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Abstract

Computational resources are vital in natural lan-001
guage processing (NLP) development. Since002
the physical limit of transistors is approach-003
ing a saturation point due to the outspace of004
Moore’s Law and Dennard scaling, we look005
for alternative computing power from optical006
devices. As an initial step in this research direc-007
tion, we facilitate feature extraction using op-008
tical computing and integrate optical extracted009
features to enhance NLP baselines on conven-010
tional electronic GPUs. Unlike another one of011
a kind of features extracted from Transformer,012
such as lexical embeddings, we extend the fea-013
ture space beyond traditional embeddings us-014
ing Wavelet functions that can run on optical015
toolkits. These extracted features, alongside016
the original input text, provide additional in-017
formation that enhances model performance in018
NLP tasks. We employ two different feature ex-019
traction methods: a direct approach involving020
Wavelet or FFT transformations, and a novel021
method employing optical computing for NLP022
feature extraction. Our evaluation encompasses023
fice GLUE tasks - CoLA, SST-2, STSB, MRPC,024
and RTE - and reveals a notable improvement025
of up to +2.8% in classification accuracy.026

1 Introduction027

The extensive use of computational resources is028

a major challenge in defining the performance of029

neural network-based models. The ever-increasing030

model size and training data ask for an extremely031

high GPU supply. As one way to look for alterna-032

tive computing power, we will introduce Wavelet-033

based methods that are compatible with and can run034

on optical devices to enhance NLP performance.035

Recently, optical computing has been receiving036

rising attention on various tasks such as image clas-037

sification (Mirek et al., 2021; Lupo and Massar,038

2021). They offer energy efficiency (Wang et al.,039

2022) and time efficiency of more than ten trillion040

operations per second (Xu et al., 2021). Photonic041

neuromorphic computing systems demonstrate that 042

photonic machine learning can realize NLP sys- 043

tem on sentiment analysis tasks (Valensise et al., 044

2022) but the performance does not reach (20% 045

less) the state-of-the-art result on GPUs, for exam- 046

ple, the embedding is based on TF-ITF instead of 047

Transformer. We aim to combine the advantage 048

of optical device and electric device for a better 049

accuracy, and furthermore, our model design can 050

be applied on any neural network architecture. 051

We propose using Wavelet transformation fea- 052

tures as additional inputs to learn NLP models. 053

Wavelet features have been commonly used for 054

feature extraction in images (Kingsbury and Ma- 055

garey, 1998) and dimension reduction (Coifman 056

et al., 1994; Qureshi et al., 2008). However, pre- 057

vious research has mainly been focused on using 058

Wavelet features for statistical methods (Mahajan 059

et al., 2015; Kristomo et al., 2016a); little research 060

has been carried out to use Wavelet for NLP tasks 061

so far, and there is much potential to explore. We 062

use simulated optical computing to extract Wavelet 063

transformation-based features and add them into 064

the electronic computing (CPU/GPU) hosted neu- 065

ral networks to enhance the model performance. 066

We combine these features with the original in- 067

put during the model training process and interpret 068

these features with linguistic meanings. 069

Specifically, we use the BERTBASE model to rep- 070

resent the input text. This representation is then 071

passed to our non-linear optical simulation of the 072

optical device to extract the optical features. Af- 073

ter that these features are then concatenated with 074

the original sentence embeddings to finetune the 075

model. We use the BERT model as the baseline 076

and show how these extracted optical or Wavelet 077

features help improve the performance of the base- 078

line model on the GLUE Benchmark (Wang et al., 079

2018), which is a standard benchmark containing 080

multiple NLP tasks and has been used to show per- 081

formance for various large language models, e.g. 082
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BERT (Devlin et al., 2018), GPT (Brown et al.,083

2020) etc. Our major contributions include:084

1. We propose two novel methods, i.e., optical-085

simulation-based and Wavelet-transformation-086

based feature extraction from sentence embed-087

dings to improve NLP accuracy;088

2. To our knowledge, we are the first to observe089

that features from non-linear optical device090

can improve the performance for NLP tasks;091

3. We apply our Wavelet method to the BERT092

language model on the GLUE benchmark and093

achieve an improvement of up to +2.8% in094

BLEU over the baseline method.095

2 Method096

This section describes the Wavelet feature extrac-097

tion methods and how we incorporate them into098

the neural network models. Firstly, Section 2.1 de-099

scribes our method to extract the sentence embed-100

ding using a pre-trained transformer-based model101

given an input sequence. Section 2.2 describes the102

two methods we use to extract the features from the103

sentence embedding. (i) ‘Direct Method’ directly104

applies the Wavelet/Fast Fourier (FFT) transforma-105

tion on the embedding matrix, and (ii) ‘Optical106

Method’ for feature extraction uses non-linear opti-107

cal computing to extract the features. Section 2.3108

describes how we combine the extracted features109

with the original input. These combined features110

are then used to fine-tune and improve the model’s111

performance.112

Algorithm 1 gives the details of our method in-113

cluding feature extraction and model fine-tuning.114

For a given input sequence of n tokens w =115

{w1, · · · , wn}, we propose using optical feature116

extraction method to get m output features f =117

{f1, · · · , fm}. Then, instead of fine-tuning a neu-118

ral model M(w), we fine-tune on M(w ⊕ f). Here119

M is a pre-trained transformer model and ⊕ is the120

concatenation of original tokens with the extracted121

features. Now, we will detail step by step.122

2.1 Extracting Sentence Embeddings123

Each input sentence is converted to a sentence-level124

embedding matrix using the pre-trained BERT (De-125

vlin et al., 2018) model. For each training, vali-126

dation, and test sample of the specific NLP task,127

we tokenize them and put them as input to the pre-128

trained language model and get the final layer’s sen-129

tence embedding matrix as output. The final output130

is a len×dimmatrix where len is the length of the131

Algorithm 1 Model Fine-tuning
Input: input data (w = {w1, · · · , wn}), pre-trained model
(M)
Output: fine-tuned model (M′)
1: w′ : tokenize the data w using the tokenizer for M
2: W : last layer’s output of M(w′)
3: F : feature extraction using W
4: f : column-wise average of F
5: X : concatenate w and f
6: M′ : fine-tune M using X
7: return M′

tokenized input sequence1 and dim is the dimen- 132

sion of the Transformer language model. Note that 133

for embedding matrix extraction, we use the pre- 134

trained language model without any fine-tuning. 135

Additionally, we freeze the model layers to ensure 136

the models remain the same throughout the extrac- 137

tion phase. We then pass each data sample to get 138

the final layer’s output matrix. The model weights 139

are only updated during the fine-tuning phase. 140

2.2 Feature Extraction 141

Once we extract the sentence embeddings, we use 142

two different methods to extract the features: a 143

’Direct Method’ and an ’Optical Method’. 144

2.2.1 Direct Method 145

In our first method, ‘Direct Method’ we directly 146

apply the Haar Wavelet transformation or the FFT 147

transformation to get the Wavelet or FFT features 148

respectively. For the Wavelet features, we use the 149

high-pass filter output (HH), however other outputs 150

give similar results. The algorithm in Appendix E 151

describes the ‘Direct Method’ for feature extraction. 152

We then perform a column-wise average of the 153

transformation output to get the feature vector. 154

2.2.2 Optical Method 155

Our second method, ‘Optical Method’ is a simu- 156

lation of the non-linear optics method to extract 157

the features. For each data sample, we extract its 158

sentence embedding matrix as input. We use a 159

simulation of the original method to extract the 160

final features by utilizing the 2-D partial Fourier 161

transform. We also experiment with the optical 162

computation hardware which the simulation code 163

is built upon. The steps for feature extraction are 164

the same in both hardware and optical simulation, 165

however, due to noise, humidity, and temperature 166

changes, the hardware can give slightly different 167

results. 168

1The length of the sentence includes the special tokens, i.e.
[CLS] and [SEP].
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Algorithm 2 Optical feature extraction
Input: sentence embedding matrix (W ), azimuthal index
range (l1, l2), radial index range (p1, p2)
Output: optical features (f )
1: N : 1200
2: W ′ : resize W to N × N using bicubic interpolation,

then normalize values to be between 0 and 2π
3: b1, b2 : Gaussian beams
4: beamse : b1e

W ′

5: signal : PPLN(SLM(beamse))
6: LG : generate_LG_modes(l1, l2, p1, p2)
7: for lgi ∈ LG do
8: beamlg : b2e

lgi

9: pump : PPLN(SLM(beamlg))
10: F : signal ·A · sin(B · pump · C)
11: fi : normalized sum of absolute values of F
12: end for
13: return f

The optical simulation algorithm takes three in-169

puts: the sentence embedding matrix W , and the170

two index ranges used for generating the set of171

Laguerre-Gaussian (LG) modes (azimuthal l and172

radial p index ranges). We define this set of LG173

modes as LG. The phase patterns of the sentence174

embedding matrix and a set of LG modes are up-175

loaded to the simulation separately (beamse and176

beamlg) to two spatial light modulators (SLM )177

and then propagated through the Magnesium-doped178

Periodic Poled Lithium Niobate crystal (PPLN ).2179

These two beams are then merged, and the sum180

frequency values are outputted by the simula-181

tion. These sum-frequency values are computed182

using the slowly varying envelope approximation183

(SVAE). A, B, and C are hardware parameters for184

the sum frequency generation and are treated as185

constants for our experiments. Further details on186

this algorithm along with the parameter settings is187

mentioned in Appendix A and Appendix B respec-188

tively.189

2.3 Combining Extracted Features190

There are various ways to combine additional fea-191

tures to improve model performance (Feng et al.,192

2021; Wei and Zou, 2019; Zhang et al., 2017; Sen-193

nrich et al., 2015). We concatenated the sentence’s194

extracted features with the original input sequence.195

The model is then fine-tuned on this concatenated196

sentence-level embedding matrix. For tasks that197

have more than one input sentence, e.g. RTE, etc,198

we concatenate the feature embeddings with both199

sentences separately and then give them as input200

to the model for fine-tuning. For example, if we201

have an input sequence w1, w2, · · · , and wn, then202

2We simulate SLM andPPLN using a 2D partial Fourier
Transform over the input.

the combined sequence becomes w1, w2, · · · , wn, 203

f1, f2, · · · , and fm. Here wi are the tokens in the 204

input sequence and fi are the extracted features. 205

3 Experiments 206

3.1 Tasks and Settings 207

Datasets: We applied our method on the GLUE 208

Benchmark (Wang et al., 2018), which consists of 209

nine text classification tasks. We apply our meth- 210

ods to total six of the nine tasks including, CoLA 211

(grammatical acceptability), SST-2(sentiment clas- 212

sification), STSB(sentence similarity), RTE(natural 213

language inference), and MRPC(paraphrase task). 214

The sentence-level statistics for each of the tasks 215

are mentioned in Table 6. 216

Tools: We use Pytorch library (Paszke et al., 217

2019) for all the experiments along with the hug- 218

gingface (Wolf et al., 2019) toolkit for the pre- 219

processing and fine-tuning of the models. We 220

also used the PyWavelet (Lee et al., 2019) and the 221

scipy (Virtanen et al., 2020) packages to perform 222

the Wavelet and the FFT transformations respec- 223

tively. All the experiments are carried out on a 224

single NVIDIA Tesla V100 GPU. 225

Baseline: For each of the five GLUE tasks, we 226

carry out two sets of fine-tuning. We initially fine- 227

tuned the BERTBASE model using the data for the 228

specific GLUE task to create a baseline BERT 229

model. Then we further fine-tune using the com- 230

bined original text and the extracted features. 231

Parameter settings: For each experiment, we 232

pad the sentences to the maximum length of 512 233

or truncate them if greater than 512. Each training 234

is run for 3 epochs (Devlin et al., 2018) with a 235

learning rate of 2e−5. We use Adam optimizer 236

with betas set as 0.900 and 0.999. 237

Evaluation criteria: For the evaluation, we re- 238

port Matthew’s correlation for the CoLA task, Pear- 239

son’s correlation for STSB, and accuracy scores for 240

all the other tasks. 241

3.2 Experimental Results 242

Direct Method: Table 1 shows the results for all 243

five GLUE tasks using the BERTBASE cased model. 244

We show how the model’s performance changes 245

when we use the additional Wavelet or FFT features 246

to fine-tune the model. We observe that fine-tuning 247

the model on the combined original input sentences 248

and the extracted Wavelet/FFT features improves 249
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Task B B+Wavelet B+FFT
CoLA 51.8 54.6 (+2.8) 52.2 (+0.4)
SST-2 93.4 93.5 (+0.1) 94.0 (+0.6)
STSB 84.3 84.9 (+0.6) 85.9 (+1.6)
RTE 65.8 67.9 (+2.1) 67.8 (+2.0)

MRPC 82.3 83.5 (+1.2) 84.2 (+1.9)
Table 1: Results of GLUE Benchmark Tasks for the di-
rect method. ‘B’ is the baseline model when fine-tuned
on only the original input. ‘B+Wavelet’ and ‘B+FFT’
are the result of fine-tuning the Baseline model with
additional Wavelet and FFT features respectively.

the performance for all five tasks. We get an aver-250

age improvement of 1.3% points with a maximum251

improvement of 2.8% points above the baseline for252

the CoLA task.253

Optical Method: Table 3 compares the results254

for the CoLA and RTE tasks using different feature255

extraction methods. We can see that optical fea-256

tures (‘B+Optical Method’) give similar improve-257

ment as compared to the FFT features (‘B+FFT’)258

for the CoLA task and give a higher improvement259

in comparison with both the Direct Methods for260

the RTE task. On average, the optical features give261

a similar improvement compared to Wavelet fea-262

tures (approx. 2.4% points above the baseline) and263

higher than the FFT features.264

Table 2 compares the results of Optical Simula-265

tion and Optical Hardware for the WNLI dataset.266

We can observe that Optical hardware got a +4.2%267

points improvement while Optical simulation got268

a +15.8% improvement above the baseline experi-269

ment.

Task B
B+Optical B+Optical
Hardware Simulation

WNLI 46.5 50.7 (+4.2) 62.3 (+15.8)
Table 2: Results comparison of WNLI task for optical
simulation and optical hardware.270

4 Related Work271

There is extensive work on using alternative repre-272

sentations of text input to improve model perfor-273

mance across NLP tasks (García-Martínez et al.,274

2016; Khan et al., 2020). Researchers have used275

these representations as additional features which276

include statistical (Jing et al., 2002), attention-277

based features (Tang et al., 2022), and phonetic278

features (Liu et al., 2018a). We add to this research279

area by utilizing Wavelet transformations and opti-280

cal methods to create additional features from the281

original text to improve model performance.282

Wavelet transformations been used for various283

tasks like data mining (Li et al., 2002), data com-284

Task B
Direct Method B+Optical

B+Wavelet B+FFT Method
CoLA 51.8 54.6 (+2.8) 52.2 (+0.4) 52.3 (+0.5)
RTE 65.8 67.9 (+2.1) 67.8 (+2.0) 68.3 (+2.5)

Table 3: Performance comparison of GLUE tasks for
different feature extraction methods. ‘B’ is the baseline
model. ‘B+Wavelet’, ‘B+FFT’, and ‘B+Optical Method’
are the result of fine-tuning the Baseline model with
Wavelet, FFT, and optical features respectively.

pression (Coifman et al., 1994), and computer vi- 285

sion (Li et al., 2020; Liu et al., 2019, 2018b; Ale- 286

mohammad et al., 2017; Wang et al., 1995; Qureshi 287

et al., 2008). Within NLP, Wavelet has been used 288

within model architecture (Aggarwal, 2002), for di- 289

mensionality reduction (Xexéo et al., 2008), and to 290

reduce word embedding computational cost (Dahab 291

et al., 2021). We focus on Wavelet feature extrac- 292

tion, which has been used previously for specific 293

NLP tasks like language identification (Al-Dubaee 294

et al., 2010) as well as other ML/neural-network 295

based tasks (Mahajan et al., 2015; Huang and Fang, 296

2022; Kristomo et al., 2016b; Hidayat et al., 2015). 297

We focus on evaluating Wavelet feature extraction’s 298

general usage within neural network-based NLP 299

tasks by using multiple standardized benchmarks. 300

Optical neural networks (ONNs) have been uti- 301

lized as an alternative to artificial neural networks 302

for computational speed and efficiency (Liu et al., 303

2021). ONNs have been used to speed up opera- 304

tions in neural networks such as CNNs (Mehrabian 305

et al., 2018). To the best of our knowledge, we are 306

the first to apply non-linear optics to extract fea- 307

tures from text using a standardized benchmark. 308

5 Conclusion 309

As optical technology becomes widely used, we 310

will see the transfer of the current models from 311

traditional to optical hardware due to its time and 312

energy efficiency. This work is an initial step in this 313

direction where we propose a novel approach to 314

using Optical Computing to extract features from 315

a transformer-based language model. We are the 316

first to use non-linear optical computation (Optical 317

Method) as a feature extraction method for NLP 318

tasks. For comparison, we use Wavelet and FFT 319

transformation (Direct Method) to extract these fea- 320

tures. We combine these extracted features with the 321

original input to improve performance on five text 322

classification tasks. We also analyze how the Direct 323

and Optical methods give a similar improvement 324

in performance. 325
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6 Limitations326

Current optical computation equipment pieces are327

slow to convert electrical signals to optical signals328

and vise versa which shows a much higher extrac-329

tion time. However, we expect usage of state-of-330

the-art hardware will bridge this generation gap.331
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A Optical Method Hardware Definitions529

The optical method used is a simulation of a non-530

linear optics method that depends on specific hard-531

ware. The hardware components within the origi-532

nal optical method are a Spatial Light Modulator533

and a Magnesium-doped Periodic Poled Lithium534

Niobate crystal. A Spatial Light Modulator is used535

to manage the properties of the input light beam.536

In the optical method, two Spatial Light Modula-537

tors are used: one to control the beam propagating538

the sentence embedding matrix and another for539

the beam propagating the LG modes generated. A540

Magnesium-doped Periodic Poled Lithium Niobate541

crystal is also used to convert beams sent through542

it. These two hardware components essentially per-543

form 2D partial Fourier Transformations on the544

beams representing the sentence embeddings and545

the LG modes, as shown in the footnote on page 3.546

B Parameters for Optical Method547

The optical simulation uses an input size of548

1200×1200. As the embedding matrices have a549

size of sentence len× 768 (the model dimensions),550

we resize the embedding matrix using the bicu-551

bic interpolation method. By default, we set the552

azimuthal (l) and radial (p) index ranges to [0,7]553

and [-2,2] respectively to generate a set of 40 LG554

modes. These 40 LG modes, therefore, extract a555

40-length feature vector for each data sample.556

We set the default ranges of the azimuthal (l) and557

radial (p) indexes to [-2,+2] and [0,7] respectively.558

These values create 40 different LG modes and559

therefore output 40 length feature vectors.560

C Time Comparison for feature561

extraction562

Table 4 shows the comparison of feature extraction563

time of the ‘Direct Method’ compared with the564

‘Optical Method’.

GLUE Task
Direct Method Optical
Wavelet FFT Method

CoLA 3 4 117
RTE 2 3 68

Table 4: Comparison of time (minutes) for feature ex-
traction using each of the methods.

565
Table 5 shows the feature extraction time for the566

Optical hardware compared to Optical simulation.567

The much longer feature extraction time for the568

Optical hardware is attributed to the conversion of 569

sentence embedding from electrical signals to light 570

beams. Faster hardware equipment, e.g. Digital 571

Micrometer Device (DMD) with faster modulation 572

speeds compared to SLM, can potentially reduce 573

this time by more than 100 times. 574

Optical Method Time (min)
Hardware 723
Simulation 289

Table 5: Feature extraction time comparison of WNLI
task for optical simulation and optical hardware.

D Dataset statistics 575

Table 6 shows the stats for all the GLUE tasks we 576

experimented with. 577

Task Train Valid Test
CoLA 8,551 1,043 1,063
SST-2 67,349 872 1,821
STSB 5,749 1,500 1,379
RTE 2,490 277 3,000

MRPC 3,668 408 1,725
WNLI 635 71 146

Table 6: Number of sentences for each GLUE task.

E Direct Method Algorithm 578

Algorithm 3 describes the algorithm for extracting 579

the wavelet features given the sentence embedding 580

W as well as the mother wavelet m as inputs. By 581

default we use the high-pass features only. 582

Algorithm 3 Direct Method feature extraction
Input: sentence embedding (W ), mother wavelet (ψ)
Output: High-pass Wavelet features (F )
1: Z = apply 2D wavelet transformation on W using ψ
2: F = extract high-pass features from Z
3: return F

F Functional Analysis for Wavelet 583

Transformation 584

The Wavelet transform is a multi-resolution repre- 585

sentation of an input function. Unlike the Fourier 586

transformation, the Wavelet transform has a rich 587

wavelet basis that can be utilized for functions with 588

different characteristics. Additionally, we can an- 589

alyze the input both in the time as well as the fre- 590

quency domain. It is widely used in engineering, 591

astronomy, neuroscience, and other fields. 592
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The Wavelet transform represents the input func-593

tion based on two concepts; scaling and translation.594

Scaling stretches or compresses the frequency of595

a given wavelet in the time axis, and translation596

moves (shifts) the wavelet along the time axis.597

A ‘mother wavelet’ ψ(t) with a Fourier trans-598

formation of ψ(ω) can be represented concerning599

a set of basis functions known as the ‘daughter600

wavelets’. The daughter wavelet is a scaled and601

translated representation of the mother wavelet. It602

can be defined as:603

ψτ,s(t) =
1√
|s|

∫ +∞

−∞
f(t)ψ(

t− τ

s
) (1)604

Here, τ, s ∈ R; s ̸= 0 are the translation and605

scaling factors, and ψτ,s(t) is generated by the606

mother wavelet ψ(t).607

The wavelet should satisfy an admissibility con-608

dition,609

Cψ =

∫
R

|ψ̂(w)|2

|w|
dw <∞ (2)610

Given a function, ψ = L2(R), and input func-611

tion f(x) with a Fourier transform ψ(ω), and using612

the concepts from Equation 1 and 2, the wavelet613

transform in the time domain can be defined as614

follows:615

[Wψf ](τ, s) =
1√
s

∫ ∞

−∞
f(x)ψ

(x− τ

s

)
dx (3)616

The equivalent frequency domain representation617

of Equation 3 is618

[Wψf ](τ, s) =

√
s

2π

∫ +∞

−∞
F (ω)ψ(sω)ejωτ dω

(4)

619
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