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Abstract

Entity Linking (EL) is a fundamental task for
Information Extraction and Knowledge Graphs.
The general form of EL (i.e., end-to-end EL)
aims to find mentions in the given document
and then link the mentions to corresponding
entities in a specific knowledge base. Recently,
the paradigm of retriever-reader promotes the
progress of end-to-end EL, benefiting from the
advantages of dense entity retrieval and ma-
chine reading comprehension. However, the
existing studies only train the retriever and the
reader separately in a pipeline manner, thus ig-
noring the benefit that the interactions between
the retriever and the reader can bring to the task.
To advance the retriever-reader paradigm to per-
form more effectively on end-to-end EL, we
propose BEER?, a Bidirectional End-to-End
training framework for Retriever and Reader.
Through our designed bidirectional end-to-end
training, BEER? guides the retriever and the
reader to learn from each other, make progress
together, and ultimately improve EL perfor-
mance. Extensive experiments on benchmarks
of multiple domains demonstrate the effective-
ness of our proposed BEER?,

1 Introduction

End-to-End Entity Linking (EL) (Shen et al., 2015;
Kolitsas et al., 2018; Chen et al., 2020) which is
the general form of the EL task, aims to extract
mentions from a given text and link the mentions to
specific entities in a given knowledge base. Due to
its ability to automatically understand text, entity
linking has become an essential task for various
NLP tasks (Tan et al., 2023), such as knowledge
graphs construction (Clancy et al., 2019), automatic
text summarization (Amplayo et al., 2018), and
question answering (Ferrucci, 2012).

Early end-to-end EL works (Hoffart et al., 2011;
Ling et al., 2015; Luo et al., 2015) mainly divide
this task into two subtasks, Mention Detection
(MD) and Entity Disambiguation (ED), and study
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Figure 1: An example of entity linking according to the
retriever-reader paradigm.

how to exploit the potential relationship between
them to improve EL performance. Most previous
works conduct MD before ED (Nguyen et al., 2016;
Martins et al., 2019), which is an unnatural de-
sign because it causes models to predict the span
position without entity information. This is also
the essential reason for the long-standing dilemma
in end-to-end EL, that is, “MD is more difficult
than ED” (Zhao et al., 2019; Broscheit, 2019). To
overcome this challenge, (Zhang et al., 2022) pro-
pose EntQA which consists of a retriever-reader
structure to perform ED before MD. As shown in
Figure 1, given a text, EntQA first retrieves rele-
vant candidate entities from the knowledge base
by dense retrieval, and then its reader is responsi-
ble for rejecting wrong candidates and extracting
the span position information in the text for cor-
rect entities. Benefiting from that dense retrieval
effectively reduces the huge search space, EntQA
achieves state-of-the-art performance and becomes
a strong and advanced baseline of end-to-end EL.

However, EntQA only trains its retriever and
reader separately in a pipeline manner, that is, the
training of the reader will be performed after the re-
triever is fully trained. We argue that this pipelined
training cannot enable sufficient interactions be-
tween the retriever and the reader. Intuitively, the
training signal of the retriever can dynamically af-



fect the training process of the reader, and the re-
sults of the reader can also be fed back to the re-
triever to guide its training. Therefore, it is worth
studying how to utilize interactions between the
retriever and reader to improve the end-to-end EL
performance.

Motivated by the above intuition, we propose
the Bidirectional End-to-End learning of Retriever-
Reader (BEER?), a more effective training frame-
work that aims to advance the retriever-reader
paradigm to perform more perfectly on end-to-end
EL. The BEER? contains two data flows in op-
posite directions: (1) Retriever — Reader. The
retriever dynamically gets candidate entities and
inputs them into the reader, thereby updating the
training data of the reader in real time. (2) Reader
— Retriever. The reader identifies mentions in
the documents and inputs the span position infor-
mation into the retriever, which in turn allows the
retriever to perform more effective span-based re-
trieval. Through these two bidirectional data flows,
we jointly train the retriever and reader in an end-
to-end manner and then guide them to learn from
each other, make progress together, and finally im-
prove the EL performance. In addition, we believe
that the core idea of our proposed BEER? is also
useful for enhancing retriever-reader likely mod-
els in other tasks, such as open-domain question
answering.

In summary, our contributions are in three folds:

1. We present the end-to-end BEER? framework,
which jointly trains the retriever and reader to
make them interact and enhance each other.

2. We conduct extensive experiments on bench-
marks in two languages (English and Chinese)
of multiple domains (including news, speech,
and medical domains) and achieve new state-
of-the-art end-to-end EL performance.

3. We provide sufficient ablation studies and de-
tailed analyses for better verification of the
effectiveness of our proposed method.

2 Methodology

In this section, we introduce the details of BEER?,
which are illustrated in Figure 2. Our proposed
BEER? consists of a retriever and a reader, which
are trained jointly in an end-to-end manner. From
the perspective of the data flow, our approach con-
tains two opposite data flows, namely “Retriever
— Reader” and “Reader — Retriever”.

2.1 Retriever-Reader Structure

The retriever module aims to retrieve candidate
entities that might belong to the input text from
the knowledge base, and the purpose of the reader
module is to further reduce the candidate set and
predict the specific span position information of
the finally predicted entities in the text.

2.1.1 Retriever

Let the knowledge base be denoted by KB =
{e1,...,en}. Given a sentence t of length T3, the
retriever module is to achieve a subset Equnqg C KB
to be the candidate entities of ¢. Specifically, we
model the retriever as a dual-encoder (Bromley
et al., 1993), which contains a sentence encoder Eg
and an entity encoder Eg. We use Eg to map the
sentence ¢ to a sequences of representations 7?:

t _
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where [CLS] is the special token representing
the beginning of a sequence in the tokenizer of
BERT (Devlin et al., 2019). And we use Eg to get
the representations ¢ of the entity e; € KB:

¢ = Eg(f(e:)),

2
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where f(e;) represents the operation of obtaining
the description text of e; from CB. It is worth
noting that we uniformly limit the description text
length of all entities in ICB to 7.

After obtaining the representations of the sen-
tence and entities, we select entities based on their
retrieval scores. We use the dot product between
vectors as our scoring function. We first use the
[CLS] representations of sentences and entities to
retrieve the top K entities:

tT e;
Eas = argmax Z rieusiTices; )
ECENE =K Scar

In addition, to enhance the interactions between
the retriever and the reader, we also utilize the span
information predicted by the reader for auxiliary
retrieval. Assuming that the reader’s prediction for
the spansintis s = {s;},1 < s; < T}, we use it
to obtain more accurate span representations than
[CLS] representations as follows:

Tgpan = an(["“;-]), 8; € 8, 4)
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Figure 2: The training process of BEER?. Note that encoders of the same color represent that they share parameters.

where avg(-) is the mean pooling operation. Then
we use the span representations to retrieve the top
K entities again:

tT e;
gspan = argmax E Tspan”'[CLS]" (6))
EICE|E=K Soi

Considering that &5 and Epan may have dupli-
cate entities, we finally take the top K entities of
the set of {Ecis U Epan } as the final retrieval result,
i.e., Ecand, Which will be sent to the reader as input.

2.1.2 Reader

To enable end-to-end training, we make the reader
encoder and the retriever’s sentence encoder share
parameters. Therefore, we denote the reader en-
coder as Eg for the convenience of understand-
ing. Given the output of the retriever (i.e., Ecand)
and the input sentence ¢, for each candidate entity
e; € Ecand, WE get its joint representation with ¢:

r® =Es(t® f(e;)), (6)
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Based on the joint representation, according to the
mechanism proposed in EntQA, we compute the
probability of span (z,y),1 < x,y < T} and the
ranking probability of e;,1 < j < K:

€j

], (7

yl, ®)

Pspan (@, y[t, €;) = p1(z[t.e;) x p2(ylt.e;),  (9)
exp (Wgrle’)
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p1(z|t, e;) = softmax(Wr7)]|
[

)
p2(ylt, e;) = softmax(Wor®/)
(

, (10

Prank (ej |t7 gcand) =

where W, Wy, W3 are trainable parameters.
Furthermore, for a combination of span and entity,
its reader score is computed as:

P(ej> x, y‘t7 Scand) = Pspan ($, y‘t, ej)
XPrank (ej |t7 gcand)-

an

Based on the scores of all possible combinations,
we select the combinations that satisfy “P > thr”
as the final reader prediction results. The thr is the
threshold we choose empirically. We denote the
N reader results as C = {(e;, z,y1)},1 <1 < N.
We integrate the span position (i.e., {(z,y;)}) into
s = {s;} and send s to the retriever.

2.2 Bidirectional Data Flows

The key innovation of BEER? compared to En-
tQA is to use two bidirectional data flows so that
the retriever and the reader are trained in an
end-to-end fashion. Their enhanced interaction al-
lows them to obtain positive affect from each other
and improve performance.

2.2.1 Retriever — Reader

In the framework of BEER?, the retriever sends its
retrieval results &, to the reader after each time
it completes the retrieval. In fact, in EntQA, the
input of the reader is also the output of the retriever.
However, the pipeline training method of EntQA
determines that only when the retriever’s training
ends, the inference result of the retriever module
can be used as the training input of the reader. We
think this is a kind of data interaction that is rela-
tively hard and dull, and the reader cannot perceive
the signal change of the retriever training process,
because the reader can only receive the inference



result of the retriever. Therefore, unlike EntQA,
BEER? dynamically sends the retriever results to
the reader during the training process, which al-
lows the reader to learn the experience gained by
the retriever when they are training. Additionally,
the end-to-end property of the BEER? framework
enables the retriever and reader to receive gradi-
ent propagation at the same time during training.
If the retriever selects the wrong candidate entity,
this will cause the reader to be affected as well,
and the signal of the reader will also be directly
fed back to the retriever so that it can correct the
error in time. Particularly, we believe that if the
signal of the ranking probability p,.q, calculated
in the reader is propagated to the retriever, it will
be very helpful for the optimization of the retriever,
because the ranking probability is to score and sort
the results of the retriever, so this can obviously be
regarded as the training rewards of the retriever.

2.2.2 Reader — Retriever

From Equations 4 and 5, we know the key infor-
mation connecting the bridge from the reader to
the retriever is the span position information s. Ac-
cording to the span prediction results of the reader,
our retriever accurately extracts the span represen-
tations of the input sentence, and then performs
auxiliary entity retrieval. There are two main mo-
tivations for us to use the span prediction results
to assist retrieval: (1) The [CLS] representation of
a sentence can reflect the semantics of the entire
sentence, but it is not sufficient for the represen-
tation of the entities in the sentence. Hence, we
think only using [CLS] representations is not op-
timal for entity-centric tasks (Li et al., 2022; Za-
porojets et al., 2022; Wang et al., 2022) like EL.
The span representations can not only make the re-
triever perceive the location of the mentions in the
sentence, but also improve the retrieval diversity.
(2) Also benefiting from our parameter sharing set-
ting, during training, if the reader makes a wrong
span prediction, then this will cause the retriever to
fail to obtain an accurate span representation and
make a wrong entity selection, and the retriever’s
loss gradient will be passed back to the reader so
that it can learn and get progress.

Besides, in practice, to allow the retriever to have
span information input at the beginning of training,
we arrange a process similar to the model’s warm-
up before starting formal training. This process will
sequentially pre-train the retriever and reader with
a small number of epochs, so as to obtain the span

information which will be used for the initial input
of the retriever in the formal end-to-end training
of BEER?. It is worth noting that this warm-up-
like process does not cause an unfair comparison
between our method and EntQA, which we will
empirically prove in Section 3.5.3.

2.3 Overall Training Objective

Given a training sentence ¢ and the knowledge base

KCB, based on the Equations 3 and 5, for an entity

e; € KB, the retriever’s score is defined as:

tT i tT i

Q(t. ei) = ricLs)iéLs) + TspanTics; (12

For the training sentence ¢, we have its gold en-

tity set G C KB, and we can achieve its negative

entity set N C KB \ G. Then we train the retriever

by Noise Contrastive Estimation objective (Gut-
mann and Hyvérinen, 2010) which is defined as:

Lyetr = max Z log
geg

( exp (Q(t,9)) >
exp (Q(t,9)) + X, enexp (Q(E,n)) )

As for the training of the reader, we directly
optimize it to maximize the span probability (i.e.,
Dspan) and ranking probability (i.e., prank):

13)

K
Lread = mMax Z Z (IOgPspan(% y‘t7 ej)+

J=1(z,y)

(14)
log Prank (ej |t7 gcand))-

It is worth noting that, during the training process,
the combination of the (x,y) is the gold mention
spans of every candidate entity e; C Ecang-
Finally, we train the retriever objective L., and
reader objective L,.qq simultaneously. The overall
end-to-end objective of BEER? is defined as:

L = Lretr + Lread- (15)

3 Experiments

3.1 Datasets

To evaluate BEER? comprehensively, we select EL
datasets from multiple domains. Particularly, it is
well known that the medical domain is very special
due to its professional nature, so medical EL has
long been regarded as an independent task (Mon-
dal et al., 2019). But we run BEER? on both the
medical domain and other generic domains. Ad-
ditionally, our work is the first to use multilingual
benchmarks, including English and Chinese. The
dataset details are shown in Appendix A.



e News: The AIDA-CoNLL dataset (Hoffart
et al., 2011) contains 1,393 English news ar-
ticles from Reuters. Its entities are identified
by YAGO?2 entity name and Wikipedia URL.

e Medical: The BC5CDR dataset (Li et al.,
2016) contains 1,500 medical abstracts that
are annotated with MeSH ontology.

* Speech: The NLPCC2022 dataset (Song et al.,
2022) is the benchmark for the public com-
petition of NLPCC2022. It consists of 1,936
TED talks converted from raw audio.

* Short-Text: The CCKS2020 dataset ! is pro-
vided by CCKS2020 Chinese short text EL
task. Its corpus comes from various domains,
such as movies, TV, novels, etc.

3.2 Baseline Methods

To reflect the competitiveness of BEER?, we se-
lect several advanced strong baselines: End2End
EL (Kolitsas et al., 2018) uses a Bi-LSTM (Hochre-
iter and Schmidhuber, 1997) to encode embed-
dings and links mention to entities based on lo-
cal and global scores. Joint NER EL (Martins
et al., 2019) propose to jointly learn the NER task
and EL task to make them benefit from each other.
REL (van Hulst et al., 2020) is a widely used
open-source toolkit for entity linking. It is an en-
semble of multiple state-of-the-art NLP methods
and packages. GENRE (Cao et al., 2021) models
the EL task as a seq2seq problem and automati-
cally generates unique entity identifiers of the input
guiding text. ReFinED (Ayoola et al., 2022) is
an efficient zero-shot-capable method for end-to-
end EL. It introduces the fine-grained entity typ-
ing task to improve the performance of EL. En-
tQA ? (Zhang et al., 2022) decomposes the end-
to-end EL task into two subproblems, namely en-
tity retrieval and question answering. EntQA is
the previous state-of-the-art method on the AIDA-
CoNLL dataset. DNorm (Leaman et al., 2013)
utilizes the TF-IDF to learn a bilinear mapping
function for ED of the medical EL task. ID-
CNN (Strubell et al., 2017) is a deep learning-based
method that uses a CNN network to do the medical
NER task. E2EMERN (Zhou et al., 2021) is an
end-to-end progressive multi-task learning frame-
work for the medical EL task. It achieves the previ-
ous state-of-the-art results on the BC5CDR dataset.

"http://biendata.xyz/competition/ccks_2020_el
https://github.com/WenzhengZhang/EntQA

KENER (Huang et al., 2022) focuses on incor-
porating proper knowledge in the MD subtask to
improve the overall performance of linking. It was
the best system in the competition of NLPCC2022.

3.3 Evaluation Metric

To ensure the fairness of the comparison between
our method and baselines, the metrics we use to
report our main results are the widely used InKB
Micro Precision, Recall, and F1 score. Specifically,
for the end-to-end EL task, a mention is consid-
ered to be correct only when its span position is
extracted correctly and the corresponding entity id
in the knowledge base is predicted correctly. It
should be emphasized that when evaluating EL per-
formance, the F1 score is considered as the primary
metric. The F1 score is the harmonic mean of Preci-
sion and Recall, meaning it takes both of them into
account when calculating overall performance and
effectively balances the trade-off between Precision
and Recall. A high F1 score indicates that model
performs well in terms of correctly identifying and
linking entities while minimizing false positives
and false negatives. In addition, because both En-
tQA and BEER? are models of the retriever-reader
paradigm, we report the retriever’s Recall@K to
reflect the retrieval performance.

Other details of experimental implementation
are presented in Appendix B.

3.4 Experimental Results

From Table 1, we can see that:

1. BEER? outperforms the previous state-of-
the-art models on all datasets. Specifically,
BEER? exceeds EntQA by 1.2% F1 on AIDA-
CoNLL, exceeds E2ZEMERN by 0.8% F1
on BC5CDR, exceeds KENER by 2.2% F1
on NLPCC2022, exceeds EntQA by 1.9%
F1 on CCKS2020. The strong results of
BEER? demonstrate the effectiveness of our
proposed bidirectional end-to-end learning of
the retriever-reader paradigm for EL.

2. Compared with EntQA, the improvements of
BEER? are significant. For the domains of
medicine and speech, in which the perfor-
mance of EntQA is not the best, BEER? out-
performs it by 2.6% F1 and 2.8% F1 respec-
tively and becomes the best model in these
two domains. This indicates that BEER? has
better domain adaptation ability.
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InKB Micro

Language ‘ Domain ‘ Dataset Method Precision Recall F1 Score
End2End EL (Kolitsas et al., 2018) 80.9 84.0 82.4
Joint NER EL (Martins et al., 2019) | 81.1 82.8 81.9
REL (van Hulst et al., 2020) 79.5 81.5 80.5
English News AIDA-CoNLL | GENRE (Cao et al., 2021) 81.7 85.8 83.7
ReFinED (Ayoola et al., 2022) 81.8 86.3 84.0
EntQA (Zhang et al., 2022) 84.6 87.0 85.8
BEER?2 (Ours) 86.9T 87.27 87.0"
DNorm (Leaman et al., 2013) 82.7 78.7 80.7
IDCNN (Strubell et al., 2017) 82.0 80.3 81.1
English Medical BC5CDR E2EMERN (Zhou et al., 2021) 82.5 82.1 823
EntQA (Zhang et al., 2022) 81.8 81.2 81.5
BEER?2 (Ours) 86.0T 0.3 831"
KENER (Huang et al., 2022) | - - 74.6
English Speech NLPCC2022
EntQA (Zhang et al., 2022) 76.0 72.1 74.0
BEER?2 (Ours) 76.17 7757 76.87
Chinese | Short-Text | CCKs2020 | EMQA (Zhangetal. 2022) B3 o7 B
BEER? (Ours) 771 72.8 74.9

Table 1: The performance of BEER? and all baselines. We underline the previous state-of-the-art results. Note that
the results of E2EMERN are obtained by running its officially trained model under our metrics.

3. For the speech domain, BEER? outperforms
KENER, which reflects the competitiveness of
BEER?. KENER is a competition system that
includes an ensemble method. Without this
trick that is useful in improving performance,
BEER? is still better than KENER. Addition-
ally, the better performance compared with
EntQA on the Chinese benchmark also re-
flects the language robustness of BEER?.

EntQA BEER2
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Figure 3: The retrieval performance (Recall@K) of
EntQA and BEERZ. Particularly, on AIDA-CoNLL, we
use BERT-Base/Large to initialize respectively.

3.5 Analysis and Discussion
3.5.1 The Retrieval Performance

Table 1 reports the reader performance as our main
results. As a study of the retriever-reader structure,
it is necessary to analyze the retrieval performance.
From Figure 3, we see that BEER? always has
better retrieval performance than EntQA, which

Method | RecalleK F1
EntQA (Base) 91.2 79.1
BEER? (Base, Retriever — Reader) 93.1 80.3
BEER? (Base, Reader — Retriever) 95.8 81.4
BEER? (Base, Retriever <> Reader) 96.2 81.7
EntQA (Large) 96.6 85.8
BEER? (Large, Retriever — Reader) 96.8 86.0
BEER? (Large, Reader — Retriever) 97.2 86.3
BEER? (Large, Retriever <> Reader) 97.5 87.0
BEER® | 975 87.0

Table 2: The retriever and reader performance of the
variants of BEER? on AIDA-CoNLL.

verifies the advantage of our designed retriever
module. When Bert-Base is used as the backbone,
the result of EntQA is relatively low, which leaves
more space for BEER?. Therefore, our method in-
deed improves significantly. Furthermore, we also
find that the improvements on AIDA-CoNLL and
CCKS2020 are greater than that on BC5CDR and
NLPCC2022. For this phenomenon, we suspect
that it is because the knowledge bases of AIDA-
CoNLL and CCKS2020 have more entities than
BC5CDR and NLPCC2022. A larger number of
entities pose a greater challenge to the retriever,
thus, better performance on larger knowledge bases
reflects that our retriever is better than EntQA’s.

3.5.2 Effects of Two Data Flows

Our technical contribution is that we design an end-
to-end training mechanism, which includes two



Method | Pre Rec F1
EntQA (4 epochs) 84.6 87.0 85.8
EntQA (20 epochs) 854 864 859

BEER? (1 epoch + 10 epochs) 86.6 874 87.0
BEER? (5 epochs + 10 epochs) | 86.9 872 87.0

Table 3: The performance when training models with
different epochs on AIDA-CoNLL.

bidirectional data flows as bridges connecting the
retriever and reader modules. Therefore, we further
conduct ablation studies on these two data flows.

From Table 2, we see that each of the data
flows we design individually brings considerable
improvements. As described in Sections 2.2.1
and 2.2.2, while dynamically inputting the candi-
date entities from the retriever effectively helps the
reader’s training, thanks to the end-to-end training,
the retriever itself is also further optimized. This
view can be seen from the results that BEER? (Re-
triever — Reader) is better than EntQA on both
Recall@K and F1. Similarly, from the comparison
of the results of BEER? (Reader — Retriever) and
EntQA, it can be known that the span information
sent from the reader to the retriever not only ef-
fectively assists the work of the retriever, but also
makes its own progress in the prediction of the span
position. Besides, the results of BEER? (Retriever
<> Reader) show that these two data flows cooper-
ate well in the framework of BEER?, resulting in
better performance than they obtain alone.

3.5.3 Effects of Training Epochs

To verify that the warm-up-like pre-training pro-
cess before the formal training starts does not cause
unfairness in model comparison, we train EntQA
and BEER? for different epochs. Note that BEER?
(1 epoch + 10 epochs) of Table 3 means that we
pre-train the retriever and reader for 1 epoch and
then formally train them for 10 epochs under the
end-to-end setting. From Table 3, even EntQA is
trained for 20 epochs, which means that the number
of training epochs is more than that of BEER?, its
performance is only slightly improved compared to
EntQA (4 epochs). This shows that simply increas-
ing the number of training epochs does not bring
substantial performance improvements for EntQA.
Moreover, the slight difference in results between
BEER? (1 epoch + 10 epochs) and BEER? (5
epochs + 10 epochs) also indicates that the num-
ber of epochs of the warm-up-like process is not
critical to the training of BEER?. The role of this

process is only to provide initial span information
for our designed retriever. The great advantage of
BEER? (5 epochs + 10 epochs) compared to En-
tQA (20 epochs) also empirically proves what we
mentioned in Section 2.2.2, that is, the warm-up-
like pre-training process will not cause unfairness
in the comparison between EntQA and BEER?.
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Figure 4: The F1 results of BEER? on AIDA-CoNLL.

3.5.4 Parameter Studies of K and thr

Figure 4(a) presents the performance change of
BEER? as choosing different values of K. We see
that as the value of K increases, the performance of
BEER? shows a trend of first increasing and then
decreasing. This phenomenon is in line with our
intuition because K represents the number of can-
didate entities sent to the reader. If K is too large,
it produces more noise entities, thus damaging the
reader’s performance. However, choosing an exces-
sively large K value itself will not bring much gain
to BEER?, and will even greatly increase the time
spent by retrieving entities. Therefore, choosing an
appropriate value of K can obtain competitive per-
formance, after all, BEER? performs better than
EntQA at all K in Figure 4(a).

In Section 2.1.2, we design to automatically fil-
ter predicted combinations of span and entity in the
reader. As a key parameter, we carry out the pa-
rameter study to verify the insensitivity of BEER?
to thr. From Figure 4(b), we see that the perfor-
mance of BEER? is not very sensitive to the spe-



Input 1:

, who arrive next week, are the third team in the triangular

Gold: [0, 0, “Pakistan national cricket team”], [12, 13, “World Series Cricket”]
EntQA: [5, 5, “Pakistan national cricket team”]

BEER?: [5, 5, “Pakistan national cricket team™], [12, 13, “World Series Cricket”]
Input 2: were not optimistic of a peaceful festive season in

Gold: [11, 15, “KwaZulu-Natal”]

EntQA: [11, 15, “KwaZulu-Natal], [11, 15, “KwaZulu”’]

BEER?: [11, 15, “KwaZulu-Natal”]

Table 4: Examples of EntQA and BEER?. We mark the span of mention/golden entity/

. For the EL

task, the golden information includes the starting and ending positions of the span and the specific entity.

cific values when thr is within a reasonable range.
As thr changes, the F1 score fluctuates slightly
in the range greater than 85.0. Therefore, the per-
formance of BEER? is robust to the choice of thr.
And it can be seen that BEER? always outperforms
EntQA with the change of thr value.

3.6 Case Study

Table 4 illustrates the comparisons between the
cases of EntQA and BEER?. In the first case, En-
tQA does not recognize that “world series” in the
sentence is a mention of an entity, while BEER?
does. We think this is because the retrieval results
of BEER? are more diverse than that of EntQA be-
cause we leverage two kinds of representations for
candidate retrieval. In addition, more interestingly,
we find that BEER? is better than EntQA when
dealing with nested entities, as shown in the second
example. Because EntQA only uses the overall
sentence representation of the [CLS] for retrieval,
it cannot perceive the specific position of the span,
which leads the model to think that there may be
two mentions in the sentence, namely “kwazulu”
and “kwazulu-natal”. But BEER? knows the spe-
cific location of the span when retrieving, that is,
it knows that [11, 15] is a span, so it can avoid
selecting “kwazulu”. Therefore, the second exam-
ple reflects the importance of the span information
predicted by the reader for the retriever.

4 Related Work

End-to-End Entity Linking (EL) is the general form
of EL (Shen et al., 2023; Zhang-li et al., 2022; Joko
and Hasibi, 2022). Early works divide the end-to-
end EL task into two subtasks, namely Mention
Detection (MD)/NER and Entity Disambiguation
(ED) (Sil and Yates, 2013), and study the joint
learning of these two subtasks to improve EL per-
formance (Luo et al., 2015; Nguyen et al., 2016;
Martins et al., 2019). (Kolitsas et al., 2018) develop
the first neural end-to-end EL system that consid-

ers all potential mentions and calculates contextual
similarity scores of candidate entities. Recently,
researchers have become enthusiastic about using
paradigms of other tasks to improve end-to-end
EL (Wu et al., 2020; De Cao et al., 2021; Lai et al.,
2022; Cho et al., 2022; Ran et al., 2023).

GENRE (Cao et al., 2021) is an autoregressive
model for end-to-end EL. It retrieves entities by
generating entity names in an autoregressive mech-
anism (Dong et al., 2021). ReFinED (Ayoola et al.,
2022) separately address the EL task into three sub-
tasks, namely MD, fine-grained entity typing, and
ED, thereby enhancing EL with the help of fine-
grained entity categories and descriptions. Consid-
ering the long-term dilemma of previous works
performing MD before ED, that is these meth-
ods require models to accurately extract mentions
without entity information, EntQA (Zhang et al.,
2022) of the retriever-reader paradigm is proposed
to solve ED before MD by the way of inverted
Open-Domain Question Answering. Thanks to its
more natural design, the success of EntQA indi-
cates the advantages of the retriever-reader struc-
ture for end-to-end EL. Our work aims to propose
a novel EL model in which the retriever and reader
are more interactive to facilitate the advancement
of the retriever-reader paradigm on end-to-end EL.

5 Conclusion

In this paper, we introduce to promote EL by fa-
cilitating the advancement of the retriever-reader
paradigm. We design BEER?, a bidirectional end-
to-end learning framework that enables sufficient
retriever-reader interaction. Extensive experiments
and analyses show the effectiveness of BEER?. In
the future, we think it is a promising direction to
apply our idea of enhancing the retriever-reader
interaction to other related tasks. Besides, our prac-
tice of using span representations to assist retrieval
is a valuable exploration for dense entity retrieval.



Limitations

As academic verification experiments, we do not
consider the running efficiency of our proposed
methods. Particularly, to enable the retriever to
get the reader’s prediction results as input at the
beginning of the end-to-end training, we arrange a
warm-up-like pre-training process before the end-
to-end training begins to obtain the initial span in-
formation, as described in Section 2.2.2. Although
in Section 3.5.3 we have empirically demonstrated
that this process does not cause an unfair compar-
ison of the performance of BEER? and baseline
models, we must also realize that such a process
will make the total training time longer to a certain
extent. According to the results in Table 3, it can be
known that the epoch number of this warm-up-like
process has a slight impact on BEER?. Therefore,
we suggest that to obtain a balance between effi-
ciency and performance in practice, we can choose
a small number of epochs for pre-training.

Besides, another reason why we share the pa-
rameters of the retriever’s sentence encoder and the
reader encoder is to avoid excessive parameters of
BEER?. The EL task generally occupies a large
amount of GPU memory because the number of
entities in the knowledge base is large. Therefore,
one risk of using different encoders for the retriever
and the reader is that it will cause the model train-
ing to require too much GPU memory, although
this may lead to better performance. The setting of
BEER?’s shared parameters can effectively reduce
its demand for GPU memory. Under our experi-
mental setup, for large-scale encoders, the main
GPU requires a maximum of 50G of memory when
parameters are shared, while the main GPU re-
quires a maximum of about 75G of memory when
parameters are not shared.

Our experiments have proven that the warm-up-
like pre-training process before the start of end-
to-end training will not bring additional perfor-
mance gains, this pre-training process with a very
small number of epochs has no effect on the model,
which suggests that our end-to-end training is es-
sentially equivalent to training from scratch. How-
ever, we also admit that such a design is a trade-off
considering the convenience of code implementa-
tion and engineering development. In the future,
we will further study how to make BEER? get rid
of the dependence on the warm-up-like process, so
that our BEER? becomes more elegant and effi-
cient. Specifically, we will design how to obtain

the initial span information more simply and di-
rectly before the end-to-end training starts, without
the need for the warm-up-like pre-training process.
Moreover, we believe that it is a very interesting
and worthwhile research direction to apply our idea
of making progress together by learning from each
other between retriever and reader to other tasks
applicable to the retriever-reader paradigm.

Ethics Considerations

All the datasets, baseline models, and metrics in-
volved in the paper are publicly available. We have
cited the corresponding authors or projects of them,
and confirm that they are consistent with their in-
tended use.
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A Dataset Details

The dataset statistics are shown in Table 5.

e News: The AIDA-CoNLL dataset (Hoffart
et al., 2011) contains 1,393 English news ar-
ticles from Reuters. Its entities are identi-
fied by YAGO?2 entity name and Wikipedia
URL. Following previous works (Cao et al.,
2021; Zhang et al., 2022), we split the AIDA-
CoNLL dataset into training (946 documents),
development (216 documents), and test (231
documents) sets. We use KILT (Petroni et al.,
2021) which contains 5,903,530 entities as the
given knowledge base.

Medical: The BC5CDR dataset (Li et al.,
2016) contains 1,500 medical abstracts that
are annotated with MeSH ontology. Same as
related works (Zhao et al., 2019; Zhou et al.,
2021), we equally divide it into training, devel-
opment, and test sets. Because the BCSCDR
corpus is annotated with MeSH ontology, we
also use MeSH which has 2,311 medical con-
cepts as the knowledge base.

Speech: The NLPCC2022 dataset (Song et al.,
2022) is the benchmark for the public com-
petition of the conference of NLPCC2022. It
consists of 1,936 TED talks converted from
raw audio. We manually and randomly split
the full dataset into 4:1 for training and testing.
Besides, the competition organizers officially
provide a knowledge base constructed based
on Wikidata. This knowledge base contains
118,795 entities.

Short-Text: The CCKS2020 dataset 3 is pro-
vided by CCKS2020 Chinese short text EL
task. Its corpus comes from various domains,
such as movies, TV, novels, etc. The training
data includes 70,000 sentences and the valida-
tion/test includes 10,000 sentences. The given
knowledge base is from the Baidu Baike and
includes approximately 360,000 entities.

B Implementation Details

Our codes are implemented using Pytorch (Paszke
et al., 2019). The architectures of the encoders
(i.e., retrieval dual-encoder and reader encoder) we

Shttp://biendata.xyz/competition/ccks_2020_el
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Dataset #Train #Dev #Test #KB
AIDA-CoNLL 946 216 231 5,903,530
BC5CDR 500 500 500 2,311
NLPCC2022 1,549 387 387 118,795
CCKS2020 70,000 10,000 10,000 360,000
Table 5: Statistics of the datasets that we use.

#Train/#Dev/#Test represents the number of documents
in Training/Development/Test sets respectively, and
#KB represents the number of entities in the knowl-
edge base used by the corresponding dataset.

use are BERT argg-like models. For different do-
mains, we use different backbone parameters to ini-
tialize the base encoders. For the news and speech
domains, we initialize encoders with pre-trained
BLINK (Wu et al., 2020). For the initial param-
eter of encoders of the medical domain and Chi-
nese language, we select Biobert-Large (Lee et al.,
2020) and Chinese-Roberta-Wwm-Ext (Cui et al.,
2021). We train BEER? with the Adam (Kingma
and Ba, 2015) optimizer for 10 epochs. Our model
is trained with linear decay and learning rate warm-
ing up. The initial retriever learning rate is set to
2e-6 and the initial reader learning rate is set to
le-5. The training batch size is set to 8 and the
evaluation batch size is set to 32. The number of
retrieved candidate entities K is set to 120 by de-
fault. We choose the default threshold parameter
thr as 0.03. We break up each document into sen-
tences of T3y = 32 and pad the description text of
entities in the knowledge base to Ty = 128. We
use Faiss * (Johnson et al., 2021) for fast entity
retrieval.

*https://github.com/facebookresearch/faiss
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