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Abstract

Computational resources are vital in natural lan-
guage processing (NLP) development. Since
the physical limit of transistors is approach-
ing a saturation point due to the outspace of
Moore’s Law and Dennard scaling, we look
for alternative computing power from optical
devices. As an initial step in this research direc-
tion, we facilitate feature extraction using op-
tical computing and integrate optical extracted
features to enhance NLP baselines on conven-
tional electronic GPUs. Unlike another one of
a kind of features extracted from Transformer,
such as lexical embeddings, we extend the fea-
ture space beyond traditional embeddings us-
ing Wavelet functions that can run on optical
toolkits. These extracted features, alongside
the original input text, provide additional in-
formation that enhances model performance in
NLP tasks. We employ two different feature ex-
traction methods: a direct approach involving
Wavelet or FFT transformations, and a novel
method employing optical computing for NLP
feature extraction. Our evaluation encompasses
fice GLUE tasks - CoLA, SST-2, STSB, MRPC,
and RTE - and reveals a notable improvement
of up to +2.8% in classification accuracy.

1 Introduction

The extensive use of computational resources is
a major challenge in defining the performance of
neural network-based models. The ever-increasing
model size and training data ask for an extremely
high GPU supply. As one way to look for alterna-
tive computing power, we will introduce Wavelet-
based methods that are compatible with and can run
on optical devices to enhance NLP performance.
Recently, optical computing has been receiving
rising attention on various tasks such as image clas-
sification (Mirek et al., 2021; Lupo and Massar,
2021). They offer energy efficiency (Wang et al.,
2022) and time efficiency of more than ten trillion
operations per second (Xu et al., 2021). Photonic

neuromorphic computing systems demonstrate that
photonic machine learning can realize NLP sys-
tem on sentiment analysis tasks (Valensise et al.,
2022) but the performance does not reach (20%
less) the state-of-the-art result on GPUs, for exam-
ple, the embedding is based on TF-ITF instead of
Transformer. We aim to combine the advantage
of optical device and electric device for a better
accuracy, and furthermore, our model design can
be applied on any neural network architecture.

We propose using Wavelet transformation fea-
tures as additional inputs to learn NLP models.
Wavelet features have been commonly used for
feature extraction in images (Kingsbury and Ma-
garey, 1998) and dimension reduction (Coifman
et al., 1994; Qureshi et al., 2008). However, pre-
vious research has mainly been focused on using
Wavelet features for statistical methods (Mahajan
et al., 2015; Kristomo et al., 2016a); little research
has been carried out to use Wavelet for NLP tasks
so far, and there is much potential to explore. We
use simulated optical computing to extract Wavelet
transformation-based features and add them into
the electronic computing (CPU/GPU) hosted neu-
ral networks to enhance the model performance.
We combine these features with the original in-
put during the model training process and interpret
these features with linguistic meanings.

Specifically, we use the BERTgasg model to rep-
resent the input text. This representation is then
passed to our non-linear optical simulation of the
optical device to extract the optical features. Af-
ter that these features are then concatenated with
the original sentence embeddings to finetune the
model. We use the BERT model as the baseline
and show how these extracted optical or Wavelet
features help improve the performance of the base-
line model on the GLUE Benchmark (Wang et al.,
2018), which is a standard benchmark containing
multiple NLP tasks and has been used to show per-
formance for various large language models, e.g.



BERT (Devlin et al., 2018), GPT (Brown et al.,
2020) etc. Our major contributions include:

1. We propose two novel methods, i.e., optical-
simulation-based and Wavelet-transformation-
based feature extraction from sentence embed-
dings to improve NLP accuracy;

2. To our knowledge, we are the first to observe
that features from non-linear optical device
can improve the performance for NLP tasks;

3. We apply our Wavelet method to the BERT
language model on the GLUE benchmark and
achieve an improvement of up to +2.8% in
BLEU over the baseline method.

2 Method

This section describes the Wavelet feature extrac-
tion methods and how we incorporate them into
the neural network models. Firstly, Section 2.1 de-
scribes our method to extract the sentence embed-
ding using a pre-trained transformer-based model
given an input sequence. Section 2.2 describes the
two methods we use to extract the features from the
sentence embedding. (i) ‘Direct Method’ directly
applies the Wavelet/Fast Fourier (FFT) transforma-
tion on the embedding matrix, and (ii) ‘Optical
Method’ for feature extraction uses non-linear opti-
cal computing to extract the features. Section 2.3
describes how we combine the extracted features
with the original input. These combined features
are then used to fine-tune and improve the model’s
performance.

Algorithm 1 gives the details of our method in-
cluding feature extraction and model fine-tuning.
For a given input sequence of n tokens w =
{wy,- -+ ,wy}, we propose using optical feature
extraction method to get m output features f =
{f1, -+, fm}- Then, instead of fine-tuning a neu-
ral model M(w), we fine-tune on M(w & f). Here
M is a pre-trained transformer model and & is the
concatenation of original tokens with the extracted
features. Now, we will detail step by step.

2.1 Extracting Sentence Embeddings

Each input sentence is converted to a sentence-level
embedding matrix using the pre-trained BERT (De-
vlin et al., 2018) model. For each training, vali-
dation, and test sample of the specific NLP task,
we tokenize them and put them as input to the pre-
trained language model and get the final layer’s sen-
tence embedding matrix as output. The final output
is a len X dim matrix where len is the length of the

Algorithm 1 Model Fine-tuning

Input: input data (w = {wy, -
D
Output: fine-tuned model (M)
1: w’ : tokenize the data w using the tokenizer for M
2: W :last layer’s output of M(w’)
3: F :feature extraction using W
4: f :column-wise average of F'
5: X : concatenate w and f
6: M’ : fine-tune M using X
7: return M’

, Wwn }), pre-trained model

tokenized input sequence' and dim is the dimen-
sion of the Transformer language model. Note that
for embedding matrix extraction, we use the pre-
trained language model without any fine-tuning.
Additionally, we freeze the model layers to ensure
the models remain the same throughout the extrac-
tion phase. We then pass each data sample to get
the final layer’s output matrix. The model weights
are only updated during the fine-tuning phase.

2.2 Feature Extraction

Once we extract the sentence embeddings, we use
two different methods to extract the features: a
"Direct Method’ and an *Optical Method’.

2.2.1 Direct Method

In our first method, ‘Direct Method” we directly
apply the Haar Wavelet transformation or the FFT
transformation to get the Wavelet or FFT features
respectively. For the Wavelet features, we use the
high-pass filter output (HH), however other outputs
give similar results. The algorithm in Appendix E
describes the ‘Direct Method’ for feature extraction.
We then perform a column-wise average of the
transformation output to get the feature vector.

2.2.2  Optical Method

Our second method, ‘Optical Method’ is a simu-
lation of the non-linear optics method to extract
the features. For each data sample, we extract its
sentence embedding matrix as input. We use a
simulation of the original method to extract the
final features by utilizing the 2-D partial Fourier
transform. We also experiment with the optical
computation hardware which the simulation code
is built upon. The steps for feature extraction are
the same in both hardware and optical simulation,
however, due to noise, humidity, and temperature
changes, the hardware can give slightly different
results.

'The length of the sentence includes the special tokens, i.e.
[CLS] and [SEP].



Algorithm 2 Optical feature extraction

Input: sentence embedding matrix (W), azimuthal index
range (11, l2), radial index range (p1, p2)
Output: optical features (f)
1: N :1200
2: W' :resize W to N x N using bicubic interpolation,
then normalize values to be between 0 and 27
: b1, bs : Gaussian beams

3
4: beamse : bie"”

5: signal : PPLN(SLM (beams.))

6: LG : generate_LG_modes(l1,l2, p1,p2)

7: for lg; € LG do

8: beamyg : boeldi

9:  pump: PPLN(SLM (beamg))

10:  F:signal - A-sin(B - pump - C)

11: fi : normalized sum of absolute values of F'
12: end for

13: return f

The optical simulation algorithm takes three in-
puts: the sentence embedding matrix W, and the
two index ranges used for generating the set of
Laguerre-Gaussian (LG) modes (azimuthal [ and
radial p index ranges). We define this set of LG
modes as LG. The phase patterns of the sentence
embedding matrix and a set of LG modes are up-
loaded to the simulation separately (beamg. and
beamyy) to two spatial light modulators (SLM)
and then propagated through the Magnesium-doped
Periodic Poled Lithium Niobate crystal (PPLN ).2
These two beams are then merged, and the sum
frequency values are outputted by the simula-
tion. These sum-frequency values are computed
using the slowly varying envelope approximation
(SVAE). A, B, and C are hardware parameters for
the sum frequency generation and are treated as
constants for our experiments. Further details on
this algorithm along with the parameter settings is
mentioned in Appendix A and Appendix B respec-
tively.

2.3 Combining Extracted Features

There are various ways to combine additional fea-
tures to improve model performance (Feng et al.,
2021; Wei and Zou, 2019; Zhang et al., 2017; Sen-
nrich et al., 2015). We concatenated the sentence’s
extracted features with the original input sequence.
The model is then fine-tuned on this concatenated
sentence-level embedding matrix. For tasks that
have more than one input sentence, e.g. RTE, etc,
we concatenate the feature embeddings with both
sentences separately and then give them as input
to the model for fine-tuning. For example, if we
have an input sequence wi, ws, - - -, and wy,, then

*We simulate SLM and PP LN using a 2D partial Fourier
Transform over the input.

the combined sequence becomes w;i, wa, - - -, Wy,
f1, fa, -+, and f,,. Here w; are the tokens in the
input sequence and f; are the extracted features.

3 Experiments

3.1 Tasks and Settings

Datasets: We applied our method on the GLUE
Benchmark (Wang et al., 2018), which consists of
nine text classification tasks. We apply our meth-
ods to total six of the nine tasks including, CoLA
(grammatical acceptability), SST-2(sentiment clas-
sification), STSB(sentence similarity), RTE(natural
language inference), and MRPC(paraphrase task).
The sentence-level statistics for each of the tasks
are mentioned in Table 6.

Tools: We use Pytorch library (Paszke et al.,
2019) for all the experiments along with the hug-
gingface (Wolf et al., 2019) toolkit for the pre-
processing and fine-tuning of the models. We
also used the PyWavelet (Lee et al., 2019) and the
scipy (Virtanen et al., 2020) packages to perform
the Wavelet and the FFT transformations respec-
tively. All the experiments are carried out on a
single NVIDIA Tesla V100 GPU.

Baseline: For each of the five GLUE tasks, we
carry out two sets of fine-tuning. We initially fine-
tuned the BERTgssg model using the data for the
specific GLUE task to create a baseline BERT
model. Then we further fine-tune using the com-
bined original text and the extracted features.

Parameter settings: For each experiment, we
pad the sentences to the maximum length of 512
or truncate them if greater than 512. Each training
is run for 3 epochs (Devlin et al., 2018) with a
learning rate of 2e°. We use Adam optimizer

with betas set as 0.900 and 0.999.

Evaluation criteria: For the evaluation, we re-
port Matthew’s correlation for the CoL A task, Pear-
son’s correlation for STSB, and accuracy scores for
all the other tasks.

3.2 Experimental Results

Direct Method: Table 1 shows the results for all
five GLUE tasks using the BERTgasg cased model.
We show how the model’s performance changes
when we use the additional Wavelet or FFT features
to fine-tune the model. We observe that fine-tuning
the model on the combined original input sentences
and the extracted Wavelet/FFT features improves



Task | B | B+Wavelet | B+FFT
CoLA | 51.8 | 54.6 (+2.8) | 52.2 (+0.4)
SST-2 | 93.4 | 93.5 (+0.1) | 94.0 (+0.6)
STSB | 84.3 | 84.9 (+0.6) | 85.9 (+1.6)
RTE | 65.8 | 67.9 (+2.1) | 67.8 (+2.0)
MRPC | 823 | 83.5(+1.2) | 84.2 (+1.9)

Table 1: Results of GLUE Benchmark Tasks for the di-
rect method. ‘B’ is the baseline model when fine-tuned
on only the original input. ‘B+Wavelet’ and ‘B+FFT’
are the result of fine-tuning the Baseline model with
additional Wavelet and FFT features respectively.

the performance for all five tasks. We get an aver-
age improvement of 1.3% points with a maximum
improvement of 2.8% points above the baseline for
the CoLA task.

Optical Method: Table 3 compares the results
for the CoLA and RTE tasks using different feature
extraction methods. We can see that optical fea-
tures (‘B+Optical Method’) give similar improve-
ment as compared to the FFT features (‘B+FFT”)
for the CoLA task and give a higher improvement
in comparison with both the Direct Methods for
the RTE task. On average, the optical features give
a similar improvement compared to Wavelet fea-
tures (approx. 2.4% points above the baseline) and
higher than the FFT features.

Table 2 compares the results of Optical Simula-
tion and Optical Hardware for the WNLI dataset.
We can observe that Optical hardware got a +4.2%
points improvement while Optical simulation got
a +15.8% improvement above the baseline experi-
ment.

B+Optical | B+Optical
Task B Hardware | Simulation
WNLI | 46.5 | 50.7 (+4.2) | 62.3 (+15.8)
Table 2: Results comparison of WNLI task for optical
simulation and optical hardware.

4 Related Work

There is extensive work on using alternative repre-
sentations of text input to improve model perfor-
mance across NLP tasks (Garcia-Martinez et al.,
2016; Khan et al., 2020). Researchers have used
these representations as additional features which
include statistical (Jing et al., 2002), attention-
based features (Tang et al., 2022), and phonetic
features (Liu et al., 2018a). We add to this research
area by utilizing Wavelet transformations and opti-
cal methods to create additional features from the
original text to improve model performance.
Wavelet transformations been used for various
tasks like data mining (Li et al., 2002), data com-

Task B Direct Method B+Optical
B+Wavelet B+FFT Method

CoLA | 51.8 | 54.6 (+2.8) | 52.2 (+0.4) | 52.3 (+0.5)

RTE | 658 | 67.9 (+2.1) | 67.8 (+2.0) | 68.3 (+2.5)

Table 3: Performance comparison of GLUE tasks for
different feature extraction methods. ‘B’ is the baseline
model. ‘B+Wavelet’, ‘B+FFT’, and ‘B+Optical Method’
are the result of fine-tuning the Baseline model with
Wavelet, FFT, and optical features respectively.

pression (Coifman et al., 1994), and computer vi-
sion (Lietal., 2020; Liu et al., 2019, 2018b; Ale-
mohammad et al., 2017; Wang et al., 1995; Qureshi
et al., 2008). Within NLP, Wavelet has been used
within model architecture (Aggarwal, 2002), for di-
mensionality reduction (Xexéo et al., 2008), and to
reduce word embedding computational cost (Dahab
et al., 2021). We focus on Wavelet feature extrac-
tion, which has been used previously for specific
NLP tasks like language identification (Al-Dubaee
et al., 2010) as well as other ML/neural-network
based tasks (Mahajan et al., 2015; Huang and Fang,
2022; Kristomo et al., 2016b; Hidayat et al., 2015).
We focus on evaluating Wavelet feature extraction’s
general usage within neural network-based NLP
tasks by using multiple standardized benchmarks.

Optical neural networks (ONNs) have been uti-
lized as an alternative to artificial neural networks
for computational speed and efficiency (Liu et al.,
2021). ONNSs have been used to speed up opera-
tions in neural networks such as CNNs (Mehrabian
et al., 2018). To the best of our knowledge, we are
the first to apply non-linear optics to extract fea-
tures from text using a standardized benchmark.

5 Conclusion

As optical technology becomes widely used, we
will see the transfer of the current models from
traditional to optical hardware due to its time and
energy efficiency. This work is an initial step in this
direction where we propose a novel approach to
using Optical Computing to extract features from
a transformer-based language model. We are the
first to use non-linear optical computation (Optical
Method) as a feature extraction method for NLP
tasks. For comparison, we use Wavelet and FFT
transformation (Direct Method) to extract these fea-
tures. We combine these extracted features with the
original input to improve performance on five text
classification tasks. We also analyze how the Direct
and Optical methods give a similar improvement
in performance.



6 Limitations

Current optical computation equipment pieces are
slow to convert electrical signals to optical signals
and vise versa which shows a much higher extrac-
tion time. However, we expect usage of state-of-
the-art hardware will bridge this generation gap.
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A Optical Method Hardware Definitions

The optical method used is a simulation of a non-
linear optics method that depends on specific hard-
ware. The hardware components within the origi-
nal optical method are a Spatial Light Modulator
and a Magnesium-doped Periodic Poled Lithium
Niobate crystal. A Spatial Light Modulator is used
to manage the properties of the input light beam.
In the optical method, two Spatial Light Modula-
tors are used: one to control the beam propagating
the sentence embedding matrix and another for
the beam propagating the LG modes generated. A
Magnesium-doped Periodic Poled Lithium Niobate
crystal is also used to convert beams sent through
it. These two hardware components essentially per-
form 2D partial Fourier Transformations on the
beams representing the sentence embeddings and
the LG modes, as shown in the footnote on page 3.

B Parameters for Optical Method

The optical simulation uses an input size of
1200x1200. As the embedding matrices have a
size of sentence lenx 768 (the model dimensions),
we resize the embedding matrix using the bicu-
bic interpolation method. By default, we set the
azimuthal (/) and radial (p) index ranges to [0,7]
and [-2,2] respectively to generate a set of 40 LG
modes. These 40 LG modes, therefore, extract a
40-length feature vector for each data sample.

We set the default ranges of the azimuthal (/) and
radial (p) indexes to [-2,4+2] and [0,7] respectively.
These values create 40 different LG modes and
therefore output 40 length feature vectors.

C Time Comparison for feature
extraction

Table 4 shows the comparison of feature extraction
time of the ‘Direct Method’ compared with the
‘Optical Method’.

Direct Method | Optical

GLUE Task Wavelet | FFT | Method
CoLA 3 4 117
RTE 2 3 68

Table 4: Comparison of time (minutes) for feature ex-
traction using each of the methods.

Table 5 shows the feature extraction time for the
Optical hardware compared to Optical simulation.
The much longer feature extraction time for the

Optical hardware is attributed to the conversion of
sentence embedding from electrical signals to light
beams. Faster hardware equipment, e.g. Digital
Micrometer Device (DMD) with faster modulation
speeds compared to SLM, can potentially reduce
this time by more than 100 times.

Optical Method ‘ Time (min)
Hardware 723
Simulation 289

Table 5: Feature extraction time comparison of WNLI
task for optical simulation and optical hardware.

D Dataset statistics

Table 6 shows the stats for all the GLUE tasks we
experimented with.

Task Train | Valid | Test
CoLA | 8,551 | 1,043 | 1,063
SST-2 | 67,349 | 872 | 1,821
STSB | 5,749 | 1,500 | 1,379

RTE 2,490 | 277 | 3,000
MRPC | 3,668 | 408 | 1,725
WNLI 635 71 146

Table 6: Number of sentences for each GLUE task.

E Direct Method Algorithm

Algorithm 3 describes the algorithm for extracting
the wavelet features given the sentence embedding
W as well as the mother wavelet m as inputs. By
default we use the high-pass features only.

Algorithm 3 Direct Method feature extraction
Input: sentence embedding (W), mother wavelet (1))
Output: High-pass Wavelet features (£7)

1: Z = apply 2D wavelet transformation on W using v
2: F = extract high-pass features from Z
3: return F’

F Functional Analysis for Wavelet
Transformation

The Wavelet transform is a multi-resolution repre-
sentation of an input function. Unlike the Fourier
transformation, the Wavelet transform has a rich
wavelet basis that can be utilized for functions with
different characteristics. Additionally, we can an-
alyze the input both in the time as well as the fre-
quency domain. It is widely used in engineering,
astronomy, neuroscience, and other fields.



The Wavelet transform represents the input func-
tion based on two concepts; scaling and translation.
Scaling stretches or compresses the frequency of
a given wavelet in the time axis, and translation
moves (shifts) the wavelet along the time axis.

A ‘mother wavelet’ v (¢) with a Fourier trans-
formation of 1)(w) can be represented concerning
a set of basis functions known as the ‘daughter
wavelets’. The daughter wavelet is a scaled and
translated representation of the mother wavelet. It
can be defined as:

+o0
Urs(t) = 1/ ") m
NEF A
Here, 7,5 € R;s # 0 are the translation and
scaling factors, and 1, (t) is generated by the
mother wavelet ().
The wavelet should satisfy an admissibility con-
dition,

N 2
Cy :/ w(w|)\ dw < o0 )
R

|w

Given a function, 1 = L?(R), and input func-
tion f () with a Fourier transform v (w), and using
the concepts from Equation 1 and 2, the wavelet
transform in the time domain can be defined as
follows:

r—T
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The equivalent frequency domain representation
of Equation 3 is

s [t ,
Wudlirs) = 3o [ Flpplow)e” do
“)



