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Abstract—Long-horizon planning in robotics is often hindered
by challenges such as uncertainty accumulation, computational
complexity, delayed rewards and incomplete information. This
work proposes an innovative approach to exploit the inherent task
hierarchy from human instructions to aid in planning. Utilizing
Large Language Models (LLMs), we propose a two-step approach
to translate multi-sentence human instructions into a structured
language, Hierarchical Linear Temporal Logic, which serves as
an intermediary for planning. Initially, LLMs transform the
human instructions into a Hierarchical Task Network (HTN)-
like representation, capturing the logical and temporal relations
among tasks. Following this, a domain-specific fine-tuning of
LLMs or human expert can translate sub-tasks of each task
into flat LTL formulas, aggregating them to form hierarchical
LTL specifications. These specifications are then leveraged for
planning. Our framework not only bridges the gap between
human instructions and algorithmic planning but also showcases
the potential of LLMs in harnessing human-like hierarchical
reasoning to automate complex task planning. Through simulated
experiments, we exhibit the efficacy of our approach in generating
executable plans from human instructions, fostering a more
intuitive and user-friendly robotic assistance in everyday scenarios.

I. INTRODUCTION

The challenge of long-horizon planning arises from factors
such as uncertainty accumulation, computational complexity,
delayed rewards and incomplete information. A viable strategy
to address computational complexity and delayed rewards is
by leveraging the hierarchy inherent in the task structure.
Hierarchical models have demonstrated a notable edge over
flat models in facets like interpretability and efficiency [1]],
[2]. Take for instance a robot assigned with the chore of
loading a dishwasher. A user might opt to position cups
and saucers on the top rack, reserving the bottom rack for
plates, utensils, and mugs. Additionally, the preference might
extend to loading the bottom rack prior to the top one. This
exemplifies how commonplace household chores are imbued
with hierarchical structures. However attractive, how to obtain
hierarchy information still remains an open problem.

One pathway is to deduce hierarchy through the observation
of task execution [3], which alleviates human effort yet poses a
challenge due to the extensive scope of solution candidates and
a high requirement for abstraction reasoning. Conversely, the

1Xusheng Luo and Changliu Liu are with Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, USA (e-mail: {xushengl,
cliu6}@andrew.cmu.edu)

2Shaojun Xu is with College of Control Science and Engineering, Zhejiang
University, Hangzhou, 310058, China (e-mail: s jxu@zju.edu.cn).

TEqual contribution.

1Work done during internship at Carnegie Mellon University.

other route, which entails acquiring hierarchy directly from hu-
man input, appears straightforward. Humans excel at hierarchi-
cal reasoning and are used to articulate hierarchically through
language effortlessly [4]. For example, one can effortlessly
voice their preference for loading the lower rack prior to the
upper one. Nonetheless, the hierarchical insights from humans
cannot be readily integrated by algorithms without meticulous
engineering. This gap between human preferences and algo-
rithmic formulation impedes the application of hierarchy-based
planning algorithms. However, with the advent of LLMs [5]],
we foresee a bright prospect of narrowing this gap.

LLMs, being trained on extensive textual corpus, exhibit
common sense reasoning abilities, thereby efficiently managing
everyday task specifications articulated in human languages.
Our key observation is that hierarchy can be straightforwardly
obtained from human input with the help of a LLM, as inferring
hierarchy directly from observations may be challenging. The
decision-making process of humans is hierarchical [4f], which
is reflected in verbal languages. Thus, the focal point here to
transmit this hierarchy to downstream planners effectively. In
light of the above, our work proposes harnessing LLMs as
translators to extract task hierarchy from human languages.
What sets us apart from existing work on language-conditioned
planning is that while existing work primarily focuses on
planning subject to single-sentence instructions, our objective
is to handle multiple-sentences long instructions with relatively
clear hierarchical structure.

The structured language that is translated from human in-
structions is Hierarchical LTL, a variant of formal languages
introduced in our prior work [6]]. Unlike the unstructured and
ambiguous nature of natural languages, formal languages are
structured and yield a unique interpretation, of which LTL has
been applied to robotics [7|]-[9]]. Hierarchical LTL is succinct
and interpretable compared to its flat counterpart, aligning well
with hierarchical human instructions. While temporal logic is
expressive in articulating complex tasks, the learning curve
associated with it is steep; even expert may require time to
draft suitable formulas. For those not well-versed in the field,
expressing tasks through natural language is considerably more
intuitive. We perceive LLMs as an efficacious tool to unlock
the expressive prowess of temporal logic. The translation of
hierarchical human instructions into hierarchical LTL proves to
be more straightforward and dependable compared to translat-
ing into a cumbersome flat formula, a challenge not solved by
existing works [[10]-[12].

A naive approach to converting human instructions into
hierarchical LTL is by employing an end-to-end methodology.
However, this technique tends to perform poorly as LLMs are



still not good at logical reasoning [[13]], which is crucial for
crafting logical formulas. In this work, we propose a two-
step approach to convert human instructions into hierarchical
LTL. Initially, upon receiving a human instruction, we prompt
LLMs to yield a task representation akin to Hierarchical Task
Network (HTN) [14]. This representation deviates from HTN
as it involves complex logical and temporal relations amongst
tasks at varying levels of abstraction. The integration of an
HTN-like task specification as an intermediary phase aims to
harness the common sense reasoning capabilities of LLMs
fully. Subsequently, in the second phase, sub-tasks of each
task can be translated into a single flat LTL via fine-tuned
LLMs or human expert. Through iterative processing of all sub-
tasks of every task in the intermediary phase, we are able to
construct a hierarchical LTL. With our methodology, human
instructions abundant in hierarchical information are ready for
use by hierarchical LTL planners.

Contributions: Our contributions can be summarized as
follows:

1) We proposed a framework for deriving task hierarchy
from human instructions, utilizing hierarchical LTL as an
intermediate step;

2) We introduced an algorithm for converting human lan-
guages into hierarchical LTL, thereby facilitating the lever-
age of human’s hierarchical knowledge in subsequent
planning solvers;

3) We showcased simulations that employ human instructions
to generate executable plans for navigation tasks.

II. RELATED WORK
A. LLMs-based Robotic Planning

In traditional robotics workflows, an expert is typically
essential for optimizing robot performance in specific scenarios.
However, LLMs allows us to interpret high-level language
instructions and engage in intricate long-horizon task planning.

Efforts to integrate LLMs into robotic planning can largely
be categorized into two distinct approaches: employing LLMs
as planners and using them as translators. As planner, LLMs are
always adopted to divided instructions into sub-tasks sequences
with specialized prompting functions [15], [[16]], or mapped to
specific control policy affordance functions [17]. Additionally,
they can be part of recursive policy code generation meth-
ods [18], [[19]. While the absence of real-time environmental
feedback from the robots, make it challenging to ascertain
the feasibility of the generated sub-task sequences. Vision-
language architectures like Voxposer [20] and AlphaBlock [21]]
have been introduced to overcome this limitation by integrating
sensory feedback in multi-step reasoning. But they all encounter
difficulties in generating long-term planning sequences that
account for temporal events.

Other Studies have suggested that LLMs are more aptly
suited for translation tasks than for planning [22]. Utilizing
LLMs as translators bridge the gap between natural language
and structured planning languages. Implementations including
translating natural language into Planning Domain Definition
Language (PDDL) to derive optimal solutions through classical
planners [23]], LLM-PDDL based heuristic search planners [24]]

and Signal Temporal Logic trajectory planners [25] all de-
compose robotic planning into formal verification procedures,
thereby enhancing the planning process’s transparency and
predictability, and facilitating easier adjustments.

B. Natural Language to Temporal Logic

Numerous variations of temporal logic exist, generally shar-
ing similarities in syntactic structure. Initial efforts in trans-
lating natural language to temporal logics mainly adopted
grammar-based methodologies, capable of processing struc-
tured natural language [26]. Traditional techniques usually
involve a three-stage process: 1) preliminary analysis of English
input to obtain syntactical features, 2) the establishment of pat-
terns or rules specific to temporal logic through classification,
and 3) the use of an attribute grammar-based parser to convert
into the desired logical format. Such methods are limited to
handling only narrowly defined natural language input.

The application of neural networks for translating into tem-
poral logics has emerged more recently. Examples include
training models from scratch specifically for Signal Temporal
Logic (STL) [27], fine-tuning existing language models [[11],
[28]], and implementing one-shot approaches using GPT-3 [29],
[30]. While LL.Ms-based methods outperform traditional ones,
current research mainly focuses on “flat” forms of temporal
logic, which raises questions about the applicability of these
methods to more intricate, hierarchical structures. Notably,
when humans express tasks over extended time horizons in
natural language, pronouns are frequently employed. For ex-
ample, someone might say, “First load the lower rack. After
that, finish loading the upper rack”. These pronouns serve as
both a blessing and a curse in the translation process. On the
positive side, they offer clear cues for breaking down the task
into a hierarchical structure. On the flip side, they introduce
the issue of co-reference, which requires careful resolution.
Existing research has not adequately addressed this challenge,
resulting in a lack of targeted training data.

III. PRELIMINARY
A. Linear Temporal Logic

Linear Temporal Logic (LTL) is composed of basic state-
ments, referred to as atomic propositions AP, along with
boolean operators such as conjunction (A) and negation (—),
as well as temporal operators like next () and until (/) [31].
LTL formulas, constructed using these elements over the set of
atomic propositions AP, follow the syntax outlined below:

p:=T|m| 1 ANp2| 20| O¢| d1U P2, ()

where T stands for an unconditionally true statement, and 7
refers to a boolean valued atomic proposition. Other temporal
operators can be derived from U, such as (¢ that implies ¢
will ultimately be true at a future time, and [¢ that denotes ¢
will perpetually be true from the current point onwards.

Example 1: (Dishwasher Loading Problem (DLP)) Place
items into the dishwasher. Robot should put plates, mugs and
utensils into the lower rack in any order. After putting items to
the lower rack, then put things into upper rack, first put saucers,
and then put cups.



Place items into the dishwasher. You
should put plates, mugs and utensils
into the lower rack in any order. After
putting items to the lower rack, then
put things into upper rack, first put
saucers, and then put cups.

specifications

3. Hierarchical LTL

¢1 = O(¢7 A 0¢3)

2 l l i
¢1 = 071—plates A <>7Tmugs A <>7Tutensils

2
¢2 = <>(7Tgaucers A <>7Tgups)

4. Synthesized Plan

1. Place plates into the lower rack
2. Place mugs into the lower rack
))) 3. Place utensils into the lower rack
4. Place saucers into the upper rack

5. Place cups into the upper rack

1. HTN-like representation

1) Load dishwasher
1.1) Load items into the lower rack
1.1.1) Put plates into the lower rack (can be done in
any sequence with 1.1.2 and 1.1.3)
1.1.2) Put mugs into the lower rack (can be done in
any sequence with 1.1.1 and 1.1.3)
1.1.3) Put utensils into the lower rack (can be done in
any sequence with 1.1.1 and 1.1.2)
1.2) Load items into the upper rack (should be done

Level 1:

Task 1.2 is executed.

D))

Level 2:

1.1.2is executed and

2. Level-wise LTL-
compatible instructions

1.1) Eventually Task 1.1 is executed and then eventually

2.1) Eventually Task 1.1.1 is executed and eventually Task

A
AN

after 1.1 is finished)

1.2.1) Put saucers into the upper rack

1.2.2) Put cups into the upper rack (should be done
after 1.2.1

Task_1.2.2 is executed.

2.2) Eventually Task 1.2.1 is executed and eventually

lly Task_1.1.3 is

Fig. 1: Overview of the framework. Use the dishwasher loading problem as a case study.

B. Hierarchical LTL

We briefly introduce the hierarchical LTL that enables the
specification of more intricate tasks than the flat structure and
we refer readers to work [6] for more details.

Definition 3.1: (Hierarchical LTL [l6]]) A hierarchical linear
temporal logic specification includes K levels such that each
proposition at level & € {1,..., K — 1} is constructed from
specifications at the next lower level k + 1.

Example 1: continued (DLP) The primary task constraint is
that the robot should first focus on loading the lower rack and
subsequently load the upper rack:

1 2 2

¢1 =01 A 03)
2 l l l

(bl = <>7Tplates N <>7Tmugs A <>7Tutensils
2

¢2 = <>(7T;Jaucers A <>7rgups)7

where ¢ denotes the i-th specification at level k, ¢7 and ¢3 are
composite propositions, representing the events of loading items
onto the lower and upper racks, m] are atomic propositions,
denoting the act of placing a specific type of dishware on either
the lower or upper rack. The formula O(¢? A Op3) specifies
that ¢2 should be fulfilled before moving on to ¢3. L; and
Lo denote different levels of the task hierarchy. Note that the
lowest level L, only includes atomic propositions. A flat LTL
specification of this task is

Lli

L2 : (2)

l l l
(b = <>7Tplates A <>7Tmugs A <>Trulensils A <>(7-‘-;1u<:ers A <>7T::lups)
Url

u l u
plates N "M gaucers Um AT

u l
ANy mugs saucers u T utensils*

saucers
IV. NATURAL LANGUAGE TO HIERARCHICAL LTL

LLMs excel in common sense reasoning yet behavior poorly
in logical reasoning [I3]], [32]. Hence, we propose a two-
step approach. Initially, given human instructions, we exploit
the common sense reasoning capability of LLMs to transform

human instructions into an HTN-like representation; following
which, we generate a flat LTL for each task. The overview of
the proposed framework is displayed in Fig. [I]

A. Conversion from NL to HTN-like Representation

By using in-context learning, we prompt LLMs to generate
an HTN-like representation, shown as step 1 in Fig. [I] The
representation should abide by the following format:

1) At the bottom level, every task should include only
actions or events usually represented as atomic propositions.
It’s noteworthy that we do not necessitate the tasks at this
level to be indecomposable, such as sub-task 1.2.1) in Fig. |§| of
Appendix [A] resulting in a flexible hierarchical task structure.
Hence, the number of levels and tasks per level can vary
across different LLMs, a scenario anticipated as the abstraction
granularity varies based on distinct understanding of the task.

2) The parent task ought to summarize the objectives its
child tasks aim to accomplish. It’s imperative to note that the
preciseness of summarization is not crucial as parent tasks
solely function as abstractions, which is more pertinent to
interpretation than to the planning process itself.

3) At each level, logic and temporal constraints, if any,
are encapsulated in parentheses at the end of certain tasks,
describing the relations with other tasks on the same level.
We noticed a drop in performance when amalgamating all such
information alongside their parent task, possibly stemming from
the challenge of summarizing the relations of child tasks all at
once.

After generating the HTN-like representation, we further
prompt LLMs to rephrase it into a JSON format, which
helps format the next step of generating task-wise flat LTL
specifications. We observed that LLMs fall short in perfor-
mance when tasked to generate the JSON format in a singular
step without initially prompting it to generate the HTN-like
representation. The detailed prompt for generating HTN-like
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Fig. 2: Topological map of the supermarket.

representation and generating JSON format are shown in Figs.[3]
and [ in Appendix [A] In the JSON format, a notable field
is “sibling_nodes_condition”, which specifies the logical and
temporal relations between sub-tasks associated with the same
parent task.

B. Generation of task-wise Flat LTL Specifications

Once the HTN-like representation in JSON format is ob-
tained, we proceed to generate a single flat LTL specification
for all sub-tasks of one task, leveraging LL.Ms-based techniques
that convert natural languages into flat LTL; shown as steps 2
and 3 in Fig. I} The input for these methods is constituted
by human instructions. For this objective, we prompt LLMs
to concentrate on one task at a time, delineating all of its
sub-tasks along with the logical and temporal relations among
them in a manner commonly employed for interpreting LTL. To
achieve this, we regard each task as a solitary entity without
delving into the internals of every task, and discern between
safe and co-safe properties whilst synthesizing the instruction.
Co-safe property implies that something good will eventually
happen, whereas a safe property signifies that something bad
will never occur. We discovered that reasoning over safe and co-
safe properties first inclines LLMs towards opting for suitable
wording in elucidating LTL. This prompt is exhibited in Fig. [5]
in Appendix [Al

Example 1: continued (DLP) The solutions to the dish-
washer loading problem can be found in Figs. [] through [§] and
Tab.[llin Appendix [B] It’s important to note that for a given task
description, there is not a single “optimal” LTL specification
that perfectly captures the essence of the task. In other words,
the translation of natural language into LTL is not unique. Var-
ious LTL specifications exist that, to some extent, represent the
task, in that some of their solutions fulfill the task description.
For example, in the second row of Tab. [I], the instruction for
tasks 1.1 and 1.2 state, “Always task_1.1 must precede task_1.2
and eventually task_1.1 must be executed.” Here, tasks 1.1
and 1.2 refer to placing dishes in the lower and upper racks,
respectively (see Fig. [T). Based solely on the LLM-generated
description, the corresponding LTL is 0T} 1 AO(Th.1 — OTh.2).
According to the original task outlined in Example [T} a more
suitable version would be O(T7 1 A OT72). Nevertheless, the
specification ¢T7 1 A (711 — OT1.2) remains valid to some
extent, as it ensures that task 1.2 will eventually follow task
1.1.

V. NUMERICAL RESULTS

In this section, we showcase some preliminary results to
illustrate the effectiveness of our proposed framework, which
takes natural language instructions as input and outputs a plan.
We focus on the order picking problem (OPP) in a supermarket
setting, as in [33]]. As depicted in Fig. [2| the supermarket is
divided into six areas: grocery, health, outdoor, pet supplies,
furniture, and electronics. Robots initiate from the docking
area, gather items, and then transport them to a designated
packing zone. Although we use a household cleanup scenario
in the prompts for the LLMs, our test task originates from
the navigation domain, thereby highlighting the framework’s
versatility. GPT-4 [34] serves as the LLM in our experiments.
It’s noteworthy that due to their complexity, none of the tasks
here can be addressed by existing methodologies that directly
translate instructions into flat LTL specifications [[10]—[12].

In our study, we examine three tasks from our previous
work [6], but with a modification: we clearly designate which
robot is responsible for which task. The dialog sequences
for task 2 with GPT-4 are detailed in Figs. [J] to [I0] and
Tab[l] in Appendix [C-A] The dialog sequences for task 2
with GPT-4 are detailed in Figs. to and Tab[I] in
Appendix Similarly, the dialog sequences for task 3 are
presented in Figs. [I3] to [I4] and Tab[IV] in Appendix [C-C]
While attempting to formulate flat LTL formulas for each task,
we tested existing models, but found that none could process
the human-like instructions generated by GPT-4. In this work,
we manually convert these instructions into flat LTL, strictly
adhering to the GPT-4 generated instructions. Future efforts
will involve fine-tuning a pre-trained LLM using a dataset that
pairs GPT-4 generated instructions with corresponding flat LTL
specifications. We employ the planning algorithm from [6] to
derive solutions. Videos showcasing the generated plans for all
tasks can be accessed at https://youtu.be/4m6rHAy_Jgk.

VI. CONCLUSIONS AND FUTURE WORK

We proposed using LL.Ms to translate human instructions into
hierarchical LTL, thereby transforming unstructured language
into a structured format without losing its hierarchical nature.
Our simulation outcomes, involving inputting language and
outputting plans, demonstrated that the framework offers an
intuitive and user-friendly approach for deploying robots in
daily situations. Future work will focus on:

1) Gather a dataset comprising GPT-4-generated instructions
paired with flat LTL specifications, and fine-tune a pre-
trained LLM for the purpose of translation.

2) Incorporate both a syntax verifier and a semantic verifier
to form a closed-loop framework that continuously interact
with LLMs. The syntax verifier ensures compliance with
hierarchical LTL structure for the HTN-like representation,
while the semantic verifier provides error feedback if
planner could not find a solution.

3) Conduct ablation study and compare with LLM-based and
NL-to-PDDL-based planner.

4) Conduct experiments involving robotic manipulation tasks
in real-world settings
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APPENDIX A
PROMPT FOR LLMS

Prompt for generating HTN-like representation

Convert the natural language task description into Hierarchical Task Network (HTN), meannwhile expanding pronouns
[e.g., it, them, they] to refer to specific objects.
The example task description is given as follows: “There are blocks, toys, and clothes on the table, you are suggested to
put some of them into the red, green, and blue boxes. For blocks, if there are yellow blocks on the table, then first put
the biggest block into the red box, and then put the rest of yellow blocks into the red box. After putting blocks to red
box, you can start to putting toys into the green box. If their are toy bears on the table, directly put them into the green
box. If there are dolls on the table, you need to dress them up before lay them in the green box. You can put clothes into
the blue box in any time, but you need to place all skirts and pants into the blue box before putting in socks. Eventually,
you should pile the red, green, and blue boxes in sequence."
The HTN-like representation is as follows:

1) Sort things

1.1) Place blocks, toys, and clothes into red, green, and blue boxes.

1.1.1) Place blocks into red boxes

1.1.1.1) If there are yellow blocks on the table, then first put the biggest block into the red box.
1.1.1.2) Put the yellow block into the yellow box (after 1.1.1.1 finished).

1.1.2) Move toys into the green box (after 1.1.1 finished).

1.1.2.1) If there are toy bears on the table, directly put them into the green box.
1.1.2.2) If there are dolls on the table, you need to dress them up before laying them in the green box.

1.1.3) Move clothes into the blue box.

1.1.3.1) Place all skirts into the blue box.
1.1.3.2) Place all pants into the blue box.
1.1.3.3) Putting in socks into the blue box (after 1.1.3.1 and 1.1.3.2 finished).

1.2) Pile the red, green, blue boxes in sequence (after 1.1 finished)
1.2.1) First move the red box, then move the green box, then move the blue box.
Below is a new task:

Fig. 3: Prompt for generating HTN-like representation.

Prompt for generating JSON file

Next, write the HTN into JOSN format where each task is in the following format:

"subtasks_of_this_node":["Task_1.1.2.1", "Task_1.1.2.2"]

1|"Task_1.1.2": {

2 "task_id": "Task_1.1.2",

3 "task_instruction": "move toys into green box",

4 "task_related_description": "you can start to putting toys into the green box",
5 "sibling_nodes_condition":"After putting blocks to red box",

6

7

by

where “task_id” denotes the unique task id, “task_instruction” summarize the task along with all of its subtasks,
“task_related_description” is the part of sentence corresponding to this task_i, “subtasks_of_ this_node” is the set of
subtasks that “task_i” is decomposed into, only including task ids.

Please write the complete JSON. DO NOT IDLE For brevity.

Fig. 4: Prompt for generating JSON file.



Prompt for extracting task-wise flat LTL specifications

First get "sibling_nodes_condition" field of Task 1.1 and Task_1.2 that describe the relations between siblings, then
determine their respective property (co-safe or safe). Next describe tasks themselves (without diving deep into the internal
part of tasks) along with their relationship using one sentence, in a way that is normally used to interpret the safe or
co-safe property in linear temporal logic. The paraphrased sentence uses task id, e.g., Task_1.1, Task_1.2, to refer to
concrete tasks, and return it in the JSON dialog box.

1A
2 "LTL_description: Eventually Task_1.1 happens, then eventually Task_1.2
happens."

30}

Let’s think step by step.

Fig. 5: Prompt for extracting task-wise flat LTL specifications.

APPENDIX B
EXAMPLE[I} DISHWASHER LOADING PROBLEM

Dialog 1: Generating HTN-like representation

Prompt: Same as that in Fig. |3} “Place items into the dishwasher. You should put plates, mugs and utensils into the
lower rack in any order. After putting items to the lower rack, then put things into upper rack, first put saucers, and then
put cups.”
GPT-4: Hierarchical Task Network (HTN) - Load Dishwasher
1. Load dishwasher
1.1 Load items into the lower rack
1.1.1 Put plates into the lower rack (can be done in any sequence with 1.1.2 and 1.1.3)
1.1.2 Put mugs into the lower rack (can be done in any sequence with 1.1.1 and 1.1.3)
1.1.3 Put utensils into the lower rack (can be done in any sequence with 1.1.1 and 1.1.2)
1.2 Load items into the upper rack (should be done after 1.1 is finished)
1.2.1 Put saucers into the upper rack
1.2.2 Put cups into the upper rack (should be done after 1.2.1)
This HTN provides a hierarchical breakdown of the given task into its various sub-tasks. The tasks are broken down into
sequential or parallel steps, with sequential steps being represented by the use of “after” and parallel steps allowing for
any sequence.

Fig. 6: Example |1| Dialog 1: generating HTN-like representation.

Dialog 2: Generating JSON file

Prompt: Same as that in Fig.

GPT-4: Alright, let’s break down the previously mentioned HTN for loading the dishwasher into JSON format.
First, I will structure the main tasks and the most prominent sub-tasks:

1|

2 "Task_1": {

3 "task_id": "Task_1",

4 "task_instruction": "Load dishwasher with items in the specified order",
5 "task_related_description": "Place items into the dishwasher",

6 "sibling_nodes_condition": "",




7 "sub-tasks_of_this_node": ["Task_1.1", "Task_1.2"]
8 b

9 "Task_1.1": {

10 "task_id": "Task_1.1",

11 "task_instruction": "Load items into the lower rack in any order",

12 "task_related_description": "first load items into the lower rack",

13 "sibling_nodes_condition": "",

14 "sub-tasks_of_this_node": ["Task_1.1.1", "Task_1.1.2", "Task_1.1.3"]

15 by

16 "Task_1.2": {

17 "task_id": "Task_1.2",

18 "task_instruction": "After putting items to the lower rack, load items into
the upper rack in the specified sequence",

19 "task_related_description": "after that load other things into the upper
rack",

DO "sibling_nodes_condition": "After loading items into the lower rack",

D1 "sub-tasks_of_this_node": ["Task_1.2.1", "Task_1.2.2"]

D2 }

D3 | }

Next, I will expand upon the sub-tasks for the lower and upper racks:

1]

2 "Task_1.1.1": {

3 "task_id": "Task_1.1.1",

4 "task_instruction": "Put plates into the lower rack",

5 "task_related_description": "put plates into the lower rack",

6 "sibling_nodes_condition": "can be done in any sequence with Task_1.1.2 and
Task_1.1.3",

7 "sub-tasks_of_this_node": []

8 }r

9 The rest is omitted for brevity...

0 | }

This format encapsulates the task structure from the given HTN into the specified JSON format. You can integrate the
two code blocks for a complete JSON representation.

Fig. 7: Example |1| Dialog 2: Generating JSON file.

Dialog 3: Extracting task-wise specification between Task_1.1 and Task_1.2

Prompt: Same as that in Fig. 3]
GPT-4: Alright, let’s tackle this step by step.
Firstly, let’s define the concepts of safe and co-safe:
o Safe: A property is “safe” if a violation can be observed in finite time. It pertains to something “bad” that must
never happen. In Linear Temporal Logic (LTL), a typical operator to express safety properties is [J (always).
o Co-safe: A property is “co-safe” if its satisfaction can be observed in finite time. It pertains to something “good”
that must eventually happen. In LTL, a typical operator to express co-safety properties is ¢ (eventually).

Using the provided HTN:

1) For Task_1.1: “first load items into the lower rack” has no specific constraint on when it needs to occur in relation
to its sibling tasks. However, it does have constraints related to its own sub-tasks (they can occur in any order).

2) For Task_1.2: “after that load other things into the upper rack”, it explicitly mentions that it should be done after
Task_1.1.




Based on the above:

e Task_1.1 has a co-safe property with respect to its sibling because it has to be done before Task_1.2.

e Task_1.2 has a safe property with respect to its sibling because it should not start until Task_1.1 is complete.
Now, summarizing using LTL:

LTL_Description: “Always (Task_1.1 must precede Task_1.2) and Eventually (Task_1 .1 must be executed).”
So, in JSON dialog box format:

1
2 "LTL_description": "Always (Task_1.1 must precede Task_1.2) and Eventually (
Task_1.1 must be executed)."

30}

The LTL sentence is a combination of safe and co-safe properties, expressed in a natural language manner using the task
ids.

Fig. 8: Example |1| Dialog 3: Extracting task-wise specification between Task 1.1 and Task_1.2.

TABLE I: Extracting task-wise specifications for Example

Tasks LLMs-generated human instructions
sub-tasks of Task_1 Always Task_1.1 must precede Task_1.2 and eventually Task_1.1 must be executed.
sub-tasks of Task 1.1 Eventually Task_1.1.1 is executed and eventually Task_1.1.2 is executed and eventually Task_1.1.3 is executed.
sub-tasks of Task_1.2 | Always Task_1.2.1 precedes Task_1.2.2 and eventually Task_1.2.1 is executed and eventually Task_1.2.2 is executed.

APPENDIX C
HIERARCHICAL ORDER PICKING PROBLEM

A. Task 1
Dialog 1: Generating HTN-like representation

Prompt: Same as that in Fig. 3]

"Several robots are tasked with finding, retrieving, and packing items within a market. Each robot is assigned specific
responsibilities. Robot_1 is assigned to the furniture area, where they will remain until Robot_3 arrives to assist in
retrieving furniture together. After successfully retrieving the furniture, Robot_3 will proceed to the packing area and
then to the dock area. Meanwhile, after successfully retrieving the furniture, Robot_1 is instructed to proceed to the
outdoor area and then to the pet area. After Robot_1 has collected the required items, it should head to the packing area
and subsequently to the dock area. Robot_2 is responsible for visiting both the medicine area and the grocery area, it is
important to note that Robot_2 must first locate the medicine area before moving on to the grocery area. After fetching
the necessary items, Robot_2 is directed to make his way to the packing area and then proceed to the dock area."

GPT-4:
1. Complete market tasks (1.1, 1.2, 1.3 can be done in any order)
1.1. Robot_1 and Robot_3 retrieve furniture (Robot_1 will remain in the furniture area until Robot_3 arrives)

1.1.1. Robot_1 goes to the furniture area
1.1.2. Robot_3 arrives at the furniture area
1.1.3. Robot_1 and Robot_3 retrieve furniture together

1.2. Robot_3 proceeds to the packing area and then to the dock area (after 1.1.3 is completed)

1.2.1. Robot_3 goes to the packing area
1.2.2. Robot_3 goes to the dock area
1.3. Robot_1 proceeds to the outdoor area, then to the pet area, then to the packing area, and finally to the dock area
(after 1.1.3 is completed)
1.3.1. Robot_1 goes to the outdoor area
1.3.2. Robot_1 goes to the pet area
1.3.3. Robot_1 goes to the packing area




1.3.4. Robot_1 goes to the dock area
1.4. Robot_2 visits the medicine area, then the grocery area, then the packing area, and finally the dock area
1.4.1. Robot_2 goes to the medicine area
1.4.2. Robot_2 goes to the grocery area (after 1.4.1 is completed)
1.4.3. Robot_2 goes to the packing area
1.4.4. Robot_2 goes to the dock area

Fig. 9: Task 1 Dialog 1: generating HTN-like representation.

Dialog 2: Generating JSON format

Prompt: Same as that in Fig.
GPT-4

1|

2 "Task_1": {

3 "task_id": "Task_1",

4 "task_instruction": "Complete market tasks",

5 "task_related_description": "Several agents are tasked with finding,
retrieving, and packing items within a market.",

6 "sibling nodes_condition": "None",

7 "sub-tasks_of this_node": ["Task_ 1.1", "Task_1.2", "Task_1.3", "Task_ 1.4"]

8 } ’

9 "Task_1.1": {

10 "task_id": "Task_1.1",

i1 "task_instruction": "Agent_1 and Agent_3 retrieve furniture",

12 "task_related_description": "Agent_1 is assigned to the furniture area, where
they will remain until Agent_3 arrives to assist in retrieving furniture
together.",

13 "sibling_nodes_condition": "None",

14 "sub-tasks_of_this_node": ["Task_1.1.1", "Task_1.1.2", "Task_1.1.3"]

15 b

16 "Task_1.1.1": {

17 "task_id": "Task_1.1.1",

18 "task_instruction": "Agent_1 goes to the furniture area",

19 "task_related_description": "Agent_1 is assigned to the furniture area",

DO "sibling nodes_condition": "remain in the furniture area until Agent_3 arrives
" 14

D1 "sub-tasks_of_this_node": []

P2 by

D3 | }

D4 The rest is omitted for brevity...

Fig. 10: Task 1 Dialog 2: generating JSON file

10



TABLE II: Extracting task-wise specifications for Task 1

Tasks LLMs-generated human instructions
sub-tasks of Task_1 Task_1.1 and Task_1.4 can be executed at any time, while Task_1.2 and Task_1.3 must be executed after Task_1.1 is completed.
sub-tasks of Task_1.1 Task_1.1.1 will keep on until Task_1.1.2 happens, after which Task_1.1.3 will eventually happen.
sub-tasks of Task_1.2 Task_1.2.1 can be executed independently, after which Task_1.2.2 can be executed.
sub-tasks of Task_1.3 Task_1.3.1 must be completed first, followed by Task_1.3.2, then Task_1.3.3, and finally Task_1.3.4.
sub-tasks of Task_ 1.4 Task_1.4.1 is always executed first, followed by Task_1.4.2, then Task_1.4.3, and finally Task_1.4.4.
B. Task 2

Dialog 1: Generating HTN-like representation

Prompt: Same as that in Fig

"Robot_1 is tasked with collecting various items in a marketplace. The items include furniture, outdoor goods,
pharmaceuticals, groceries, electronics, and pet supplies. After collecting all the necessary items, the robot will proceed
to the packing zone and subsequently move to the docking area. Additionally, there is a specific sequence that must be
followed when retrieving items. The robot will prioritize collecting furniture and outdoor goods first. Following this, it
will focus on obtaining pharmaceutical and grocery items. Lastly, it will gather electronics and pet supplies."

GPT-4:
1. Collect and move items to docking area
1.1 Collect various items in marketplace
1.1.1 Collect furniture and outdoor goods

1.1.1.1 Collect furniture items
1.1.1.2 Collect outdoor goods

1.1.2 Collect pharmaceutical and grocery items (after 1.1.1 is finished)

1.1.2.1 Collect pharmaceutical items
1.1.2.2 Collect grocery items

1.1.3 Collect electronics and pet supplies (after 1.1.2 is finished)
1.1.3.1 Collect electronics
1.1.3.2 Collect pet supplies
1.2 Proceed to the packing zone (after 1.1 is finished)
1.3 Move to the docking area (after 1.2 is finished)

Fig. 11: Task 2 Dialog 1: generating HTN-like representation

Dialog 2: Generating JSON file

Prompt: Same as that in Fig
GPT-4: (The rest is omitted for brevity.)
1|
2 "Task_1": {
3 "task_id": "Task_1",
4 "task_instruction": "Collect and move items to docking area",
5 "task_related_description": "Robot_1 is tasked with collecting various items
in a marketplace. After collecting all the necessary items, the robot will
proceed to the packing zone and subsequently move to the docking area.",
6 "sibling nodes_condition": "Root Task",
7 "subtasks_of_this_node": ["Task_1.1", "Task_ 1.2", "Task_1.3"]
8 } ’
9 "Task_1.1": {
10 "task_id": "Task_1.1",

11



11 "task_instruction": "Collect various items in marketplace",
12 "task_related_description”: "The robot is tasked with collecting various items
in a marketplace.",

13 "sibling _nodes_condition": "First Task",

14 "subtasks_of this node": ["Task_1.1.1", "Task 1.1.2", "Task_1.1.3"]

15 b

16 "Task_1.1.1": {

17 "task_id": "Task_1.1.1",

18 "task_instruction": "Collect furniture and outdoor goods",

19 "task_related_description": "The robot will prioritize collecting furniture
and outdoor goods first.",

DO "sibling_nodes_condition": "After finishing the first task",

D1 "subtasks_of_this_node": ["Task_1.1.1.1", "Task_1.1.1.2"]

P2 by

D3 "Task_1.1.1.1": {

D4 "task_id": "Task_1.1.1.1",

D5 "task_instruction": "Collect furniture items",

D6 "task_related_description": "Collect furniture items",

D7 "sibling_nodes_condition": "",

D8 "subtasks_of_ _this _node": []

P9 b

B0 The rest is omitted for brevity...

B1 | }

Fig. 12: Task 2 Dialog 2: generating JSON file

TABLE III: Extracting task-wise specifications for Task 2

Tasks LLMs-generated human instructions
subtasks of Task_1 Task_1.1 must be completed before Task_1.2 begins, and Task_1.2 must be completed before Task_1.3 begins.
subtasks of Task_1.1 Task_1.1.1 must be completed before Task_1.1.2 can begin, and Task_1.1.2 must be completed before Task_1.1.3 can begin.
subtasks of Task_1.1.1 Either Task_1.1.1.1 or Task_1.1.1.2 can be executed first,
and their completion is independent of each other, satisfying co-safe properties.
subtasks of Task_1.1.2 Either Task_1.1.2.1 or Task_1.1.2.2 can be performed first,
and completing one does not restrict the initiation or completion of the other.
subtasks of Task_1.1.3 Task_1.1.3.1 and Task_1.1.3.2 can be executed independently, and both should eventually be completed.
C. Task 3

Dialog 1: Generating HTN-like representation

Prompt: Same as that in Fig.

"Three robots are tasked with retrieving items from a market. Robot_1 is responsible for collecting medicine, groceries,
electronics, and pet supplies. These items can be gathered in any sequence. Once Robot_1 has secured all the necessary
items, it will proceed to the packing area before heading to the docking zone. On the other hand, Robot_2 and Robot_3
operate under a redundant configuration. This means that the task is considered successfully completed if either Robot_2
or Robot_3 finishes all assigned tasks. However, both must actually attempt the task. Their assignment is to first acquire
outdoor products, then move to the packing area, and finally proceed to the docking area.”

GPT-4:
1 Retrieve items and proceed to docking zone (1.1, 1.2, and 1.3 can be done in parallel)
1.1 Robot_1 tasks

1.1.1 Collect medicine
1.1.2 Collect groceries
1.1.3 Collect electronics

12



1.1.4 Collect pet supplies
1.1.5 Move to packing area (only after 1.1.1, 1.1.2, 1.1.3, and 1.1.4 are completed)
1.1.6 Move to docking zone (only after 1.1.5 is completed)

1.2 Robot_2 tasks

1.2.1 Acquire outdoor products

1.2.2 Move to packing area (only after 1.2.1 is completed)

1.2.3 Move to docking zone (only after 1.2.2 is completed)
1.3 Robot_3 tasks

1.3.1 Acquire outdoor products

1.3.2 Move to packing area (only after 1.3.1 is completed)

1.3.3 Move to docking zone (only after 1.3.2 is completed)
Condition: For 1.2 and 1.3, the task is considered successfully completed if either Robot_2 or Robot_3 finishes all
assigned tasks (1.2.1 to 1.2.3 or 1.3.1 to 1.3.3). Both Robot_2 and Robot_3 must attempt the task.

Fig. 13: Task 3 Dialog 1: Generating HTN-like representation

Dialog 2: Generating JSON format

Prompt: Same as that in Fig.
GPT-4:

1A

2 "Task_1": {

3 "task_id": "Task_1",

4 "task_instruction": "Retrieve items and proceed to docking zone",

5 "task_related_description”: "Three robots are tasked with retrieving items
from a market.",

6 "sub-tasks_of_this_node": ["Task_1.1", "Task_1.2", "Task_1.3"]

7 } ’

8 "Task_1.1": {

9 "task_id": "Task_1.1",

10 "task_instruction": "Robot_1 tasks",

i1 "task_related_description": "Robot_1 is responsible for collecting medicine,
groceries, electronics, and pet supplies.",

12 "sub-tasks_of_this_node": ["Task_ 1.1.1", "Task_1.1.2", "Task_1.1.3", "Task_ 1
.1.4", "Task_1.1.5", "Task_1.1.6"]

13 by

14 "Task_1.1.1": {

15 "task_id": "Task_1.1.1",

16 "task_instruction": "Collect medicine",

17 "task_related_description": "Collect medicine",

18 "sub-tasks_of_this_node": []

19 },

DO The rest is omitted for brevity...

D1 | }

Fig. 14: Task 3 Dialog 2: generating JSON file
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TABLE IV: Extracting task-wise specifications for Task 3

Tasks

LLMs-generated human instructions

sub-tasks of Task_1
sub-tasks of Task_1.1

sub-tasks of Task_1.2
sub-tasks of Task_1.3

Task_1.1, Task_1.2, and Task_1.3 can execute in parallel,
and either Task_1.2 or Task_1.3 completing ensures the overall success of their shared objective.
Task_1.1.1, Task_1.1.2, Task_1.1.3, and Task_1.1.4 can execute in any order,
but Task_1.1.5 must occur after all these tasks are completed, followed by Task_1.1.6.
Task_1.2.1 must be completed before Task_1.2.2 can start, and Task_1.2.2 must be completed before Task_1.2.3 can start.
Task_1.3.1 must be completed before Task_1.3.2 can start, and Task_1.3.2 must be completed before Task_1.3.3 can start.
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