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ABSTRACT

Recently, leveraging pre-trained Large Language Models (LLMs) for time series
(TS) tasks has gained increasing attention, which involves activating and enhanc-
ing LLMs’ capabilities. Many methods aim to activate LLMs’ capabilities based
on token-level alignment, but overlook LLMs’ inherent strength in natural lan-
guage processing — their deep understanding of linguistic logic and structure
rather than superficial embedding processing. We propose Context-Alignment
(CA), a new paradigm that aligns TS with a linguistic component in the language
environments familiar to LLMs to enable LLMs to contextualize and compre-
hend TS data, thereby activating their capabilities. Specifically, such context-
level alignment comprises structural alignment and logical alignment, which is
achieved by Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-
language multimodal inputs. Structural alignment utilizes dual-scale nodes to de-
scribe hierarchical structure in TS-language, enabling LLMs to treat long TS data
as a whole linguistic component while preserving intrinsic token features. Logical
alignment uses directed edges to guide logical relationships, ensuring coherence
in the contextual semantics. Following the DSCA-GNNs framework, we propose
an instantiation method of CA, termed Few-Shot prompting Context-Alignment
(FSCA), to enhance the capabilities of pre-trained LLMs in handling TS tasks.
FSCA can be flexibly and repeatedly integrated into various layers of pre-trained
LLMs to improve awareness of logic and structure, thereby enhancing perfor-
mance. Extensive experiments show the effectiveness of FSCA and the impor-
tance of Context-Alignment across tasks, particularly in few-shot and zero-shot
forecasting, confirming that Context-Alignment provides powerful prior knowl-
edge on context. We will release the source code upon publication.

1 INTRODUCTION

Time series (TS) tasks are essential in many real-world applications, from weather prediction to
navigation optimization. The field has shifted from traditional statistical methods to advanced neu-
ral architectures like Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs),
and Transformers, improving the handling of complex dependencies. However, challenges in gen-
eralizing across diverse datasets and adapting to various TS tasks remain.

Recently, large language models (LLMs) have excelled in various fields, primarily due to their ex-
tensive and diverse text corpora training dataset. With a rich foundation of multi-domain knowledge,
LLMs achieve impressive generalization in downstream tasks. Thus, there is a growing interest in
utilizing pre-trained LLMs to solve TS problems. However, distinct differences between the train-
ing data of LLMs and TS data have hindered LLMs’ full potential in TS applications. To effectively
utilize LLMs in TS tasks, two main issues must be addressed in turn:

1) How to make LLMs understand TS data and activate their capabilities in TS tasks?
2) How to enhance the performance of LLMs on TS tasks?

Regarding the first issue, existing works primarily focus on aligning TS token embeddings with lan-
guage token embeddings (Jin et al., 2024; Sun et al., 2024; Pan et al., 2024). However, whether such
token-level alignment can fully leverage the LLMs’ potential remains questionable. Inspired by re-
cent research on LLMs (Ethayarajh, 2019; Nie et al., 2024; Wang et al., 2023), we reconsider the in-
herent advantages of LLMs in natural language processing (NLP). We believe the strength of LLMs
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primarily stems from their deep comprehension of language logic and structure, rather than super-
ficial token embedding processing. Clearly, the excessive accumulation of tokens without logical
guidance often struggles to effectively convey meaning. Especially TS-language multimodal inputs
are lengthy, and lack structure and coherent semantics, greatly challenging LLMs’ comprehension.
Regarding the second issue, current methods aim to directly enhance LLMs’ capabilities in TS tasks
through techniques such as TS decomposition (Cao et al., 2024) and optimizing prompts (Chuang
et al., 2024). However, without adequately addressing the first issue, these methods need more in-
terpretability and the improvements remain limited. A natural solution to these issues is to fully
leverage the strengths of LLMs to transform TS tasks into NLP-like tasks, activating LLMs’ capa-
bilities first. Then, leveraging NLP techniques further enhances LLMs’ performance on TS tasks.

In this paper, we propose Context-Alignment, a new paradigm that aligns TS data with a linguistic
component in the language environment familiar with LLMs. Such context-level alignment lever-
ages the LLMs’ inherent strength in logic and structure to enable LLMs to contextualize and com-
prehend TS data, thereby activating their capabilities. Context-Alignment contains structural align-
ment and logical alignment to construct a consistent context for TS-language multimodal inputs.
We develop a Dual-Scale Context-Alignment Graph Neural Networks (DSCA-GNNs) framework to
achieve both structural and logical alignment. Specifically, structural alignment employs dual-scale
nodes to describe hierarchical structure in TS-language, i.e. the structural independence of tokens
and the overall structure of modalities. Structural alignment provides LLMs with structural seg-
mentation information for lengthy TS language inputs, enabling LLMs to treat long TS data as an
individual linguistic component while preserving intrinsic token features. Logical alignment uses
directed edges in both scale GNNs to guide the local and global logical relationship between TS
data and language prompts, integrating TS within the language environment and ensuring semantic
coherence across two modalities. Utilizing the few-shot prompting technique (Brown, 2020), we
propose Few-Shot prompting based Context-Alignment (FSCA) following the DSCA-GNNs frame-
work, which further enhances the LLMs’ performance on TS tasks. (FSCA) can be flexibly and re-
peatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and struc-
ture. Extensive experiments across various TS tasks demonstrate the effectiveness of our method.
Notably, in few-shot and zero-shot forecasting tasks, our approach significantly outperforms others,
confirming that the logical and structural alignment provides powerful prior knowledge on context.
Ablation studies further validate the importance of Context-Alignment.

In summary, our core contributions in this work can be summarized below:

• We emphasize that effectively leveraging LLMs for TS tasks requires first activating their capa-
bilities and then enhancing them. Besides, we pinpoint that token-level alignment fails to fully
activate pre-trained LLMs due to their neglect of LLMs’ inherent strengths, which primarily stem
from a deep understanding of logic and structure, rather than superficial token processing.

• We are the first to propose Context-Alignment paradigm, which aims to construct a context-level
alignment between TS and language, thereby activating LLMs’ potential capabilities in TS tasks.

• We develop a Dual-Scale Context-Alignment GNNs framework, which achieves structural and
logical alignment through dual-scale nodes and directed edges, thus realizing Context-Alignment.
Furthermore, by integrating the few-shot prompting technique, we introduce (FSCA), which en-
hances LLMs’ performance in TS tasks.

• Our experiments across multiple datasets and various TS tasks demonstrate that our method sur-
passes existing techniques, especially in few-shot and zero-shot forecasting tasks. Ablation studies
further emphasize the importance of Context-Alignment.

2 RELATED WORK

2.1 TIME SERIES TASKS

TS tasks are crucial for various applications, including financial forecasting, weather prediction,
and activity recognition, and involve analyzing time-ordered data. Traditional statistical methods
like ARIMA (Anderson, 1976) and Prophet (Taylor & Letham, 2018) effectively model trends and
seasonality. The rise of deep learning introduced CNN-based methods, which use convolutional
neural networks to extract features automatically (Bai et al., 2018; Wu et al., 2022). Additionally,
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Figure 1: The architecture of our method, where the graph structure demonstrates the prediction task
based on FSCA as detailed in Sec.3.3. Dual-Scale Context-Alignment GNNs can be flexibly and
repeatedly integrated into pre-trained LLMs at various layers, enhancing LLMs’ awareness of logic
and structure and improving performance.
RNNs, such as LSTM and GRU, excel in sequence prediction by capturing dynamic temporal be-
haviors and long-range dependencies (Lai et al., 2018b; Qin et al., 2017; Siami-Namini et al., 2018).
More recently, Transformer-based models have advanced the field by processing sequences in par-
allel and applying attention mechanisms to focus on significant temporal aspects, thus improving
performance in complex scenarios (Wen et al., 2023; Zhou et al., 2022; Wu et al., 2021). However,
these methods often struggle with long, intricate sequences and lack the flexibility and generaliz-
ability required for diverse real-world TS data across diverse domains.

2.2 LARGE LANGUAGE MODELS FOR TIME SERIES

LLMs have demonstrated strong capabilities in various fields, becoming a focal point for advanc-
ing TS tasks. Recent research highlights their potential in TS tasks. Some methods aim to directly
enhance the capabilities of LLMs for TS tasks. For example, Cao et al. (2024) captures complex
interactions among trend, seasonal, and residual components to aid distribution adaptation. Chuang
et al. (2024) propose a statistical prompting strategy to enhance the performance. However, these
methods overlook an important step: enable LLMs to understand TS inputs first. Other methods
aim to enable LLMs to understand TS data and activate their potential for TS tasks. For example,
Jin et al. (2024) reprograms input TS into text prototypes and enhances them with prompts. Sun
et al. (2024) aligns TS embeddings space with LLMs embeddings space. Pan et al. (2024) proposes
S2IP-LLM, a semantic space-informed prompt learning to align TS embeddings with language to-
ken embeddings. However, these methods overlook that LLMs’ inherent strength stems from their
understanding of the logic and structure, rather than superficial token embedding processing. Merely
aligning token embeddings without considering the coherence and consistency of the context fails
to leverage this inherent advantage.

3 METHODOLOGY

To address both structural and logical alignment in Context-Alignment, we develop a Dual-Scale
Context-Alignment GNNs (DSCA-GNNs) framework. In this framework, dual-scale nodes achieve
structural alignment, while directed edges realize logical alignment. Additionally, the specific struc-
ture of the graph depends on the language prompts introduced, as different prompts lead to varying
logic and structures in the TS-language. That is, each prompting method corresponds to a specific
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DSCA-GNNs framework. In this section, we present the corresponding DSCA-GNNs frameworks
for both the vanilla prompt and the demonstration examples prompt.

3.1 PRELIMINARIES AND TOKEN EMBEDDING

Time-Series Forecasting. Given past data X ∈ RD×T , where each row represents a TS of T steps
across D variables, the goal is to build a predictive model F with parameters ΘF and prompt PF to
forecast the next T ′ time steps. The forecasting model can be formulated as X̂ = F(X;PF ;ΘF ).

Time-Series Classification. Given TS data X ∈ RD×T , the task is to build a classification model C
with parameters ΘC and prompt PC to assign a class label ŷ ∈ {1, 2, ..., C}, where C is the number
of classes. The classification is defined as ŷ = C(X;ΘC ,PC).

Token Embedding. Multivariate TS data X is segmented into patches Xi using a sliding window
of size p and stride s. Each patch is embedded into an M -dimensional space compatible with LLMs.
The embedded patches are denoted as {ei}ni=1, where n = T−p+s

s is the number of patches.

3.2 DEMO: VANILLA CONTEXT-ALIGNMENT (VCA)

The most straightforward approach to utilizing pre-trained LLMs for TS tasks is to input both TS
data and vanilla language prompts into the model directly. For TS forecasting tasks, a vanilla prompt
like “Predict future sequences using previous data:” can be employed to guide LLMs in completing
the prediction. The embeddings of the prompt can be represented as {z1, z2, . . . ,zm}, and the
overall input embeddings of the model can be represented as below:

[e1, e2, . . . , en, z1, z2, . . . ,zm], ei, zj ∈ RM . (1)

Due to the verbose and lack of clear structural divisions of TS embeddings {ei}ni=1, LLMs lack
information that TS embedding {ei}ni=1 is an integral entity, making it difficult to analyze TS. Fur-
thermore, form 1 lacks logical guidance. Directly concatenating the TS embeddings and language
prompt embeddings loses essential contextual coherence between TS data and the prompt.

Dual-Scale Context-Alignment GNNs of VCA. Context-Alignment leverages the LLMs’ inher-
ent strength in logic and structure to enable LLMs to contextualize and comprehend TS data. We
delineate clear structures (structural alignment) and establish correct logical guidance (logical align-
ment) by a Dual-Scale Context-Alignment GNNs framework to achieve Context-Alignment. Firstly,
using dual-scale nodes, structural alignment aggregates tokens from the same modality into one lin-
guistic component while preserving the feature of each token. Fine-grained GNN GF treats each
token, i.e., each element in the form 1 as a node. Coarse-grained GNN GC treats consecutive tokens
with the same modality as a node. Specifically, GC employs two learnable linear layers, fe and fz ,
to embed the TS tokens and language tokens into an M -dimensional space, respectively, which can
be formalized as

ẽ = fe(e1, e2, . . . , en); z̃ = fz(z1, z2, . . . ,zm).

Then, form 1 is transformed into form 2

[ẽ, z̃], ẽ, z̃ ∈ RM . (2)
Each element in the form 2 is regarded as a node in GC . Secondly, using directed edges, logical
alignment emphasizes the correct semantic association between different components. Clearly, in
the prompt “Predict future sequences using previous data:”, “previous data:” refers to the lengthy
TS data, and requires information from TS data. Therefore, in GC , we construct directed edge
E : ẽ → z̃ to indicate that the entire TS data serves as the upstream information source for the
prompt. In GF , we construct directed edges {Eij : ei → zj |i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} to
convey varying information from each TS token to the prompt token. We also constrain the sum of
edge weights from TS tokens to one language token to be 1, i.e.

∑n
i=1 wij = 1, wij is the edge

weight of Eij , implicitly emphasizing that TS should be treated as a whole. In GC , the weights of
all directed edges are set to 1. Besides, {wij}ni=1 are proportional to the cosine similarity between
the embeddings of two nodes.

The updated node embedding matrices for GF and GC denoted as N̂F and N̂C , respectively. Based
on the GNN update strategy, N̂F and N̂C can be formalized as:

N̂k = σ(D
− 1

2

k A′
kD

− 1
2

k NT
k Wk), k ∈ {F,C}, (3)
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where NT
k denotes the transpose of the pre-update node embedding matrix. In GF , NF is shown in

form 1, while in GC , NC follows form 2. Besides, Wk ∈ RM×M represents the learnable matrix
of the GNN, σ denotes the nonlinear activation function ReLU, and A′

k = Ak + I is the weighted
adjacency matrix with unit matrix added. Dk is a diagonal matrix where Dk,ii = ΣjA

′
k,ij .

Learnable interaction. Macroscopic logical-structural information of GC helps LLMs under-
stand TS, but loses key details necessary for TS tasks. In contrast, GF retains detailed information.
Thus, we introduce a learnable interaction to transfer macroscopic information from GC to GF . The
learnable interactions can be represented by the following formula:

∆N = Wc→fN̂CΓc→f , (4)

where Γc→f ∈ R2×(n+m) is a 0 − 1 assignment matrix, Γij = 1 means that the j-th node in GF

be aggregated into the i-th node in GC . Wc→f ∈ RM×M is a learnable weight matrix. N̂F can be
updates as N̂F ← N̂F +∆N after aggregating the information from N̂C .

Overview. After structural and logical alignment, N̂F maintains clear structural and coherent se-
mantics information, helping LLMs to comprehend TS tasks and activating potential capabilities.
Both N̂F and N̂C are input into pre-trained LLMs. The DSCA-GNNs can be flexibly integrated
into various layers of pre-trained LLMs, and only the first time apply it need fe and fz to obtain
coarse-grained GNN. The output from the GF branch is used to compute the MSE loss against
the ground truth. In this section, we use the vanilla prompt to construct a specific DSCA-GNNs
framework, we call it Vanilla Context-Alignment (VCA).

3.3 FEW-SHOT PROMPTING BASED CONTEXT-ALIGNMENT (FSCA)

The demo VCA in Sec. 3.2 is the simplest and most direct attempt of Context-Alignment. Moving
forward, we will naturally consider whether Context-Alignment can further enhance the perfor-
mance of LLMs on TS tasks by leveraging more advanced prompt techniques from NLP.

In NLP, “few-shot prompting” refers to a small set of instances provided to the model to demonstrate
a task, enabling the model to perform similar tasks effectively (Brown, 2020). Based on this, we
divide the TS embeddings {ei}ni=1 into N parts while preserving their original order. Since the
subsequent TS part can be used as ground truth for predictions based on the preceding TS parts,
we can construct N − 1 prediction demonstration examples using N parts of {ei}ni=1 and language
prompt embeddings {z1, z2, . . . ,zm} same as demo in Sec. 3.2. The j-th part of {ei}ni=1 is denoted
as {ej,1, . . . , ej,lj}. We arrange the TS-language embeddings in the format as:

[e1,1, . . . , e1,l1 , z1, . . . ,zm, e2,1, . . . , e2,l2 , z1, . . . ,zm, . . . , eN,1, . . . , eN,lN , z1, . . . ,zm]. (5)

Dual-Scale Context-Alignment GNNs of FSCA. Due to the verbose and lack of clear structural
divisions of the format 5, LLMs struggle to understand the input. We first construct the coarse-
grained GNN GC . We introduce two learnable linear layers fe and fz to embed the TS tokens and
language tokens into an M -dimensional space, respectively, which can be formalized as

ẽj = fe(ej,1, ej,2, . . . , ej,lj ); z̃ = fz(z1, z2, . . . ,zm).

Then form 5 is transformed into form 6

[ẽ1, z̃
(1), ẽ2, z̃

(2), . . . , ẽN , z̃(N)], ẽj , z̃ ∈ RM , j = 1, . . . , N. (6)

For clarity in our discussion, we number the z̃ in form 6, in fact, z̃ = z̃(i) = z̃(j), i, j = 1, . . . , N .
The directed edge set of the GC can be represented as follows:

{EC : ẽj → z̃(i)|i = 1, . . . , N, j = 1, . . . , i} ∪ {EC : z̃(i) → ẽi+1|i = 1, . . . , N − 1}. (7)

In GC , there are two types of edges, which guide two different logical relationships. The first
type, as shown in the first item of 7, signifies that the prompt z̃(i) receives TS information from all
preceding TS parts. The second type, as indicated in the second item of 7, implies that ẽi+1 is the
correct output result of prompt z̃(i). In GC , the weights of directed edges are set to 1.

5
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Fine-grained GNN GF treats each token in the form 5 as a node. The directed edge set of the GF

can be represented as follows:

{EF : ej,s → z
(i)
t |i = 1, . . . , N, j = 1, . . . , i, s = 1, . . . , lj , t = 1, . . . ,m}

∪{EF : z
(i)
t → ei+1,s|i = 1, . . . , N − 1, s = 1, . . . , li+1, t = 1, . . . ,m},

(8)

The formula 8 means that the directed edges of GF are a decomposition of the directed edges in
GC . Additionally, since LLMs have strong comprehension abilities for language prompts, we can
prune the directed edges in GF , transforming form 8 into form 9, i.e., TS tokens are only connected
to the first and last tokens of the prompt, thereby prevent overfitting. We constrain

∑lj
s=1 w

(i)
j,s = 1

for the first type edges,
∑li+1

s=1 w
(i)
i+1,s = 1 for the second type edges, where w

(i)
j,s is the edge weight

of ej,s → z
(i)
1 , w(i)

i+1,s is the edge weight of z(i)
m → ei+1,s. {w(i)

i+1,s}
lj
s=1 and {w(i)

i+1,s}
li+1

s=1 are
proportional to the cosine similarity between node embeddings. Fig. 1 provides a schematic of the
structure. The node embedding update formula is similar to formula 3.

{EF : ej,s → z
(i)
1 |i = 1, . . . , N, j = 1, . . . , i, s = 1, . . . , lj}

∪{EF : z(i)
m → ei+1,s|i = 1, . . . , N − 1, s = 1, . . . , li+1},

(9)

Learnable interactions & Overview. Similar to the demo in Sec. 3.2, we introduce an assignment
matrix and a learnable weight matrix to achieve learnable interactions between the two scales. The
training of FSCA can refer to Sec. 3.2 and Fig. 1.

4 EXPERIMENTS

The proposed Context-Alignment demonstrates robust performance across a variety of tasks, de-
tailed in Sec. 4.2 (long-term forecasting), Sec. 4.3 (short-term forecasting), Sec. 4.4 (few-shot
forecasting), Sec. 4.5 (zero-shot forecasting), and Sec. 4.6 (classification). Most experiments lever-
age FSCA. Specifically, VCA validates its efficacy using logic guidance and structural division alone
in section 4.1. For classification tasks with multiple classes, where GPT-2’s length constraints are
limiting, FSCA is reserved for binary classes, and VCA is applied to multi-class datasets. Context-
Alignment significantly boosts training efficiency and cost-effectiveness, especially in few-shot and
zero-shot forecasting, by establishing robust a priori structural understanding and logical relation-
ships. Full results and dataset description are in Appendix C and A.2, respectively.
Baselines. Building on the groundwork of Zhou et al. (2023) and Jin et al. (2024), and mindful
of page constraints, we selected a representative array of high-performing baselines for extensive
evaluation. These encompass Transformer-based models such as iTransformer (Liu et al., 2023b),
FEDformer (Zhou et al., 2022), Non-stationary Transformer (Liu et al., 2022), ETSformer (Woo
et al., 2022), PatchTST (Nie et al., 2022), alongside notable non-Transformer methods like Times-
Net (Wu et al., 2022), and DLinear (Zeng et al., 2023). We also included advanced LLM-based
models—GPT4TS (Zhou et al., 2023), Time-LLM (Jin et al., 2024), and S2IP-LLM (Pan et al.,
2024)—all utilizing GPT-2 as the standard LLM backbone to ensure model consistency. To ensure
a fair comparison, we adhere to the experimental framework outlined in Zhou et al. (2023) and Wu
et al. (2022). Detailed evaluations are expanded upon in subsequent sections.

4.1 DEMO: VANILLA CONTEXT-ALIGNMENT

Table 1: Results for VCA and variants. Bold: best,
Underline: second best.

Method/Variant
Long-term Forecasting

ETTh1 ETTh2 ETTm1 ETTm2

GPT4TS 0.427 0.354 0.352 0.266
FSCA 0.394 0.316 0.342 0.250
VCA w/o DSCA-GNNs 0.435 0.362 0.374 0.271
VCA 0.417 0.335 0.349 0.259

VCA achieves logical and structural alignment
through DSCA-GNNs. As demonstrated on the
ETT dataset (Table 1), VCA substantially out-
performs both variants without DSCA-GNNs
and other baselines. A performance decline
is observed compared to FSCA, which further
augments LLMs’ TS processing capabilities us-
ing demonstration examples prompt. VCA
without DSCA-GNNs, despite incorporating
task description prompts, lacks context-alignment GNNs, resulting in more verbose and semanti-
cally confused inputs for LLM, thus yielding the worst outcomes.
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4.2 LONG-TERM FORECASTING

Setups. For long-term forecasting tasks, we validate the efficacy of FSCA across eight prevalent
datasets (Wu et al., 2022): ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity, Traffic, and ILI.
Consistent with GPT4TS (Zhou et al., 2023), Time-LLM (Jin et al., 2024), and S2IP-LLM (Pan et al.,
2024), we utilize an input TS length of 512 except for the ILI dataset. Performance is evaluated over
four prediction horizons: {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the other datasets,
using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as metrics.

Results. As shown in Table 2, FSCA surpasses all baseline methods in most scenarios. Specifically,
it reduces average MSE of 3.1% over the suboptimal method PatchTST, and outperforms other LLM-
based methods—S2IP-LLM, Time-LLM, and GPT4TS by 7.3%, 12.2%, and 16.6%. This consistent
superiority across diverse datasets highlights the critical role of logical and structural alignment.
Furthermore, demonstration examples prompt boost LLMs’ contextual understanding of TS data.
Table 2: Long-term forecasting tasks, all results are based on different horizons: {24, 36, 48, 60} for ILI and
{96, 192, 336, 720} for others. Bold: best, Underline: second best. Full results are provided in Appendix C.1

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet FEDformer Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI 1.380 0.783 1.552 0.826 1.713 0.858 1.925 0.903 2.073 0.941 2.169 1.041 1.443 0.797 2.139 0.931 2.847 1.144 2.077 0.914 2.497 1.004
Weather 0.224 0.262 0.228 0.265 0.237 0.269 0.237 0.270 0.304 0.335 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.288 0.314 0.271 0.334

ECL 0.159 0.252 0.166 0.262 0.167 0.264 0.167 0.263 0.203 0.298 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.193 0.296 0.208 0.323
Traffic 0.386 0.263 0.405 0.286 0.407 0.289 0.414 0.294 0.389 0.295 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.624 0.340 0.621 0.396
ETTh1 0.394 0.424 0.418 0.436 0.426 0.435 0.427 0.426 0.451 0.462 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.570 0.537 0.542 0.510
ETTh2 0.316 0.375 0.355 0.399 0.361 0.398 0.354 0.394 0.382 0.414 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.526 0.516 0.439 0.452
ETTm1 0.342 0.378 0.346 0.382 0.354 0.384 0.352 0.383 0.370 0.399 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.481 0.456 0.429 0.425
ETTm2 0.250 0.314 0.262 0.326 0.275 0.334 0.266 0.326 0.272 0.331 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.306 0.347 0.293 0.342

4.3 SHORT-TERM FORECASTING

Table 3: Short-term forecasting on M4, with prediction horizons ranging from [6, 48]. The results are
weighted averages across all datasets under different sampling intervals. Bold: best, Underline: second best.
Full results are provided in Appendix C.2

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST N-HiTS N-BEATS TimesNet FEDformer Stationary

A
ve

ra
ge SMAPE 11.828 12.021 12.494 12.690 12.142 13.639 12.059 12.035 12.250 12.880 13.160 12.780

MASE 1.580 1.612 1.731 1.808 1.631 2.095 1.623 1.625 1.698 1.836 1.775 1.756
OWA 0.850 0.857 0.913 0.940 0.869 1.051 0.869 0.869 0.896 0.955 0.949 0.930

Setups. We conduct short-term forecasting experiments on the M4 dataset (Makridakis et al., 2018),
which includes market data across various frequencies, with prediction horizons ranging from 6 to
48. We incorporate N-HiTS (Challu et al., 2023) and N-BEATS (Oreshkin et al., 2019) as additional
baselines. Performance is quantified using symmetric mean absolute percentage error (SMAPE),
mean absolute scaled error (MASE), and the overall weighted average (OWA) as evaluation metrics.

Results. Results in Table 3 indicate that FSCA exhibits competitive performance compared to
SOTA methods. FSCA maintains robustness in both long-term and short-term forecasting, at-
tributable to the effectiveness of structural and logical alignment across varying sequence lengths.

4.4 FEW-SHOT FORECASTING

Table 4: Few-shot forecasting task on 5% training data. Results are averaged across different prediction
lengths {96, 192, 336, 720}. Bold: best, Underline: second best. Full results are provided in Appendix C.3

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet FEDformer Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.575 0.508 0.650 0.550 0.648 0.549 0.681 0.560 1.070 0.710 0.750 0.611 0.695 0.569 0.925 0.647 0.658 0.562 0.943 0.646 1.189 0.839
ETTh2 0.366 0.397 0.380 0.413 0.398 0.426 0.400 0.433 0.488 0.475 0.827 0.615 0.439 0.448 0.463 0.454 0.463 0.454 0.470 0.489 0.809 0.681
ETTm1 0.435 0.429 0.455 0.446 0.477 0.451 0.472 0.450 0.784 0.596 0.400 0.417 0.526 0.476 0.717 0.561 0.730 0.592 0.857 0.598 1.125 0.782
ETTm2 0.284 0.332 0.296 0.342 0.307 0.348 0.308 0.346 0.356 0.388 0.399 0.426 0.314 0.352 0.344 0.372 0.381 0.404 0.341 0.372 0.534 0.547

Average 0.415 0.416 0.445 0.438 0.458 0.443 0.465 0.447 0.675 0.542 0.594 0.517 0.493 0.461 0.612 0.509 0.558 0.503 0.653 0.526 0.914 0.712

Setups. The expressive potential of LLMs often results in a robust performance in few-shot scenar-
ios (Brown, 2020; Liu et al., 2023a). While current LLM-based methods outperform earlier models
like DLinear, PatchTST, and TimesNet, they do not fully exploit LLMs’ deep TS comprehension,
thus not maximizing their few-shot capabilities. To explore whether Context-Alignment can boost
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the few-shot efficacy of LLMs, we perform experiments on the ETT datasets, following the protocol
established by Jin et al. (2024). We evaluate the performance of FSCA using only 5% of training
data, with results from 10% data detailed in Appendix C.3.

Results. As shown in Table 4, our method consistently outperforms all baselines. It achieves a
6.7% reduction in average MSE compared to the leading LLM-based model, S2IP-LLM. We observe
further improvements of 9.4% and 10.8% against Time-LLM and GPT4TS. Moreover, FSCA shows
a 15.8% performance gain over the SOTA transformer model PatchTST. We attribute these to the
integration of prior knowledge in structural division and logic guidance by Context-Alignment. The
strong generalizability of these priors, even with limited training data, effectively activates LLMs’
latent few-shot capabilities in TS, further boosted by a few demonstration examples.

4.5 ZERO-SHOT FORECASTING

Setups. Despite the inherent zero-shot capabilities of LLMs (Kojima et al., 2022), LLM-based
methods struggle to fundamentally understand the structure of TS data and its logical associations
with prompts, leading to underperformance compared to Transformer-based methods like PatchTST.
Using the setup from Time-LLM (Jin et al., 2024), we also evaluate the cross-domain efficacy of
FSCA on ETT dataset. Specifically, the model is trained on Dataset A and then tested on Dataset B
without utilizing any training data from Dataset B.
Table 5: Zero-shot learning results: the first column A → B indicates training on dataset A and testing on
dataset B. Bold: best, Underline: second best. Full results are provided in Appendix C.4

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 → ETTh2 0.313 0.369 0.403 0.417 0.384 0.409 0.406 0.422 0.457 0.455 0.493 0.488 0.380 0.405 0.421 0.431

ETTh1 → ETTm2 0.290 0.348 0.325 0.360 0.317 0.370 0.325 0.363 0.360 0.390 0.415 0.452 0.314 0.360 0.327 0.361

ETTh2 → ETTh1 0.527 0.507 0.669 0.560 0.663 0.540 0.757 0.578 0.868 0.625 0.703 0.574 0.565 0.513 0.865 0.621

ETTh2 → ETTm2 0.288 0.347 0.327 0.363 0.339 0.371 0.335 0.370 0.335 0.382 0.328 0.386 0.325 0.365 0.342 0.376

ETTm1 → ETTh2 0.353 0.398 0.442 0.439 0.440 0.449 0.433 0.439 0.455 0.458 0.464 0.475 0.439 0.438 0.457 0.454

ETTm1 → ETTm2 0.264 0.319 0.304 0.347 0.311 0.343 0.313 0.348 0.319 0.363 0.335 0.389 0.296 0.334 0.322 0.354

ETTm2 → ETTh2 0.343 0.393 0.406 0.429 0.429 0.448 0.435 0.443 0.432 0.447 0.455 0.471 0.409 0.425 0.435 0.443

ETTm2 → ETTm1 0.480 0.463 0.622 0.532 0.588 0.503 0.769 0.567 0.706 0.572 0.649 0.537 0.568 0.492 0.769 0.567

Average 0.357 0.393 0.437 0.431 0.434 0.429 0.472 0.441 0.491 0.461 0.480 0.472 0.412 0.417 0.492 0.451

DECA 76.4
GPT4TS 74.0

S2IP-LLM 73.9
Time-LLM 73.7
TimesNet 73.6

Flow. 73.0
Station. 72.7
iTrans. 72.5
Rocket 72.5

In. 72.1
Trans. 71.9

LSTNet 71.8
Re. 71.5

ETS. 71.0
LSSL 70.9
Pyra. 70.8
FED. 70.7

LightTS 70.4
TCN 70.3

DLinear 67.5
XGBoost 66.0

Average Accuracy (%)

Figure 2: For the classification task, the results
show the average accuracy across 10 subsets from
the UEA dataset. The complete results are dis-
played in Appendix G.1.

Results. Table 5 shows that FSCA substan-
tially outperforms the most competitive baselines.
Compared to the second-best model, PatchTST,
FSCA exhibits a 13.3% improvement in perfor-
mance. Against LLM-based models like S2IP-
LLM, Time-LLM, and GPT4TS, FSCA achieves
performance gains of 18.3%, 17.7%, 24.3%. Ex-
periments in both few-shot and zero-shot settings
highlight FSCA’s exceptional performance under
data-scarce conditions. In these scenarios, Context-
Alignment paradigm provides a robust contextual
prior, enabling accurate logical and structural un-
derstanding that enhances the potential of LLMs for
cross-domain TS processing.

4.6 TIME SERIES CLASSIFICATION

Setups. To assess the model’s capability in learning advanced representations, we conduct compar-
ative experiments on series classification using the setup outlined by Zhou et al. (2023). We select
10 multivariate UEA classification datasets (Bagnall et al., 2018) from domains including ECG,
audio, gesture, spectral recognition, etc. For binary class datasets like FaceDetection, we apply
FSCA framework, adding a demonstration example prompt for each category at the beginning of the
prediction sequence. For datasets with multiple classes, such as Handwriting with 26 classes, we
employ VCA due to GPT-2’s input length constraints.

Results. Fig. 2 presents the average accuracy of various methods on all UEA classification datasets.
FSCA achieves an accuracy of 76.4%, surpassing all baseline methods and recording a 2.4% in-
crease over the next best model, Zhou et al. (2023). This performance suggests the effectiveness of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

FSCA or VCA extends beyond predictive tasks. Additionally, Context-Alignment shows generality,
indicating its potential applicability across various contexts in the field.

4.7 ABLATION STUDY

As shown in Table 6, we conduct an ablation study on the framework design and analyze the ef-
fectiveness of FSCA. FSCA∗ represents the optimal results, highlighted in bold in Table 6. D.4 is
optimal for long-term forecasting, whereas D.3 is best for classification tasks.

Table 6: Ablations results (average MSE for four
prediction lengths in long-term forecasting and
accuracy for the classification). Bold: best. In C.*,
default insertion positions are the first and last layers;
therefore, C.2 and D.3 are identical.

Variant
Long-term Forecasting Classification
ETTh1 ETTm1 FaceDet. Heartbeat

Metric MSE Accuracy
A.1 w/o Dual-Scale GNNs 0.441 0.379 67.7 76.1
A.2 with Random Init 0.463 0.392 64.5 73.1
B.1 w/o Coarse-grained Branch 0.401 0.353 69.6 78.5
C.1 FSCA(2) 0.402 0.357 69.1 78.0
C.2 FSCA(4) 0.396 0.345 70.4 79.5
C.3 FSCA(6) 0.399 0.347 70.1 79.0
C.4 FSCA(8) 0.418 0.362 67.7 77.0
C.5 FSCA(10) 0.439 0.383 66.4 75.6
C.6 FSCA(12) 0.455 0.396 63.2 72.6
D.1 Insertion Position [0] 0.405 0.352 69.4 77.5
D.2 Insertion Position [0, 2] 0.403 0.350 69.5 78.0
D.3 Insertion Position [0, 4] 0.396 0.345 70.4 79.5
D.4 Insertion Position [0, 2, 4] 0.394 0.342 69.7 78.5
D.5 Insertion Position [2, 4] 0.417 0.353 68.7 76.5

Validity of Dual-Scale Context-Alignment
GNNs. To evaluate DSCA-GNNs, we con-
duct comparative experiments from two per-
spectives. In A.1, without Dual-Scale GNNs,
we rely solely on demonstration examples as
prompts, resulting in higher average MSE com-
pared to FSCA∗. In A.2, random initializa-
tion of adjacency matrix leads to further perfor-
mance decline compared to A.1, underscoring
that incorrect logical information can impair
model performance. A comprehensive com-
parison across A.1, A.2, and FSCA∗ confirms
that GNNs guided by appropriate logical frame-
works effectively leverage the inherent capabil-
ities of LLMs in TS tasks.

Validity of Coarse-Grained Branch. In B.1,
omitting this module impairs the model’s abil-
ity to understand the overall structure and the
macro-level logical relationships, resulting in
reduced performance compared to FSCA∗. This decline is due to reliance solely on the fine-grained
branch for token-scale context alignment, which still leaves the inputs verbose and lacking structure.

The Number of LLM Layers. We conduct ablation studies to assess the impact of varying numbers
of GPT-2 layers. C.* indicates that models with 4 and 6 layers perform optimally, while adding more
layers causes overfitting (Zhou et al., 2023). For computational efficiency, we select 4 layers (C.2).

Insertion Position of Dual-Scale Context-Alignment GNNs. DSCA-GNNs can integrate seam-
lessly into various layers of LLMs. Firstly, when priors for structural and logical alignment are
present at the input, deeper layers of LLMs can more fully leverage this prior knowledge, hence,
we default to employing this module at the model’s input, as shown in configuration D.1. Secondly,
D.2, D.3, and D.4 involve repeating integration of this module at the mid and output stages of the
LLMs encoder, enhancing prior guidance and yielding performance improvements. Ablation stud-
ies for long-term forecasting and classification tasks reveal that optimal performance results from
different insertion points, attributed to domain differences in token features among various LLMs
layers (Ethayarajh, 2019) and varying demands of different tasks; Thirdly, configuration D.5, which
omits GNNs module at model’s input, leads to decreased performance, confirming that incorporating
context-alignment at initial stage enhances the overall utilization of pre-trained LLMs.

5 CONCLUSION

In this paper, We point out that effectively utilizing LLMs in TS tasks requires first activating their
capabilities, then enhancing their performance. By rethinking the inherent strength of LLMs, We
are the first to propose Context-Alignment paradigm, which aims to construct a context-level align-
ment between TS and language. Unlike previous methods based on token-level alignment, Context-
Alignment constructs a consistent context for TS-language multimodal inputs, better harnessing
LLMs’ deep understanding of context to activate their potential on TS tasks. We develop DSCA-
GNNs to achieve Context-Alignment. Besides, by integrating the Demonstration Examples Prompt
technique, we introduce FSCA, which enhances LLMs’ performance in TS tasks. Experiments
demonstrate our method significantly outperforms others, particularly in few-shot and zero-shot
forecasting tasks, and ablation studies confirm the importance of Context-Alignment.
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION

All deep learning networks are implemented in PyTorch and trained on NVIDIA H800 80GB GPUs
and GeForce RTX 4090 GPUs. We conduct our experiments using the pretrained models from Wolf
et al. (2020). To ensure fair comparisons, we adhere to the experimental configurations outlined in
Wu et al. (2022) across all baselines and maintain a uniform evaluation procedure. As discussed
in the ablation study in Sec. 4.7 (The Number of LLM Layers), we adopt the first 4 layers of
GPT-2. For other LLM-based methods (Zhou et al., 2023; Jin et al., 2024; Pan et al., 2024), we
strictly follow their provided experimental settings or cite their performance if applicable. Most of
our proposed method’s training settings are based on Zhou et al. (2023): For predictive tasks, we
utilize FSCA with N = 2 in forms forms 5 and 6, providing one demonstration example. The Adam
optimizer is used with decay rates β = (0.9, 0.999) and initial learning rates from {10−4, 5×10−4}.
We implement a cosine annealing schedule with Tmax = 20 and ηmin = 10−8, and set the batch
size to 256. Early stopping is configured throughout the training process. MSE loss is employed
for long-term forecasting, while SMAPE loss is used for short-term predictions. In classification
tasks, as described in Sec. 4.6, the FSCA framework is applied to binary class datasets, including a
demonstration example for each category. For multi-class datasets, such as handwriting recognition
with 26 classes, we employ the VCA approach due to the input constraints of LLMs. The RAdam
optimizer with initial learning rates from {10−2, 10−3} and a batch size of 64 is used. Training also
incorporates early stopping and employs cross-entropy loss.

A.2 DATASET DETAILS

For the long-term forecasting task, we utilized eight widely used multivariate datasets (Wu et al.,
2022), as detailed in Table 7. These include the Electricity Transformer Temperature (ETT)
datasets (Zhou et al., 2021), as well as Illness, Weather, Electricity, and Traffic datasets. The ETT
dataset comprises ETTh1 and ETTh2, while the ETTm dataset includes ETTm1 and ETTm2. Specif-
ically, the ETT datasets contain power load data from two power stations at varying resolutions;
the Weather dataset features 21 meteorological indicators from Germany; the ILI dataset captures
weekly patient counts and influenza-like illness rates; the Electricity dataset consists of hourly con-
sumption data from 321 customers; and the Traffic dataset records road occupancy from various
sensors on San Francisco highways. Table 7 consolidates the feature details of these datasets, with
the ETT dataset being applied in both few-shot and zero-shot learning tasks.

Table 7: Dataset details of long-term forecasting, wherein both
ETTh and ETTm are concurrently utilized for few-shot and
zero-shot learning.

Dataset Length Dimension Frequency
ETTh 17420 7 1 hour
ETTm 69680 7 15 min

Weather 52696 22 10 min
ILI 966 7 7 days

Electricity 26304 321 1 hour
Traffic 17544 862 1 hour

For the short-term forecasting task, we employed the M4 benchmark dataset (Makridakis et al.,
2018), which includes 10,000 time series across various domains, from business to economic fore-
casting, as shown in Table 8. The time series data is categorized into six groups, with sampling rates
ranging from annually to hourly.

Table 8: Dataset details of short-term forecasting.

Dataset Length Horizon Frequency Information
M4 Yearly 23000 6 Yearly Demographic

M4 Quarterly 24000 8 Quarterly Finance
M4 Monthly 48000 18 Monthly Industry
M4 Weekly 359 13 Weekly Macro
M4 Daily 4227 14 Daily Macro

M4 Hourly 414 48 Hourly Other
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For the time series classification task, we utilized 10 multivariate UEA datasets from Bagnall et al.
(2018). Table 9 summarizes the number of classes, series lengths, feature dimensions, and sample
sizes for training and testing.

Table 9: Dataset details of time series classification.

Dataset Train Cases Test Cases Dimensions Length Classes
EthanolConcentration 261 263 3 1751 4

FaceDetection 5890 3524 144 62 2
Handwriting 150 850 3 152 26

Heartbeat 204 205 61 405 2
JapaneseVowels 270 370 12 29 9

PEMS-SF 267 173 963 144 7
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10

UWaveGestureLibrary 120 320 3 315 8

A.3 BASELINE DETAILS

iTransformer (Liu et al., 2023b): iTransformer repurposes the Transformer architecture by apply-
ing attention and feed-forward networks on inverted dimensions to improve multivariate time series
forecasting, achieving state-of-the-art performance on real-world datasets.
FEDformer (Zhou et al., 2022): FEDformer combines Transformer models with seasonal-trend de-
composition to capture both global trends and detailed structures in time series data.
Stationary (Liu et al., 2022): Stationary introduces Non-stationary Transformers, which include
Series Stationarization for improved predictability and De-stationary Attention to restore intrinsic
non-stationary information, resulting in significant performance improvements and a substantial re-
duction in mean squared error compared to mainstream Transformer models.
ETSFormer (Woo et al., 2022): ETSFormer is a novel Transformer architecture designed specif-
ically for time-series forecasting, addressing the limitations of traditional models by incorporating
exponential smoothing principles.
PatchTST (Nie et al., 2022): PatchTST introduces an efficient Transformer-based architecture for
multivariate time series forecasting and self-supervised representation learning, utilizing a segmen-
tation approach that divides time series into subseries-level patches. This design enhances local
semantic retention, significantly reduces computation and memory usage of attention maps, and al-
lows the model to consider longer historical data.
TimesNet (Wu et al., 2022): TimesNet is introduced as a novel approach for time series analysis that
focuses on modeling temporal variations by transforming 1D time series into 2D tensors, thereby
capturing complex intraperiod and interperiod variations.
Dlinear (Zeng et al., 2023): Dlinear challenges the efficacy of Transformer-based models for long-
term time series forecasting (LTSF), highlighting their limitations in capturing temporal relation-
ships due to the permutation-invariant nature of self-attention mechanisms.
N-HiTs (Challu et al., 2023): N-HiTs introduces a novel model for long-horizon forecasting that
utilizes hierarchical interpolation and multi-rate data sampling techniques to effectively address the
challenges of prediction volatility and computational complexity.
N-BEATS (Oreshkin et al., 2019): N-BEATS addresses the univariate time series point forecasting
problem using a novel deep neural architecture featuring backward and forward residual links with
a deep stack of fully connected layers. Importantly, the model’s configuration without time-series-
specific components suggests that deep learning primitives alone can effectively tackle a variety of
forecasting challenges while also providing interpretable outputs with minimal accuracy loss.
GPT4TS (Zhou et al., 2023): GPT4TS presents a novel approach that leverages pre-trained LLMs
for general time series analysis, addressing the challenge of limited training data by utilizing the
Frozen Pretrained Transformer (FPT) architecture without altering the self-attention and feedfor-
ward layers.
Time-LLM (Jin et al., 2024): Time-LLM is a reprogramming framework designed to adapt LLMs
for general time series forecasting by aligning time series data with natural language through input
transformation and context enrichment techniques. Here, we use GPT-2 (Radford et al., 2019) as the
base LLM.
S2IP-LLM (Pan et al., 2024): S2IP-LLM aligns pre-trained LLMs with time series embeddings to
enhance forecasting performance. By designing a tokenization module for cross-modality alignment
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and utilizing semantic anchors from pre-trained word embeddings, S2IP-LLM effectively encodes
temporal dynamics and retrieves relevant context for time series.

A.4 EVALUATION METRICS

We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) to evaluate the performance
of long-term, few-shot, and zero-shot forecasting. For short-term forecasting on the M4 benchmark,
following the approach in N-BEATS (Oreshkin et al., 2019), we adopt Symmetric Mean Absolute
Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and Overall Weighted Average
(OWA). For time series classification tasks, as referenced in GPT4TS (Zhou et al., 2023), accuracy
is used as the evaluation metric.

MSE =
1

H

H∑
h=1

(Yh − Ŷh)
2, MAE =

1

H

H∑
h=1

|Yh − Ŷh|,

SMAPE =
200

H

H∑
h=1

|Yh − Ŷh|
|Yh|+ |Ŷh|

, MAPE =
100

H

H∑
h=1

|Yh − Ŷh|
|Yh|

,

MASE =
1

H

H∑
h=1

|Yh − Ŷh|
1

H−s

∑H
j=s+1 |Yj − Yj−s|

, OWA =
1

2

[
SMAPE

SMAPENaı̈ve2
+

MASE
MASENaı̈ve2

]
,

where H denote the number of data samples, corresponding to the forecasting horizon in the exper-
iment. s represents the periodicity of the time series. Yh and Ŷh refer to the h-th ground truth and
its corresponding prediction, respectively.

B DUAL-SCALE CONTEXT-ALIGNMENT GNNS IN CLASSIFICATION

The construction of Dual-Scale Context-Alignment GNNs relies on the given prompt. In this section,
we introduce the Dual-Scale Context-Alignment GNNs based on vanilla prompt and demonstration
examples prompt in classification tasks. Due to input length constraints, it is challenging to provide
examples for many categories. Therefore, for multi-category classification tasks, we employ VCA
approach. For binary classification tasks, we use FSCA and select one example from each category
to serve as fixed input examples for both training and testing.

B.1 VANILLA CONTEXT-ALIGNMENT (VCA)

We only replace the prompt content in Sec. 3.2 with “Predict category (x in total) using previous
data:”, and the method for constructing the graph remains similar as Sec. 3.2, where x denotes the
number of categories.

B.2 FEW-SHOT PROMPTING CONTEXT-ALIGNMENT (FSCA)

We replace the prompt content in Sec. 3.2 with “Predict category (x in total) using previous
data:”, and arrange the input embeddings as the format 10, where every element belongs to an
M -dimensional space.

[e
(1)
1 ,. . .,e(1)n , z

(1)
1 ,. . ., z(1)

m ,y(1),. . .,e
(l)
1 ,. . .,e(l)n , z

(l)
1 ,. . ., z(l)

m ,y(l), e
(l+1)
1 ,. . .,e(l+1)

n , z
(l+1)
1 ,. . .,z(l+1)

m ].
(10)

{z(k)
1 , . . . ,z

(k)
m } = {z(l+1)

1 , . . . ,z
(l+1)
m } = {z1, . . . ,zm} are the token embeddings of the

prompt. We utilise {e(k)1 , . . . , e
(k)
n } as fixed examples during training and testing phases, where

{e(k)1 , . . . , e
(k)
n } is from the k-th categories and k = 1, . . . , l. y(k) is the embedding of the correct

label for {e(k)1 , . . . , e
(k)
n }. {e(l+1)

1 , . . . , e
(l+1)
n } is the TS that needs to be classified. In the fine-

grained GNN GF , each element in the form 10 is treated as a node. Similar with Sec. 3.2 and Sec.
3.3, two learnable linear layers fe, fz map form 10 to form 11. Every element in form 11 belongs
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to an M -dimensional space.

[ẽ(1), z̃(1),y(1), . . . , ẽ(l), z̃(l),y(l), ẽ(l+1), z̃(l+1)]. (11)

For the coarse-grained GNN GC , we construct directed edges based on logical relationships as
described in formula 12. The first term indicates that the TS data provides information for the
prompt, while the second term implies that y(k) is the output result of the prompt.

{EC : ẽ(k) → z̃(k)|k = 1, . . . , l + 1} ∪ {EC : z̃(k) → y(k)|k = 1, . . . , l}. (12)

The directed edges of GF are decompositions of the directed edges of GC , which can be represented
by formula 13.

{EF : e
(k)
i → z

(k)
j |i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , l + 1}

∪{EF : z
(k)
j → y(k)|j = 1, . . . ,m, k = 1, . . . , l}.

(13)

Since LLMs have strong comprehension abilities for language modality prompts, we can prune the
directed edges in GF , transforming form 13 into form 14, i.e., TS tokens and label embedding
y are only connected to the first and last tokens of the prompt, thereby prevent overfitting. We
constrain

∑n
i=1 w

(k)
i = 1 for the first type edges, w(k) = 1 for the second type edges. {w(k)

i }ni=1
are proportional to the cosine similarity between node embeddings. The updated node embedding
matrices for GF and GC denoted as N̂F and N̂C , respectively, which is similar to formula 3.

{EF : e
(k)
i → z

(k)
1 |i = 1, . . . , n, k = 1, . . . , l + 1} ∪ {EF : z(k)

m → y(k)|k = 1, . . . , l}. (14)

Similar to the demo in Sec. 3.2, we introduce an assignment matrix and a learnable weight matrix to
achieve learnable interactions between the two scales. Both N̂F and N̂C are input into pre-trained
LLMs. The Dual-Scale Context-Alignment GNNs can be flexibly integrated into various layers of
pre-trained LLMs as depicted in Fig. 1, and only the first time apply it need fe and fz to obtain
coarse-grained GNN. The output from the GF branch is used to compute the cross entropy loss
against the ground truth.

C FULL RESULTS

C.1 LONG-TERM FORECASTING FULL RESULTS

Table 10 presents the detailed long-term forecasting results across four prediction horizons. Com-
pared to other models, including LLM-based methods, Transformer-based models, and other high-
performing approaches, FSCA demonstrates strong and relatively stable performance across var-
ious datasets. It achieves an average 3.1% MSE reduction compared to the second-best method,
PatchTST, and outperforms LLM-based methods (S2IP-LLM, Time-LLM, and GPT4TS) by 7.3%,
12.2%, and 16.6%, respectively. We attribute this consistent advantage to the successful Context-
Alignment, which effectively guides LLMs’ deep understanding of time series data, with demon-
stration examples prompt serving as a key factor in enhancement.

C.2 SHORT-TERM FORECASTING FULL RESULTS

We present the comprehensive short-term forecasting results in Table 11. Under different frequency
settings, FSCA consistently outperforms most baseline models.

C.3 FEW-SHOT FORECASTING FULL RESULTS

Table 12 presents the detailed results of the few-shot forecasting trained on 5% data across dif-
ferent prediction lengths. Except for DLinear’s strong performance on the ETTm1 dataset, FSCA
demonstrates significant enhancements in most scenarios across various datasets, outperforming the
second-best model, S2IP-LLM, by 6.7%.

Table 13 presents the detailed results of the few-shot forecasting task using 10% of the training data.
FSCA demonstrates superior performance, outperforming the baseline across nearly all settings,
with an average MSE reduction of 7.8% over the next best model, GPT4TS.
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Table 10: Full results of long-term forecasting tasks, all results are based on different prediction horizons: 24,
36, 48, 60 for ILI and 96, 192, 336, 720 for others. Bold: best, Underline: second best.

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet FEDformer Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

24 1.206 0.728 1.467 0.778 1.622 0.806 2.063 0.881 1.694 0.874 2.215 1.081 1.319 0.754 2.317 0.934 3.228 1.260 2.294 0.945 2.527 1.020
36 1.251 0.750 1.534 0.841 1.695 0.857 1.868 0.892 2.229 0.983 1.963 0.963 1.430 0.834 1.972 0.920 2.679 1.080 1.825 0.848 2.615 1.007
48 1.566 0.818 1.608 0.836 1.654 0.863 1.790 0.884 2.382 0.995 2.130 1.024 1.553 0.815 2.238 0.940 2.622 1.078 2.010 0.900 2.359 0.972
60 1.495 0.835 1.597 0.849 1.880 0.905 1.979 0.957 1.988 0.913 2.368 1.096 1.470 0.788 2.027 0.928 2.857 1.157 2.178 0.963 2.487 1.016

Avg 1.380 0.783 1.552 0.826 1.713 0.858 1.925 0.903 2.073 0.941 2.169 1.041 1.443 0.797 2.139 0.931 2.847 1.144 2.077 0.914 2.497 1.004

W
ea

th
er

96 0.146 0.196 0.149 0.200 0.163 0.210 0.162 0.212 0.253 0.304 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.173 0.223 0.197 0.281
192 0.193 0.241 0.195 0.244 0.205 0.245 0.204 0.248 0.280 0.319 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.245 0.285 0.237 0.312
336 0.244 0.279 0.246 0.280 0.257 0.287 0.254 0.286 0.321 0.344 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.321 0.338 0.298 0.353
720 0.314 0.333 0.320 0.336 0.323 0.332 0.326 0.337 0.364 0.374 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.414 0.410 0.352 0.288
Avg 0.224 0.262 0.228 0.265 0.237 0.269 0.237 0.270 0.304 0.335 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.288 0.314 0.271 0.334

E
C

L

96 0.128 0.222 0.138 0.234 0.140 0.236 0.139 0.238 0.147 0.248 0.140 0.237 0.129 0.222 0.168 0.272 0.193 0.308 0.169 0.273 0.187 0.304
192 0.146 0.239 0.153 0.252 0.150 0.249 0.153 0.251 0.165 0.267 0.153 0.249 0.157 0.240 0.184 0.289 0.201 0.315 0.182 0.286 0.199 0.315
336 0.163 0.258 0.169 0.270 0.168 0.267 0.169 0.266 0.178 0.279 0.169 0.267 0.163 0.259 0.198 0.300 0.214 0.329 0.200 0.304 0.212 0.329
720 0.199 0.287 0.204 0.293 0.209 0.302 0.206 0.297 0.322 0.398 0.203 0.301 0.197 0.290 0.220 0.320 0.246 0.355 0.222 0.321 0.233 0.345
Avg 0.159 0.252 0.166 0.262 0.167 0.264 0.167 0.263 0.203 0.298 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.193 0.296 0.208 0.323

Tr
af

fic

96 0.355 0.246 0.379 0.274 0.384 0.278 0.388 0.282 0.367 0.288 0.410 0.282 0.360 0.249 0.593 0.321 0.587 0.366 0.612 0.338 0.607 0.392
192 0.377 0.255 0.397 0.282 0.398 0.286 0.407 0.290 0.378 0.293 0.423 0.287 0.379 0.256 0.617 0.336 0.604 0.373 0.613 0.340 0.621 0.399
336 0.387 0.265 0.407 0.289 0.408 0.289 0.412 0.294 0.389 0.294 0.436 0.296 0.392 0.264 0.629 0.336 0.621 0.383 0.618 0.328 0.622 0.396
720 0.425 0.287 0.440 0.301 0.436 0.303 0.450 0.312 0.401 0.304 0.466 0.315 0.432 0.286 0.640 0.350 0.626 0.382 0.653 0.355 0.632 0.396
Avg 0.386 0.263 0.405 0.286 0.407 0.289 0.414 0.294 0.389 0.295 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.624 0.340 0.621 0.396

E
T

T
h1

96 0.349 0.389 0.367 0.398 0.383 0.404 0.376 0.397 0.395 0.420 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.513 0.491 0.494 0.479
192 0.390 0.415 0.402 0.422 0.427 0.431 0.416 0.418 0.427 0.441 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.534 0.504 0.538 0.504
336 0.402 0.432 0.432 0.451 0.430 0.436 0.442 0.433 0.445 0.457 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.588 0.535 0.574 0.521
720 0.433 0.460 0.472 0.474 0.465 0.469 0.477 0.456 0.537 0.530 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.643 0.616 0.562 0.535
Avg 0.394 0.424 0.418 0.436 0.426 0.435 0.427 0.426 0.451 0.462 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.570 0.537 0.542 0.510

E
T

T
h2

96 0.256 0.328 0.284 0.345 0.293 0.348 0.285 0.342 0.304 0.360 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.476 0.458 0.340 0.391
192 0.311 0.372 0.349 0.387 0.356 0.391 0.354 0.389 0.377 0.403 0.383 0.418 0.339 0.379 0.402 0.414 0.429 0.439 0.512 0.493 0.430 0.439
336 0.308 0.372 0.368 0.417 0.372 0.408 0.373 0.407 0.405 0.429 0.448 0.465 0.329 0.380 0.452 0.452 0.496 0.487 0.552 0.551 0.485 0.479
720 0.390 0.428 0.419 0.445 0.421 0.446 0.406 0.441 0.443 0.464 0.605 0.551 0.379 0.422 0.462 0.468 0.463 0.474 0.562 0.560 0.500 0.497
Avg 0.316 0.375 0.355 0.399 0.361 0.398 0.354 0.394 0.382 0.414 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.526 0.516 0.439 0.452

E
T

T
m

1

96 0.282 0.343 0.291 0.348 0.294 0.345 0.292 0.346 0.312 0.366 0.299 0.343 0.290 0.342 0.338 0.375 0.379 0.419 0.386 0.398 0.375 0.398
192 0.324 0.369 0.323 0.368 0.330 0.368 0.332 0.372 0.347 0.385 0.335 0.365 0.332 0.369 0.374 0.387 0.426 0.441 0.459 0.444 0.408 0.410
336 0.356 0.386 0.361 0.392 0.365 0.392 0.366 0.394 0.379 0.404 0.369 0.386 0.366 0.392 0.410 0.411 0.445 0.459 0.495 0.464 0.435 0.428
720 0.405 0.417 0.410 0.420 0.427 0.431 0.417 0.421 0.441 0.442 0.425 0.421 0.416 0.420 0.478 0.450 0.543 0.490 0.585 0.516 0.499 0.462
Avg 0.342 0.378 0.346 0.382 0.354 0.384 0.352 0.383 0.370 0.399 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.481 0.456 0.429 0.425

E
T

T
m

2

96 0.164 0.254 0.167 0.257 0.175 0.265 0.173 0.262 0.179 0.271 0.167 0.269 0.165 0.255 0.187 0.267 0.203 0.287 0.192 0.274 0.189 0.280
192 0.222 0.296 0.227 0.303 0.243 0.316 0.229 0.301 0.242 0.313 0.224 0.303 0.220 0.292 0.249 0.309 0.269 0.328 0.280 0.339 0.253 0.319
336 0.269 0.326 0.285 0.346 0.294 0.343 0.286 0.341 0.288 0.344 0.281 0.342 0.274 0.329 0.321 0.351 0.325 0.366 0.334 0.361 0.314 0.357
720 0.346 0.381 0.368 0.398 0.389 0.410 0.378 0.401 0.378 0.397 0.397 0.421 0.362 0.385 0.408 0.403 0.421 0.415 0.417 0.413 0.414 0.413
Avg 0.250 0.314 0.262 0.326 0.275 0.334 0.266 0.326 0.272 0.331 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.306 0.347 0.293 0.342

Table 11: Full results of short-term time series forecasting on M4, with prediction horizons ranging from [6,
48]. The last three rows are weighted averages across all datasets under different sampling intervals. Bold:
best, Underline: second best.

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST N-HiTS N-BEATS TimesNet FEDformer Stationary

Y
ea

r.

SMAPE 13.288 13.413 13.750 15.110 13.652 16.965 13.477 13.422 13.487 15.378 14.021 14.727
MASE 2.974 3.024 3.055 3.565 3.095 4.283 3.019 3.056 3.036 3.554 3.036 3.078
OWA 0.781 0.792 0.805 0.911 0.807 1.058 0.792 0.795 0.795 0.918 0.811 0.807

Q
ua

rt
. SMAPE 10.037 10.352 10.671 10.597 10.353 12.145 10.380 10.185 10.564 10.465 11.100 10.958

MASE 1.174 1.228 1.276 1.253 1.209 1.520 1.233 1.180 1.252 1.227 1.350 1.325
OWA 0.884 0.922 0.950 0.938 0.911 1.106 0.921 0.893 0.936 0.923 0.996 0.981

M
on

th
. SMAPE 12.762 12.995 13.416 13.258 13.079 13.514 12.959 13.059 13.089 13.513 14.403 13.917

MASE 0.947 0.970 1.045 1.003 0.974 1.037 0.970 1.013 0.996 1.039 1.147 1.097
OWA 0.897 0.910 0.957 0.931 0.911 0.956 0.905 0.929 0.922 0.957 1.038 0.998

O
th

er
s. SMAPE 4.761 4.805 4.973 6.124 4.78 6.709 4.952 4.711 6.599 6.913 7.148 6.302

MASE 3.207 3.247 3.412 4.116 3.231 4.953 3.347 3.054 4.430 4.507 4.064 4.064
OWA 1.007 1.017 1.053 1.259 1.012 1.487 1.049 0.977 1.393 1.438 1.304 1.304

A
vg

. SMAPE 11.828 12.021 12.494 12.690 12.142 13.639 12.059 12.035 12.250 12.880 13.160 12.780
MASE 1.580 1.612 1.731 1.808 1.631 2.095 1.623 1.625 1.698 1.836 1.775 1.756
OWA 0.850 0.857 0.913 0.940 0.874 1.051 0.869 0.869 0.896 0.955 0.949 0.930

C.4 ZERO-SHOT FORECASTING FULL RESULTS

Table 14 provides detailed results of the zero-shot forecasting task across different prediction
lengths. FSCA consistently achieves optimal performance across all settings, with a significant
margin. Compared to the second-best method, PatchTST, it shows an average improvement of
13.3%. Additionally, FSCA achieves MSE reductions of 18.3%, 17.7%, and 24.3% over other LLM-
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Table 12: Full results of few-shot learning on 5% training data. All results are from four different prediction
horizons {96, 192, 336, 720}. A lower MSE indicates better performance. Bold: best, Underline: second best.
’-’ means that 5% time series is not sufficient to constitute a training set.

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet FEDformer Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.482 0.457 0.500 0.493 0.518 0.498 0.543 0.506 0.808 0.610 0.547 0.503 0.557 0.519 0.892 0.625 0.593 0.529 0.952 0.650 1.169 0.832
192 0.537 0.492 0.690 0.539 0.702 0.547 0.748 0.580 0.928 0.658 0.720 0.604 0.711 0.570 0.940 0.665 0.652 0.563 0.943 0.645 1.221 0.853
336 0.707 0.574 0.761 0.620 0.725 0.603 0.754 0.595 1.475 0.861 0.984 0.727 0.816 0.619 0.945 0.653 0.731 0.594 0.935 0.644 1.179 0.832
720 - - - - - - - - - - - - - - - - - - - - - -
Avg 0.575 0.508 0.650 0.550 0.648 0.549 0.681 0.560 1.070 0.710 0.750 0.611 0.695 0.569 0.925 0.647 0.658 0.562 0.943 0.646 1.189 0.839

E
T

T
h2

96 0.312 0.352 0.363 0.409 0.384 0.420 0.376 0.421 0.397 0.427 0.442 0.456 0.401 0.421 0.409 0.420 0.390 0.424 0.408 0.423 0.678 0.619
192 0.389 0.409 0.375 0.411 0.394 0.424 0.418 0.441 0.438 0.445 0.617 0.542 0.452 0.455 0.483 0.464 0.457 0.465 0.497 0.468 0.845 0.697
336 0.397 0.430 0.403 0.421 0.416 0.433 0.408 0.439 0.631 0.553 1.424 0.849 0.464 0.469 0.499 0.479 0.477 0.483 0.507 0.481 0.905 0.727
720 - - - - - - - - - - - - - - - - - - - - - -
Avg 0.366 0.397 0.380 0.413 0.398 0.426 0.400 0.433 0.488 0.475 0.827 0.615 0.439 0.448 0.463 0.454 0.463 0.454 0.470 0.489 0.809 0.681

E
T

T
m

1

96 0.355 0.383 0.357 0.390 0.422 0.424 0.386 0.405 0.589 0.510 0.332 0.374 0.399 0.414 0.606 0.518 0.628 0.544 0.823 0.587 1.031 0.747
192 0.397 0.405 0.432 0.434 0.448 0.440 0.440 0.438 0.703 0.565 0.358 0.390 0.441 0.436 0.681 0.539 0.666 0.566 0.844 0.591 1.087 0.766
336 0.450 0.440 0.440 0.442 0.452 0.447 0.485 0.459 0.898 0.641 0.402 0.416 0.499 0.467 0.786 0.597 0.807 0.628 0.870 0.603 1.138 0.787
720 0.538 0.486 0.593 0.521 0.585 0.491 0.577 0.499 0.948 0.671 0.511 0.489 0.767 0.587 0.796 0.593 0.822 0.633 0.893 0.611 1.245 0.831
Avg 0.435 0.429 0.455 0.446 0.477 0.451 0.472 0.450 0.784 0.596 0.400 0.417 0.526 0.476 0.717 0.561 0.730 0.592 0.857 0.598 1.125 0.782

E
T

T
m

2

96 0.189 0.274 0.197 0.278 0.205 0.277 0.199 0.280 0.265 0.339 0.236 0.326 0.206 0.288 0.220 0.299 0.229 0.320 0.238 0.316 0.404 0.485
192 0.250 0.311 0.254 0.322 0.267 0.336 0.256 0.316 0.310 0.362 0.306 0.373 0.264 0.324 0.311 0.361 0.394 0.361 0.298 0.349 0.479 0.521
336 0.298 0.341 0.315 0.350 0.309 0.347 0.318 0.353 0.373 0.399 0.380 0.423 0.334 0.367 0.338 0.366 0.378 0.427 0.353 0.380 0.552 0.555
720 0.399 0.403 0.421 0.421 0.448 0.432 0.460 0.436 0.478 0.454 0.674 0.583 0.454 0.432 0.509 0.465 0.523 0.510 0.475 0.445 0.701 0.627
Avg 0.284 0.332 0.296 0.342 0.307 0.348 0.308 0.346 0.356 0.388 0.399 0.426 0.314 0.352 0.344 0.372 0.381 0.404 0.341 0.372 0.534 0.547

Table 13: Full results of few-shot learning on 10% training data. All results are from four different prediction
horizons {96, 192, 336, 720}. A lower MSE indicates better performance. Bold: best, Underline: second best.

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet FEDformer Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.449 0.448 0.481 0.474 0.720 0.533 0.458 0.456 0.790 0.586 0.492 0.495 0.516 0.485 0.861 0.628 0.512 0.499 0.918 0.639 1.112 0.806
192 0.491 0.469 0.518 0.491 0.747 0.545 0.570 0.516 0.837 0.609 0.565 0.538 0.598 0.524 0.797 0.593 0.624 0.555 0.915 0.629 1.155 0.823
336 0.549 0.499 0.664 0.570 0.793 0.551 0.608 0.535 0.780 0.575 0.721 0.622 0.657 0.550 0.941 0.648 0.691 0.574 0.939 0.644 1.179 0.832
720 0.661 0.559 0.711 0.584 0.880 0.584 0.725 0.591 1.234 0.811 0.986 0.743 0.762 0.610 0.877 0.641 0.728 0.614 0.887 0.645 1.273 0.874
Avg 0.538 0.494 0.593 0.529 0.785 0.553 0.590 0.525 0.910 0.860 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.915 0.639 1.180 0.834

E
T

T
h2

96 0.287 0.351 0.354 0.400 0.334 0.381 0.331 0.374 0.404 0.435 0.357 0.411 0.353 0.389 0.378 0.409 0.382 0.416 0.389 0.411 0.678 0.619
192 0.351 0.392 0.401 0.423 0.430 0.438 0.402 0.411 0.470 0.474 0.569 0.519 0.403 0.414 0.490 0.467 0.478 0.474 0.473 0.455 0.785 0.666
336 0.386 0.420 0.442 0.450 0.449 0.458 0.406 0.433 0.489 0.485 0.671 0.572 0.426 0.441 0.537 0.494 0.504 0.501 0.507 0.480 0.839 0.694
720 0.426 0.447 0.480 0.486 0.485 0.490 0.449 0.464 0.593 0.538 0.824 0.648 0.477 0.480 0.510 0.491 0.499 0.509 0.477 0.472 1.273 0.874
Avg 0.363 0.403 0.419 0.439 0.424 0.441 0.397 0.421 0.489 0.483 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.462 0.455 0.894 0.713

E
T

T
m

1

96 0.371 0.393 0.388 0.401 0.412 0.422 0.390 0.404 0.709 0.556 0.352 0.392 0.410 0.419 0.583 0.501 0.578 0.518 0.761 0.568 0.911 0.688
192 0.405 0.407 0.422 0.421 0.447 0.438 0.429 0.423 0.717 0.548 0.382 0.412 0.437 0.434 0.630 0.528 0.617 0.546 0.781 0.574 0.955 0.703
336 0.444 0.424 0.456 0.430 0.497 0.465 0.469 0.439 0.735 0.575 0.419 0.434 0.476 0.454 0.725 0.568 0.998 0.775 0.803 0.587 0.991 0.719
720 0.520 0.468 0.554 0.490 0.594 0.521 0.569 0.498 0.752 0.584 0.490 0.477 0.681 0.556 0.769 0.549 0.693 0.579 0.844 0.581 1.062 0.747
Avg 0.435 0.423 0.455 0.435 0.487 0.461 0.464 0.441 0.728 0.565 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.797 0.578 0.980 0.714

E
T

T
m

2

96 0.191 0.270 0.192 0.274 0.224 0.296 0.188 0.269 0.245 0.322 0.213 0.303 0.191 0.274 0.212 0.285 0.291 0.399 0.229 0.308 0.331 0.430
192 0.242 0.306 0.246 0.313 0.260 0.317 0.251 0.309 0.274 0.338 0.278 0.345 0.252 0.317 0.270 0.323 0.307 0.379 0.291 0.343 0.400 0.464
336 0.286 0.332 0.301 0.340 0.312 0.349 0.307 0.346 0.361 0.394 0.338 0.385 0.306 0.353 0.323 0.353 0.543 0.559 0.348 0.376 0.469 0.498
720 0.376 0.386 0.400 0.403 0.424 0.416 0.426 0.417 0.467 0.442 0.436 0.440 0.433 0.427 0.474 0.449 0.712 0.614 0.461 0.438 0.589 0.557
Avg 0.274 0.324 0.284 0.332 0.305 0.344 0.293 0.335 0.336 0.373 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 0.332 0.366 0.447 0.487

based methods S2IP-LLM, Time-LLM, and GPT4TS, respectively. This improvement is attributed
to FSCA’s successful activation of LLMs’ structured understanding of TS data, while the design
of the Dual-Scale Context-Alignment GNNs ensures that LLMs grasp the logical relationships in
demonstration examples prompt.

C.5 CLASSIFICATION FULL RESULTS

Table 15 presents the results on 10 multivariate UEA classification datasets. In the time series clas-
sification task, we have augmented the baselines with the following methods: XGBoost (Chen &
Guestrin, 2016), Rocket (Dempster et al., 2020), LSTNet (Lai et al., 2018a), LSSL (Gu et al., 2021),
LightTS (Zhang et al., 2022), Pyraformer (Liu et al., 2021), TCN (Franceschi et al., 2019), and
Flowformer (Huang et al., 2022). Compared to classical methods, RNN-based, Transformer-based,
MLP-based, and other LLM-based approaches, FSCA demonstrates consistently superior perfor-
mance. It achieves an average accuracy improvement of 2.4%, 2.7%, and 2.8% over S2IP-LLM,
Time-LLM, and GPT4TS, respectively. This demonstrates the versatility of FSCA, showing that
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Table 14: Full results of Zero-shot learning: the first column A → B indicates training on dataset A and testing
on dataset B. Bold: best, Underline: second best.

Methods FSCA S2IP-LLM Time-LLM GPT4TS iTransformer DLinear PatchTST TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1
↓

ETTh2

96 0.256 0.323 0.315 0.377 0.324 0.368 0.335 0.374 0.353 0.394 0.347 0.400 0.304 0.350 0.358 0.387
192 0.310 0.361 0.402 0.407 0.398 0.396 0.412 0.417 0.437 0.445 0.447 0.460 0.386 0.400 0.427 0.429
336 0.313 0.373 0.453 0.432 0.410 0.423 0.441 0.444 0.482 0.476 0.515 0.505 0.414 0.428 0.449 0.451
720 0.374 0.419 0.442 0.451 0.403 0.449 0.438 0.452 0.556 0.506 0.665 0.589 0.419 0.443 0.448 0.458
Avg 0.313 0.369 0.403 0.417 0.384 0.409 0.406 0.422 0.457 0.455 0.493 0.488 0.380 0.405 0.421 0.431

ETTh1
↓

ETTm2

96 0.202 0.295 0.242 0.319 0.236 0.320 0.236 0.315 0.247 0.319 0.255 0.357 0.215 0.304 0.239 0.313
192 0.258 0.329 0.286 0.337 0.265 0.353 0.287 0.342 0.293 0.350 0.338 0.413 0.275 0.339 0.291 0.342
336 0.311 0.360 0.351 0.367 0.337 0.376 0.341 0.374 0.364 0.419 0.425 0.465 0.334 0.373 0.342 0.371
720 0.390 0.407 0.422 0.416 0.429 0.430 0.435 0.422 0.534 0.470 0.640 0.573 0.431 0.424 0.434 0.419
Avg 0.290 0.348 0.325 0.360 0.317 0.370 0.325 0.363 0.360 0.390 0.415 0.452 0.314 0.360 0.327 0.361

ETTh2
↓

ETTh1

96 0.475 0.473 0.668 0.567 0.618 0.515 0.732 0.577 0.854 0.606 0.689 0.555 0.485 0.465 0.848 0.601
192 0.520 0.500 0.575 0.526 0.715 0.570 0.758 0.559 0.863 0.615 0.707 0.568 0.565 0.509 0.860 0.610
336 0.528 0.512 0.655 0.577 0.636 0.523 0.759 0.578 0.867 0.626 0.710 0.577 0.581 0.515 0.867 0.626
720 0.586 0.545 0.778 0.568 0.683 0.553 0.781 0.597 0.887 0.654 0.704 0.596 0.628 0.561 0.887 0.648
Avg 0.527 0.507 0.669 0.560 0.663 0.540 0.757 0.578 0.868 0.625 0.703 0.574 0.565 0.513 0.865 0.621

ETTh2
↓

ETTm2

96 0.200 0.293 0.221 0.303 0.258 0.326 0.253 0.329 0.244 0.330 0.240 0.336 0.226 0.309 0.248 0.324
192 0.256 0.326 0.295 0.344 0.303 0.342 0.293 0.346 0.291 0.356 0.295 0.369 0.289 0.345 0.296 0.352
336 0.310 0.358 0.340 0.376 0.356 0.383 0.347 0.376 0.351 0.391 0.345 0.397 0.348 0.379 0.353 0.383
720 0.384 0.409 0.453 0.428 0.440 0.434 0.446 0.429 0.452 0.451 0.432 0.442 0.439 0.427 0.471 0.446
Avg 0.288 0.347 0.327 0.363 0.339 0.371 0.335 0.370 0.335 0.382 0.328 0.386 0.325 0.365 0.342 0.376

ETTm1
↓

ETTh2

96 0.302 0.361 0.358 0.382 0.355 0.403 0.353 0.392 0.371 0.407 0.365 0.415 0.354 0.385 0.377 0.407
192 0.354 0.395 0.454 0.444 0.449 0.450 0.443 0.437 0.463 0.458 0.454 0.462 0.447 0.434 0.471 0.453
336 0.349 0.398 0.488 0.452 0.479 0.467 0.469 0.461 0.481 0.485 0.496 0.494 0.481 0.463 0.472 0.484
720 0.407 0.438 0.469 0.478 0.477 0.476 0.466 0.468 0.503 0.482 0.541 0.529 0.474 0.471 0.495 0.482
Avg 0.353 0.398 0.442 0.439 0.440 0.449 0.433 0.439 0.455 0.458 0.464 0.475 0.439 0.438 0.457 0.454

ETTm1
↓

ETTm2

96 0.175 0.261 0.203 0.299 0.218 0.271 0.217 0.294 0.219 0.305 0.221 0.314 0.195 0.271 0.222 0.295
192 0.231 0.298 0.272 0.325 0.288 0.335 0.277 0.327 0.277 0.347 0.286 0.359 0.258 0.311 0.288 0.337
336 0.285 0.334 0.303 0.347 0.322 0.355 0.331 0.360 0.354 0.378 0.357 0.406 0.317 0.348 0.341 0.367
720 0.363 0.383 0.436 0.418 0.414 0.409 0.429 0.413 0.426 0.420 0.476 0.476 0.416 0.404 0.436 0.418
Avg 0.264 0.319 0.304 0.347 0.311 0.343 0.313 0.348 0.319 0.363 0.335 0.389 0.296 0.334 0.322 0.354

ETTm2
↓

ETTh2

96 0.277 0.345 0.324 0.383 0.334 0.416 0.360 0.401 0.347 0.401 0.333 0.391 0.327 0.367 0.360 0.401
192 0.349 0.393 0.403 0.422 0.439 0.441 0.434 0.437 0.438 0.444 0.441 0.456 0.411 0.418 0.434 0.437
336 0.343 0.398 0.434 0.442 0.455 0.457 0.460 0.459 0.459 0.464 0.505 0.503 0.439 0.447 0.460 0.459
720 0.401 0.437 0.462 0.467 0.488 0.479 0.485 0.477 0.485 0.477 0.543 0.534 0.459 0.470 0.485 0.477
Avg 0.343 0.393 0.406 0.429 0.429 0.448 0.435 0.443 0.432 0.447 0.455 0.471 0.409 0.425 0.435 0.443

ETTm2
↓

ETTm1

96 0.401 0.415 0.583 0.524 0.488 0.445 0.747 0.558 0.619 0.564 0.570 0.490 0.491 0.437 0.747 0.558
192 0.457 0.453 0.609 0.501 0.555 0.464 0.781 0.560 0.685 0.565 0.590 0.506 0.530 0.470 0.781 0.560
336 0.497 0.480 0.585 0.522 0.608 0.538 0.778 0.578 0.792 0.578 0.706 0.567 0.565 0.497 0.778 0.578
720 0.563 0.502 0.712 0.579 0.699 0.566 0.769 0.573 0.727 0.579 0.731 0.584 0.686 0.565 0.769 0.573
Avg 0.480 0.463 0.622 0.532 0.588 0.503 0.769 0.567 0.706 0.572 0.649 0.537 0.568 0.492 0.769 0.567

its framework can be effectively applied beyond time-series forecasting tasks to achieve excellent
performance in other tasks as well.
Table 15: Full results for the classification task. ‘.’ indicates the name of *former. Bold: best, Underline:
second best.

Methods
Classical methods RNN

TCN
Transformers MLP

TimesNet
LLM-based

XGBoost Rocket LSTNet LSSL Trans. Re. In. Pyra. iTrans. Station. FED. ETS. Flow. DLinear LightTS. GPT4TS Time-LLM S2IP-LLM FSCA
EthanolConcentration 43.7 45.2 39.9 31.1 28.9 32.7 31.9 31.6 30.8 32.3 32.7 31.2 28.1 33.8 32.6 29.7 35.7 34.2 34.6 35.3 39.2

FaceDetection 63.3 64.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.5 68.0 66.0 66.3 67.6 68.0 67.5 68.6 69.2 67.9 68.5 70.4
Handwriting 15.8 58.8 25.8 24.6 53.3 32.0 27.4 32.8 29.4 31.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 32.7 32.0 33.1 38.4

Heartbeat 73.2 75.6 77.1 72.7 75.6 76.1 77.1 80.5 75.6 75.6 73.7 73.7 71.2 77.6 75.1 75.1 78.0 77.2 78.0 77.5 79.5
JapaneseVowels 86.5 96.2 98.1 98.4 98.9 98.7 97.8 98.9 98.4 98.3 99.2 98.4 95.9 98.9 96.2 96.2 98.4 98.6 98.1 98.6 98.9

PEMS-SF 98.3 75.1 86.7 86.1 68.8 82.1 82.7 81.5 83.2 88.4 87.3 80.9 86.0 83.8 75.1 88.4 89.6 87.9 87.2 88.4 91.3
SelfRegulationSCP1 84.6 90.8 84.0 90.8 84.6 92.2 90.4 90.1 88.1 90.7 89.4 88.7 89.6 92.5 87.3 89.8 91.8 93.2 92.8 91.4 94.2
SelfRegulationSCP2 48.9 53.3 52.8 52.2 55.6 53.9 56.7 53.3 53.3 56.6 57.2 54.4 55.0 56.1 50.5 51.1 57.2 59.4 57.2 58.3 61.1
SpokenArabicDigits 69.6 71.2 100.0 100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0 99.0 99.2 99.5 99.0 99.8

UWaveGestureLibrary 75.9 94.4 87.8 85.9 88.4 85.6 85.6 85.6 83.4 82.5 87.5 85.3 85.0 86.6 82.1 80.3 85.3 88.1 89.3 88.7 91.3
Average 66.0 72.5 71.8 70.9 70.3 71.9 71.5 72.1 70.8 72.5 72.7 70.7 71.0 73.0 67.5 70.4 73.6 74.0 73.7 73.9 76.4

D VISUALIZATION

Figure 3 presents visualization examples of FSCA prediction results on the ETTh1, ETTm1, Elec-
tric, and Traffic datasets with an input length of 512 and a prediction length of 96. It can be observed
that FSCA achieves good predictive performance across various datasets.
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(a) ETTh1 dataset example 1
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(b) ETTh1 dataset example 2
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(c) ETTm1 dataset example 1
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(d) ETTm1 dataset example 2
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(e) Traffic dataset example 1
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(f) Traffic dataset example 2
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(g) Electricity dataset example 1
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(h) Electricity dataset example 2

Figure 3: Sequential visualization examples of prediction results on the ETTh1, ETTm1, Electricity,
and Traffic datasets are presented, with two examples per dataset. The blue lines represent predic-
tions, while the orange lines indicate ground truth. The visualizations start at x-axis position 512.
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E SCHEMATIC DIAGRAM OF THE FRAMEWORK

Figure 4: Schematic diagram of the process of Vanilla Context-Alignment (VCA) and Few-Shot
Prompting based Context-Alignment (FSCA). The light-colored square sequence represents the fine-
grained branch; the dark-colored square sequence represents the coarse-grained branch.

In this section, we describe our method in greater detail and specificity through a diagram and
quantitative examples.

The bottom of Fig. 4 features the TS data input. The left subfigure presents the Vanilla Context-
Alignment (VCA) process for any TS tasks, where the TS input is tokenized together with the task
description prompt to construct the simple graph structure; edges in both coarse-grained and fine-
grained graphs are built from the TS input directed toward the task prompt. The middle subfigure
illustrates Few-Shot Prompting Context-Alignment (FSCA) for forecasting tasks, which is detailed
in Sec. 3.3, showing the division of the TS input into subsequences, with the subsequences posi-
tioned later serving as the ground truth for earlier ones, thereby forming the edge connections. The
right subfigure depicts the classification task using FSCA (detailed in Sec. B.2), differing from fore-
casting tasks in that, unable to segment the TS input to create examples, we must extract one sample
from the training set for each category as the fixed example.

Below, we would facilitate the understanding of FSCA for tackling forecasting tasks by detailing a
simple example. This could also provide clearer explanations of Eq.5 and Eq.6. The processes VCA
and FSCA for classification tasks are similar and would not be reiterated.

Assuming we have inputs processed through patching and token embedding, these include TS em-
beddings of length 8 and task description prompt embeddings of length 2 (the prompt is “Predict
future sequences using previous data:” in FSCA for forecasting, here the length is an example):

Firstly, for the fine-grained branch, consider the scenario in which the input TS embed-
dings are segmented into 2 subsequences, each comprising four embeddings. Thus, TS1

sub is
[e1,1, e1,2, e1,3, e1,4], and TS2

sub is [e2,1, e2,2, e2,3, e2,4], where ei,j indicates j-th embedding in
subsequence i. Similarly, zi,j refers to j-th embedding in the prompt of subsequence i. Here,
[z1,1, z1,2] = [z2,1, z2,2]. Ultimately, Eq.5 is instantiated as:

[e1,1, e1,2, e1,3, e1,4, z1,1, z1,2, e2,1, e2,2, e2,3, e2,4, z2,1, z2,2].

Secondly, we need to construct a graph structure for this input before it enters LLM. The basic logic
for constructing the graph is that TS2

sub serves as the ground truth for TS1
sub (The latter subsequence

serves as the correct label for the former subsequence). Specifically, starting with all elements
in TS1

sub, construct directed edges to the first item of the corresponding task description, z1,1.
Subsequently, from the last item of the task description, z1,2, construct directed edges to all elements
in TS2

sub. Since all TS subsequences are used to predict future sequences, the first token of the last
prompt, z2,1, needs to establish edge connections with both TS1

sub and TS2
sub.

Thirdly, for the coarse-grained branch, it is essential to inform the LLM that a time series should
be treated as a whole. Thus, TSi

sub must be mapped to individual node embedding by a linear
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layer. To align the scales, the prompt embeddings are also mapped to a node embedding. Thus, the
coarse-grained sequences can be denoted as [ẽ1, z̃(1), ẽ2, z̃(2)] (instantiation of Eq.6). Additionally,
the graph construction logic is consistent with that of the fine-grained branch.

F ALGORITHM OF FSCA

Algorithm: Forward process of Few-Shot prompting Context-Alignment (FSCA)

Input: TS embeddings {ei}ni=1 and prompt embeddings {z1, z2, . . . ,zm} after tokenization and embedding.
Linear Layers fe, fz , fcf and fo. GCN convolutional layers GCNF and GCNC . The upper limit of trans-
former blocks amount in LLM L. LLM pretrained transformer blocks {T i}Li=1.

1: Fine-grained input construction: We divide the TS embeddings {ei}ni=1 into N parts and replicate the
prompt embeddings {z1, z2, . . . ,zm} into N copies, combining them to form the fine-grained input se-
quences. The j-th part of {ei}ni=1 is denoted as {ej,1, . . . , ej,lj}. The fine-grained input as the format 5

2: Building the fine-grained graph GF of GCNF : GF treats each token in the fine-grained input sequences as
a node. The directed edge set of the GF can be represented as formula 8

3: Coarse-grained input construction: Use two learnable linear layers fe and fz to embed the TS tokens and
language tokens into an M -dimensional space, respectively, which can be formalized as:

ẽj = fe(ej,1, ej,2, . . . , ej,lj ); z̃ = fz(z1, z2, . . . ,zm).

The final coarse-grained input as the format 6.
4: Building the coarse-grained graph GC of GCNC: Similar to the construction of GF , the directed edge set

of the GC can be represented as form 7
5: Enter the pre-trained LLM transformer blocks. Current layer index l is initialized to 0, H0

F and H0
C are

the fine-grained input and coarse-grained input obtained in steps 2 and 4 respectively:
while current layer index l is less than or equal to the upper limit L of transformer blocks amount in LLM do

H l+1
C = GCNC(T

l(H l
C)),

H l+1
F = GCNF (T

l(H l
F )) + fcf (H

l+1
C ),

l = l + 1.

end while
6: Obtain the prediction result. The final fine-grained branch LLM hidden state HL

C is converted into the
prediction sequence through fo:

p = fo(H
L
C).

7: Complete one forward iteration. Return p.

G EXPERIMENTAL ANALYSIS

G.1 RANDOMLY REPLACE THE PRE-TRAINED WEIGHTS OF LLM
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(a) ETTh1 dataset
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(b) ETTh2 dataset

Figure 5: Results of random initializing GPT-2 pre-trained weights. The x-axis represents the ratio
of GPT-2 pre-trained weights replaced by random initialization, and the y-axis shows the Mean
Squared Error (MSE) metric values. We conducted this experiment on GPT4TS, S2IP-LLM and our
FSCA.
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As shown in Fig. 5, we randomly initialize GPT-2 pre-trained weights at varying ratios to demon-
strate scenarios involving under-trained and untrained conditions. As the random initialization ratio
increases, LLM’s contextual understanding ability decreases, leading to a decline in our model’s
performance. When the model’s capability is weak, our results are as poor as those of GPT4TS (the
most direct method to utilize LLM for TS tasks) and S2IP-LLM (a token-alignment based method).
However, as the LLM’s capability improves, our method significantly outperforms GPT4TS and
S2IP-LLM, achieving a lower MSE. These findings demonstrate that our approach more effectively
activates the potential of pre-trained LLMs for TS tasks.

G.2 SCALE ANALYSIS

We analyze the scaling effect of FSCA in three aspects:

Model Size: Ablation experiments on the number of GPT-2 layers (Table 6) show performance
declines as the layer count increases, consistent with findings in GPT4TS.

Training Data Size: As shown in Table 17, using 5%, 10%, 25%, 50%, 75% and full of the training
data reveals continuous performance improvement, particularly significant at the 50% data point.

Few-Shot Prompting Examples’ amount: Table 16 shows that more examples yield modest gains
for short prediction lengths (96) but reduce effectiveness for longer ones (336, 720). This likely
results from shorter input lengths per example due to divisions of the TS input, creating a mismatch
with longer required prediction lengths.
Table 16: Results of different examples amount for the long-term forecasting task. All results are averaged on
different prediction horizons: {96, 192, 336, 720}. Bold: best, Underline: second best.

Examples amount 1 2 3 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.349 0.389 0.343 0.385 0.341 0.382 0.356 0.394
192 0.390 0.415 0.387 0.416 0.393 0.419 0.402 0.428
336 0.402 0.432 0.407 0.439 0.414 0.445 0.440 0.456
720 0.433 0.460 0.446 0.471 0.462 0.488 0.485 0.495
Avg 0.394 0.424 0.396 0.428 0.403 0.434 0.421 0.443

E
T

T
m

1

96 0.282 0.343 0.277 0.340 0.275 0.341 0.296 0.352
192 0.324 0.369 0.326 0.374 0.331 0.385 0.341 0.377
336 0.356 0.386 0.366 0.391 0.370 0.395 0.391 0.408
720 0.405 0.417 0.412 0.425 0.428 0.432 0.451 0.438
Avg 0.342 0.378 0.345 0.383 0.351 0.388 0.370 0.394

Table 17: Results of different training data ratios.

Training data ratios ETTh1 ETTm1
5% 0.575 0.435

10% 0.538 0.435
25% 0.486 0.411
50% 0.409 0.366
75% 0.398 0.350

100% 0.394 0.342

G.3 FULLY TUNING ANALYSIS

GPT4TS has demonstrated that fully tuning LLMs for TS tasks, while straightforward, incurs high
computational costs and yields suboptimal results by compromising the inherent generic knowledge
of LLMs. Instead, our approach, like other pre-trained LLM-based TS methods (e.g., Time-LLM,
TEST, S2IP-LLM), focuses on freezing most LLM components to efficiently harness their potential.
As shown in Table 18, we still supplement our results with fully tuning, which similarly performed
suboptimally.

Table 18: Fully tuning results of FSCA and GPT4TS.

Method ETTh1 ETTm1
GPT4TS 0.427 0.352

GPT4TS(Fully tuning) 0.469 0.406
FSCA 0.394 0.342

FSCA(Fully tuning) 0.457 0.383
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G.4 COMPARISON BETWEEN VCA AND OTHER LLM-BASED METHODS

In this section, we focus on comparing VCA with other LLM-based methods. The results show
that VCA generally performs second only to FSCA, demonstrating the effectiveness of Context-
Alignment, which outperforms Token-Alignment and other LLM-based approaches. Compared to
FSCA, the results also validate the enhancing effectiveness of the few-shot prompting technique
employed in FSCA. Table 19, Table 20, Table 21, Table 22, Table 23, respectively show the results
of long-term forecasting, short-term forecasting, few-shot forecasting, zero-shot forecasting and
classification tasks.

Table 19: For long-term forecasting tasks, comparison between VCA and other
LLM-based methods. All results are averaged on different prediction horizons: {24, 36,
48, 60} for ILI and {96, 192, 336, 720} for others. Bold: best, Underline: second best.

Methods FSCA VCA S2IP-LLM Time-LLM GPT4TS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI 1.380 0.783 1.428 0.799 1.552 0.826 1.713 0.858 1.925 0.903
Weather 0.224 0.262 0.230 0.268 0.228 0.265 0.237 0.269 0.237 0.270

ECL 0.159 0.252 0.163 0.257 0.166 0.262 0.167 0.264 0.167 0.263
Traffic 0.386 0.263 0.389 0.271 0.405 0.286 0.407 0.289 0.414 0.294
ETTh1 0.394 0.424 0.417 0.432 0.418 0.436 0.426 0.435 0.427 0.426
ETTh2 0.316 0.375 0.335 0.382 0.355 0.399 0.361 0.398 0.354 0.394
ETTm1 0.342 0.378 0.349 0.380 0.346 0.382 0.354 0.384 0.352 0.383
ETTm2 0.250 0.314 0.259 0.318 0.262 0.326 0.275 0.334 0.266 0.326

Avg 0.431 0.381 0.446 0.388 0.466 0.398 0.492 0.404 0.518 0.407

Table 20: For the short-term time series forecasting, comparison between VCA and
other LLM-based methods. Bold: best, Underline: second best.

Methods FSCA VCA S2IP-LLM Time-LLM GPT4TS

A
ve

ra
ge SMAPE 11.828 11.889 12.021 12.494 12.690

MASE 1.580 1.596 1.612 1.731 1.808
OWA 0.850 0.855 0.857 0.913 0.940

Table 21: For the few-shot learning task on 5% training data, comparison between VCA
and other LLM-based methods. All results are averaged across four different prediction
horizons {96, 192, 336, 720}. Bold: best, Underline: second best.

Methods FSCA VCA S2IP-LLM Time-LLM GPT4TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.575 0.508 0.598 0.524 0.650 0.550 0.648 0.549 0.681 0.560
ETTh2 0.366 0.397 0.382 0.405 0.380 0.413 0.398 0.426 0.400 0.433
ETTm1 0.435 0.429 0.457 0.442 0.455 0.446 0.477 0.451 0.472 0.450
ETTm2 0.284 0.332 0.289 0.340 0.296 0.342 0.307 0.348 0.308 0.346

Avg 0.415 0.416 0.432 0.428 0.445 0.438 0.458 0.443 0.465 0.447

Table 22: For the zero-shot learning results, comparison between VCA and other
LLM-based methods. The first column A → B indicates training on dataset A and
testing on dataset B. Bold: best, Underline: second best.

Methods FSCA VCA S2IP-LLM Time-LLM GPT4TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 → ETTh2 0.313 0.369 0.336 0.390 0.403 0.417 0.384 0.409 0.406 0.422
ETTh1 → ETTm2 0.290 0.348 0.303 0.362 0.325 0.360 0.317 0.370 0.325 0.363
ETTh2 → ETTh1 0.527 0.507 0.561 0.534 0.669 0.560 0.663 0.540 0.757 0.578
ETTh2 → ETTm2 0.288 0.347 0.297 0.361 0.327 0.363 0.339 0.371 0.335 0.370
ETTm1 → ETTh2 0.353 0.398 0.372 0.416 0.442 0.439 0.440 0.449 0.433 0.439
ETTm1 → ETTm2 0.264 0.319 0.285 0.333 0.304 0.347 0.311 0.343 0.313 0.348
ETTm2 → ETTh2 0.343 0.393 0.352 0.401 0.406 0.429 0.429 0.448 0.435 0.443
ETTm2 → ETTm1 0.480 0.463 0.514 0.487 0.622 0.532 0.588 0.503 0.769 0.567

Average 0.357 0.393 0.378 0.411 0.437 0.431 0.434 0.429 0.472 0.441

G.5 EXPERIMENTAL EFFICIENCY ANALYSIS.

We incorporate comparisons of experimental efficiency with other LLM-based methods, focusing on
the number of parameters and execution speed. As shown in Table 24. Our method ranks just behind
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Table 23: For classification tasks, comparison between VCA and
other LLM-based methods. Bold: best, Underline: second best.

Methods
LLM-based

GPT4TS Time-LLM S2IP-LLM VCA FSCA

EthanolConcentration 34.2 34.6 35.3 39.2 -
FaceDetection 69.2 67.9 68.5 69.0 70.4
Handwriting 32.7 32.0 33.1 38.4 -

Heartbeat 77.2 78.0 77.5 78.5 79.5
JapaneseVowels 98.6 98.1 98.6 98.9 -

PEMS-SF 87.9 87.2 88.4 91.3 -
SelfRegulationSCP1 93.2 92.8 91.4 93.1 94.2
SelfRegulationSCP2 59.4 57.2 58.3 60.5 61.1
SpokenArabicDigits 99.2 99.5 99.0 99.8 -

UWaveGestureLibrary 88.1 89.3 88.7 91.3 -

Average 74.0 73.7 73.9 76.0 -

GPT4TS, which only incorporates linear layers at the input and output stages of LLMs. In contrast,
other popular methods require token-alignment to adapt LLMs for time series data, aligning TS data
with word embeddings in the vocabulary. Additionally, these methods often include extra operations.
For example, Time-LLM repeatedly generates prompts and retrieves corresponding embeddings
each iteration, while S2IP-LLM separates TS inputs and performs prompt retrieval.

The computational costs of our FSCA method mainly stem from two aspects. Firstly, the use of
dual-scale GNNs introduces two learnable matrices (Eq. 3), which, as shown in the table compar-
ing FSCA with the version without dual-scale GNNs, add a slight increase in computational load.
Secondly, the process of constructing coarse-grained inputs necessitates two learnable linear layers
to transform fine-grained node embeddings into coarse-grained ones. The input dimension of these
layers is dictated by the number of input TS patches, making it the primary contributor to increased
overhead.

Table 24: Comparisons of experimental efficiency with other LLM-based methods.

Training Params Training Params Percentages Training Time for 1 iteration(s) Inference Time for 1 iteration(s)
GPT4TS 17.33M 17.6 0.457 0.215

Time-LLM 70.85M 46.37 2.894 1.723
S2IP-LLM 56.95M 41.25 2.415 1.316

FSCA w/o Coarse Branch 12.43M 13.29 0.348 0.155
FSCA w/o Dual-Scale GNNs 35.83M 30.6 0.556 0.322

FSCA 37.02M 31.3 0.587 0.331

G.6 COMPARISON OF DIFFERENT PROMPT TYPES.

We compare our approach with two other types of prompts detailed in Table 25: data domain and
input statistics, referencing Time-LLM (Jin et al., 2024). Here are the prompt examples:

The original prompt is straightforward: “Predict future sequences using previous data.”

The data domain prompt, illustrated using the ETTh dataset, is: “[Data domain:] The Electric-
ity Transformer Temperature (ETT) is crucial for long-term electric power systems management.
ETTh1 and ETTh2 represent 1-hour level data. Each data point includes the ‘oil temperature’ and
six power load features. [Task:] Predict future sequences using previous data.”

The input statistics prompt describes:“[Input statistics:] The input features a minimum value of
<min val>, a maximum of <max val>, and a median of <median val>. The overall trend is
<upward or downward>. [Task:] Predict future sequences using previous data.”

Our results show that the data domain prompt performs nearly the same as the original prompt. The
input statistics prompt slightly enhances performance. However, it requires recalculating statistical
features and regenerating corresponding embeddings by the LLM tokenizer with each iteration,
significantly slowing down the process: training time for one iteration increased from 0.587 seconds
to 1.431 seconds.
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Table 25: Comparison of different prompt types.

Variant ETTh1 ETTm1 ETTm1 ETTm2

FSCA(Original) 0.394 0.316 0.342 0.250

FSCA(Domain) 0.396 0.316 0.343 0.252

FSCA(Statistics) 0.392 0.313 0.346 0.246

G.7 COMPARISON OF DIFFERENT NETWORK TYPES IMPLEMENTING CONTEXT-ALIGNMENT

We replace the GCN module in our dual-scale GNN framework with alternative networks, including
MLP, CNNs, and self-attention mechanisms, to demonstrate that graph structures are the optimal
choice within the Context-Alignment paradigm. Table 26 confirms that GCN-based methods surpass
other network models. The superiority of GNNs stems from their unique ability to model node-edge
structures, which allows for a more nuanced representation of structural and logical relationships.
In our framework, dual-scale nodes articulate hierarchical structure, while edges represent logical
connections. Consequently, this dual-scale GNN framework enhances the alignment of time series
data within contexts that LLMs can understand, thereby leveraging pre-trained LLMs’ capabilities
for time series tasks. Additionally, we integrate GraphSAGE, another prominent GNN variant, to
further confirm the robustness of our framework across different graph networks.

Table 26: Results of implementing Context-Alignment paradigm using different network types.

Variant ETTh1 ETTm1 ETTm1 ETTm2

FSCA(GCN) 0.394 0.316 0.342 0.250

FSCA(GraphSAGE) 0.397 0.321 0.337 0.247

FSCA(Attention) 0.435 0.347 0.362 0.271

FSCA(MLP) 0.407 0.334 0.349 0.269

FSCA(CNN) 0.411 0.340 0.354 0.262

G.8 COMPARISON WITH TS FOUNDATION MODELS

We include comparative results with pre-trained time series foundation models such as UniTS-
ST (Gao et al., 2024), MOMENT (Goswami et al., 2024), and TSMixer (Chen et al., 2023). Table
28, 27 reveal that while UniTS-ST outperforms some LLM-based methods, our approach still shows
superior performance. We attribute this advantage to our method’s effective exploitation of the deep
logical and structural understanding inherent in LLMs, which better harnesses their capabilities for
TS tasks. This underscores the significant potential of LLMs in TS applications.

Table 27: For classification tasks, comparison results with time series foundation models.

Methods
LLM-based Models TS Foundation Models

GPT4TS Time-LLM S2IP-LLM FSCA UniTS-ST MOMENT
EthanolConcentration 34.2 34.6 35.3 39.2 37.6 35.7

FaceDetection 69.2 67.9 68.5 70.4 70.5 63.3
Handwriting 32.7 32 33.1 38.4 29.7 30.8

Heartbeat 77.2 78 77.5 79.5 80.0 72.2
JapaneseVowels 98.6 98.1 98.6 98.9 97.8 71.6

PEMS-SF 87.9 87.2 88.4 91.3 93.1 89.6
SelfRegulationSCP1 93.2 92.8 91.4 94.2 93.9 84.0
SelfRegulationSCP2 59.4 57.2 58.3 61.1 61.1 47.8
SpokenArabicDigits 99.2 99.5 99.0 99.8 98.9 98.1

UWaveGestureLibrary 88.1 89.3 88.7 91.3 87.7 90.9
Average 74 73.7 73.9 76.4 75.0 68.4
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Table 28: For long-term forecasting tasks, comparison results with time series foundation models.

Methods
LLM-based Models TS Foundation Models

FSCA S2IP-LLM Time-LLM GPT4TS UniTS-ST MOMENT TSMixer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.224 0.262 0.228 0.265 0.237 0.269 0.237 0.270 0.216 0.259 0.228 0.270 0.225 0.264
ECL 0.159 0.252 0.166 0.262 0.167 0.264 0.167 0.263 0.156 0.253 0.165 0.260 0.160 0.257

Traffic 0.386 0.263 0.405 0.286 0.407 0.289 0.414 0.294 0.409 0.278 0.415 0.293 0.408 0.284
ETTh1 0.394 0.424 0.418 0.436 0.426 0.435 0.427 0.426 0.405 0.426 0.418 0.436 0.412 0.428
ETTh2 0.316 0.375 0.355 0.399 0.361 0.398 0.354 0.394 0.331 0.387 0.352 0.395 0.355 0.401
ETTm1 0.342 0.378 0.346 0.382 0.354 0.384 0.352 0.383 0.337 0.376 0.344 0.379 0.347 0.375
ETTm2 0.250 0.314 0.262 0.326 0.275 0.334 0.266 0.326 0.254 0.315 0.382 0.376 0.267 0.322

Avg. 0.296 0.324 0.311 0.337 0.318 0.339 0.317 0.337 0.301 0.328 0.329 0.344 0.311 0.333
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