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Abstract

The flexible and generalized nature of large language models has allowed for their
application in a wide array of language-based domains. Much like their human
contemporaries, these models are capable of engaging in discussions and debates
as a means of improving answer quality. We first take a theoretical approach to
analyzing debate and provide a framework through which debate can be mathe-
matically examined. Building on this framework, we provide several theoretical
results for multi-agent debate. In particular, we demonstrate that similar model
capabilities, or similar model responses, can result in static debate dynamics where
the debate procedure simply converges to the majority opinion. When this majority
opinion is the result of a common misconception (possibly ingrained in the models
through shared training data) debate is likely to converge to answers associated
with that common misconception. Using insights from our theoretical results, we
then propose three interventions that improve the efficacy of debate. For each
intervention, we provide theoretical results demonstrating how debate is improved.
We also demonstrate that these interventions result in better performance on four
common benchmark tasks.

1 Introduction

Large language models (LLMs) have demonstrated a remarkable ability to perform unseen tasks with
high efficacy. This behavior, often referred to as emergent, allows LLMs to serve as general-purpose
tools for a wide array of language-based functions. One such behavior of particular interest is the
ability of LLMs to intake and process opinions from other models (or humans). As shown in several
previous works, this ability allows LLMs to collaboratively solve tasks by engaging in debate Chan
et al. [2023], Liang et al. [2023], Du et al. [2023]. For a given task, multi-agent debate operates
by eliciting responses from each model, distributing those responses among the models, and then
eliciting updated responses from each model.

In this work, we aim to explore the debate procedure, by first providing a theoretical framework
through which debate can be better understood. This framework draws inspiration from Bayesian
inference and in-context learning, showing that debate can be partially viewed as a special type of
in-context learning. Through this framework, we then provide several theoretical insights into the
debate procedure. In particular, we demonstrate the susceptibility of multi-agent debate to echo-
chamber effects. These echo-chamber effects are especially consequential when they stem from a
shared misconception between a majority of models, which can arise from circumstances such as
highly correlated training data between each model.

We then leverage results from our theoretical framework to improve the efficacy of the debate
procedure. In particular, we propose three interventions (modifications to the debate procedure).
First, diversity-pruning which aims to maximize the information entropy in model responses at each
round of debate; this intervention has the added benefit of reducing the severity of the echo chamber
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effect. Second, quality-pruning which aims to maximize the relevance of each model’s response. We
demonstrate that this intervention improves the likelihood that the debate procedure converges to
correct answers. Lastly, misconception-refutation which directly identifies, and attempts to refute
misconceptions in model responses. This intervention takes inspiration from works such as Robinson
et al. [2022] which demonstrate that LLMs are often more skilled at evaluating answers, compared
with directly providing answers. For each of our interventions, we provide theoretical results outlining
the way in which each improves debate. We also conduct experiments on four common benchmarks
demonstrating that these interventions improve debate efficacy in practice.

Our contributions 1) We propose a theoretical framework for multi-LLM debate that draws on
connections from in-context learning and Bayesian inference. 2) We provide theoretical insights
on several key principles of multi-LLM debate. 3) Using these insights, we design three debate
interventions which result in consistent improvement to debate, across four language benchmarks
(BoolQ, MMLU, MathQ, TruthfuQA) and three families of models (GPT, Lama, and Mistral).

2 Related Work

Our work is closely related to multi-agent debate, which focuses on iterative collaboration between
agents to make a decision Chan et al. [2023], Liang et al. [2023], Du et al. [2023], Khan et al.
[2024], Irving et al. [2018], Michael et al. [2023], Rasal [2024], Pham et al. [2023], Chang [2024b].
These works often focus on multi-agent debate in the context of question-answering tasks and aim to
provide higher quality answers (compared to those of a single model) by engaging multiple models in
discussion. The preliminary debate framework, proposed by Du et al. [2023], facilitates debate by first
asking each model a question, and then iteratively re-asking agents that same question contextualized
by the responses of all models in the previous round. Different variants of this procedure have
been proposed: debate where models have different functionality Liang et al. [2023], round-robin
style debate Chan et al. [2023], dynamically controlling the level of disagreement between agents
in debate Chang [2024a], or using judges to assess the correctness of debaters Khan et al. [2024].
Other techniques for iteratively improving the quality of answers have also been proposed, e.g.,
chain-of-thought Wei et al. [2022], Kojima et al. [2022], self-consistency Wang et al. [2022], Singhal
et al. [2023], and self-reflection Ren et al. [2023].

Similar to debate, there have been investigations into the use of different LLMs to engage with
one-another Liu et al. [2023], Abdelnabi et al. [2023], Zhang et al. [2023], Li et al. [2023c], Park et al.
[2023a], explain their rational to others Wang et al. [2023a], or collaboratively engage in general
tasks Li et al. [2023a], Wang et al. [2023b], Park et al. [2023b], Wu et al. [2023], Hong et al. [2023],
Li et al. [2023d,b], Tsao and AILAB [2023]. While debate has shown promise in a wide range of
domains, several works have also demonstrated that the debate process can be unstable and can lead
to worse performance than using just a single model Wang et al. [2024], Smit et al. [2023].

Our work is also related to in-context learning and Bayesian inference. The former, Brown et al.
[2020], Min et al. [2022], Lampinen et al. [2022] demonstrates that LLMs can perform unseen tasks
when provided only a few examples of that task. Other works Xie et al. [2021], Jiang [2023] have
shown a connection between in-context learning and Bayesian inference; the additional examples
provided to the model can be viewed as updates to the model’s posterior distribution over tokens.

3 Preliminaries

Debate Let x be a given question, with associated answer y, for example x =“What color is the
sky?” and y =“Blue”. Following the debate procedure proposed by Du et al. [2023], a collection of
n LLMs (also referred to as agents) collaborate to infer the correct answer y by iteratively engaging
in discussion over T rounds, as described next:

• At round t = 0 each agent i observes task x, then provides response z
(0)
i .

• At rounds t > 0 each agent i observes task x and the outputs of the n agents at the previous
timesetep Z(t−1) = (z

(t−1)
1 , . . . , z

(t−1)
n ), then provides response z

(t)
i .

• The debate process ends if t = T or if agents reach a consensus.
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To measure if consensus is reached a function a extracts an answer1 from a given response z. Suppose
z =“During the day, the sky is blue”, then a(z) = “Blue”. At round t, the probability that agent i
provides response z

(t+1)
i , is given by

Pmodel

(
z
(t+1)
i︸ ︷︷ ︸

updated model response

∣∣ x︸︷︷︸
task

, Z(t) = (z
(t)
1 , . . . , z(t)n )︸ ︷︷ ︸

all model responses from previous round

, ϕi︸︷︷︸
model parameters

)
(1)

where ϕi captures model hyperparameters (such as training data, architecture, etc.). Both the input
(Z(t),x) as well as the hyperparameters ϕi, ultimately influence the output z(t+1)

i . Note that on each
round, all agents observe the same input, namely (Z(t),x). Thus, differences in agent output z(t+1)

i
are determined by both the stochastic nature of output generations, and the unique parameters ϕi of
each model. For notational convenience, we drop the subscript in Pmodel when the parameters ϕi are
given, and simply write P(·|ϕi).

The key distinction between our approach and “vanilla" debate, is that we will leverage latent concepts
(discussed next) to modify the responses in Z(t) in between each round of debate.

Latent Concepts Central to our investigation is the idea of latent concepts in language generation.
As outlined by Xie et al. [2021], Jiang [2023] latent concepts capture the idea that language is not
generated at random (either by humans or by models). Rather, when generating language, we first
have an idea or an intention form in our minds; we then select words that we believe will convey
that underlying idea or intention. More formally, let Θ be a latent concept space and let θ ∈ Θ
be a concept. Following Xie et al. [2021], tasks x, and their associated answer y are generated by
first selecting a vector of latent concept θ ∈ Θ and then sampling (x,y) ∼ D(θ), where D is some
distribution mapping concepts to task-answer pairs. Similarly, when providing responses, models
will observe x, and infer the latent concept θ, or more generally a distribution over the latent concept
space, and then generate a response according to those inferred concepts, i.e., the model’s generation
probability in Equation 1 can be expressed as

P
(
z
(t+1)
i

∣∣ x, Z(t),ϕi

)
=

∏
θ∈Θ

P
(
z
(t+1)
i

∣∣ θ,x, Z(t),ϕi

)
P
(
θ| x, Z(t),ϕi

)
(2)

Note that the above holds by the law of total probability for any choice of latent concept space.

To provide a more concrete example of latent concepts, consider the question-answering task in the
BoolQ dataset. One of the questions in this dataset is "Did Abraham Lincoln write the letter in the
film Saving Private Ryan?" to which the correct answer is "Yes". The latent concept, in this case,
corresponds to the actual scene in the movie where the Bixby letter (written by Lincoln) is read to a
group of soldiers. Just as in our case, first a concept θ is drawn, e.g., the film is made; then from the
film, a string x is sampled, i.e., the previous question about the film.

For another example of latent concepts, we can think of arithmetic calculations such as multiplication.
When we wish to express multiplication through language, we may write something like "4 ∗ 4". The
latent concepts behind this string are the mechanisms of multiplication (e.g., multiplication is just
iterative addition, and addition itself is simply increasing the value of a number by one iteratively).
These examples are intended to be easily digestible. However, latent concepts can also be significantly
more abstract, such as a vector in some unknown embedding space.

4 A Theoretical Formulation of Multi-Agent Debate

We begin by providing a theoretical formulation of multi-agent debate. This formulation will provide
key insights into the inner workings of the debate procedure, which we will use to improve debate.

The key behind our framework is to use the idea of latent concepts and expansion of each model’s
generation probability (Equation 2) in order to better understand debate. Prior to presenting our
theoretical framework, we first state an important assumption.

Assumption 4.1. For a given latent concept space Θ, the probability of generating response z(t+1)
i is

conditionally independent of both the responses Z(t) and the task x, given concept θ ∈ Θ and model
parameters ϕi, i.e., P

(
z
(t+1)
i | θ,x, Z(t),ϕi

)
= P

(
z
(t+1)
i | θ,ϕi

)
.

1In practice, a can be a regular-expression checker or an LLM-based judge such as Liang et al. [2023]
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Assumption 4.1 can be interpreted as saying that a model’s generation zi, is uniquely determined
by the model’s parameters ϕi and the concepts identified by a model, namely θ. In the case of
encoder-decoder-based models, one can conceptualize the joint between ϕ and θ as corresponding to
the embedding produced by the encoder. With this embedding in hand, the original input (x, Z(t))
no longer influences the model’s output, rather the embedding and model parameters will uniquely
determine the model’s output.

Next, we derive the following lemma which will be useful in examining the way that model responses
evolve debate rounds.

Lemma 4.2. The generation of model i at time t+ 1 can be expressed as,

P
(
z
(t+1)
i | Z(t),x,ϕi

)
∝

∑
θ∈Θ

P
(
z
(t+1)
i |θ,ϕi

)
P
(
x|θ,ϕi

)
P
(
θ|ϕi

)︸ ︷︷ ︸
generation without other agents

n∏
j=1

P
(
z
(t)
j | θ,ϕi

)
︸ ︷︷ ︸

skew caused by other agents

The significance of this lemma is that we are able to express the probability of generating a given
response z

(t+1)
i with the other model responses Z(t) in terms of the probability of generating z

(t+1)
i

without the other model responses and a skew term caused by those model responses. Note that,

P
(
z
(t+1)
i |x,ϕi

)
∝

∑
θ∈Θ

P
(
z
(t+1)
i |θ,ϕi

)
P
(
x|θ,ϕi

)
P
(
θ|ϕi

)
Thus, we can think of P

(
z
(t+1)
i | Z(t),x,ϕi

)
as a weighted version of P

(
z
(t+1)
i | x,ϕi

)
, where the

weights are given by the skew term
∏n

j=1 P
(
z
(t)
j | θ,ϕi

)
.

Debate and In-Context Learning To help conceptualize the role of latent concepts in debate, we
discuss the work of Xie et al. [2021], which uses Bayesian inference over latent concepts to understand
in-context learning. There are natural connections between in-context learning and multi-agent debate.
In-context learning works as follows: given a task x and a model f , select several examples of task-
answers pairs (x1, y1) . . . (xm, ym) which are similar to x. Then prompt the model f for an answer
to task x, given examples (xj , yj), i.e. z = f

(
x| (x1, y1) . . . (xm, ym)

)
. A key result of Xie et al.

[2021] is that latent concepts in the examples (xj , yj), particularly concepts shared between many
examples, influence the model’s answer z. For any concept where P

(
θ| (x1, y1) . . . (xm, ym)

)
is

large relative to other concepts (i.e., there is a shared concept θ between the examples), the model is
more likely to give response z which also share that concept. Model responses at the previous round
Z(t) serve a similar function to the examples of in-context learning. The model’s updated response at
time t+ 1, namely z

(t)
i , is influenced by concepts shared between the responses in Z(t). The skew

term in Lemma 4.2 provides a glimpse of how latent concepts conveyed by Z(t) will influence the
generation of z(t)i , namely that

∏n
j=1 P

(
z
(t)
j | θ,ϕi

)
reweighs the model’s generation.

4.1 Debate Objective

Through this perspective of debate we can more effectively design debate procedures by leveraging
the concept space Θ. To do this, we will first formulate debate as an optimization problem where the
skew term, described in Lemma 4.2, corresponds to the optimization variables. For a given task x and
answer y, each round of debate can be formulated as the following optimization problem.

argmax
Z(t)

n∑
i=0

P
(
a(z

(t+1)
i ) = y| Z(t),ϕi

)
At time t we aim to craft responses Z(t) such that they maximize the probability of providing the
correct answer at the next time step. Expanding this objective over the latent concept space Θ, yields

argmax
Z(t)

n∑
i=1

∑
θ∈Θ

(
P
(
a(z(t+1)) = y| θ,ϕi

)
P
(
θ| ϕi

)
P
(
x| θ,ϕi

) n∏
j=1

P
(
z
(t)
j | θ,ϕi

))
(3)
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The key challenges with directly optimizing this objective are: 1) the true concept θ∗ from which x

and y originate, as well as the relationship between z
(t)
j and the underlying concepts, is unknown,

2) the responses in Z(t)) are natural language. However, will allow us to design several approaches
within the concept space to better optimize debate. To motivate these approaches, we first need to
make several observations about the debate procedure as a whole.

5 Debate Principals

In this section, we discuss factors that affect the efficacy of LLMs debate. In particular, we look at the
role of information diversity, both in terms of the diversity of responses in Z(t) as well as diversity in
model capabilities. We see that a lack of diversity in either aspect is detrimental to the debate process.
Lastly, we study a particular type of homogeneity in debate, namely shared misconceptions in which
a large portion of models all share a similar erroneous belief about the task x.

5.1 Information Diversity

We begin by examining how the debate procedure is affected by both the diversity of model abilities
and the diversity of model responses. Homogeneity in either ability or responses will bias the debate
procedure towards certain latent concepts.

Similar Model Capabilities Suppose the debate process is conducted with only one type of model
(in effect n copies of the same model). That is, ϕi ≡ ϕ for all i ∈ [n]. Then, as the number of
agents increases, the debate procedure is more greatly impacted by the echo chamber effect, i.e., the
probability that a round of debate results in a change to the most likely concept, perceived by agents,
approaches 0. That is, a greater number of similar agents results in static debate dynamics, in essence
defeating the purpose of debate.
Theorem 5.1. Suppose all n agents have identical configurations (ϕi ≡ ϕ for all i). For round t > 0

let θ′(t) =
(
argmax

θ∈Θ
P
(
θ| x, Z(t),ϕ

))
and θ′(t+1) =

(
argmax

θ∈Θ
P
(
θ| x, Z(t+1),ϕ

))
, i.e., θ′(t) and

θ′(t+1) are the concepts most likely to be inferred by a model with parameters ϕ when given task x

and responses Z(t), Z(t+1) respectively. Then P
(
θ

′(t) = θ′(t+1))
)
→ 1 as n → ∞.

We defer a full proof to the Supplement, Section A. Theorem 5.1 implies that when debate is
conducted with multiple copies of the same model (or very similar models), increasing the number
of models results in debate centering on a single (unchanging) concept, rather than a balanced
distribution over multiple concepts.

Similar Model Opinions Next, we examine how similar responses impact the collaboration process.
At time t suppose that there are n responses Z(t) and at least m of those responses are similar, i.e.,
there exists some concept θ′ such that θ′ = argmaxθ∈Θ P

(
θ| z(t)j ,ϕi) for all j ≤ m. That is, each

of the m responses has a shared “most likely" concept when viewed by a model with parameters ϕi.

Theorem 5.2. Suppose that Z(t) contains at least m responses with the property that
θ′ = argmaxθ∈Θ P

(
z
(t)
i | θ,ϕi

)
. Then, as m → ∞ the model’s generation at the next round

(t+1) becomes uniquely determined by a single concept θ′ i.e.
P
(
z
(t+1)

(i,1)
| Z(t),x,ϕi

)
P
(
z
(t+1)

(i,2)
| Z(t),x,ϕi

) →
P
(
z
(t+1)

(i,1)
| θ′,ϕi)

P
(
z
(t+1)

(i,2)
| θ′,ϕi)

for all response pairs z(t+1)
(i,1) , z

(t+1)
(i,2) .

We defer a full proof to the Supplement Section A. Theorem 5.2 indicates the susceptibility that LLM
debate has towards tyranny of the majority. If a large number of models provide similar responses
to a task x, then those repeated answers will drown out the single provided by the other models’
responses, as well as the task x itself. In Section 7 we demonstrate that this occurs in practice.

5.2 Shared Misconceptions

Next, we study a particular type of homogeneity in model capabilities and responses, namely shared
misconceptions. When a common misconception is shared among the models, debate is less effective
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and is likely to converge to erroneous concepts associated with the shared misconception. We now
formalize the notion of misconceptions.
Definition 5.3. (Misconception): For a given concept θ∗, a model with parameters i is said to have
a misconception regarding θ∗ if there exists another concept θ′ s.t.,

Px∼D(θ∗)

[
P(x| θ′,ϕi) > P(x| θ∗,ϕi)

]
> 1/2

That is, for tasks generated from the concept θ∗, the model believes that the erroneous concept θ′

explains more than half of the tasks better than the true concept θ∗.

There is said to be a shared misconception if m of agents have a misconception and share the same
erroneous concept θ′. When the models share a common misconception the responses produced by
those models are biased towards the erroneous concept θ′.
Theorem 5.4. Let the true concept be θ∗ and suppose that m of the n agents have a shared
misconception for erroneous concept θ′. Then, task and answer (x, y) ∼ D(θ∗) expected average
correctness of the debate procedure at the final round T is monotonically decreasing with m, i.e.,
1
n

∑n
i P

(
a(z

(T )
i ) = y

)
is decreasing with m.

We defer the full proof to the supplement Section A. It should be noted that the phenomenon of
converging to erroneous concepts is unlikely to be mitigated by adding more models. When the
misconceptions of one model are formed through training data, it is likely that other models will
possess the same misconception unless specifically trained to avoid such errors due to the high
correlation in training data between models.

6 Interventions

In this section, we discuss several modifications to the debate procedure, referred to as interventions.
We break our interventions into two categories: Pruning which focuses on choosing which responses
to keep in Z(t), and Modifying which focuses on changing or editing the responses Z(t).

6.1 Pruning Interventions

At round t of debate, running interventions work by selecting only a subset of responses Z ′(t) from
Z(t) before starting the next round t+ 1. When using a pruning intervention, the models at round
t+ 1 will see only the pruned response set Z ′(t), rather than the full response set Z(t).

Diversity Pruning Let KL represent Kullback–Leibler divergence. The diversity pruning interven-
tion selects k of the n responses in Z(t) which maximizes information entropy, i.e.,

Z ′(t) = argmax
Y⊂Y (t)

∑
zi,zj∈Z

KL
(
D(θ| zi), D(θ| zj)

)
s.t. |Z| = k

Quality Pruning Quality pruning aims to select the k responses in Z(t) with the highest similarity
to the task x. Similar to diversity pruning, quality pruning selects k of the n responses at time t.
Rather than selecting for diversity, quality pruning aims to select the k highest question responses.
This is done by selecting the k responses which maximize

Z ′(t) = argmin
Z⊂Z(t)

∑
zi,∈Z

KL
(
D(θ| x), D(θ| zi)

)
s.t. |Z| = k

In practice computing KL
(
D(θ|x), D(θ|zi)

)
or KL

(
D(θ|zi), D(θ|zj)

)
is intractable. However,

sentence embedding can be used as a proxy for these values. Section C discusses this in further detail.

Next, we show that when models have a shared misconception, diversity pruning decreases the
likelihood that the debate procedure will converge to the erroneous concept corresponding to the
shared misconception.
Theorem 6.1. Let the true concept be θ∗ and suppose that at least n/2 agents have a shared
misconception for erroneous concept θ′. Then diversity pruning decreases the probability that debate
converges to an answer y′ which is sourced from the erroneous concept θ′, i.e. y′ ∼ D(θ′).
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We defer the full proof to the Supplement, Section A.

Theorem 6.2. For a given task-answer pair (x, y) quality pruning increases the probabil-
ity that debate converges to the correct answer, i.e. let Z(t) be the set of all responses at
time t and Z ′(t) be the result of quality pruning, then

∑n
i=1 P(a(z

(t+1)
i ) = y|x, Z ′(t),ϕi) >∑n

i=1 P(a(z
(t+1)
i = y|x, Z(t),ϕi).

We defer the full proof to the Supplement, Section A.

Remark 6.3. As shown by Theorems 6.1 and 6.2, diversity pruning decreases the probability that
debate converges to incorrect answers sourced from a particular concept, while quality pruning
increases the probability that debate converges to a correct answer sourced from the true concept.
Both interventions can be used simultaneously to guide the debate procedure more effectively away
from wrong answers and towards correct answers.

6.2 Modification Interventions

Misconception Refutation In addition to selecting which responses in Z(t) will be used in the
next round of debate, we can also modify the responses in Z(t). Misconception refutation aims to do
precisely this by updating response z

(t)
j to be more relevant to the task x.

z∗j = argmin
z

KL
(
D(θ|x), D(θ| z)

)
− KL

(
D(θ|z(t)j ), D(θ| z)

)
Similar to Diversity Pruning and Quality Pruning, the distributions in the above objective are
intractable in practice. As such, we use a proxy to update each response z

(t)
j , specifically produce z∗j

by having an LLM minimally modify the given response z
(t)
j . The model is first prompted for a list

of misconceptions and errors identified in the response. Given the list of misconceptions, the model
is asked for both a refutation of the misconception and a corrected version of the response. For more
details, see Section C of the Supplement.

Theorem 6.4. For task-answer pair (x, y), misconception refutation increases the probability of
debate converging to the correct answer, i.e. let Z(t), Z∗(t) be the responses before and after miscon-
ception refutation, then

∑n
i=1 P(a(z

(t+1)
i ) = y|x, Z∗(t),ϕi) >

∑n
i=1 P(a(z

(t+1)
i = y|x, Z(t),ϕi).

7 Experiments

Experimental Design We conduct experiments on four common language model benchmarks.
BoolQ Clark et al. [2019], which consists of 3, 270 yes-no questions, MMLU Hendrycks et al. [2020]
which consists of 13, 869 multiple-choice questions (we use the 3, 406 high-school-level questions),
TruthfulQA Lin et al. [2021] which consists of 817 open-ended questions, and MathQ which consists
of 3, 000 arithmetic questions of the from a·b·c + d·e·f . In the BoolQ, MMLU, MathQ, datasets
model correctness is measured through regular expression matching. In the TruthfulQA dataset,
model correctness is measured via an LLM judge (we use GPT-4 as the judge in all experiments)

We use four LLMs of increasing capability, GPT-3.5 (GPT-3.5 Turbo) OpenAI [2022], Llama-2
(Llama-2 7B Chat) Touvron et al. [2023], Llama-3 (Llama-3 8B Instruct) Meta AI [2024], and
Mistral (Mistral 7B Instruct v0.2) Jiang et al. [2023]. For sentence embeddings (which serve as
a proxy of the latent concepts Θ), we use sentence embeddings from ADA-2 OpenAI [2022]. We
compare a combination of our three interventions Ours (see Algorithm 1 full details) with the debate
paradigm of Du et al. [2023] (Society of Minds) SoM.

We begin by making several empirical observations about the multi-agent debate process.

Tyranny of the Majority First, we examine the susceptibility of models towards agreement with
the majority opinion. That is, how likely are models to give a specific answer at round t+ 1 when m
of the models provided that specific answer at round the previous round (round t)? For example, in
BoolQ suppose the specific answer is “Yes", then we want to know: how likely is a model to give a
"Yes"-answer at round t+ 1 if that model observes m "Yes" answers at round t.
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Figure 1: Probability that each model echoes the majority answer at round t = 11, as the number of
responses at time t = 0 gives that majority answer (debate between 12 models are used).

Figure 2: Average accuracy improvement as a function of response diversity at round 0 of debate.

To measure this, we first select a random target answer, e.g., “Yes", and then prompt m of the models
(out of 11) to provide responses “Yes"-answers2 (while the other 11-m models are prompted to
provide a different randomly selected answer). These 11 responses make up Z(t), we then test each
model’s likelihood of providing the target at round t+1 when observing Z(t) before diversity pruning
(solid) and after diversity running (hatched).

In Figure 1, we see models are susceptible to echo chamber effects (this phenomenon is predicted
by Theorem 5.1). The likelihood of providing the majority answer increases when Z(t) contains
more instances of the majority answer (i.e., as m increases). Figure 1 also demonstrates that diversity
pruning (with k = 5) reduces this echo chamber effect. See the Supplement for details.

Diversity of Opinions Next, we examine the effectiveness of SoM and our method as a function
of opinion diversity. Figure 2 shows the average accuracy improvement of SoM (dashed) and our
method (solid) over single model performance (i.e., average performance at round t = 0), as a
function of the similarity between all responses at round t = 0 of debate (measured via pairwise
cosine similarity). We see that for BoolQ, MMLU, and TruthfulQA, SoM is less effective when the
similarity between responses increases. This observation is predicted by Theorems 5.1 and 5.2, which
show that debate, without interventions, is less effective when model responses are too similar.

We see that our method’s improvement compared to SoM is greatest when model opinions are more
similar (cosine similarity close to 1). Note that the MathQ benchmark, where responses consist
primarily of arithmetic, serves as a counter-example to these observations. This is due to the fact
that sentence embedding of any two arithmetic expansions will be similar, regardless of their true
similarity; as such, the cosine similarity between embedding is less meaningful on this benchmark.

Debate Interventions Now, we examine the effectiveness of a combination of our three debate
interventions (see Algorithm 1 for full details of how the interventions are combined). We begin with
a per-round performance of our method and SoM, as shown in Figure 3. We see that typically, the
advantage of our method over debate arises in the later rounds of debate. Next, in Table 1, we present
a full set of results for single models, SoM, and a combination of our three interventions. In all cases,
our method is either competitive with, or superior to, SoM.

2Any model not providing the target answer is re-prompted until the target answer is provided.
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Single SoM Ours Single SoM Ours
BoolQ MMLU

6× GPT-3.5 .80±.014 .84±.012 .85±.012 .73±.014 .74±.016 .79±.014

6× Llama-3 .76±.014 .78±.013 .78±.013 .67±.016 .70±.015 .75±.014

6× Llama-2 .67±.017 .68±.017 .73±.016 .41±.017 .47±.018 .52±0.18

6× Mistral .80±.014 .82±.013 .85±.012 .66±.016 .65±.016 .66±.016

3× GPT-3.5 + 3× Llama-3 - .82±.014 .84±.013 - .73±.016 .78±.016

3× GPT-3.5 + 3× Mistral - .83±.013 .87±.012 - .69±.017 .72±.016

3× Llama-3 + 3× Mistral - .80±.014 .80±.014 - .69±.017 .74±.016

TruthfulQA Math
6× GPT-3.5 .61±.033 .63±.032 .69±.030 .53±.035 .88±.016 .93±.01

6× Llama-2 .47±.034 .52±0.35 .55±.034 .11±.013 .13±.014 .19±.015

6× Llama-3 .53±.035 .55±.032 .55±.032 .25±.016 .33±.017 .48±.018

6× Mistral .48±.034 .51±.035 .53±.034 .13±.013 .19±.014 .18±.014

3× GPT-3.5 + 3× Llama-3 - .56±.035 .62±.031 - .76±.015 .82±.014

3× GPT-3.5 + 3× Mistral - .52±.035 .56±.035 - .56±.018 .68±.017

3× Llama-3 + 3× Mistral - .49±.036 .53±.035 - .22±.015 .23±.015

Table 1: Accuracy of a solo model, debate, and our debate interventions: 10 rounds, 6 models.

Figure 3: Accuracy per round, our method and SoM when combing GPT-3.5 with Llama-3 or Mistral.

In addition to providing results for the combination of our interventions, we also investigate the
effectiveness of each intervention applied individually (see Table 3 of the Supplement). These results
indicate that our method is most successful when applying all three interventions simultaneously. In
fact, some interventions can be detrimental to the debate process when applied in isolation. This is
expected as each intervention is inherently designed to be complementary.

8 Limitations

While we aim to address some of the fundamental issues of multi-LLM debate, such as tyranny
of the majority, there are several factors that need to be considered when adopting our framework.
Firstly, our theoretical results leverage a latent concept space, which may not be accessible in practice,
necessitating the use of proxies such as sentence embeddings. Reliance on proxies is particularly
consequential for quality and diversity pruning; these interventions are less effective in domains where
sentence embeddings are less meaningful, e.g., arithmetic questions. Additionally, our interventions
can increase the inference time of the debate procedure. Increased inference time stems primarily
from misconception refutation, as this intervention requires re-prompting each debater multiple times.

9 Conclusion

Multi-agent debate is an effective tool for improving the efficacy of LLM responses. However, debate
is naturally susceptible to issues such as tyranny of the majority and shared misconceptions between
models. By making use of our theoretical framework for debate, we are able to establish interventions
for the debate procedure which help to alleviate these issues and improve the general performance of
multi-agent debate. We saw that diversity pruning reduces the influence of similar responses. This is
especially helpful in settings where the majority of agents provide incorrect responses that share a
common error. A combination of all three interventions consistently leads to better debate.
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Appendix

A Theoretical Results

Proof of Lemma 4.2. This result holds via marginalization of the posterior predictive distribution
over the latent concepts Θ, namely

P
(
z
(t+1)
i | Z(t),x,ϕi

)
=

∑
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P
(
z
(t+1)
i | θ, Z(t),x,ϕi
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)
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(t+1)
i | θ,ϕi

)
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z
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j | θ,ϕi

)

Proof of Theorem 5.1. Since each model has an identical configuration, i.e. ϕi = ϕj for all i, j ∈ [n],
we simply refer to the configuration as ϕ. For the given task x let θ∗(t) be the realization of θ at time
step t. Let Z(t) =

(
z
(t)
1 , . . . , z

(t)
n

)
, where each z

(t)
j ∼ q(z| x, Z(t),ϕ). Then the conditional density

for each concept θ can be written as,
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where the term P

(
x| θ,ϕ

)(
θ| ϕ

)
is a constant with respect to the number of agents n. Since

P
(
θ|ϕ

)
> 0 for all θ ∈ θ, each z

(t)
j is an i.i.d. draw from q(z| x, Z(t−1),ϕ), then

θ∗(t) = lim
n→∞

(
argmax

θ∈Θ
P
(
θ| Z(t),x,ϕ

))
Thus, as n → ∞, all models predict the same concept, namely θ∗(t), at timestep t with probability
1.

Proof of Theorem 5.2. Consider any two responses from agent i at time t+ 1, namely z
(t+1)
(i,1) , z

(t+1)
(i,2) .

When there are n duplicate messages, the ratio between the conditional generation probabilities of
both responses can be written as
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Let θ′ be the concept which model i, with configuration ϕi, believes is most likely to have produced
response z′, i.e.,

θ′ = argmax
θ

P
(
z′| θ,ϕi

)
Then the above ratio can be rewritten as
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Note that the only summands which do not have an exponential dependency on m are those associated
with concept θ′. Therefore, when examining the limit of the above ratio with respect to the number
of repeated signals m, we get

lim
m→∞

∑
θ∈Θ P

(
z
(t+1)
(i,1) | θ,ϕi)P

(
x| θ,ϕi

)
P(θ| ϕi)

(∏k
j=1 P

(
z
(t)
j | θ,ϕi

))(
P
(
z′(t)| θ,ϕi

))m

∑
θ∈Θ P

(
z
(t+1)
(i,2) | θ,ϕi)P

(
x| θ,ϕi

)
P(θ| ϕi)

(∏k
j=1 P

(
z
(t)
j | θ,ϕi

))(
P
(
z′(t)| θ,ϕi

))m

=
P
(
z
(t+1)
(i,1) | θ′,ϕi)P

(
x| θ,ϕi

)
P(θ′| ϕi)

P
(
z
(t+1)
(i,2) | θ′,ϕi)P

(
x| θ,ϕi

)
P(θ′| ϕi)

=
P
(
z
(t+1)
(i,1) | θ′,ϕi)

P
(
z
(t+1)
(i,2) | θ′,ϕi)

Thus the relationship between any two conditional generation probabilities can be uniquely defined
by θ′.

Proof of Theorem 5.4. First, we examine the models’ outputs at the first rounds of debate. For a
model i which possess the shared misconception, their conditional generation probability on the first
round of debate can be expressed as,
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Next, consider the term P
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)
. Let ϕ′

i be a set of model parameters which does posses the
common misconception. Then,
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)
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where x′ is a message which conveys the erroneous concept θ′. Using this change of model
parameters, we can express the condition generation probability as,
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With this formulation of the conditional generation probability, we can the ratio between the true
concept θ∗ and the erroneous concept θ′.
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which follows directly from P
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. When models have a shared misconcep-

tion (left side of Equation 4),
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for any zi with
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Therefore, at timestep t = 0, models with the shared misconception are more likely to yield responses
which correlate with θ′.

For rounds t > 0, we can express the conditional probability as,
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x′| θ,ϕ′

i

)
are maximized, in expectation, for θ = θ′. Moreover, for the any concept θ ̸= θ′, the ratio∏n

j≤m P
(
z
(t)
j | θ′,ϕi

)(
x′| θ′,ϕ′

i

)∏n
j≤m P

(
z
(t)
j | θ,ϕi

)(
x′| θ,ϕ′

i

)
is monotonically increasing as m increases. Therefore, for any round, a model with the shared
misconception is more likely to generate answers correlating with θ′, than those without the shared
misconception. Further, the likelihood of generating such answers increases with m.
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Proof of Theorem 6.1. As shown in the proof of Theorem 5.4, we can express each model’s condi-
tional generation probability as

P
(
z
(t+1)
i | x, Z(t),ϕi

)
∝
∑
θ

P
(
z
(t+1)
i | θ,ϕi

) n∏
j=1

P
(
z
(t)
j | θ,ϕi

)
P
(
x,x′| θ,ϕ′

i

)
=
∑
θ

(
P
(
z
(t+1)
i | θ,ϕi

) n∏
j≤m

P
(
z
(t)
j | θ,ϕi

)
n∏

j>m

P
(
z
(t)
j | θ,ϕi

)
P
(
x| θ,ϕ′

i

)
P
(
x′| θ,ϕ′

i

))
where x′ is a response which conveys the erroneous concept θ′. Under this expression, each response
z
(t)
i is generated according to D(x, Z(t),ϕi) where each distribution differs only by the model

parameters ϕi. For i ≤ m, the model parameters ϕi posses the common misconception, i.e., each
distribution D(z

(t)
j | x, Z(t),ϕi) has a common scaling factor P

(
x′| θ,ϕ′

i

)
which is maximized at

θ = θ′. Since only these models share this scaling factor,

E
[
KL

(
D(θ′| zi1), D(θ′| zi2)

)]
≥ E[KL

(
D(θ′| zi1), D(θ′| zj)

)]
whenever i1, i2 ≤ m < j. Hence, diversity pruning is more likely to select terms from agents with
m < j (i.e., those without the shared misconception), then agents with j ≤ m. Since this holds
true on every round of debate, all responses in the debate process place a lower weight on responses
associated with θ′, i.e., a lower weight is placed on responses which have a higher chance of being
incorrect.

Proof of Theorem 6.2. At each round t, quality pruning selection a set of k responses,

Z ′(t) =argmin
Y⊂Z(t)

∑
zi,∈Y

KL
(
D(θ| x), D(θ| zi)

)
s.t. |Y | = k

As such, for any set of responses Z(t)∑
z′
i∈Z′(t)

KL
(
D(θ| x), D(θ| z′i)

)
≤

∑
zi∈Z(t)

KL
(
D(θ| x), D(θ| zi)

)
Using the fact that Z ′(t) ⊂ Z(t), we can write,∑

z′
i∈Z′(t)

KL
(
D(θ| x), D(θ| z′i)

)
≤

∑
z′
i∈Z′(t)

KL
(
D(θ| x), D(θ| z′i)

)
+

∑
zi∈Z(t)\Z′(t)

KL
(
D(θ| x), D(θ| zi)

)
=⇒

0 ≤
∑

zi∈Z(t)\Z′(t)

KL
(
D(θ| x), D(θ| zi)

)
Thus, for a random task and answer pair (x, y) ∼ D(θ∗), the relationship between the correctness of
answers in Z(t) and Z ′(t) is

E(x,y)∼D(θ∗)

[
1

|Z ′(t)|
∑

zi∈Z′(t)

P
(
a(zi) = y

)]
≥ E(x,y)∼D(θ∗)

[
1

|Z(t) \ Z ′(t)|
∑

zi∈Z(t)\Z′(t)

P
(
a(zi) = y

)]
That is, in expectation, the responses which are selected for quality pruning are at least as correct as
those which are removed by quality pruning. Therefore, in expectation across all possible generations
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z
(t+1)
i with a(z

(t)
i ) = y,

E
z
(t+1)
i

[ ∑
θ∈Θ

P
(
z
(t+1)
i | θ,ϕi

)
P
(
x| θ,ϕi

)
P
(
θ| ϕi

) n∏
z′
j∈Z′(t)

P
(
z
′(t)
j | θ,ϕi

)]

≥ E
z
(t+1)
i

[ ∑
θ∈Θ

P
(
z
(t+1)
i | θ,ϕi

)
P
(
x| θ,ϕi

)
P
(
θ| ϕi

) n∏
zj∈Z(t)

P
(
z
(t)
j | θ,ϕi

)]

=⇒ E
z
(t+1)
i

[
P
(
z
(t+1)
i | x, Z(t),ϕi

)]
≥ E

z
(t+1)
i

[
P
(
z
(t+1)
i | x, Z ′(t),ϕi

)]
Therefore, the probability of model i generating a response z

(t)
i at time t, which has a(z(t)i ) = y is

greater when conditioning only on the responses selected by quality pruning, i.e., Z ′(t).

Proof of Theorem 6.4. Let z be a given response and z′ be a corrected version of that response after
misconception refutation, then

KL
(
D(θ| x, y), D(θ| z′)

)
≤ KL

(
D(θ| x, y), D(θ| z)

)
That is, the distribution over concepts given the corrected response z′ is more similar to the true
distribution over concepts given the task x and answer y compared to the original answer z.

Similar to the case of quality pruning, we can then express the KL divergence of all responses before
refutation Z(t), and after refutation Z ′(t), as∑

z′
i∈Z′(t)

KL
(
D(θ| x, y), D(θ| z′i)

)
≤

∑
zi∈Z(t)

KL
(
D(θ| x, y), D(θ| zi)

)
=⇒

n∑
i=1

KL
(
D(θ| x, y), D(θ| z′i)

)
− KL

(
D(θ| x, y), D(θ| zi)

)
≤ 0

Thus, in aggregate, misconception refutation results in all responses in Y (t) inducing a distribution
over concepts which is more similar to the distribution over concepts given the task x and answer y.
As shown in the case of quality pruning, this relationship implies that at the next step of generation,
model i is more likely to generate z

(t+1)
i with a(z

(t+1)
i ) = y when conditioning on Z ′(t) compared

with Z(t).

B Shared Misconceptions

Latent concepts, and by extension, shared misconceptions, are quite general and may not always be
human-interpretable. To better elucidate what is meant by a shared misconception, we provide an
example of one possible type of misconception. In Figure 4 we see model responses to a question
regarding the song “Take Me Home, Country Roads”, which is a well-known song about the state
West Virginia3. While the models identify the connection between the song and West Virginia, they
each erroneously equate West Virginia and Virginia, ultimately leading to each model providing the
wrong answer. In situations such as this, debate will converge to an incorrect answer due to each
model sharing the same false belief.

Misconceptions can also be viewed through the lens of hallucinations. As a byproduct of erroneous
training, the models in the above example have learned a false connection between two topics
(Virginia and West Virginia).

C Experiments

Interventions When combining our three interventions together, we find that first applying quality
pruning, then diversity pruning, then misconception refutation, results in the best performance. In
practice, we consider all previous responses up to the current round t when applying pruning, i.e.,

3Models are given a question and a passage (the passage is omitted from Figure 4)
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Figure 4: Example of a common misconception between models and a refutation of that misconcep-
tion.

Z(0) ∪ . . . ∪ Z(t) results in better performance. When considering all past responses during pruning,
there is a potentential misconception refutation, then al that the same set of responses is picked at
each round. We simply prevent the methods from selecting the same response during two consecutive
rounds to avoid this issue.

Application of Interventions in Practice For approximate the KL-divergence between distributions
of concepts needed for our running interventions, i.e.

KL
(
D(θ|x), D(θ|zi)

)
or KL

(
D(θ|zi), D(θ|zj)

)
we use the distance between sentence embeddings of each string, x, zi, and zj , i.e., given sentence
embedding model g, we to approximate the above in practice via,

KL∥g(x)− g(zi)∥ or KL∥g(zi)− g(zj)∥

Algorithm 1 Application of Combined Interventions
1: Input: task x,
2: Zall = {} // Set of all responses to consider when applying interventions
3: for j = 1 . . . n do
4: get response z

(0)
j by prompting LLMj , i.e. sample z

(0)
j according to P

(
z| x,ϕj

)
5: Zall.add(z(0)j ) // Get an initial set of responses from each LLM
6: end for
7: for t = 1 . . . T do
8: Z ′(t) = QualityPrune

(
Zall, k = 1/2|Zall|

)
// Prune half the current responses

9: Z ′(t) = DiversityPrune
(
Z ′(t), k = n

)
10: Z ′(t) = MisconceptionRefutation

(
Z ′(t)) // Set of responses to use agents to consider

11: for j = 1 . . . n do
12: get z(t)j by sampling according to P

(
z| x, Z ′(t),ϕj

)
, for each j // Updated responses

13: Zall.add
(
z
(t)
j

)
14: end for
15: end for
16: Return Zall[−n :] // Each model’s response on the last round of debate

Models For our experiments we make use of four models: GPT-3.5, Llama-2, Llama-3, and Mistral.

For certain tasks such as BoolQ or MMLU, such as only providing “Yes” or “No” to BoolQ questions.
Justifications for answers are important for both our method and regular debate, as such we set the
minimum token for Flan-T5 to be 10, and we set the repetition penalty to be 1.5.

Measuring Accuracy In the BoolQ, MMLU, and Math datasets, we extract the model’s answers
through regular expression checking and compare these extracted answers to the true answer; models
are prompted to provide their final answer in the form “Final Answer: X". In the TrutfhulQA dataset
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Table 2: List of specific types of models used in experiments

Model Name Model Version Library
GPT-3.5 GPT-3.5 Turbo openai
Llama-2 Llama-2 7B Chat huggingface
Llama-3 Llama-3 8B Instruct huggingface
Mistral Mistral 7B Instruct v02 huggingface

model answers are taken to be their entire response, which is then judged as being correct or incorrect
by a GPT-4 judge. This judge is prompted to provide a yes-no answer to the question “Dose the
answer {_answer_} accurately answer the question {_question_}?". We allow for models to provide
answers of abstention, e.g., responding “I do not know”. Abstentions correspond to an accuracy of .5
in BoolQ, .25 in MMLU, 0 in Math, and are directly scored by the LLM judge in TruthfulQA.

Target Answers In Figure 1 we measure the likelihood that a given model will echo a target
answer as a function of how many other model select that target answer. Target answers are Yes
in BoolQ, option A in MMLU, correctAnswer − 30 in Math, and a false answer in TruthfulQA.
In our experiment, we elicit 20 answers from each model (GPT-3.5, Llama-2, Flan-T5) and then
downsample these answers to ensure that each model receives a specific number of target answers.

Abletion of Interventions Here we provide an ablation of each of our three interventions: Miscon-
ception Refutation, Diversity Pruning, and Quality Pruning. Results are shown in Table 3. From this
table, we see two key takeaways. First, a combination of all three interventions achieves the highest
performance in almost all cases. Second, applying intervention individually can result in worse
performance (even when compared with a single model). This is expected as our interventions are
designed to work together, rather than separately. Recall that when combining the interventions we
first do Quality Pruning, then Diversity Pruning, and then Misconception Refutation. This ordering
of interventions ensures that we first select sufficiently relevant responses (Quality Pruning), among
those relevant responses we then ensure that the distribution of opinions within these responses is
well balanced (Diversity Pruning), and then we lastly ensure that none of the responses contain errors
or misconceptions (Misconception Refutation).

Table 3: Average accuracy for each intervention: Misconception Refutation (MR). Diversity Pruning
(DP), Quality Pruning (QP), a combination of all three (Ours), and vanilla debate (Debate), for 10
rounds and 6 models. Note that the “Single”, “Debate”, and “Ours” columns correspond to the same
columns in Table 3

.

Single SoM Ours MR DP QP
BoolQ

6× GPT-3.5 .80±.014 .84±.012 .85±.012 .83±.013 .84±.012 .84±.012

6× Llama-3 .76±.014 .78±.013 .78±.013 .78±.013 .76±.013 .77±.013

6× Llama-2 .67±.017 .68±.017 .70±.016 .67±.017 .69±.016 .73±.016

6× Mistral .80±.014 .82±.013 .85±.012 .83±.013 .81±.014 .82±.013

MMLU
6× GPT-3.5 .73±.014 .74±.015 .79±.014 .75±.015 .72±.016 .73±.016

6× Llama-3 .67±.016 .70±.015 .75±.014 .71±.015 .68±.016 .68±.016

6× Llama-2 .41±.017 .47±.018 .52±0.18 .50±0.18 .40±0.17 .43±0.17

6× Mistral .66±.016 .65±.016 .66±.016 .66±.016 .58±.018 .62±.017

TruthfulQA
6× GPT-3.5 .61±.033 .63±.032 .69±.030 .65±.032 .58±.034 .62±.034

6× Llama-2 .47±.034 .52±0.35 .55±.034 .53±.034 .46±.034 .44±.034

6× Llama-3 .53±.035 .55±.032 .55±.032 .55±.032 .53±.032 .54±.032

6× Mistral .48±.034 .51±.035 .53±.034 .53±.034 .49±.034 .47±.034

MathQ
6× GPT-3.5 .53±.035 .88±.016 .93±.01 .92±.01 .85±.016 .86±.016

6× Llama-2 .11±.013 .13±.014 .19±.015 .18±.015 .13±.014 .13±.014

6× Llama-3 .25±.016 .33±.017 .48±.018 .49±.018 .32±.017 .32±.017

6× Mistral .13±.013 .19±.014 .18±.014 .17±.014 .15±.014 .16±.014
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Resource Details For all experiments, we use one Nvdida Tesla V100 GPU and one Intel 32-core
CPU. For inference with non-API models (i.e., Llama-2, Llama-3, and Mistral, we use the VLLM
library Kwon et al. [2023]). Ten rounds of debate with six models and 3,000 questions has a mean
completion time of 4 hours for Llama-2, Llama-3, and Mistral. For GPT-3.5, we use the open library,
ten rounds of debate with six models and 3,000 questions, has a mean completion time of 12 hours.

C.1 Prompt Examples

We provide example prompt templates for the BoolQ dataset. Prompt templates for other datasets are
similar but have changes to reflect the different task types (e.g., multiple-choice answers in MMLU
compared to yes-no answers in BoolQ).

Round 0, or No Debate:

prompt = You will be given a yes-no question which is based on a passage.
You should use the passage to help you answer the question.
You should give a brief justification for your answer,
and you must provide a final answer of either Yes or No.
\n Question: {_QUESTION_}
\n Passage: {_PASSAGE_}

Debate with Round > 0

prompt = Several other models have provided responses to a yes-no question,
below are their responses:
\n Model 1: {_RESPONSE[1]_}
.
.
.
\n Model n: {_RESPONSE[n]_}
\n You should consider these responses when answering the following yes-no
question which is based on a passage.
You should use the given responses and the passage to help you answer the question.
You should give a brief justification for your answer, and you must provide a
final answer of either Yes or No.
\n Question: {_QUESTION_}
\n Passage: {_PASSAGE_}

Misconception Refutation (Identifying Misconceptions)

prompt = I would like you to evaluate an answer to a question based on a passage.
Please evaluate this answer and identify any errors, misconceptions,
or inconsistencies with the passage.
If you identify any such errors, please provide
a short list of specific details and briefly discuss how the misconceptions
can be fixed.
\n Question: {_QUESTION_}
\n Passage: {_PASSAGE_}
\n Answer to Evaluate Answer: {_GIVEN_ANSWER_}

Misconception Refutation (Fixing Misconceptions)

prompt = I would like you to make corrections to a response.
You will be given a yes-no question based on a passage, a response to
that question, and a list of possible issues with the response.
I want you to provide a corrected version of the response based on the
list of possible issues.
You should make as few changes as possible.
\n Question: {_QUESTION_}
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\n Passage: {_PASSAGE_}
\n Response to Correct: {_RESPONSE_}
\n Possible Issues: {_LIST_OF_ISSUES_}

Targeted Answer (Advocating for a Specific Answer)

prompt = You will be given a yes-no question which is based on a passage.
You should use the passage to provide an answer of {_TARGET_ANSWER_}.
You should give a brief justification for that answer,
and you must provide a final answer {_TARGET_ANSWER_}.
\n Question: {_QUESTION_}
\n Passage: {_PASSAGE_}

21



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract match theoretical and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitation of our approach in the conclusion section and
experiment section.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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All of our theorems state the assumption, and we provide complete proofs in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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to reproduce that algorithm.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

We have read the code of ethics and are adhering to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data that we use is publicly available and properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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