000 001 002 003 CONTEXT-ALIGNMENT: ACTIVATING AND ENHANC-ING LLM CAPABILITIES IN TIME SERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment, but overlook LLMs' inherent strength in natural language processing — *their deep understanding of linguistic logic and structure rather than superficial embedding processing.* We propose Context-Alignment (CA), a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such contextlevel alignment comprises structural alignment and logical alignment, which is achieved by Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TSlanguage multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs to treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Following the DSCA-GNNs framework, we propose an instantiation method of CA, termed Few-Shot prompting Context-Alignment (FSCA), to enhance the capabilities of pre-trained LLMs in handling TS tasks. FSCA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of FSCA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provides powerful prior knowledge on context. We will release the source code upon publication.

036

1 INTRODUCTION

037 038 039 040 041 Time series (TS) tasks are essential in many real-world applications, from weather prediction to navigation optimization. The field has shifted from traditional statistical methods to advanced neural architectures like Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and Transformers, improving the handling of complex dependencies. However, challenges in generalizing across diverse datasets and adapting to various TS tasks remain.

042 043 044 045 046 047 Recently, large language models (LLMs) have excelled in various fields, primarily due to their extensive and diverse text corpora training dataset. With a rich foundation of multi-domain knowledge, LLMs achieve impressive generalization in downstream tasks. Thus, there is a growing interest in utilizing pre-trained LLMs to solve TS problems. However, distinct differences between the training data of LLMs and TS data have hindered LLMs' full potential in TS applications. To effectively utilize LLMs in TS tasks, two main issues must be addressed in turn:

048 1) How to make LLMs understand TS data and activate their capabilities in TS tasks?

049 2) How to enhance the performance of LLMs on TS tasks?

050 051 052 053 Regarding the first issue, existing works primarily focus on aligning TS token embeddings with language token embeddings [\(Jin et al., 2024;](#page-9-0) [Sun et al., 2024;](#page-10-0) [Pan et al., 2024\)](#page-10-1). However, whether such token-level alignment can fully leverage the LLMs' potential remains questionable. Inspired by recent research on LLMs [\(Ethayarajh, 2019;](#page-9-1) [Nie et al., 2024;](#page-10-2) [Wang et al., 2023\)](#page-11-0), we reconsider the inherent advantages of LLMs in natural language processing (NLP). We believe the strength of LLMs **054 055 056 057 058 059 060 061 062 063** primarily stems from their deep comprehension of language logic and structure, rather than superficial token embedding processing. Clearly, the excessive accumulation of tokens without logical guidance often struggles to effectively convey meaning. Especially TS-language multimodal inputs are lengthy, and lack structure and coherent semantics, greatly challenging LLMs' comprehension. Regarding the second issue, current methods aim to directly enhance LLMs' capabilities in TS tasks through techniques such as TS decomposition [\(Cao et al., 2024\)](#page-9-2) and optimizing prompts [\(Chuang](#page-9-3) [et al., 2024\)](#page-9-3). However, without adequately addressing the first issue, these methods need more interpretability and the improvements remain limited. A natural solution to these issues is to fully leverage the strengths of LLMs to transform TS tasks into NLP-like tasks, activating LLMs' capabilities first. Then, leveraging NLP techniques further enhances LLMs' performance on TS tasks.

064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 In this paper, we propose Context-Alignment, a new paradigm that aligns TS data with a linguistic component in the language environment familiar with LLMs. Such context-level alignment leverages the LLMs' inherent strength in logic and structure to enable LLMs to contextualize and comprehend TS data, thereby **activating** their capabilities. Context-Alignment contains structural alignment and logical alignment to construct a consistent context for TS-language multimodal inputs. We develop a Dual-Scale Context-Alignment Graph Neural Networks (DSCA-GNNs) framework to achieve both structural and logical alignment. Specifically, structural alignment employs dual-scale nodes to describe hierarchical structure in TS-language, i.e. the structural independence of tokens and the overall structure of modalities. Structural alignment provides LLMs with structural segmentation information for lengthy TS language inputs, enabling LLMs to treat long TS data as an individual linguistic component while preserving intrinsic token features. Logical alignment uses directed edges in both scale GNNs to guide the local and global logical relationship between TS data and language prompts, integrating TS within the language environment and ensuring semantic coherence across two modalities. Utilizing the few-shot prompting technique [\(Brown, 2020\)](#page-9-4), we propose Few-Shot prompting based Context-Alignment (FSCA) following the DSCA-GNNs framework, which further **enhances** the LLMs' performance on TS tasks. (FSCA) can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure. Extensive experiments across various TS tasks demonstrate the effectiveness of our method. Notably, in few-shot and zero-shot forecasting tasks, our approach significantly outperforms others, confirming that the logical and structural alignment provides powerful prior knowledge on context. Ablation studies further validate the importance of Context-Alignment.

083 084 085

In summary, our core contributions in this work can be summarized below:

- We emphasize that effectively leveraging LLMs for TS tasks requires first activating their capabilities and then enhancing them. Besides, we pinpoint that token-level alignment fails to fully activate pre-trained LLMs due to their neglect of LLMs' inherent strengths, which primarily stem from a deep understanding of logic and structure, rather than superficial token processing.
- We are the first to propose Context-Alignment paradigm, which aims to construct a context-level alignment between TS and language, thereby activating LLMs' potential capabilities in TS tasks.
	- We develop a Dual-Scale Context-Alignment GNNs framework, which achieves structural and logical alignment through dual-scale nodes and directed edges, thus realizing Context-Alignment. Furthermore, by integrating the few-shot prompting technique, we introduce (FSCA), which enhances LLMs' performance in TS tasks.
	- Our experiments across multiple datasets and various TS tasks demonstrate that our method surpasses existing techniques, especially in few-shot and zero-shot forecasting tasks. Ablation studies further emphasize the importance of Context-Alignment.
- **098 099 100**

101

- 2 RELATED WORK
- **102 103** 2.1 TIME SERIES TASKS

104 105 106 107 TS tasks are crucial for various applications, including financial forecasting, weather prediction, and activity recognition, and involve analyzing time-ordered data. Traditional statistical methods like ARIMA [\(Anderson, 1976\)](#page-9-5) and Prophet [\(Taylor & Letham, 2018\)](#page-10-3) effectively model trends and seasonality. The rise of deep learning introduced CNN-based methods, which use convolutional neural networks to extract features automatically [\(Bai et al., 2018;](#page-9-6) [Wu et al., 2022\)](#page-11-1). Additionally,

Figure 1: The architecture of our method, where the graph structure demonstrates the prediction task based on FSCA as detailed in Sec[.3.3.](#page-4-0) Dual-Scale Context-Alignment GNNs can be flexibly and repeatedly integrated into pre-trained LLMs at various layers, enhancing LLMs' awareness of logic and structure and improving performance.

 RNNs, such as LSTM and GRU, excel in sequence prediction by capturing dynamic temporal behaviors and long-range dependencies [\(Lai et al., 2018b;](#page-10-4) [Qin et al., 2017;](#page-10-5) [Siami-Namini et al., 2018\)](#page-10-6). More recently, Transformer-based models have advanced the field by processing sequences in parallel and applying attention mechanisms to focus on significant temporal aspects, thus improving performance in complex scenarios [\(Wen et al., 2023;](#page-11-2) [Zhou et al., 2022;](#page-11-3) [Wu et al., 2021\)](#page-11-4). However, these methods often struggle with long, intricate sequences and lack the flexibility and generalizability required for diverse real-world TS data across diverse domains.

2.2 LARGE LANGUAGE MODELS FOR TIME SERIES

 LLMs have demonstrated strong capabilities in various fields, becoming a focal point for advancing TS tasks. Recent research highlights their potential in TS tasks. Some methods aim to directly enhance the capabilities of LLMs for TS tasks. For example, [Cao et al.](#page-9-2) [\(2024\)](#page-9-2) captures complex interactions among trend, seasonal, and residual components to aid distribution adaptation. [Chuang](#page-9-3) [et al.](#page-9-3) [\(2024\)](#page-9-3) propose a statistical prompting strategy to enhance the performance. However, these methods overlook an important step: enable LLMs to understand TS inputs first. Other methods aim to enable LLMs to understand TS data and activate their potential for TS tasks. For example, [Jin et al.](#page-9-0) [\(2024\)](#page-9-0) reprograms input TS into text prototypes and enhances them with prompts. [Sun](#page-10-0) [et al.](#page-10-0) [\(2024\)](#page-10-0) aligns TS embeddings space with LLMs embeddings space. [Pan et al.](#page-10-1) [\(2024\)](#page-10-1) proposes S²IP-LLM, a semantic space-informed prompt learning to align TS embeddings with language token embeddings. However, these methods overlook that LLMs' inherent strength stems from their understanding of the logic and structure, rather than superficial token embedding processing. Merely aligning token embeddings without considering the coherence and consistency of the context fails to leverage this inherent advantage.

3 METHODOLOGY

 To address both structural and logical alignment in Context-Alignment, we develop a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) framework. In this framework, dual-scale nodes achieve structural alignment, while directed edges realize logical alignment. Additionally, the specific structure of the graph depends on the language prompts introduced, as different prompts lead to varying logic and structures in the TS-language. That is, each prompting method corresponds to a specific

162 163 164 DSCA-GNNs framework. In this section, we present the corresponding DSCA-GNNs frameworks for both the vanilla prompt and the demonstration examples prompt.

3.1 PRELIMINARIES AND TOKEN EMBEDDING

167 168 169 Time-Series Forecasting. Given past data $\boldsymbol{X} \in \mathbb{R}^{D \times T}$, where each row represents a TS of T steps across D variables, the goal is to build a predictive model F with parameters $\Theta_{\mathcal{F}}$ and prompt $P_{\mathcal{F}}$ to forecast the next T' time steps. The forecasting model can be formulated as $\hat{X} = \mathcal{F}(X; P_{\mathcal{F}}; \Theta_{\mathcal{F}})$.

170 171 172 173 Time-Series Classification. Given TS data $\bm{X} \in \mathbb{R}^{D \times T}$, the task is to build a classification model C with parameters $\Theta_{\mathcal{C}}$ and prompt $P_{\mathcal{C}}$ to assign a class label $\hat{y} \in \{1, 2, ..., C\}$, where C is the number of classes. The classification is defined as $\hat{y} = C(X; \Theta_{\mathcal{C}}, P_{\mathcal{C}})$.

174 175 176 Token Embedding. Multivariate TS data X is segmented into patches X_i using a sliding window of size p and stride s. Each patch is embedded into an M -dimensional space compatible with LLMs. The embedded patches are denoted as $\{e_i\}_{i=1}^n$, where $n = \frac{T-p+s}{s}$ is the number of patches.

177 178

184

165 166

3.2 DEMO: VANILLA CONTEXT-ALIGNMENT (VCA)

179 180 181 182 183 The most straightforward approach to utilizing pre-trained LLMs for TS tasks is to input both TS data and vanilla language prompts into the model directly. For TS forecasting tasks, a vanilla prompt like "Predict future sequences using previous data:" can be employed to guide LLMs in completing the prediction. The embeddings of the prompt can be represented as $\{z_1, z_2, \ldots, z_m\}$, and the overall input embeddings of the model can be represented as below:

$$
[e_1, e_2, \dots, e_n, z_1, z_2, \dots, z_m], \quad e_i, z_j \in \mathbb{R}^M.
$$
 (1)

185 186 187 188 189 Due to the verbose and lack of clear structural divisions of TS embeddings $\{e_i\}_{i=1}^n$, LLMs lack information that TS embedding $\{e_i\}_{i=1}^n$ is an integral entity, making it difficult to analyze TS. Furthermore, form [1](#page-3-0) lacks logical guidance. Directly concatenating the TS embeddings and language prompt embeddings loses essential contextual coherence between TS data and the prompt.

190 191 192 193 194 195 196 197 198 Dual-Scale Context-Alignment GNNs of VCA. Context-Alignment leverages the LLMs' inherent strength in logic and structure to enable LLMs to contextualize and comprehend TS data. We delineate clear structures (structural alignment) and establish correct logical guidance (logical alignment) by a Dual-Scale Context-Alignment GNNs framework to achieve Context-Alignment. Firstly, using dual-scale nodes, structural alignment aggregates tokens from the same modality into one linguistic component while preserving the feature of each token. Fine-grained GNN G_F treats each token, i.e., each element in the form [1](#page-3-0) as a node. Coarse-grained GNN G_C treats consecutive tokens with the same modality as a node. Specifically, G_C employs two learnable linear layers, f_e and f_z , to embed the TS tokens and language tokens into an M -dimensional space, respectively, which can be formalized as

199 200 $\tilde{e} = f_e(e_1, e_2, \ldots, e_n); \quad \tilde{z} = f_z(z_1, z_2, \ldots, z_m).$ Then, form [1](#page-3-0) is transformed into form [2](#page-3-1)

$$
201\\
$$

$$
[\tilde{e}, \tilde{z}], \quad \tilde{e}, \tilde{z} \in \mathbb{R}^M. \tag{2}
$$

202 203 204 205 206 207 208 209 210 211 212 Each element in the form [2](#page-3-1) is regarded as a node in G_C . Secondly, using directed edges, logical alignment emphasizes the correct semantic association between different components. Clearly, in the prompt "Predict future sequences using previous data:", "previous data:" refers to the lengthy TS data, and requires information from TS data. Therefore, in G_C , we construct directed edge $E : \tilde{e} \to \tilde{z}$ to indicate that the entire TS data serves as the upstream information source for the prompt. In G_F , we construct directed edges $\{E_{ij}: e_i \to z_j | i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}\}\$ to convey varying information from each TS token to the prompt token. We also constrain the sum of edge weights from TS tokens to one language token to be 1, i.e. $\sum_{i=1}^{n} w_{ij} = 1$, w_{ij} is the edge weight of E_{ij} , implicitly emphasizing that TS should be treated as a whole. In G_C , the weights of all directed edges are set to 1. Besides, $\{w_{ij}\}_{i=1}^n$ are proportional to the cosine similarity between the embeddings of two nodes.

213 214 215 The updated node embedding matrices for G_F and G_C denoted as $\hat{\bf N}_F$ and $\hat{\bf N}_C$, respectively. Based on the GNN update strategy, \hat{N}_F and \hat{N}_C can be formalized as:

$$
\hat{\mathbf{N}}_{k} = \sigma(\mathbf{D}_{k}^{-\frac{1}{2}} \mathbf{A}_{k}' \mathbf{D}_{k}^{-\frac{1}{2}} \mathbf{N}_{k}^{T} \mathbf{W}_{k}), \quad k \in \{F, C\},
$$
\n(3)

238 239

251 252

216 217 218 219 where N_k^T denotes the transpose of the pre-update node embedding matrix. In G_F , N_F is shown in form [1,](#page-3-0) while in G_C , N_C follows form [2.](#page-3-1) Besides, $W_k \in \mathbb{R}^{M \times \overline{M}}$ represents the learnable matrix of the GNN, σ denotes the nonlinear activation function ReLU, and $\overline{A'_k} = A_k + I$ is the weighted adjacency matrix with unit matrix added. D_k is a diagonal matrix where $D_{k,ii} = \sum_j A'_{k,ij}$.

220 221 222 223 224 Learnable interaction. Macroscopic logical-structural information of G_C helps LLMs understand TS, but loses key details necessary for TS tasks. In contrast, G_F retains detailed information. Thus, we introduce a learnable interaction to transfer macroscopic information from G_C to G_F . The learnable interactions can be represented by the following formula:

$$
\Delta N = W_{c \to f} \hat{N}_C \Gamma_{c \to f},\tag{4}
$$

227 228 229 230 where $\Gamma_{c \to f} \in \mathbb{R}^{2 \times (n+m)}$ is a $0-1$ assignment matrix, $\Gamma_{ij} = 1$ means that the j-th node in G_F be aggregated into the *i*-th node in G_C . $W_{c \to f} \in \mathbb{R}^{M \times M}$ is a learnable weight matrix. \hat{N}_F can be updates as $\hat{N}_F \leftarrow \hat{N}_F + \Delta N$ after aggregating the information from \hat{N}_C .

231 232 233 234 235 236 237 Overview. After structural and logical alignment, \hat{N}_F maintains clear structural and coherent semantics information, helping LLMs to comprehend TS tasks and activating potential capabilities. Both \hat{N}_F and \hat{N}_C are input into pre-trained LLMs. The DSCA-GNNs can be flexibly integrated into various layers of pre-trained LLMs, and only the first time apply it need f_e and f_z to obtain coarse-grained GNN. The output from the G_F branch is used to compute the MSE loss against the ground truth. In this section, we use the vanilla prompt to construct a specific DSCA-GNNs framework, we call it Vanilla Context-Alignment (VCA).

3.3 FEW-SHOT PROMPTING BASED CONTEXT-ALIGNMENT (FSCA)

240 241 242 243 The demo VCA in Sec. [3.2](#page-3-2) is the simplest and most direct attempt of Context-Alignment. Moving forward, we will naturally consider whether Context-Alignment can further enhance the performance of LLMs on TS tasks by leveraging more advanced prompt techniques from NLP.

244 245 246 247 248 249 250 In NLP, "few-shot prompting" refers to a small set of instances provided to the model to demonstrate a task, enabling the model to perform similar tasks effectively [\(Brown, 2020\)](#page-9-4). Based on this, we divide the TS embeddings ${e_i}_{i=1}^n$ into N parts while preserving their original order. Since the subsequent TS part can be used as ground truth for predictions based on the preceding TS parts, we can construct $N-1$ prediction demonstration examples using N parts of $\{e_i\}_{i=1}^n$ and language prompt embeddings $\{z_1, z_2, \ldots, z_m\}$ same as demo in Sec. [3.2.](#page-3-2) The j-th part of $\{e_i\}_{i=1}^n$ is denoted as $\{e_{j,1}, \ldots, e_{j,l_i}\}$. We arrange the TS-language embeddings in the format as:

$$
[e_{1,1},\ldots,e_{1,l_1},z_1,\ldots,z_m,e_{2,1},\ldots,e_{2,l_2},z_1,\ldots,z_m,\ldots,e_{N,1},\ldots,e_{N,l_N},z_1,\ldots,z_m].
$$
 (5)

253 254 255 256 Dual-Scale Context-Alignment GNNs of FSCA. Due to the verbose and lack of clear structural divisions of the format [5,](#page-4-1) LLMs struggle to understand the input. We first construct the coarsegrained GNN G_C . We introduce two learnable linear layers f_e and f_z to embed the TS tokens and language tokens into an M -dimensional space, respectively, which can be formalized as

$$
\tilde{\boldsymbol{e}}_j = f_e(\boldsymbol{e}_{j,1}, \boldsymbol{e}_{j,2}, \ldots, \boldsymbol{e}_{j,l_j}); \quad \tilde{\boldsymbol{z}} = f_z(\boldsymbol{z}_1, \boldsymbol{z}_2, \ldots, \boldsymbol{z}_m).
$$

Then form [5](#page-4-1) is transformed into form [6](#page-4-2)

$$
[\tilde{e}_1, \tilde{z}^{(1)}, \tilde{e}_2, \tilde{z}^{(2)}, \dots, \tilde{e}_N, \tilde{z}^{(N)}], \quad \tilde{e}_j, \tilde{z} \in \mathbb{R}^M, \quad j = 1, \dots, N.
$$
 (6)

For clarity in our discussion, we number the \tilde{z} in form [6,](#page-4-2) in fact, $\tilde{z} = \tilde{z}^{(i)} = \tilde{z}^{(j)}$, $i, j = 1, \ldots, N$. The directed edge set of the G_C can be represented as follows:

$$
\{E_C : \tilde{e}_j \to \tilde{z}^{(i)} | i = 1, \dots, N, j = 1, \dots, i\} \cup \{E_C : \tilde{z}^{(i)} \to \tilde{e}_{i+1} | i = 1, \dots, N-1\}.
$$
 (7)

267 268 269 In G_C , there are two types of edges, which guide two different logical relationships. The first type, as shown in the first item of [7,](#page-4-3) signifies that the prompt $\tilde{z}^{(i)}$ receives TS information from all preceding TS parts. The second type, as indicated in the second item of [7,](#page-4-3) implies that \tilde{e}_{i+1} is the correct output result of prompt $\tilde{z}^{(i)}$. In G_C , the weights of directed edges are set to 1.

training of FSCA can refer to Sec. [3.2](#page-3-2) and Fig. [1.](#page-2-0)

270 271 272 Fine-grained GNN G_F treats each token in the form [5](#page-4-1) as a node. The directed edge set of the G_F can be represented as follows:

 $\{E_F: \pmb{e}_{j,s} \to \pmb{z}_t^{(i)} | i = 1, \ldots, N, j = 1, \ldots, i, s = 1, \ldots, l_j, t = 1, \ldots, m\}$

273 274 275

 $\cup \{E_F: \bm{z}_t^{(i)} \rightarrow \bm{e}_{i+1,s} | i=1,\dots,N-1, s=1,\dots,l_{i+1}, t=1,\dots,m\},$ (8)

276 277 278 279 280 281 282 283 284 The formula [8](#page-5-0) means that the directed edges of G_F are a decomposition of the directed edges in G_C . Additionally, since LLMs have strong comprehension abilities for language prompts, we can prune the directed edges in G_F , transforming form [8](#page-5-0) into form [9,](#page-5-1) i.e., TS tokens are only connected to the first and last tokens of the prompt, thereby prevent overfitting. We constrain $\sum_{s=1}^{l_j} w_{j,s}^{(i)} = 1$ for the first type edges, $\sum_{s=1}^{l_{i+1}} w_{i+1,s}^{(i)} = 1$ for the second type edges, where $w_{j,s}^{(i)}$ is the edge weight of $e_{j,s} \to z_1^{(i)}$, $w_{i+1,s}^{(i)}$ is the edge weight of $z_m^{(i)} \to e_{i+1,s}$. $\{w_{i+1,s}^{(i)}\}_{s=1}^{l_j}$ and $\{w_{i+1,s}^{(i)}\}_{s=1}^{l_{i+1}}$ are proportional to the cosine similarity between node embeddings. Fig. [1](#page-2-0) provides a schematic of the structure. The node embedding update formula is similar to formula [3.](#page-3-3)

$$
^{285}
$$

286 287 288

289 290 291

293

 $\cup \{E_F: \bm{z}^{(i)}_m \to \bm{e}_{i+1,s} | i=1,\dots,N-1, s=1,\dots,l_{i+1}\},$ Learnable interactions & Overview. Similar to the demo in Sec. [3.2,](#page-3-2) we introduce an assignment

 $\{E_F : \bm{e}_{j,s} \to \bm{z}_1^{(i)} | i = 1, \ldots, N, j = 1, \ldots, i, s = 1, \ldots, l_j\}$

matrix and a learnable weight matrix to achieve learnable interactions between the two scales. The

292 4 EXPERIMENTS

294 295 296 297 298 299 300 301 302 The proposed Context-Alignment demonstrates robust performance across a variety of tasks, detailed in Sec. [4.2](#page-6-0) (long-term forecasting), Sec. [4.3](#page-6-1) (short-term forecasting), Sec. [4.4](#page-6-2) (few-shot forecasting), Sec. [4.5](#page-7-0) (zero-shot forecasting), and Sec. [4.6](#page-7-1) (classification). Most experiments leverage FSCA. Specifically, VCA validates its efficacy using logic guidance and structural division alone in section [4.1.](#page-5-2) For classification tasks with multiple classes, where GPT-2's length constraints are limiting, FSCA is reserved for binary classes, and VCA is applied to multi-class datasets. Context-Alignment significantly boosts training efficiency and cost-effectiveness, especially in few-shot and zero-shot forecasting, by establishing robust a priori structural understanding and logical relationships. Full results and dataset description are in Appendix [C](#page-15-0) and [A.2,](#page-12-0) respectively.

303 304 305 306 307 308 309 310 311 Baselines. Building on the groundwork of [Zhou et al.](#page-11-5) [\(2023\)](#page-11-5) and [Jin et al.](#page-9-0) [\(2024\)](#page-9-0), and mindful of page constraints, we selected a representative array of high-performing baselines for extensive evaluation. These encompass Transformer-based models such as iTransformer [\(Liu et al., 2023b\)](#page-10-7), FEDformer [\(Zhou et al., 2022\)](#page-11-3), Non-stationary Transformer [\(Liu et al., 2022\)](#page-10-8), ETSformer [\(Woo](#page-11-6) [et al., 2022\)](#page-11-6), PatchTST [\(Nie et al., 2022\)](#page-10-9), alongside notable non-Transformer methods like Times-Net [\(Wu et al., 2022\)](#page-11-1), and DLinear [\(Zeng et al., 2023\)](#page-11-7). We also included advanced LLM-based models—GPT4TS [\(Zhou et al., 2023\)](#page-11-5), Time-LLM [\(Jin et al., 2024\)](#page-9-0), and S²IP-LLM [\(Pan et al.,](#page-10-1) [2024\)](#page-10-1)—all utilizing GPT-2 as the standard LLM backbone to ensure model consistency. To ensure a fair comparison, we adhere to the experimental framework outlined in [Zhou et al.](#page-11-5) [\(2023\)](#page-11-5) and [Wu](#page-11-1) [et al.](#page-11-1) [\(2022\)](#page-11-1). Detailed evaluations are expanded upon in subsequent sections.

312 313

4.1 DEMO: VANILLA CONTEXT-ALIGNMENT

314 315 316 317 318 319 320 321 322 VCA achieves logical and structural alignment through DSCA-GNNs. As demonstrated on the ETT dataset (Table [1\)](#page-5-3), VCA substantially outperforms both variants without DSCA-GNNs and other baselines. A performance decline is observed compared to FSCA, which further augments LLMs' TS processing capabilities using demonstration examples prompt. VCA without DSCA-GNNs, despite incorporating

(9)

Method/Variant	Long-term Forecasting									
	ETTh1	ETTh ₂	ETTm1	ETTm2						
GPT4TS	0.427	0.354	0.352	0.266						
FSCA	0.394	0.316	0.342	0.250						
VCA w/o DSCA-GNNs	0.435	0.362	0.374	0.271						
VCA	0.417	0.335	0.349	0.259						

³²³ task description prompts, lacks context-alignment GNNs, resulting in more verbose and semantically confused inputs for LLM, thus yielding the worst outcomes.

324 325 4.2 LONG-TERM FORECASTING

326 327 328 329 330 331 Setups. For long-term forecasting tasks, we validate the efficacy of FSCA across eight prevalent datasets [\(Wu et al., 2022\)](#page-11-1): ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity, Traffic, and ILI. Consistent with GPT4TS [\(Zhou et al., 2023\)](#page-11-5), Time-LLM [\(Jin et al., 2024\)](#page-9-0), and S²IP-LLM [\(Pan et al.,](#page-10-1) [2024\)](#page-10-1), we utilize an input TS length of 512 except for the ILI dataset. Performance is evaluated over four prediction horizons: $\{24, 36, 48, 60\}$ for ILI and $\{96, 192, 336, 720\}$ for the other datasets, using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as metrics.

332 333 334 335 336 Results. As shown in Table [2,](#page-6-3) FSCA surpasses all baseline methods in most scenarios. Specifically, it reduces average MSE of 3.1% over the suboptimal method PatchTST, and outperforms other LLMbased methods—S² IP-LLM, Time-LLM, and GPT4TS by 7.3%, 12.2%, and 16.6%. This consistent superiority across diverse datasets highlights the critical role of logical and structural alignment. Furthermore, demonstration examples prompt boost LLMs' contextual understanding of TS data.

337 338 Table 2: Long-term forecasting tasks, all results are based on different horizons: {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for others. Bold: best, Underline: second best. Full results are provided in Appendix [C.1](#page-15-1)

4.3 SHORT-TERM FORECASTING

Table 3: Short-term forecasting on M4, with prediction horizons ranging from [6, 48]. The results are weighted averages across all datasets under different sampling intervals. Bold: best, Underline: second best. Full results are provided in Appendix [C.2](#page-15-2)

Setups. We conduct short-term forecasting experiments on the M4 dataset [\(Makridakis et al., 2018\)](#page-10-10), which includes market data across various frequencies, with prediction horizons ranging from 6 to 48. We incorporate N-HiTS [\(Challu et al., 2023\)](#page-9-7) and N-BEATS [\(Oreshkin et al., 2019\)](#page-10-11) as additional baselines. Performance is quantified using symmetric mean absolute percentage error (SMAPE), mean absolute scaled error (MASE), and the overall weighted average (OWA) as evaluation metrics.

Results. Results in Table [3](#page-6-4) indicate that FSCA exhibits competitive performance compared to SOTA methods. FSCA maintains robustness in both long-term and short-term forecasting, attributable to the effectiveness of structural and logical alignment across varying sequence lengths.

365 4.4 FEW-SHOT FORECASTING

Table 4: Few-shot forecasting task on 5% training data. Results are averaged across different prediction lengths {96, 192, 336, 720}. Bold: best, Underline: second best. Full results are provided in Appendix [C.3](#page-15-3)

375 376 377 Setups. The expressive potential of LLMs often results in a robust performance in few-shot scenarios [\(Brown, 2020;](#page-9-4) [Liu et al., 2023a\)](#page-10-12). While current LLM-based methods outperform earlier models like DLinear, PatchTST, and TimesNet, they do not fully exploit LLMs' deep TS comprehension, thus not maximizing their few-shot capabilities. To explore whether Context-Alignment can boost

378 379 380 the few-shot efficacy of LLMs, we perform experiments on the ETT datasets, following the protocol established by [Jin et al.](#page-9-0) [\(2024\)](#page-9-0). We evaluate the performance of FSCA using only 5% of training data, with results from 10% data detailed in Appendix [C.3.](#page-15-3)

381 382 383 384 385 386 387 Results. As shown in Table [4,](#page-6-5) our method consistently outperforms all baselines. It achieves a 6.7% reduction in average MSE compared to the leading LLM-based model, S^2IP -LLM. We observe further improvements of 9.4% and 10.8% against Time-LLM and GPT4TS. Moreover, FSCA shows a 15.8% performance gain over the SOTA transformer model PatchTST. We attribute these to the integration of prior knowledge in structural division and logic guidance by Context-Alignment. The strong generalizability of these priors, even with limited training data, effectively activates LLMs' latent few-shot capabilities in TS, further boosted by a few demonstration examples.

4.5 ZERO-SHOT FORECASTING

388 389 390

391 392 393 394 395 Setups. Despite the inherent zero-shot capabilities of LLMs [\(Kojima et al., 2022\)](#page-10-13), LLM-based methods struggle to fundamentally understand the structure of TS data and its logical associations with prompts, leading to underperformance compared to Transformer-based methods like PatchTST. Using the setup from Time-LLM [\(Jin et al., 2024\)](#page-9-0), we also evaluate the cross-domain efficacy of FSCA on ETT dataset. Specifically, the model is trained on Dataset A and then tested on Dataset B without utilizing any training data from Dataset B.

396 397 Table 5: Zero-shot learning results: the first column $A \rightarrow B$ indicates training on dataset A and testing on dataset B. Bold: best, Underline: second best. Full results are provided in Appendix [C.4](#page-16-0)

408 409 410 411 412 413 414 415 416 417 418 419 420 Results. Table [5](#page-7-2) shows that FSCA substantially outperforms the most competitive baselines. Compared to the second-best model, PatchTST, FSCA exhibits a 13.3% improvement in performance. Against LLM-based models like S²IP-LLM, Time-LLM, and GPT4TS, FSCA achieves performance gains of 18.3%, 17.7%, 24.3%. Experiments in both few-shot and zero-shot settings highlight FSCA's exceptional performance under data-scarce conditions. In these scenarios, Context-Alignment paradigm provides a robust contextual prior, enabling accurate logical and structural understanding that enhances the potential of LLMs for cross-domain TS processing.

Figure 2: For the classification task, the results show the average accuracy across 10 subsets from the UEA dataset. The complete results are displayed in Appendix [G.1.](#page-21-0)

421 4.6 TIME SERIES CLASSIFICATION

422 423 424 425 426 427 428 Setups. To assess the model's capability in learning advanced representations, we conduct comparative experiments on series classification using the setup outlined by [Zhou et al.](#page-11-5) [\(2023\)](#page-11-5). We select 10 multivariate UEA classification datasets [\(Bagnall et al., 2018\)](#page-9-8) from domains including ECG, audio, gesture, spectral recognition, etc. For binary class datasets like FaceDetection, we apply FSCA framework, adding a demonstration example prompt for each category at the beginning of the prediction sequence. For datasets with multiple classes, such as Handwriting with 26 classes, we employ VCA due to GPT-2's input length constraints.

429

430 431 Results. Fig. [2](#page-7-3) presents the average accuracy of various methods on all UEA classification datasets. FSCA achieves an accuracy of 76.4%, surpassing all baseline methods and recording a 2.4% increase over the next best model, [Zhou et al.](#page-11-5) [\(2023\)](#page-11-5). This performance suggests the effectiveness of

432 433 434 FSCA or VCA extends beyond predictive tasks. Additionally, Context-Alignment shows generality, indicating its potential applicability across various contexts in the field.

4.7 ABLATION STUDY

435 436

437 438 439 As shown in Table [6,](#page-8-0) we conduct an ablation study on the framework design and analyze the ef-fectiveness of FSCA. FSCA^{*} represents the optimal results, highlighted in bold in Table [6.](#page-8-0) D.4 is optimal for long-term forecasting, whereas D.3 is best for classification tasks.

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 Validity of Dual-Scale Context-Alignment GNNs. To evaluate DSCA-GNNs, we conduct comparative experiments from two perspectives. In A.1, without Dual-Scale GNNs, we rely solely on demonstration examples as prompts, resulting in higher average MSE compared to FSCA^{*}. In A.2, random initialization of adjacency matrix leads to further performance decline compared to A.1, underscoring that incorrect logical information can impair model performance. A comprehensive comparison across A.1, A.2, and FSCA^{*} confirms that GNNs guided by appropriate logical frameworks effectively leverage the inherent capabilities of LLMs in TS tasks.

455 456 457 Validity of Coarse-Grained Branch. In B.1, omitting this module impairs the model's ability to understand the overall structure and the macro-level logical relationships, resulting in

Table 6: Ablations results (average MSE for four prediction lengths in long-term forecasting and accuracy for the classification). Bold: best. In C.*, default insertion positions are the first and last layers; therefore, C.2 and D.3 are identical.

458 459 reduced performance compared to FSCA[∗]. This decline is due to reliance solely on the fine-grained branch for token-scale context alignment, which still leaves the inputs verbose and lacking structure.

460 461 462 463 The Number of LLM Layers. We conduct ablation studies to assess the impact of varying numbers of GPT-2 layers. C.* indicates that models with 4 and 6 layers perform optimally, while adding more layers causes overfitting [\(Zhou et al., 2023\)](#page-11-5). For computational efficiency, we select 4 layers (C.2).

464 465 466 467 468 469 470 471 472 473 Insertion Position of Dual-Scale Context-Alignment GNNs. DSCA-GNNs can integrate seamlessly into various layers of LLMs. Firstly, when priors for structural and logical alignment are present at the input, deeper layers of LLMs can more fully leverage this prior knowledge, hence, we default to employing this module at the model's input, as shown in configuration **D.1**. Secondly, D.2, D.3, and D.4 involve repeating integration of this module at the mid and output stages of the LLMs encoder, enhancing prior guidance and yielding performance improvements. Ablation studies for long-term forecasting and classification tasks reveal that optimal performance results from different insertion points, attributed to domain differences in token features among various LLMs layers [\(Ethayarajh, 2019\)](#page-9-1) and varying demands of different tasks; Thirdly, configuration D.5, which omits GNNs module at model's input, leads to decreased performance, confirming that incorporating context-alignment at initial stage enhances the overall utilization of pre-trained LLMs.

474 475

5 CONCLUSION

476 477

478 479 480 481 482 483 484 485 In this paper, We point out that effectively utilizing LLMs in TS tasks requires first activating their capabilities, then enhancing their performance. By rethinking the inherent strength of LLMs, We are the first to propose Context-Alignment paradigm, which aims to construct a context-level alignment between TS and language. Unlike previous methods based on token-level alignment, Context-Alignment constructs a consistent context for TS-language multimodal inputs, better harnessing LLMs' deep understanding of context to activate their potential on TS tasks. We develop DSCA-GNNs to achieve Context-Alignment. Besides, by integrating the Demonstration Examples Prompt technique, we introduce FSCA, which enhances LLMs' performance in TS tasks. Experiments demonstrate our method significantly outperforms others, particularly in few-shot and zero-shot forecasting tasks, and ablation studies confirm the importance of Context-Alignment.

486 487 REFERENCES

500

525

531

488 Oliver D Anderson. Time-series. 2nd edn., 1976.

- **489 490 491 492** Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv preprint arXiv:1811.00075*, 2018.
- **493 494** Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.
- **495 496** Tom B Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.
- **497 498 499** Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo: Prompt-based generative pre-trained transformer for time series forecasting. In *The Twelfth International Conference on Learning Representations*, 2024.
- **501 502 503 504** Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 6989–6997, 2023.
- **505 506** Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp architecture for time series forecasting. *arXiv preprint arXiv:2303.06053*, 2023.
- **507 508 509 510** Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794, 2016.
- **511 512 513** Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang, Kwei-Herng Lai, Leisheng Yu, Sirui Ding, Chia-Yuan Chang, Qiaoyu Tan, Daochen Zha, et al. Understanding different design choices in training large time series models. *arXiv preprint arXiv:2406.14045*, 2024.
- **514 515 516 517** Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. *Data Mining and Knowledge Discovery*, 34(5):1454–1495, 2020.
- **518 519 520 521** Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry of bert, elmo, and gpt-2 embeddings. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 55–65, 2019.
- **522 523 524** Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation learning for multivariate time series. *Advances in neural information processing systems*, 32, 2019.
- **526 527 528** Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and Marinka Zitnik. Units: Building a unified time series model. *arXiv preprint arXiv:2403.00131*, 2024.
- **529 530** Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Moment. *arXiv preprint arXiv:2402.03885*, 2024.
- **532 533** Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. *arXiv preprint arXiv:2111.00396*, 2021.
- **534 535 536 537** Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang, Ka Chun Cheung, Hongwei Qin, Jifeng Dai, and Hongsheng Li. Flowformer: A transformer architecture for optical flow. In *European conference on computer vision*, pp. 668–685. Springer, 2022.
- **538 539** Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming large language models. In *International Conference on Learning Representations*, 2024.

580 581 582

- **540 541 542 543** Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:22199–22213, 2022.
- **544 545 546** Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pp. 95–104, 2018a.
- **547 548 549** Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pp. 95–104, 2018b.
- **551 552 553** Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In *International conference on learning representations*, 2021.
- **554 555 556** Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are few-shot health learners. *arXiv preprint arXiv:2305.15525*, 2023a.
- **557 558 559 560** Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity in time series forecasting. *Advances in Neural Information Processing Systems*, 35:9881–9893, 2022.
- **561 562 563** Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint arXiv:2310.06625*, 2023b.
- **564 565 566 567** Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: Results, findings, conclusion and way forward. *International Journal of forecasting*, 34(4):802–808, 2018.
- **568 569 570** Ercong Nie, Shuzhou Yuan, Bolei Ma, Helmut Schmid, Michael Farber, Frauke Kreuter, and Hin- ¨ rich Schütze. Decomposed prompting: Unveiling multilingual linguistic structure knowledge in english-centric large language models. *arXiv preprint arXiv:2402.18397*, 2024.
- **571 572 573** Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.
- **574 575** BN Oreshkin, D Carpov, N Chapados, and Y Bengio. N-beats: Neural basis expansion analysis for interpretable time series forecasting. arxiv 2019. *arXiv preprint arXiv:1905.10437*, 2019.
- **576 577 578 579** Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song. $s²$ ip-llm: Semantic space informed prompt learning with llm for time series forecasting. In *Forty-first International Conference on Machine Learning*, 2024.
	- Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A dual-stage attention-based recurrent neural network for time series prediction. *arXiv preprint arXiv:1704.02971*, 2017.
- **583 584 585** Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- **586 587 588** Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of arima and lstm in forecasting time series. In *2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)*, pp. 1394–1401, 2018. doi: 10.1109/ICMLA.2018.00227.
- **589 590 591** Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. Test: Text prototype aligned embedding to activate llm's ability for time series. In *The Twelfth International Conference on Learning Representations*, 2024.
- **593** Sean J Taylor and Benjamin Letham. Forecasting at scale. *The American Statistician*, 72(1):37–45, 2018.

- Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers in time series: a survey. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*, pp. 6778–6786, 2023.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art ´ natural language processing. In *Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations*, pp. 38–45, 2020.
- Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential smoothing transformers for time-series forecasting. *arXiv preprint arXiv:2202.01381*, 2022.
- Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. *Advances in neural information processing systems*, 34:22419–22430, 2021.
- Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*, 2022.
- Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 11121–11128, 2023.
- Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. *arXiv preprint arXiv:2207.01186*, 2022.
- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.
- Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *International conference on machine learning*, pp. 27268–27286. PMLR, 2022.
- Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained lm. *Advances in neural information processing systems*, 36:43322–43355, 2023.

A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION

651 652

648 649 650

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 All deep learning networks are implemented in PyTorch and trained on NVIDIA H800 80GB GPUs and GeForce RTX 4090 GPUs. We conduct our experiments using the pretrained models from [Wolf](#page-11-8) [et al.](#page-11-8) [\(2020\)](#page-11-8). To ensure fair comparisons, we adhere to the experimental configurations outlined in [Wu et al.](#page-11-1) [\(2022\)](#page-11-1) across all baselines and maintain a uniform evaluation procedure. As discussed in the ablation study in Sec. [4.7](#page-8-1) (The Number of LLM Layers), we adopt the first 4 layers of GPT-2. For other LLM-based methods [\(Zhou et al., 2023;](#page-11-5) [Jin et al., 2024;](#page-9-0) [Pan et al., 2024\)](#page-10-1), we strictly follow their provided experimental settings or cite their performance if applicable. Most of our proposed method's training settings are based on [Zhou et al.](#page-11-5) [\(2023\)](#page-11-5): For predictive tasks, we utilize FSCA with $N = 2$ in forms forms [5](#page-4-1) and [6,](#page-4-2) providing one demonstration example. The Adam optimizer is used with decay rates $\beta = (0.9, 0.999)$ and initial learning rates from $\{10^{-4}, 5 \times 10^{-4}\}.$ We implement a cosine annealing schedule with $T_{\text{max}} = 20$ and $\eta_{\text{min}} = 10^{-8}$, and set the batch size to 256. Early stopping is configured throughout the training process. MSE loss is employed for long-term forecasting, while SMAPE loss is used for short-term predictions. In classification tasks, as described in Sec. [4.6,](#page-7-1) the FSCA framework is applied to binary class datasets, including a demonstration example for each category. For multi-class datasets, such as handwriting recognition with 26 classes, we employ the VCA approach due to the input constraints of LLMs. The RAdam optimizer with initial learning rates from $\{10^{-2}, 10^{-3}\}$ and a batch size of 64 is used. Training also incorporates early stopping and employs cross-entropy loss.

669 670 671

672

A.2 DATASET DETAILS

673 674 675 676 677 678 679 680 681 682 For the long-term forecasting task, we utilized eight widely used multivariate datasets [\(Wu et al.,](#page-11-1) [2022\)](#page-11-1), as detailed in Table [7.](#page-12-1) These include the Electricity Transformer Temperature (ETT) datasets [\(Zhou et al., 2021\)](#page-11-9), as well as Illness, Weather, Electricity, and Traffic datasets. The ETT dataset comprises ETTh1 and ETTh2, while the ETTm dataset includes ETTm1 and ETTm2. Specifically, the ETT datasets contain power load data from two power stations at varying resolutions; the Weather dataset features 21 meteorological indicators from Germany; the ILI dataset captures weekly patient counts and influenza-like illness rates; the Electricity dataset consists of hourly consumption data from 321 customers; and the Traffic dataset records road occupancy from various sensors on San Francisco highways. Table [7](#page-12-1) consolidates the feature details of these datasets, with the ETT dataset being applied in both few-shot and zero-shot learning tasks.

Table 7: Dataset details of long-term forecasting, wherein both ETTh and ETTm are concurrently utilized for few-shot and zero-shot learning.

691 692 693 694 For the short-term forecasting task, we employed the M4 benchmark dataset [\(Makridakis et al.,](#page-10-10) [2018\)](#page-10-10), which includes 10,000 time series across various domains, from business to economic forecasting, as shown in Table [8.](#page-12-2) The time series data is categorized into six groups, with sampling rates ranging from annually to hourly.

702 703 704 For the time series classification task, we utilized 10 multivariate UEA datasets from [Bagnall et al.](#page-9-8) [\(2018\)](#page-9-8). Table [9](#page-13-0) summarizes the number of classes, series lengths, feature dimensions, and sample sizes for training and testing.

705 706

Dataset | Train Cases | Test Cases | Dimensions | Length | Classes EthanolConcentration 261 263 3 1751 4 FaceDetection 5890 3524 144 62 2 Handwriting 150 850 3 152 26 Heartbeat 204 205 61 405 2 JapaneseVowels 270 370 12 29 9 PEMS-SF 267 173 963 144 7 SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2 SelfRegulationSCP2 200 180 7 1152 SpokenArabicDigits 6599 2199 13 93 10 UWaveGestureLibrary 120 320 33 315 8

Table 9: Dataset details of time series classification.

717 718 A.3 BASELINE DETAILS

719 720 721 iTransformer [\(Liu et al., 2023b\)](#page-10-7): iTransformer repurposes the Transformer architecture by applying attention and feed-forward networks on inverted dimensions to improve multivariate time series forecasting, achieving state-of-the-art performance on real-world datasets.

722 723 FEDformer [\(Zhou et al., 2022\)](#page-11-3): FEDformer combines Transformer models with seasonal-trend decomposition to capture both global trends and detailed structures in time series data.

724 725 726 Stationary [\(Liu et al., 2022\)](#page-10-8): Stationary introduces Non-stationary Transformers, which include Series Stationarization for improved predictability and De-stationary Attention to restore intrinsic non-stationary information, resulting in significant performance improvements and a substantial reduction in mean squared error compared to mainstream Transformer models.

727 728 729 ETSFormer [\(Woo et al., 2022\)](#page-11-6): ETSFormer is a novel Transformer architecture designed specifically for time-series forecasting, addressing the limitations of traditional models by incorporating exponential smoothing principles.

730 731 732 733 734 PatchTST [\(Nie et al., 2022\)](#page-10-9): PatchTST introduces an efficient Transformer-based architecture for multivariate time series forecasting and self-supervised representation learning, utilizing a segmentation approach that divides time series into subseries-level patches. This design enhances local semantic retention, significantly reduces computation and memory usage of attention maps, and allows the model to consider longer historical data.

- **735 736** TimesNet [\(Wu et al., 2022\)](#page-11-1): TimesNet is introduced as a novel approach for time series analysis that focuses on modeling temporal variations by transforming 1D time series into 2D tensors, thereby capturing complex intraperiod and interperiod variations.
- **737 738 739** Dlinear [\(Zeng et al., 2023\)](#page-11-7): Dlinear challenges the efficacy of Transformer-based models for longterm time series forecasting (LTSF), highlighting their limitations in capturing temporal relationships due to the permutation-invariant nature of self-attention mechanisms.
- **740 741 742** N-HiTs [\(Challu et al., 2023\)](#page-9-7): N-HiTs introduces a novel model for long-horizon forecasting that utilizes hierarchical interpolation and multi-rate data sampling techniques to effectively address the challenges of prediction volatility and computational complexity.
- **743 744 745 746 747** N-BEATS [\(Oreshkin et al., 2019\)](#page-10-11): N-BEATS addresses the univariate time series point forecasting problem using a novel deep neural architecture featuring backward and forward residual links with a deep stack of fully connected layers. Importantly, the model's configuration without time-seriesspecific components suggests that deep learning primitives alone can effectively tackle a variety of forecasting challenges while also providing interpretable outputs with minimal accuracy loss.
- **748 749 750** GPT4TS [\(Zhou et al., 2023\)](#page-11-5): GPT4TS presents a novel approach that leverages pre-trained LLMs for general time series analysis, addressing the challenge of limited training data by utilizing the Frozen Pretrained Transformer (FPT) architecture without altering the self-attention and feedforward layers.
- **751 752** Time-LLM [\(Jin et al., 2024\)](#page-9-0): Time-LLM is a reprogramming framework designed to adapt LLMs
- **753 754** for general time series forecasting by aligning time series data with natural language through input transformation and context enrichment techniques. Here, we use GPT-2 [\(Radford et al., 2019\)](#page-10-14) as the base LLM.
- **755** S^2 **IP-LLM** [\(Pan et al., 2024\)](#page-10-1): S^2 IP-LLM aligns pre-trained LLMs with time series embeddings to enhance forecasting performance. By designing a tokenization module for cross-modality alignment

756 757 758 and utilizing semantic anchors from pre-trained word embeddings, S^2IP -LLM effectively encodes temporal dynamics and retrieves relevant context for time series.

A.4 EVALUATION METRICS

761 762 763 764 765 766 We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) to evaluate the performance of long-term, few-shot, and zero-shot forecasting. For short-term forecasting on the M4 benchmark, following the approach in N-BEATS [\(Oreshkin et al., 2019\)](#page-10-11), we adopt Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and Overall Weighted Average (OWA). For time series classification tasks, as referenced in GPT4TS [\(Zhou et al., 2023\)](#page-11-5), accuracy is used as the evaluation metric.

767 768 769

759 760

$$
MSE = \frac{1}{H} \sum_{h=1}^{H} (Y_h - \hat{Y}_h)^2,
$$
\n
$$
MAE = \frac{1}{H} \sum_{h=1}^{H} |Y_h - \hat{Y}_h|,
$$
\n
$$
SMAPE = \frac{200}{H} \sum_{h=1}^{H} \frac{|Y_h - \hat{Y}_h|}{|Y_h| + |\hat{Y}_h|},
$$
\n
$$
MAPE = \frac{100}{H} \sum_{h=1}^{H} \frac{|Y_h - \hat{Y}_h|}{|Y_h|},
$$
\n
$$
MASE = \frac{1}{H} \sum_{h=1}^{H} \frac{|Y_h - \hat{Y}_h|}{\frac{1}{H - s} \sum_{j=s+1}^{H} |Y_j - Y_{j-s}|},
$$
\n
$$
OWA = \frac{1}{2} \left[\frac{SMAPE}{SMAPE_{Naive2}} + \frac{MASE}{MASE_{Naive2}} \right]
$$

,

where H denote the number of data samples, corresponding to the forecasting horizon in the experiment. *s* represents the periodicity of the time series. Y_h and \hat{Y}_h refer to the h-th ground truth and its corresponding prediction, respectively.

B DUAL-SCALE CONTEXT-ALIGNMENT GNNS IN CLASSIFICATION

The construction of Dual-Scale Context-Alignment GNNs relies on the given prompt. In this section, we introduce the Dual-Scale Context-Alignment GNNs based on vanilla prompt and demonstration examples prompt in classification tasks. Due to input length constraints, it is challenging to provide examples for many categories. Therefore, for multi-category classification tasks, we employ VCA approach. For binary classification tasks, we use FSCA and select one example from each category to serve as fixed input examples for both training and testing.

B.1 VANILLA CONTEXT-ALIGNMENT (VCA)

793 794 795 We only replace the prompt content in Sec. [3.2](#page-3-2) with "Predict category $(x$ in total) using previous data:", and the method for constructing the graph remains similar as Sec. 3.2 , where x denotes the number of categories.

B.2 FEW-SHOT PROMPTING CONTEXT-ALIGNMENT (FSCA)

We replace the prompt content in Sec. [3.2](#page-3-2) with "Predict category $(x$ in total) using previous data:", and arrange the input embeddings as the format [10,](#page-14-0) where every element belongs to an M-dimensional space.

$$
[e_1^{(1)},\ldots,e_n^{(1)},z_1^{(1)},\ldots,z_m^{(1)},y^{(1)},\ldots,e_1^{(l)},\ldots,e_n^{(l)},z_1^{(l)},\ldots,z_m^{(l)},y^{(l)},e_1^{(l+1)},\ldots,e_n^{(l+1)},z_1^{(l+1)},\ldots,z_m^{(l+1)}].
$$
\n(10)

804 805 806 807 808 809 $\{z_1^{(k)}, \ldots, z_m^{(k)}\} = \{z_1^{(l+1)}, \ldots, z_m^{(l+1)}\} = \{z_1, \ldots, z_m\}$ are the token embeddings of the prompt. We utilise $\{e_1^{(k)}, \ldots, e_n^{(k)}\}$ as fixed examples during training and testing phases, where ${e_1^{(k)}, \ldots, e_n^{(k)}}$ is from the k-th categories and $k = 1, \ldots, l$. $y^{(k)}$ is the embedding of the correct label for $\{e_1^{(k)},\ldots,e_n^{(k)}\}$. $\{e_1^{(l+1)},\ldots,e_n^{(l+1)}\}$ is the TS that needs to be classified. In the finegrained GNN G_F , each element in the form [10](#page-14-0) is treated as a node. Similar with Sec. [3.2](#page-3-2) and Sec. [3.3,](#page-4-0) two learnable linear layers f_e , f_z map form [10](#page-14-0) to form [11.](#page-15-4) Every element in form [11](#page-15-4) belongs **810 811** to an M-dimensional space.

812

 $[\tilde{e}^{(1)}, \tilde{z}^{(1)}, y^{(1)}, \ldots, \tilde{e}^{(l)}, \tilde{z}^{(l)}, y^{(l)}, \tilde{e}^{(l+1)}, \tilde{z}^{(l+1)}].$ (11)

813 814 815 816 For the coarse-grained GNN G_C , we construct directed edges based on logical relationships as described in formula [12.](#page-15-5) The first term indicates that the TS data provides information for the prompt, while the second term implies that $y^{(k)}$ is the output result of the prompt.

$$
\{E_C : \tilde{e}^{(k)} \to \tilde{z}^{(k)} | k = 1, ..., l + 1\} \cup \{E_C : \tilde{z}^{(k)} \to \mathbf{y}^{(k)} | k = 1, ..., l\}.
$$
 (12)

818 819 The directed edges of G_F are decompositions of the directed edges of G_C , which can be represented by formula [13.](#page-15-6)

 (1)

$$
\begin{array}{c} 820 \\ 821 \end{array}
$$

817

$$
\{E_F : e_i^{(k)} \to z_j^{(k)} | i = 1, ..., n, j = 1, ..., m, k = 1, ..., l+1\}
$$

$$
\cup \{E_F : z_j^{(k)} \to y^{(k)} | j = 1, ..., m, k = 1, ..., l\}.
$$
 (13)

$$
\begin{array}{c} 822 \\ 823 \\ 824 \end{array}
$$

Since LLMs have strong comprehension abilities for language modality prompts, we can prune the directed edges in G_F , transforming form [13](#page-15-6) into form [14,](#page-15-7) i.e., TS tokens and label embedding y are only connected to the first and last tokens of the prompt, thereby prevent overfitting. We constrain $\sum_{i=1}^{n} w_i^{(k)} = 1$ for the first type edges, $w^{(k)} = 1$ for the second type edges. $\{w_i^{(k)}\}_{i=1}^n$ are proportional to the cosine similarity between node embeddings. The updated node embedding matrices for G_F and G_C denoted as \hat{N}_F and \hat{N}_C , respectively, which is similar to formula [3.](#page-3-3)

$$
\{E_F: e_i^{(k)} \to \mathbf{z}_1^{(k)} | i = 1, \dots, n, k = 1, \dots, l+1\} \cup \{E_F: \mathbf{z}_m^{(k)} \to \mathbf{y}^{(k)} | k = 1, \dots, l\}.
$$
 (14)

832 833 834 835 836 837 Similar to the demo in Sec. [3.2,](#page-3-2) we introduce an assignment matrix and a learnable weight matrix to achieve learnable interactions between the two scales. Both $\hat N_F$ and $\hat N_C$ are input into pre-trained LLMs. The Dual-Scale Context-Alignment GNNs can be flexibly integrated into various layers of pre-trained LLMs as depicted in Fig. [1,](#page-2-0) and only the first time apply it need f_e and f_z to obtain coarse-grained GNN. The output from the G_F branch is used to compute the cross entropy loss against the ground truth.

838 839

840 841 842

C FULL RESULTS

C.1 LONG-TERM FORECASTING FULL RESULTS

843 844 845 846 847 848 849 Table [10](#page-16-1) presents the detailed long-term forecasting results across four prediction horizons. Compared to other models, including LLM-based methods, Transformer-based models, and other highperforming approaches, FSCA demonstrates strong and relatively stable performance across various datasets. It achieves an average 3.1% MSE reduction compared to the second-best method, PatchTST, and outperforms LLM-based methods $(S^2IP-LLM, Time-LLM,$ and GPT4TS) by 7.3%, 12.2%, and 16.6%, respectively. We attribute this consistent advantage to the successful Context-Alignment, which effectively guides LLMs' deep understanding of time series data, with demonstration examples prompt serving as a key factor in enhancement.

850 851

852

C.2 SHORT-TERM FORECASTING FULL RESULTS

853 854 We present the comprehensive short-term forecasting results in Table [11.](#page-16-2) Under different frequency settings, FSCA consistently outperforms most baseline models.

855 856

857

C.3 FEW-SHOT FORECASTING FULL RESULTS

858 859 860 861 Table [12](#page-17-0) presents the detailed results of the few-shot forecasting trained on 5% data across different prediction lengths. Except for DLinear's strong performance on the ETTm1 dataset, FSCA demonstrates significant enhancements in most scenarios across various datasets, outperforming the second-best model, S^2 IP-LLM, by 6.7%.

862 863 Table [13](#page-17-1) presents the detailed results of the few-shot forecasting task using 10% of the training data. FSCA demonstrates superior performance, outperforming the baseline across nearly all settings, with an average MSE reduction of 7.8% over the next best model, GPT4TS.

Table 10: Full results of long-term forecasting tasks, all results are based on different prediction horizons: 24, 36, 48, 60 for ILI and 96, 192, 336, 720 for others. Bold: best, Underline: second best.

Table 11: Full results of short-term time series forecasting on M4, with prediction horizons ranging from [6, 48]. The last three rows are weighted averages across all datasets under different sampling intervals. Bold: best, Underline: second best.

	Methods	FSCA	S^2 IP-LLM	Time-LLM	GPT4TS	iTransformer	DLinear	PatchTST	N-HiTS	N-BEATS	TimesNet	FEDformer	Stationary
	SMAPE	13.288	13.413	13.750	15.110	13.652	16.965	13.477	13.422	13.487	15.378	14.021	14.727
Year.	MASE	2.974	3.024	3.055	3.565	3.095	4.283	3.019	3.056	3.036	3.554	3.036	3.078
	OWA	0.781	0.792	0.805	0.911	0.807	1.058	0.792	0.795	0.795	0.918	0.811	0.807
	SMAPE	10.037	10.352	10.671	10.597	10.353	12.145	10.380	10.185	10.564	10.465	11.100	10.958
Quart.	MASE	1.174	1.228	1.276	1.253	1.209	1.520	1.233	1.180	1.252	1.227	1.350	1.325
	OWA	0.884	0.922	0.950	0.938	0.911	1.106	0.921	0.893	0.936	0.923	0.996	0.981
	SMAPE	12.762	12.995	13.416	13.258	13.079	13.514	12.959	13.059	13.089	13.513	14.403	13.917
Month.	MASE	0.947	0.970	1.045	1.003	0.974	1.037	0.970	1.013	0.996	1.039	1.147	1.097
	OWA	0.897	0.910	0.957	0.931	0.911	0.956	0.905	0.929	0.922	0.957	1.038	0.998
	SMAPE	4.761	4.805	4.973	6.124	4.78	6.709	4.952	4.711	6.599	6.913	7.148	6.302
Others.	MASE	3.207	3.247	3.412	4.116	3.231	4.953	3.347	3.054	4.430	4.507	4.064	4.064
	OWA	1.007	1.017	1.053	1.259	1.012	1.487	1.049	0.977	1.393	1.438	1.304	1.304
	SMAPE	11.828	12.021	12.494	12.690	12.142	13.639	12.059	12.035	12.250	12.880	13.160	12.780
ŠК	MASE	1.580	1.612	1.731	1.808	1.631	2.095	1.623	1.625	1.698	1.836	1.775	1.756
	OWA	0.850	0.857	0.913	0.940	0.874	1.051	0.869	0.869	0.896	0.955	0.949	0.930

C.4 ZERO-SHOT FORECASTING FULL RESULTS

 Table [14](#page-18-0) provides detailed results of the zero-shot forecasting task across different prediction lengths. FSCA consistently achieves optimal performance across all settings, with a significant margin. Compared to the second-best method, PatchTST, it shows an average improvement of 13.3%. Additionally, FSCA achieves MSE reductions of 18.3%, 17.7%, and 24.3% over other LLM-

Table 12: Full results of few-shot learning on 5% training data. All results are from four different prediction horizons $\{96, 192, 336, 720\}$. A lower MSE indicates better performance. Bold: best, Underline: second best. '-' means that 5% time series is not sufficient to constitute a training set.

based methods S²IP-LLM, Time-LLM, and GPT4TS, respectively. This improvement is attributed to FSCA's successful activation of LLMs' structured understanding of TS data, while the design of the Dual-Scale Context-Alignment GNNs ensures that LLMs grasp the logical relationships in demonstration examples prompt.

C.5 CLASSIFICATION FULL RESULTS

 Table [15](#page-18-1) presents the results on 10 multivariate UEA classification datasets. In the time series classification task, we have augmented the baselines with the following methods: XGBoost [\(Chen &](#page-9-9) [Guestrin, 2016\)](#page-9-9), Rocket [\(Dempster et al., 2020\)](#page-9-10), LSTNet [\(Lai et al., 2018a\)](#page-10-15), LSSL [\(Gu et al., 2021\)](#page-9-11), LightTS [\(Zhang et al., 2022\)](#page-11-10), Pyraformer [\(Liu et al., 2021\)](#page-10-16), TCN [\(Franceschi et al., 2019\)](#page-9-12), and Flowformer [\(Huang et al., 2022\)](#page-9-13). Compared to classical methods, RNN-based, Transformer-based, MLP-based, and other LLM-based approaches, FSCA demonstrates consistently superior performance. It achieves an average accuracy improvement of 2.4%, 2.7%, and 2.8% over S^2IP -LLM, Time-LLM, and GPT4TS, respectively. This demonstrates the versatility of FSCA, showing that

974																		
975	Methods		FSCA			S^2 IP-LLM	Time-LLM			GPT4TS		<i>i</i> Transformer		DLinear		PatchTST	TimesNet	
976	Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE								
		96	0.256	0.323	0.315	0.377	0.324	0.368	0.335	0.374	0.353	0.394	0.347	0.400	0.304	0.350	0.358	0.387
977	ETTh1	192	0.310	0.361	0.402	0.407	0.398	0.396	0.412	0.417	0.437	0.445	0.447	0.460	0.386	0.400	0.427	0.429
978	\downarrow ETTh2	336 720	0.313 0.374	0.373 0.419	0.453 0.442	0.432 0.451	0.410 0.403	0.423 0.449	0.441 0.438	0.444 0.452	0.482 0.556	0.476 0.506	0.515 0.665	0.505 0.589	0.414 0.419	0.428	0.449 0.448	0.451 0.458
979		Avg	0.313	0.369	0.403	0.417	0.384	0.409	0.406	0.422	0.457	0.455	0.493	0.488	0.380	0.443 0.405	0.421	0.431
980		96	0.202	0.295	0.242	0.319	0.236	0.320	0.236	0.315	0.247	0.319	0.255	0.357	0.215	0.304	0.239	0.313
	ETTh1	192	0.258	0.329	0.286	0.337	0.265	0.353	0.287	0.342	0.293	0.350	0.338	0.413	0.275	0.339	0.291	0.342
981	\downarrow	336	0.311	0.360	0.351	0.367	0.337	0.376	0.341	0.374	0.364	0.419	0.425	0.465	0.334	0.373	0.342	0.371
982	ETTm2	720	0.390	0.407	0.422	0.416	0.429	0.430	0.435	0.422	0.534	0.470	0.640	0.573	0.431	0.424	0.434	0.419
983		Avg	0.290	0.348	0.325	0.360	0.317	0.370	0.325	0.363	0.360	0.390	0.415	0.452	0.314	0.360	0.327	0.361
		96	0.475	0.473	0.668	0.567	0.618	0.515	0.732	0.577	0.854	0.606	0.689	0.555	0.485	0.465	0.848	0.601
984	ETTh ₂	192	0.520	0.500	0.575	0.526	0.715	0.570	0.758	0.559	0.863	0.615	0.707	0.568	0.565	0.509	0.860	0.610
985	\downarrow	336	0.528	0.512	0.655	0.577	0.636	0.523	0.759	0.578	0.867	0.626	0.710	0.577	0.581	0.515	0.867	0.626
986	ETTh1	720	0.586	0.545	0.778	0.568	0.683	0.553	0.781	0.597	0.887	0.654	0.704	0.596	0.628	0.561	0.887	0.648
987		Avg	0.527	0.507	0.669	0.560	0.663	0.540	0.757	0.578	0.868	0.625	0.703	0.574	0.565	0.513	0.865	0.621
		96	0.200	0.293	0.221	0.303	0.258	0.326	0.253	0.329	0.244	0.330	0.240	0.336	0.226	0.309	0.248	0.324
988	ETTh ₂	192 336	0.256 0.310	0.326 0.358	0.295	0.344	0.303 0.356	0.342 0.383	0.293 0.347	0.346 0.376	0.291 0.351	0.356 0.391	0.295 0.345	0.369 0.397	0.289 0.348	0.345 0.379	0.296 0.353	0.352 0.383
989	\downarrow ETTm2	720	0.384	0.409	0.340 0.453	0.376 0.428	0.440	0.434	0.446	0.429	0.452	0.451	0.432	0.442	0.439	0.427	0.471	0.446
990		Avg	0.288	0.347	0.327	0.363	0.339	0.371	0.335	0.370	0.335	0.382	0.328	0.386	0.325	0.365	0.342	0.376
		96	0.302	0.361	0.358	0.382	0.355	0.403	0.353	0.392	0.371	0.407	0.365	0.415	0.354	0.385	0.377	0.407
991	ETTm1	192	0.354	0.395	0.454	0.444	0.449	0.450	0.443	0.437	0.463	0.458	0.454	0.462	0.447	0.434	0.471	0.453
992	\downarrow	336	0.349	0.398	0.488	0.452	0.479	0.467	0.469	0.461	0.481	0.485	0.496	0.494	0.481	0.463	0.472	0.484
993	ETTh ₂	720	0.407	0.438	0.469	0.478	0.477	0.476	0.466	0.468	0.503	0.482	0.541	0.529	0.474	0.471	0.495	0.482
994		Avg	0.353	0.398	0.442	0.439	0.440	0.449	0.433	0.439	0.455	0.458	0.464	0.475	0.439	0.438	0.457	0.454
		96	0.175	0.261	0.203	0.299	0.218	0.271	0.217	0.294	0.219	0.305	0.221	0.314	0.195	0.271	0.222	0.295
995	ETTm1	192	0.231	0.298	0.272	0.325	0.288	0.335	0.277	0.327	0.277	0.347	0.286	0.359	0.258	0.311	0.288	0.337
996	\downarrow	336	0.285	0.334	0.303	0.347	0.322	0.355	0.331	0.360	0.354	0.378	0.357	0.406	0.317	0.348	0.341	0.367
997	ETTm2	720	0.363	0.383	0.436	0.418	0.414	0.409	0.429	0.413	0.426	0.420	0.476	0.476	0.416	0.404	0.436	0.418
998		Avg	0.264	0.319	0.304	0.347	0.311	0.343	0.313	0.348	0.319	0.363	0.335	0.389	0.296	0.334	0.322	0.354
	ETTm2	96 192	0.277 0.349	0.345 0.393	0.324 0.403	0.383 0.422	0.334 0.439	0.416 0.441	0.360 0.434	0.401 0.437	0.347 0.438	0.401 0.444	0.333 0.441	0.391 0.456	0.327 0.411	0.367 0.418	0.360 0.434	0.401 0.437
999	\downarrow	336	0.343	0.398	0.434	0.442	0.455	0.457	0.460	0.459	0.459	0.464	0.505	0.503	0.439	0.447	0.460	0.459
1000	ETTh ₂	720	0.401	0.437	0.462	0.467	0.488	0.479	0.485	0.477	0.485	0.477	0.543	0.534	0.459	0.470	0.485	0.477
1001		Avg	0.343	0.393	0.406	0.429	0.429	0.448	0.435	0.443	0.432	0.447	0.455	0.471	0.409	0.425	0.435	0.443
		96	0.401	0.415	0.583	0.524	0.488	0.445	0.747	0.558	0.619	0.564	0.570	0.490	0.491	0.437	0.747	0.558
1002	ETTm2	192	0.457	0.453	0.609	0.501	0.555	0.464	0.781	0.560	0.685	0.565	0.590	0.506	0.530	0.470	0.781	0.560
1003	\downarrow	336	0.497	0.480	0.585	0.522	0.608	0.538	0.778	0.578	0.792	0.578	0.706	0.567	0.565	0.497	0.778	0.578
1004	ETTm1	720	0.563	0.502	0.712	0.579	0.699	0.566	0.769	0.573	0.727	0.579	0.731	0.584	0.686	0.565	0.769	0.573
		Avg	0.480	0.463	0.622	0.532	0.588	0.503	0.769	0.567	0.706	0.572	0.649	0.537	0.568	0.492	0.769	0.567
1005																		

 Table 14: Full results of Zero-shot learning: the first column $A \rightarrow B$ indicates training on dataset A and testing on dataset B. Bold: best, Underline: second best.

 its framework can be effectively applied beyond time-series forecasting tasks to achieve excellent performance in other tasks as well.

 Table 15: Full results for the classification task. '.' indicates the name of *former. Bold: best, Underline: second best.

D VISUALIZATION

 Figure [3](#page-19-0) presents visualization examples of FSCA prediction results on the ETTh1, ETTm1, Electric, and Traffic datasets with an input length of 512 and a prediction length of 96. It can be observed that FSCA achieves good predictive performance across various datasets.

 Figure 3: Sequential visualization examples of prediction results on the ETTh1, ETTm1, Electricity, and Traffic datasets are presented, with two examples per dataset. The blue lines represent predictions, while the orange lines indicate ground truth. The visualizations start at x-axis position 512.

E SCHEMATIC DIAGRAM OF THE FRAMEWORK

1097 1098 1099 Figure 4: Schematic diagram of the process of Vanilla Context-Alignment (VCA) and Few-Shot Prompting based Context-Alignment (FSCA). The light-colored square sequence represents the finegrained branch; the dark-colored square sequence represents the coarse-grained branch.

1100 1101 In this section, we describe our method in greater detail and specificity through a diagram and quantitative examples.

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 The bottom of Fig. [4](#page-20-0) features the TS data input. The left subfigure presents the Vanilla Context-Alignment (VCA) process for any TS tasks, where the TS input is tokenized together with the task description prompt to construct the simple graph structure; edges in both coarse-grained and finegrained graphs are built from the TS input directed toward the task prompt. The middle subfigure illustrates Few-Shot Prompting Context-Alignment (FSCA) for forecasting tasks, which is detailed in Sec. [3.3,](#page-4-0) showing the division of the TS input into subsequences, with the subsequences positioned later serving as the ground truth for earlier ones, thereby forming the edge connections. The right subfigure depicts the classification task using FSCA (detailed in Sec. [B.2\)](#page-14-1), differing from forecasting tasks in that, unable to segment the TS input to create examples, we must extract one sample from the training set for each category as the fixed example.

1112 1113 1114 Below, we would facilitate the understanding of FSCA for tackling forecasting tasks by detailing a simple example. This could also provide clearer explanations of Eq[.5](#page-4-1) and Eq[.6.](#page-4-2) The processes VCA and FSCA for classification tasks are similar and would not be reiterated.

1115 1116 1117 Assuming we have inputs processed through patching and token embedding, these include TS embeddings of length 8 and task description prompt embeddings of length 2 (the prompt is "Predict future sequences using previous data:" in FSCA for forecasting, here the length is an example):

1118 1119 1120 1121 1122 1123 Firstly, for the fine-grained branch, consider the scenario in which the input TS embeddings are segmented into 2 subsequences, each comprising four embeddings. Thus, TS_{sub}^1 is $[e_{1,1}, e_{1,2}, e_{1,3}, e_{1,4}]$, and TS_{sub}^2 is $[e_{2,1}, e_{2,2}, e_{2,3}, e_{2,4}]$, where $e_{i,j}$ indicates j-th embedding in subsequence i. Similarly, $z_{i,j}$ refers to j-th embedding in the prompt of subsequence i. Here, $[z_{1,1}, z_{1,2}] = [z_{2,1}, z_{2,2}]$. Ultimately, Eq[.5](#page-4-1) is instantiated as:

$$
\frac{1124}{1125}
$$

1080

$$
[\bm{e}_{1,1}, \bm{e}_{1,2}, \bm{e}_{1,3}, \bm{e}_{1,4}, \bm{z}_{1,1}, \bm{z}_{1,2}, \bm{e}_{2,1}, \bm{e}_{2,2}, \bm{e}_{2,3}, \bm{e}_{2,4}, \bm{z}_{2,1}, \bm{z}_{2,2}].
$$

1126 1127 1128 1129 1130 1131 1132 Secondly, we need to construct a graph structure for this input before it enters LLM. The basic logic for constructing the graph is that TS_{sub}^2 serves as the ground truth for TS_{sub}^1 (The latter subsequence serves as the correct label for the former subsequence). Specifically, starting with all elements in TS_{sub}^1 , construct directed edges to the first item of the corresponding task description, $z_{1,1}$. Subsequently, from the last item of the task description, $z_{1,2}$, construct directed edges to all elements in TS_{sub}^2 . Since all TS subsequences are used to predict future sequences, the first token of the last prompt, $z_{2,1}$, needs to establish edge connections with both TS_{sub}^1 and TS_{sub}^2 .

1133 Thirdly, for the coarse-grained branch, it is essential to inform the LLM that a time series should be treated as a whole. Thus, TS_{sub}^{i} must be mapped to individual node embedding by a linear

1134 1135 1136 1137 layer. To align the scales, the prompt embeddings are also mapped to a node embedding. Thus, the coarse-grained sequences can be denoted as $[\tilde{e}_1, \tilde{\mathbf{z}}^{(1)}, \tilde{e}_2, \tilde{\mathbf{z}}^{(2)}]$ (instantiation of Eq[.6\)](#page-4-2). Additionally, the graph construction logic is consistent with that of the fine-grained branch.

1139 F ALGORITHM OF FSCA

1138

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 Algorithm: Forward process of Few-Shot prompting Context-Alignment (FSCA) **Input:** TS embeddings $\{e_i\}_{i=1}^n$ and prompt embeddings $\{z_1, z_2, \ldots, z_m\}$ after tokenization and embedding. Linear Layers f_e , f_z , f_{cf} and f_o . GCN convolutional layers $\overline{GCN_F}$ and $\overline{GCN_C}$. The upper limit of transformer blocks amount in LLM L. LLM pretrained transformer blocks $\{T^i\}_{i=1}^L$. 1: **Fine-grained input construction:** We divide the TS embeddings ${e_i}_{i=1}^n$ into N parts and replicate the prompt embeddings $\{z_1, z_2, \ldots, z_m\}$ into N copies, combining them to form the fine-grained input sequences. The j-th part of $\{e_i\}_{i=1}^n$ is denoted as $\{e_{j,1},\ldots,e_{j,l_j}\}\$. The fine-grained input as the format [5](#page-4-1) 2: **Building the fine-grained graph** G_F of GCN_F : G_F treats each token in the fine-grained input sequences as a node. The directed edge set of the G_F can be represented as formula [8](#page-5-0) 3: Coarse-grained input construction: Use two learnable linear layers f_e and f_z to embed the TS tokens and language tokens into an M -dimensional space, respectively, which can be formalized as: $\tilde{\mathbf{e}}_j = f_e(\mathbf{e}_{j,1}, \mathbf{e}_{j,2}, \dots, \mathbf{e}_{j,l_j}); \quad \tilde{z} = f_z(z_1, z_2, \dots, z_m).$ The final coarse-grained input as the format [6.](#page-4-2) 4: **Building the coarse-grained graph** G_C of GCN_C : Similar to the construction of G_F , the directed edge set of the \tilde{G}_C can be represented as form [7](#page-4-3) 5: Enter the pre-trained LLM transformer blocks. Current layer index l is initialized to 0, H_F^0 and H_C^0 are the fine-grained input and coarse-grained input obtained in steps 2 and 4 respectively: while current layer index l is less than or equal to the upper limit L of transformer blocks amount in LLM do $\boldsymbol{H}_C^{l+1} = GCN_C(T^l(\boldsymbol{H}_C^l)),$ $H_F^{l+1} = GCN_F(T^l(H_F^l)) + f_{cf}(H_C^{l+1}),$ $l = l + 1.$ end while 6: **Obtain the prediction result.** The final fine-grained branch LLM hidden state H_C^L is converted into the prediction sequence through f_o : $\boldsymbol{p}=f_o(\boldsymbol{H}_C^L).$ 7: Complete one forward iteration. Return p. G EXPERIMENTAL ANALYSIS G.1 RANDOMLY REPLACE THE PRE-TRAINED WEIGHTS OF LLM *0.52 0.54 GPT4TS FSCA S* 2 *IP-LLM 0.42 0.44 GPT4TS FSCA S* 2 *IP-LLM*

1188 1189 1190 1191 1192 1193 1194 1195 As shown in Fig. [5,](#page-21-1) we randomly initialize GPT-2 pre-trained weights at varying ratios to demonstrate scenarios involving under-trained and untrained conditions. As the random initialization ratio increases, LLM's contextual understanding ability decreases, leading to a decline in our model's performance. When the model's capability is weak, our results are as poor as those of GPT4TS (the most direct method to utilize LLM for TS tasks) and S^2IP -LLM (a token-alignment based method). However, as the LLM's capability improves, our method significantly outperforms GPT4TS and S²IP-LLM, achieving a lower MSE. These findings demonstrate that our approach more effectively activates the potential of pre-trained LLMs for TS tasks.

1196

1198

1237

- **1197** G.2 SCALE ANALYSIS
- **1199** We analyze the scaling effect of FSCA in three aspects:

1200 1201 1202 Model Size: Ablation experiments on the number of GPT-2 layers (Table [6\)](#page-8-0) show performance declines as the layer count increases, consistent with findings in GPT4TS.

1203 1204 Training Data Size: As shown in Table [17,](#page-22-0) using $5\%, 10\%, 25\%, 50\%, 75\%$ and full of the training data reveals continuous performance improvement, particularly significant at the 50% data point.

1205 1206 1207 1208 Few-Shot Prompting Examples' amount: Table [16](#page-22-1) shows that more examples yield modest gains for short prediction lengths (96) but reduce effectiveness for longer ones (336, 720). This likely results from shorter input lengths per example due to divisions of the TS input, creating a mismatch with longer required prediction lengths.

1209 1210 Table 16: Results of different examples amount for the long-term forecasting task. All results are averaged on different prediction horizons: {96, 192, 336, 720}. Bold: best, Underline: second best.

1230 G.3 FULLY TUNING ANALYSIS

1231 1232 1233 1234 1235 1236 GPT4TS has demonstrated that fully tuning LLMs for TS tasks, while straightforward, incurs high computational costs and yields suboptimal results by compromising the inherent generic knowledge of LLMs. Instead, our approach, like other pre-trained LLM-based TS methods (e.g., Time-LLM, TEST, S²IP-LLM), focuses on freezing most LLM components to efficiently harness their potential. As shown in Table [18,](#page-22-2) we still supplement our results with fully tuning, which similarly performed suboptimally.

Table 18: Fully tuning results of FSCA and GPT4TS.

1242 1243 G.4 COMPARISON BETWEEN VCA AND OTHER LLM-BASED METHODS

1244 1245 1246 1247 1248 1249 1250 In this section, we focus on comparing VCA with other LLM-based methods. The results show that VCA generally performs second only to FSCA, demonstrating the effectiveness of Context-Alignment, which outperforms Token-Alignment and other LLM-based approaches. Compared to FSCA, the results also validate the enhancing effectiveness of the few-shot prompting technique employed in FSCA. Table [19,](#page-23-0) Table [20,](#page-23-1) Table [21,](#page-23-2) Table [22,](#page-23-3) Table [23,](#page-24-0) respectively show the results of long-term forecasting, short-term forecasting, few-shot forecasting, zero-shot forecasting and classification tasks.

> Table 19: For long-term forecasting tasks, comparison between VCA and other LLM-based methods. All results are averaged on different prediction horizons: {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for others. Bold: best, Underline: second best.

Table 20: For the short-term time series forecasting, comparison between VCA and other LLM-based methods. Bold: best, Underline: second best.

Table 21: For the few-shot learning task on 5% training data, comparison between VCA and other LLM-based methods. All results are averaged across four different prediction horizons {96, 192, 336, 720}. Bold: best, Underline: second best.

Table 22: For the zero-shot learning results, comparison between VCA and other LLM-based methods. The first column $A \rightarrow B$ indicates training on dataset A and testing on dataset B. Bold: best, Underline: second best.

1294

G.5 EXPERIMENTAL EFFICIENCY ANALYSIS.

1295 We incorporate comparisons of experimental efficiency with other LLM-based methods, focusing on the number of parameters and execution speed. As shown in Table [24.](#page-24-1) Our method ranks just behind

1324

Table 23: For classification tasks, comparison between VCA and other LLM-based methods. Bold: best, Underline: second best.

1312 1313 1314 1315 1316 GPT4TS, which only incorporates linear layers at the input and output stages of LLMs. In contrast, other popular methods require token-alignment to adapt LLMs for time series data, aligning TS data with word embeddings in the vocabulary. Additionally, these methods often include extra operations. For example, Time-LLM repeatedly generates prompts and retrieves corresponding embeddings each iteration, while S²IP-LLM separates TS inputs and performs prompt retrieval.

1317 1318 1319 1320 1321 1322 1323 The computational costs of our FSCA method mainly stem from two aspects. Firstly, the use of dual-scale GNNs introduces two learnable matrices (Eq. [3\)](#page-3-3), which, as shown in the table comparing FSCA with the version without dual-scale GNNs, add a slight increase in computational load. Secondly, the process of constructing coarse-grained inputs necessitates two learnable linear layers to transform fine-grained node embeddings into coarse-grained ones. The input dimension of these layers is dictated by the number of input TS patches, making it the primary contributor to increased overhead.

Table 24: Comparisons of experimental efficiency with other LLM-based methods.

			Training Params Training Params Percentages Training Time for 1 iteration(s) Inference Time for 1 iteration(s)	
GPT4TS	17.33M	17.6	0.457	0.215
Time-LLM	70.85M	46.37	2.894	1.723
$S^2IP-LLM$	56.95M	41.25	2.415	1.316
FSCA w/o Coarse Branch	12.43M	13.29	0.348	0.155
FSCA w/o Dual-Scale GNNs	35.83M	30.6	0.556	0.322
FSCA	37.02M	31.3	0.587	0.331

G.6 COMPARISON OF DIFFERENT PROMPT TYPES.

1335 1336 We compare our approach with two other types of prompts detailed in Table [25:](#page-25-0) data domain and input statistics, referencing Time-LLM [\(Jin et al., 2024\)](#page-9-0). Here are the prompt examples:

1337 1338 The original prompt is straightforward: "Predict future sequences using previous data."

1339 1340 1341 1342 The data domain prompt, illustrated using the ETTh dataset, is: "[Data domain:] The Electricity Transformer Temperature (ETT) is crucial for long-term electric power systems management. ETTh1 and ETTh2 represent 1-hour level data. Each data point includes the 'oil temperature' and six power load features. [Task:] Predict future sequences using previous data.'

1343 1344 1345 The input statistics prompt describes:"[Input statistics:] The input features a minimum value of <min val>, a maximum of <max val>, and a median of <median val>. The overall trend is <upward or downward>. [Task:] Predict future sequences using previous data."

1346 1347 1348 1349 Our results show that the data domain prompt performs nearly the same as the original prompt. The input statistics prompt slightly enhances performance. However, it requires recalculating statistical features and regenerating corresponding embeddings by the LLM tokenizer with each iteration, significantly slowing down the process: training time for one iteration increased from 0.587 seconds to 1.431 seconds.

1350

G.7 COMPARISON OF DIFFERENT NETWORK TYPES IMPLEMENTING CONTEXT-ALIGNMENT

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 We replace the GCN module in our dual-scale GNN framework with alternative networks, including MLP, CNNs, and self-attention mechanisms, to demonstrate that graph structures are the optimal choice within the Context-Alignment paradigm. Table [26](#page-25-1) confirms that GCN-based methods surpass other network models. The superiority of GNNs stems from their unique ability to model node-edge structures, which allows for a more nuanced representation of structural and logical relationships. In our framework, dual-scale nodes articulate hierarchical structure, while edges represent logical connections. Consequently, this dual-scale GNN framework enhances the alignment of time series data within contexts that LLMs can understand, thereby leveraging pre-trained LLMs' capabilities for time series tasks. Additionally, we integrate GraphSAGE, another prominent GNN variant, to further confirm the robustness of our framework across different graph networks.

Table 26: Results of implementing Context-Alignment paradigm using different network types.

1376 1377 G.8 COMPARISON WITH TS FOUNDATION MODELS

1378 1379 1380 1381 1382 1383 We include comparative results with pre-trained time series foundation models such as UniTS-ST [\(Gao et al., 2024\)](#page-9-14), MOMENT [\(Goswami et al., 2024\)](#page-9-15), and TSMixer [\(Chen et al., 2023\)](#page-9-16). Table [28,](#page-26-0) [27](#page-25-2) reveal that while UniTS-ST outperforms some LLM-based methods, our approach still shows superior performance. We attribute this advantage to our method's effective exploitation of the deep logical and structural understanding inherent in LLMs, which better harnesses their capabilities for TS tasks. This underscores the significant potential of LLMs in TS applications.

Table 27: For classification tasks, comparison results with time series foundation models.

1398 1399

1400

1401

1402

ith time series foundation models.

TS Foundation Models