adaptation. Second, they overlook the
individual discrepancies, resulting in a failure to adapt to
certain special ones whose distribution deviates significantly
from the overall distribution (e.g., S3, S4 subjects in Fig.
1 (a)). A personalized sleep staging model is needed for
each new patient. Third, using source data for joint-training
is time-consuming and can lead to data privacy leakage. A
source-free adaptation is needed in clinical practice.

To meet such practical needs, in this paper, we propose an
Source-Free Unsupervised Individual Domain Adaptation
framework for automatic sleep staging, named SF-UIDA.
First, we introduce the concept of individual domains,
where the SF-UIDA framework treats each target subject as
a distinct target domain. Meanwhile, the proposed SF-UIDA
contains a two-step subject-specific strategy that consid-
ers individual discrepancies to mitigate their impact on the
source model. It can be applied to the source pretrained mod-
els and enable them to adapt to each individual in a personal-
ized manner, without the need to wait for all the test individ-
uals to arrive. Moreover, SF-UIDA also adopts a source-free
UDA strategy, which is a more practical setup that does not
require accessing the source data, thereby lowering the time
cost and protecting the data privacy. As shown in Fig. 1 (b),
our framework enables the source model to rapidly adapt to
each new target in a personalized and plug-and-play fashion
without accessing the source data.

Our SF-UIDA is evaluated on three public datasets. The
process of customization is efficient in time and acceptable
in clinics, only taking a short amount of time to transform
the source model into a personalized model. Besides, it is
worth pointing that our SF-UIDA framework can be easily
implemented without any modification to the source model
structure, achieving plug-and-play application in practice.
Our contributions are as follows:

• We devise a novel Source-Free Unsupervised Individual
Domain Adaptation framework for automatic sleep stag-
ing, named SF-UIDA. It meets the practical needs for a
plug-and-play personalized customization that can be ap-
plied to each newly appeared individual without access-
ing the source data.

• We propose a two-step subject-specific alignment strat-
egy to mitigate the impact of individual discrepancies. It
effectively transforms the source model into a personal-
ized model for each new individual within a short adap-

tation time.
• Our SF-UIDA achieves the best generalization perfor-

mance across three public sleep staging datasets, com-
pared to other methods.

Related Work
Automatic Sleep Staging
There have been many models proposed for automatic sleep
staging in recent years. Some studies commonly employ
convolutional networks to extract local sleep features. For
example, U-time (Perslev et al. 2019, 2021) is a fully
CNN network based on the U-net architecture that can ex-
cellently model sleep-related features. SalientSleepNet (Jia
et al. 2021) is also a fully CNN network based on U2-
net which can capture multi modal sleep feature. Consid-
ering the advantage of capturing long-term temporal infor-
mation, there are also some studies utilizing recurrent neu-
ral networks (Mikolov et al. 2010) or transformer encoders
(Vaswani et al. 2017) for sleep staging. Phan et al. (2022)
proposed SleepTransformer, a transformer-based sequence-
to-sequence model that improves the interpretability of the
sleep-staging task. Although these models obtain good per-
formance for sleep staging, they have not taken individual
discrepancies into account, leading to dramatically degraded
performance when applied to target domains (i.e., unknown
subjects). In this paper, we propose a new training strategy
to address individual discrepancies for sleep staging, so as
to improve the model generalization ability in practice.

Source-free Unsupervised Domain Adaptation
To address the challenge of model generalization on unseen
data, some studies have employed UDA methods to facilitate
knowledge transfer between the source and target domains.
Existing UDA studies (Tang et al. 2022; Wang et al. 2024a)
have reduced domain shift and extracted domain-invariant
features through distance-based alignment. Fan et al. (2022)
utilized statistical alignment to mitigate domain shift across
several sleep datasets. These UDA methods effectively en-
hance the generalization ability of the source model for sleep
staging. However, they rely on source data for joint train-
ing, which is impractical and time-consuming for each new
subject in real-life scenarios. In contrast, source-free UDA
(Liang, Hu, and Feng 2020) offers a more practical solu-
tion by eliminating the need for source data during adap-
tation. Contrastive learning (CL) (Oord, Li, and Vinyals
2018; Chen et al. 2020; Chen and He 2021) is commonly
used in source-free UDA, focusing on mining intrinsic rep-
resentation features within the data. Chen et al. (2022) ap-
plied a self-supervised CL method to facilitate target feature
learning and achieve test-time adaptation, while Wang et al.
(2022) utilized weight-averaged and augmentation-averaged
predictions to generate pseudo-labels for adaptation. These
source-free approaches enable rapid adaptation of the source
model to target domains. However, they often overlook in-
dividual discrepancies and treat the entire target domain, en-
compassing multiple subjects, as a single distribution for
adaptation. This can hinder accurate predictions for individ-
uals whose distributions significantly deviate from the over-



Figure 2: Illustration of the two-step alignment strategy in
the SF-UIDA Framework: aligning the marginal probability
distribution PT (x) and the class conditional probability dis-
tribution PT (x | y) for individual target domains

all distribution. To address this, we propose the SF-UIDA
framework, which accounts for individual discrepancies and
enables personalized customization for each individual.

Methodology
Problem Formulation
In this work, we try to address the issue of individual dis-
crepancy for the task of automatic sleep staging by employ-
ing an UDA-based approach. Here, we introduce the concept
of individual target domain, which consists of the recordings
from only one subject. Formally, given a labeled source do-
main DS={X i

S ,Yi
S}

NS
i=1 with NS subjects and an unlabeled

individual target domain DT ={X j
T }

NT

j=1 with NT = 1. We
denote the distributions of different domains as PS(x, y) and
PT (x, y) respectively, where PS(x, y) ̸= PT (x, y). We em-
ploy the sleep sequence XS=(xS

1 , x
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2 , x

S
3 , ..., x
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L) of length

L and its corresponding label YS=(yS1 , y
S
2 , y

S
3 , ..., y

S
L) from

DS as inputs, where xS
i , ySi denotes the data and la-

bel of i-th epoch in the sequence XS . Our main purpose
is to accurately predict the label YT =(yT1 , yT2 , yT3 , ..., yTL )
of unlabeled individual target domain sequential sample
XT =(xT

1 , x
T
2 , x

T
3 , ..., x

T
L ).

Overview
In this work, we first pretrain the source model from a la-
beled source domain DS . The probability distribution of the
source domain can be described as follows.

PS(x, y) = PS(x)PS(y | x) = PS(y)PS(x | y) (1)

Considering the individual discrepancies among each sub-
ject, our SF-UIDA framework contains a two-step align-
ment: subject-specific adaptation and subject-specific
personalization, to align each of the individual target
distribution PT with the source domain distribution PS ,
customizing the sleep staging model for each individual.
Specifically, we use the unlabeled data from each indi-
vidual target domain and the generated pseudo-labels to
make the source model’s probability distribution PS(x, y)

align with the individual target domain’s probability dis-
tribution PT (x) and class-conditional probability distribu-
tion PT (x | y) illustrated in Fig. 2. The whole pro-
cess can be totally divided into three training stages:
Source Model Pretraining: We employ several classical
sleep stage classification (SSC) models as the pretrain-
ing models to learn the general sleep features from the
source domain. Subject-Specific Adaptation: We propose
a subject-specific adaptation by proposing a sequential
cross-view prediction task on individual target domain.
It is used to capture subject-specific sleep representa-
tions and align with the individual target domain’s prob-
ability distribution PT (x), mitigating the impact of in-
dividual discrepancies on the pretrained source model.
Subject-Specific Personalization: We employ a teacher
model based pseudo-labeling strategy for fine-tuning, so
as to learn the fine-grained distribution of different classes
in individual target domains. It enables the source model
further align the class-conditional probability distribution
PT (x | y), thus achieving personalized customization. No-
tably, our model customization is absolutely source-free,
using only the unlabeled target data for personalization.

Source Model Pretraining
We first extract general characteristics from PSG recordings
by pretraining a model on the source domain. Specifically,
we employ three classical lightweight sleep staging models
as pretrained models. Each model has a specialized extractor
for sleep features and a temporal encoder to capture tempo-
ral information from sleep sequences. The parameters of the
source model are then transferred to the subsequent process.

Subject Specific Adaptation
Due to the independence of individuals in the test set and
inter-individual differences, each individual target domain
exhibits a distinct distribution, often significantly deviating
from the source domain distribution. Therefore, the pre-
trained source model struggles to generalize to individual
target domains. In this step, our objective is to reduce do-
main shift and mitigate the impact of individual discrep-
ancies without access to the source data. Inspired by the
CPC and TS-TCC (Oord, Li, and Vinyals 2018; Eldele et al.
2021) algorithms, we propose a subject-specific adaptation
scheme for unsupervised domain adaptation, aligning the
probability distribution PT (x) through a complex sequen-
tial cross-view prediction task. This approach enables us to
model specific representations for each individual.

Sequential Cross View Contrasting According to the
AASM(Berry et al. 2012), the transition patterns of sleep
stages between neighboring epochs are crucial for accurate
sleep staging. These transitions occur not only in the
forward direction (e.g., W→N1→N2→N3) but also in re-
verse (e.g., REM←N3←N2). Motivated by these patterns,
we propose a novel Sequential Cross-view Contrasting
(SCC) module to model the bidirectional transition relation-
ships within subject-specific sequences, as illustrated in Fig.
3. To generate a new augmented view, reversing the original
sequence effectively contrasts the temporal relationships



Figure 3: The architecture of the proposed SCC module.

between different views. Formally, given an input sleep
sequence Xi=(x1, x2, ..., xL−1, xL), its augmented view
Xj=(xL, xL−1, ..., x2, x1) is obtained by reversal. After
feeding Xi and Xj into the Feature Extractor and Feature En-
coder, we obtain their corresponding latent representations
Zi=(zi1, z

i
2, ..., z

i
L−1, z

i
L) and Zj=(zjL, z

j
L−1, ..., z

j
2, z

j
1),

respectively. For a given time step T (1 < T < L), we
utilize a transformer as an autoregressive model to encode
Zi:t≤T , Zj:L−T≤t≤L into a contextual vector: Ci and
Cj . We then establish a sequential cross-view task, using
linear layers to predict the future L − T sleep timesteps
from ziT+1 to ziL in sequence Zi by leveraging contextual
vector Cj , such that ẑiT+k = fT+k(Cj), where ẑiT+k

denotes the predicted timesteps for ziT+k and fT+k is
the corresponding predicting linear layer. Similarly, we
use contextual vector Ci to predict the past L − T sleep
timesteps from zj1 to zjL−T in sequence Zj . The cross-view
predicted timesteps can be formulated as Ẑi

T+1∼L =

(fT+1(Cj), fT+2(Cj), ..., fL(Cj)) = (ẑiT+1, ẑ
i
T+2, ..., ẑ

i
L)

and Ẑj
1∼L−T = (f1(Ci), f2(Ci), ..., fL−T (Ci)) =

(ẑj1, ẑ
j
2, ..., ẑ

j
L−T ), respectively. We then apply the Max-

imum Mean Discrepancy (MMD) loss to minimize the
distance between the cross-view predicted timesteps Ẑi and
Ẑj as follows:

LC = − 1

K

K∑
k=1

DMMD(ẑ
i
T+k, ẑ

j
k) (2)

where K denotes the L − T . Notably, for a specific pre-
dicted timestep ẑjk, we minimize its MMD distance between
the corresponding predicted timestep ẑiT+k rather than ẑik.
This is because after reversing, the position corresponding
to ziT+k aligns perfectly with zjk.

Subject Specific Personalization
The subject-specific adaptation aligns the marginal distri-
butions between the source domain and the individual tar-
get domain. Due to the influence of individual differences,
there still exist class-conditional distribution discrepancies
between each individual target domain and the source do-

Algorithm 1: Source-Free Unsupervised Individual
Domain Adaptation algorithm

Input: XS , YS , XT
Output: Fθ

Source Model Pretraining:
Pretrain the source model by XS , YS and return Fθ.
Subject-Specific Adaptation:
Generate the augmented view Xj for each input
target sleep sequence Xi.

for i = 1 to n do
Compute latent representations Zi, Zj .
Compute contextual vectors Ci, Cj .
Optimize Fθ by minimizing Eq.2.

end
return retrained model Fθ.
Subject-Specific Personalization:
Initialize the teacher model FθT and transfer the

weights Wθ to WθT .
for i = 1 to n do

Generate confident pseudo sequence labels ŶT
by FθT by Eq. 4, Eq. 5.

Optimize Fθ by minimizing Eq.6.
Update WθT by Eq.3

end
return Fθ.

main, which may lead to erroneous alignment of different
classes across the source and target domains shown in Fig.2
(a). Conventional solutions typically rely on fine-tuning with
labeled data to address this issue (Eldele et al. 2023). How-
ever, we are unable to employ supervised methods for class-
conditional distribution alignment as the target labels are
unavailable. Inspired by Tarvainen and Valpola (2017) and
Ragab et al. (2022), we employ a teacher model based on
pseudo-label generation approach to tackle this problem
shown in Fig.2(b). Notably, we have introduced sequence
confidence for each individual, producing robust pseudo se-
quence labels. We solely preserve the confident ones for fur-
ther fine-tuning, which enable us to better align the class-
conditional distribution with the source domain and model
the personalized representations. Specifically, we migrate
the model parameters Wθ to the teacher model FθT using
Exponential Moving Average (EMA). The updates to the
teacher model parameters are as follows:

WθT = αWθT + (1− α)Wθ (3)

where WθT denotes the parameters of the teacher model
FθT and α is a hyper-parameter employed to regulate
the update rate of the teacher model parameters. For
each sleep sequence XT =(x1, x2, x3, ..., xL), we can ob-
tain the corresponding predicted sequence probabilities
YT =(y1, y2, y3, ..., yL) by the teacher model. Given a sleep
sequence XT with the length L, we retain it for subsequent
fine-tuning iff there are Nc or more epochs in the sequence
and the prediction probabilities of each epoch not less than
the confidence threshold ξ. It can be formalized as follows:

YT = softmax(Fθ(XT )) (4)



Dataset Subjects Subjects CV Sampling Scoring EOG Channels EEG Channels
(all) (we choose) (fold) (Hz) (standard) (we choose) (we choose)

ISRUC 100 98 10 200 AASM E1, E2 F3, F4, C3, C4, O1, O2
HMC 151 145 10 256 AASM E1, E2 F4, C4, O2, C3
SleepEDF-153 78 78 10 100 R&K EOG horizontal Fpz-Cz, Pz-Oz

Table 1: A brief description about three public sleep staging datasets.

ŶT = 1s([

L∑
i=1

1e(max(yTi ) > ξ)] ≥ Nc) · YT (5)

where 1e is the confident epoch indicator function, evaluat-
ing to 1 iff max(ykt ) > ξ and 1s is the confident sequence
indicator function, evaluating to 1 iff there are Nc or more
confident epochs yTi in the YT . In most existing studies, the
confidence threshold ξ is set to be greater than 0.9. However,
based on our confident sequence setting, we focus more on
the overall confidence of the sequence rather than that of a
single epoch. So we need a higher tolerance for the thresh-
old ξ and we set the it equal to 0.8 and the Nc is set to 15.
To ensure alignment of the class-conditional distribution, we
employ the confident sequence labels to finetune the model,
by using a cross-entropy loss:

Lce = −EXT ∼PT [

K∑
k=1

Yk
T log(Ŷk

T )] (6)

During the whole process, only the unlabeled target individ-
ual’s data is needed for personalized customization without
access to the source data. The algorithm of SF-UIDA frame-
work is illustrated in Algorithm 1.

Experiments
Datasets
As shown in Table 1, we evaluated our approach on three
publicly available datasets: Sleep-EDF (Kemp et al. 2000),
ISRUC (Khalighi et al. 2016), and HMC (Alvarez-Estevez
and Rijsman 2021). For each dataset, we utilized both EEG
and EOG channels as input. ISRUC: This public database
consists of three sub-groups. We specifically selected sub-
group 1, which includes all-night polysomnography (PSG)
recordings from 100 adults, totaling 86,400 samples. Sub-
jects 8 and 40 were excluded due to missing channels.
SleepEDF-153: A public Physionet database comprising
78 healthy subjects aged 25 to 101, containing 188,760
samples. All subjects’ recordings were used for evaluation.
HMC: This public dataset includes recordings from 151
subjects at the Haaglanden Medisch Centrum (The Nether-
lands), consisting of 129,440 samples. Subjects 14, 32, 33,
64, 112, and 135 were excluded due to missing channels. All
sleep recordings were bandpass filtered (0.3 Hz–35 Hz) and
resampled to 100 Hz.

Settings
Baseline Models We need to select baseline models to
evaluate our SF-UIDA framework. Considering the effi-
ciency requirement in clinical practice, the fine-tuning for

each individual cannot be time-consuming. Therefore, we
selected three lightweight sleep staging models from ex-
isting studies, each of which is comprised of the feature ex-
tractor and the temporal encoder: DeepSleepNet (Supratak
et al. 2017): a classical CNN-BiLSTM model for extracting
sleep features and learning transition rules. TinySleepNet
(Supratak and Guo 2020): a more lightweight model based
on the DeepSleepNet. RecSleepNet (Nie, Tu, and Xu 2021):
a CNN-LSTM model based on feature representation recon-
struction. Here, we do not choose some other sleep stag-
ing models, which are also classical and perform well, such
as UTime (Perslev et al. 2019), SalientSleepNet (Jia et al.
2021), CareSleepNet(Wang et al. 2024b) or SleepTrans-
former (Phan et al. 2022), because their network structures
are complex and not suitable for our problem in clinics.

Implementation Based on the publicly available source
code, we re-implemented the three baseline models using
pytorch. The experimental settings are as follows: Source
Model Pretraining: The pretraining epoch is set to 100.
The learning rate is set to 1e-4. Subject-Specific Adapta-
tion: The training epoch of this stage is set to 5. The learn-
ing rate is set to 1e-7. The time step T is set to 17. Subject-
Specific Personalization: The fine-tuning epoch is set to 10.
The learning rate is set to 1e-7. The momentum α is set to
0.996. We use the Adam optimizer to train the model, the β
is set to [0.5,0.99], the weight decay is set to 3e-4, the size
of mini-batch is set to 32. The model is trained on a single
machine equipped with an Intel Core i9 10900K CPU and
eight NVIDIA RTX 3080 GPUs. The source code is pub-
licly available1.

Performance Measurement We employ 10-fold cross-
validation (CV) to evaluate the performance of our approach
across three different datasets. Different from the conven-
tional settings in previous studies, which only included train-
ing and validation sets, we divided the dataset into the
training, validation, and test sets and the ratio is 8:1:1.
The test set is regarded as unknown subjects, where there
are no repetitive individuals in the test set, ensuring that
each individual appears only once in the test set through-
out the 10-fold CV experiment. In each fold, we employ
the training and validation sets to pretrain the source model.
Subsequently, the source model goes though personaliza-
tion customization on each individual in the test set. Fi-
nally, we compute the average metrics for each individual
in the test set. We employ Accuracy (ACC) and Macro-F1
score (MF1) as evaluation metrics.

1https://github.com/xiaobaben/SF-UIDA



ISRUC HMC SleepEDF Average
Deep. Tiny. Rec. Deep. Tiny. Rec. Deep. Tiny. Rec.

ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1

Source Only 59.7 49.7 66.9 57.2 64.1 57.3 71.8 66.0 72.2 64.5 74.0 66.8 51.8 35.5 61.4 46.7 73.6 61.2 66.2 56.1
CPC 67.3 62.1 69.3 62.0 69.0 63.1 78.1 74.0 74.9 68.3 76.4 70.2 78.5 69.2 77.8 65.2 78.0 66.1 74.4 66.7

SimSiam 68.4 63.5 69.2 62.6 69.4 62.8 78.2 73.8 75.7 69.4 76.6 70.9 80.6 71.0 77.9 64.8 78.1 66.2 74.9 67.2
Adacontrast 68.6 63.7 69.7 63.2 69.6 62.9 78.1 73.7 75.4 69.2 76.8 71.1 80.5 70.9 77.6 64.5 77.9 65.7 74.9 67.2

CoTTA 67.8 62.8 70.2 62.9 69.3 62.8 77.7 73.5 75.0 68.3 76.4 70.2 80.2 70.7 77.9 65.4 78.0 66.1 74.7 67.0
C-SFDA 68.6 63.7 70.0 63.5 70.4 63.4 78.1 73.7 75.5 69.4 76.8 71.1 80.3 70.8 77.6 64.4 77.9 65.6 75.0 67.3

Ours 70.1 64.7 72.2 65.1 71.5 64.6 79.1 75.0 76.6 70.4 77.8 72.3 81.6 72.2 79.3 66.5 79.1 67.4 76.4 68.7

Table 2: Performance comparison with existing source-free UDA methods. Notably, Deep., Tiny., and Rec. refer to DeepSleep-
Net, TinySleepNet, and RecSleepNet, respectively.

Result Analysis
Compared with Other Existing Methods We compare
our method with other classical source-free UDA methods in
sleep staging, to further investigate the generalization ability
of SF-UIDA. Source only : A method to directly test the in-
dividual target domain using source model. CPC (Oord, Li,
and Vinyals 2018): A classical contrastive learning approach
to learn representation of time-seires data by predicting the
future timesteps. SimSiam (Chen and He 2021): An efficient
contrastive learning approach, which focuses on representa-
tion learning using stop-gradient strategy and symmetrized
loss. Adacontrast (Chen et al. 2022): A test-time adaptation
method using contrastive learning to facilitate target feature
learning. CoTTA (Wang et al. 2022): A test-time adaptation
method , which can effectively adapt off-the-shelf source
pretrained models to target domains. C-SFDA (Karim et al.
2023): A curriculum learning aided self-training framework
for SFDA is designed to adapt efficiently and reliably to tar-
get domains. We implement these SFDA methods within our
framework, and the performance comparison is shown in
Table 2. Our method outperforms existing approaches, un-
derscoring the effectiveness of our personalized customiza-
tion strategy in enhancing overall performance. Compared
to the Source Only method, our approach significantly en-
ables the source model to adapt to individual target do-
mains, achieving model customization and improved perfor-
mance. Among the compared methods, it is worth noting
that methods leveraging contrastive learning(e.g. SimSiam,
Adacontrast, C-SFDA) exhibit better performance compared
to other approaches (e.g. CPC, CoTTA).

Compared with Non-Personalized Domain Adaptation
The traditional domain adaptation (DA) paradigm consid-
ers a batch of subjects as the target domain for subsequent
adaptation which is impractical in real life. In contrast, our
individual domain adaptation based method allows for plug-
and-play application on each new subject without waiting.
To evaluate the effectiveness of our individual DA setting
compared to traditional DA paradigm, we conducted a com-
parative study. Notably, we maintained the consistent par-
titioning of the 10-fold cross validation and the SF-UIDA
framework. The only difference is: for the traditional DA
paradigm, in each fold we use the data of all target indi-

Figure 4: Comparison with traditional domain adaptation
paradigm (i.e., non-personalized domain adaptation).

viduals (i.e., test set) to perform adaptation, rather than
conducting model customization for each individual sep-
arately. We evaluated the performance of the fine-tuned
model on each test individual shown in Fig. 4. Compared
to the traditional domain adaptation paradigm, our person-
alized adaptation based paradigm can achieve comprehen-
sive superiority in performance on all baseline models across
the three datasets. It proves that our method can not only
meet the practical needs in real-world scenarios, where the
personalized customization can be plug-and-play applied to
new individuals, but also better achieve individual perfor-
mance improvement after adaptation.

Ablation Study To investigate the importance of our pro-
posed two-step alignment strategy, we conducted this abla-
tion experiments. The model variants are defined as follows:

• SO: which means source only that we directly use the
source model for testing.

• SO+SSA: only the Subject-Specific Adaptation (SSA)
stage is preserved in the SF-UIDA framework.

• SO+SSP: only the Subject-Specific Personalization
(SSP) stage is preserved in the SF-UIDA framework.

• SO+SSA+SSP: we employed the full two-step alignment
process of the SF-UIDA framework.

As shown in Table 3, our ablation experiments convincingly
demonstrate the efficacy of the proposed two-step alignment



ISRUC HMC SleepEDF

Deep. Tiny. Rec. Deep. Tiny. Rec. Deep. Tiny. Rec. Average

ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1

SO 59.7 49.7 66.9 57.2 64.1 57.3 71.8 66.0 72.2 64.5 74.0 66.8 51.8 35.5 61.4 46.7 73.6 61.2 66.2 56.1
SO+SSA 69.0 63.8 71.3 63.4 70.3 63.5 77.5 73.1 75.5 69.0 76.6 70.7 79.4 69.8 76.1 62.8 77.2 64.9 74.8 66.8
SO+SSP 68.0 62.4 70.9 64.7 68.0 62.4 78.4 74.3 74.5 70.3 77.7 71.9 79.5 69.9 78.9 66.4 79.1 67.4 75.0 67.7
SO+SSA+SSP 70.1 64.7 72.2 65.1 71.5 64.6 79.1 75.0 76.6 70.4 77.8 72.3 81.6 72.2 79.3 66.5 79.1 67.4 76.4 68.7

Table 3: Ablation experiment overview.

Figure 5: Average time cost per individual (seconds).

methodology for unsupervised individual domain adapta-
tion. Compared to the source-only method, both the SSA
and SSP modules yield improved performance, highlight-
ing the effectiveness of our alignment strategy during model
customization. Notably, the SSP module outperforms the
SSA module slightly, suggesting that aligning the class-
conditional distributions of the individual target domain is
more impactful than aligning the marginal distribution. This
is reasonable given the imbalance in sleep data classes, as
evidenced by a greater performance gap on the MF1 metric
(67.7% vs. 66.8%) compared to the ACC metric (75.0% vs.
74.8%). The MF1 metric more accurately reflects the clas-
sification performance for each class. By integrating both
SSA and SSP alignment modules, our SF-UIDA frame-
work achieves superior performance compared to single-
alignment approaches.

Computational Complexity To evaluate the computa-
tional complexity of our proposed SF-UIDA framework, we
calculate the time cost per individual across three datasets
shown in Fig. 5. Our method is capable of completing per-
sonalized customization for an unknown individual within
an average of 40 seconds. When compared to the several
hours’ duration of one person’s sleep records, this time
cost is acceptable. Moreover, considering the unseen sub-
ject commonly appears one by one in practice, our method
is applicable to enable the source model continuously adapt
to new subjects and achieve plug-and-play personalized cus-
tomization for each individual.

Feature Visualization To demonstrate the effectiveness
of our method, we selected two individuals from the Sleep-
EDF dataset to visualize intermediate features using the t-
SNE method (Van der Maaten and Hinton 2008). Figures 6
(a-1) and (a-2) illustrate the feature distribution for the first
individual, showing the distribution before and after person-
alization. Similarly, Figures 6 (b-1) and (b-2) depict the dis-

Figure 6: Sleep features visualization.

tribution for the second individual. As shown in Figure 6
(a-2), samples from the same sleep stage are well-clustered
after personalization, compared to the distribution in Figure
6 (a-1). A similar trend is observed for the second individual,
demonstrating that our method effectively achieves person-
alized customization for target subjects.

Conclusion

In this paper, we present a novel Source-Free Unsuper-
vised Individual Domain Adaptation (SF-UIDA) framework
for automatic sleep staging, employing a two-step subject-
specific alignment scheme for adaptation. Our framework
facilitates plug-and-play personalization for each new indi-
vidual without requiring access to source data, meeting the
practical needs in clinics. Experimental results across three
public datasets demonstrate that the SF-UIDA framework
effectively transforms a source model into a personalized
one within a short adaptation period, highlighting its prac-
tical significance. Our future work will aim to extend the
applicability of our method to a broader range of EEG tasks.
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