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Abstract

Code switching (CS) is a very common phe-001
nomenon in written and spoken communica-002
tion, but is handled poorly by many natural lan-003
guage processing (NLP) applications. Looking004
to the application of building CS corpora, we005
explore CS language identification (LID) for006
corpus building. We make the task more real-007
istic by scaling it to more languages and con-008
sidering models with simpler architectures for009
faster inference. We also reformulate the task010
as a sentence-level multi-label tagging prob-011
lem to make it more tractable. Having defined012
the task, we investigate three reasonable archi-013
tectures for this task and define metrics which014
better reflect desired performance. We present015
empirical evidence that no current approach is016
adequate, and finally provide recommendations017
for future work in this area.018

1 Introduction019

Code switching (CS), or the use of one or more020

languages within the same utterance (Sitaram et al.,021

2019), is a very common phenomenon in writ-022

ten and spoken communication (Doğruöz et al.,023

2021), but one which many natural language pro-024

cessing (NLP) applications currently struggle to025

deal with (Solorio et al., 2021; Winata et al., 2023).026

An obvious first step in building better systems for027

CS is gathering the data necessary for training ef-028

fective models, which is currently lacking for CS029

(Mendels et al., 2018). A fundamental part of this030

process is identifying CS in the first place.031

In this paper, we look at CS language identifica-032

tion (LID) for text and the challenges in getting CS033

LID systems to work at scale. Previous shared tasks034

on CS LID have produced systems which achieve035

impressive results (Solorio et al., 2014; Molina036

et al., 2016), albeit limited to two languages. We037

seek to extend CS LID systems to work in a real-038

istic setting as part of a corpus building pipeline by039

scaling up both the number of languages covered040

and the speed of inference. 041

We therefore reformulate CS LID as a multi- 042

label task where the aim is to assign a set of lan- 043

guage labels to each sentence, rather than a word- 044

level or document-level tagging task as in previ- 045

ous work (Section 3). We experiment with high- 046

coverage LID systems (200+ languages) which are 047

simple enough to scale easily, and investigate three 048

different model architectures as reasonable baseline 049

approaches to the task (Section 4). We test on wide 050

range of CS and single-label LID test sets aiming 051

to cover as wide a range of languages as possible 052

(Section 5), and we measure performance with met- 053

rics chosen to better reflect true performance in our 054

multi-label setting than those commonly used for 055

LID (Section 6). 056

We find that even the best-performing models 057

are still inadequate for identifying CS text at scale 058

(Section 7), due to the inherent difficulty of defin- 059

ing CS and detecting the intended language(s) in 060

realistic settings. We make recommendations for 061

future work in this area based on our findings (Sec- 062

tion 8) and make our code freely available to aid 063

further research.1 064

2 Previous work 065

LID has been an active topic of research for a long 066

time in NLP (Jauhiainen et al., 2019). Much of 067

the most recent research on this topic has been 068

towards covering more and more languages, with 069

some models claiming to cover over a thousand lan- 070

guages (Brown, 2014; Dunn, 2020; Adebara et al., 071

2022; NLLB Team et al., 2022; Burchell et al., 072

2023). However, nearly all general-purpose LID 073

systems assume that text is entirely monolingual 074

(e.g. NLLB Team et al., 2022) or occasionally that 075

any different languages present occur in discrete 076

chunks (e.g. Ooms, 2023). This leads to pipelines 077

where CS text is ignored or discarded. 078
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Previous work on multiple-label LID specifically079

can be split into two main sub-tasks: multilingual080

LID, where the expected input is a document con-081

taining discrete monolingual chunks in different082

languages; and CS LID, where the expected in-083

put is a sentence or short text containing CS text.084

The former task has a longer history and its inten-085

ded application is to segment web text (Baldwin086

and Lui, 2010; Lui et al., 2014; Jauhiainen et al.,087

2015; Kocmi and Bojar, 2017). The latter task088

has received more attention recently including sev-089

eral shared tasks on CS LID, where the aim was090

word-level tagging of CS text given a known pair091

of languages (Solorio et al., 2014; Molina et al.,092

2016). However, both tasks have a limited applic-093

ation to web-scale text, since they made the as-094

sumption that the input could only be in a small095

number of known languages and they relied on096

computationally-expensive, high-capacity models097

like transformers (Vaswani et al., 2017) or LLMs098

for classification. We argue that these are not real-099

istic for filtering web crawls.100

Finally, we note that despite the wide range of101

approaches towards monolingual LID (Jauhiainen102

et al., 2019), LID algorithms are still found to103

perform poorly in practice compared to test per-104

formance, particularly for low resource languages105

(Caswell et al., 2020; Kreutzer et al., 2022). This106

shows that even the simpler task of monolingual107

high-coverage LID remains a challenging problem.108

3 Task definition109

We define our task as follows: given a short in-110

put text (around sentence length), return a set of111

codes corresponding to the language(s) it contains.112

Following NLLB Team et al. (2022), we output113

modified ISO 639-3 language codes encoding both114

the language variety and the script: for example,115

eng_Latn means English written in Latin text.116

This way of framing the task differs to most pre-117

vious work on CS LID by assigning tags on the118

sentence-level rather than on the word level (e.g.119

Solorio et al., 2014; Molina et al., 2016). How-120

ever, we felt there was too much ambiguity when121

labelling at the word level. Our model covers many122

more languages than the previous shared tasks (201123

rather just two) in CS LID so the search space be-124

comes much larger and less tractable at the word125

level. In addition, the shared tasks included extra126

tags aside from the two included languages, cov-127

ering categories such as named entities, ‘foreign128

words’, and non-linguistic content like emojis. We 129

wished to avoid this complication since it was not 130

relevant to our aim of dataset building. Finally, la- 131

belling at the sentence level rather than word level 132

speeds up inference and so is more practical for 133

web-scale text. 134

4 Models 135

We compare the performance of three model ar- 136

chitectures for CS LID: OpenLID, a pre-existing 137

single-label LID model adapted to a multi-label set- 138

ting (Burchell et al., 2023), MultiLID, a novel LID 139

architecture, and Franc, a high-coverage LID pack- 140

age.2 The first two models are trained on the same 141

data (that provided by OpenLID) to help isolate the 142

effect of the change in architecture. We employ 143

Franc as a comparison point, since it allocates pre- 144

diction scores in a different way and covers more 145

languages than the other two. In this way, we aim 146

to measure the performance of three reasonable ap- 147

proaches to CS LID, explore their limitations, and 148

so guide further research. 149

4.1 Baseline: OpenLID 150

We use the OpenLID model provided by Burchell 151

et al. (2023) as a baseline approach, where we ad- 152

apt an existing single-label LID model to a multi- 153

label problem. We choose this model because it 154

covers a large number of languages with good per- 155

formance, it scales well to large datasets, and its 156

openly-available training data means we can com- 157

pare two models trained on the same data and thus 158

eliminate a potential confounding variable. 159

OpenLID is a fastText model (Joulin et al., 2017). 160

The architecture consists of a input sentence vector 161

obtained by averaging word and n-gram embed- 162

dings, which is then fed to a simple linear classifier. 163

The output logits are transformed to a probability 164

distribution over the output labels with a softmax 165

activation function. It uses cross entropy loss to 166

update the weights. 167

We use thresholding to obtain multi-label out- 168

puts, since this is a standard method to adapt 169

softmax-based classifiers to a multi-label task. This 170

means that rather than returning the label with 171

the maximum probability, we instead return all la- 172

bels with a predicted probability over some chosen 173

threshold k. This means that the classifier may 174

return no labels in the case where no language is 175

predicted a probability over the threshold. It also 176
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limits the maximum number of labels to ⌊k−1⌋ be-177

cause the predicted probabilities for all the classes178

must sum to one. We set k = 0.3 so that the classi-179

fier can return a maximum of three labels.180

Softmax-based classifiers like OpenLID make181

the implicit assumption that each input should182

be assigned one and only one label. This is be-183

cause their output is a probability distribution over184

mutually-exclusive classes. We therefore experi-185

ment with altering the basic architecture of Open-186

LID to relax this assumption.187

4.2 MultiLID188

We create MultiLID, a novel LID architecture189

which conceptualises LID as a multi-label rather190

than single-label problem. In this way, we aim191

to handle both monolingual and CS text. There192

are a range of approaches for multi-label problems193

(Zhang and Zhou, 2013), but inspired by Stahl-194

berg and Kumar (2022), we explore using binary195

cross entropy (BCE) loss: rather than use a soft-196

max activation followed by cross-entropy loss as in197

OpenLID, MultiLID uses a sigmoid activation plus198

cross-entropy loss. The effect is that the predicted199

scores are no longer normalised into a probabil-200

ity distribution so the model can predict multiple201

classes independently.202

More formally, BCE is defined as follows. Let N203

be the number of languages covered by the classi-204

fier, L = {l1, . . . , lk, . . . , lN}⊤ be the output vec-205

tor of predicted scores for each language where206

lk ∈ [0, 1], and l∗k ∈ {0, 1} be the true label as-207

signed to some input representation xk. The BCE208

loss for some particular element lk is thus:209

210

BCELosslk = l∗k · log σ(xk)+211

(1− l∗k) · log (1− σ(xk))212

We sum the loss for each element to generate the213

final loss since we have a sparse output vector.214

When deciding which labels to return, we found215

that a fixed threshold was ineffective due to the216

unnormalised scores. Instead, we use the following217

heuristic to choose the labels to return. We note that218

the BCE loss function encourages most scores to219

be close to zero, and so the mean score is very close220

to zero. Only some of the scores are significantly221

above the mean, and these correspond to the labels222

we want to return. We therefore calculate the mean223

and standard deviation of the output scores for a224

particular example, and set a dynamic threshold of225

two standard deviations above the mean based on226

empirical results using the LinCE training sets. We 227

choose the language label with the highest score 228

to ensure we always return a label, and optionally 229

return a second label provided its score exceeds the 230

dynamic threshold. 231

We build our model architecture using Python 232

and Pytorch, and we aim to keep it as close to 233

fastText as possible by design. We first clean the 234

data and remove emoji and hash symbols, then 235

build the vocabulary from all words seen more 236

than 1000 times, plus the 2- to 5-grams of these 237

words. The input sentence representation vector is 238

formed as a bag of vocabulary embeddings, which 239

is then fed to a linear transformation layer. The 240

output logits are converted to output scores using a 241

sigmoid function. 242

We note that our model is trained on single-label 243

data rather than CS data, even though it is designed 244

to be able to return multiple labels if necessary. We 245

made this decision due to the lack of CS training 246

data for most languages so to be practical, a CS 247

LID model would need to work without specifically 248

CS data for every language pair. Future work could 249

look at exploiting what CS data does exist. 250

4.3 Franc 251

The final LID architecture we use is Franc, a LID 252

package covering 414 languages. We include Franc 253

because it is alternative pre-existing architecture 254

that covers an even larger number of languages than 255

the other two models, and it returns scores which 256

adapt easily to a multi-label setting. Franc is not 257

trained on the same training data as the other two 258

models, but rather we use the pre-trained Python 259

model to predict.3 260

At inference time, Franc returns scores for all 261

languages that use the same script as the input text 262

in decreasing order of probability. These scores are 263

calculated based on the distances of the trigram 264

distributions in the input text and the language 265

model, scaled such that the closest language will 266

have a score of 1. Since we often have short strings 267

in our test sets, we set the minimum valid string 268

length to 1 so Franc always returns a prediction. To 269

choose which language labels to return, we select 270

the closest predicted language label plus the second- 271

closest language label provided its predicted score 272

is higher than 0.99 (since this is sufficiently close 273

to still be a valid label). This selection heuristic is 274

based empirical results on the LinCE training sets. 275
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The language labels returned by Franc differ276

somewhat to those assigned to the test sets. We nor-277

malise these to some extent using the langcodes278

Python package,4 so if the language code is not279

among those covered by FLORES-200*, we find280

an equivalent tag.5 If a match exists, we replace281

the predicted tag with this match; otherwise, we282

simply return the original prediction. When calcu-283

lating the metrics, we count all languages outside284

of the languages not covered by FLORES-200* as285

empty tags for ease of computation.286

5 Test sets287

Our aim when choosing test sets was to cover as288

many CS language pairs as possible, despite the289

limited number of easily-accessible CS test sets.290

We were further hampered by the fact that the Open-291

LID training data does not include Indian languages292

written using Roman characters which are some of293

the most common languages to include in CS test294

sets (Aguilar et al., 2020; Khanuja et al., 2020;295

Winata et al., 2023). Nonetheless, we source six296

CS test sets which include eight languages, plus a297

high-coverage monolingual test set.298

We describe all test datasets below and include299

fuller instructions on how to obtain them in Ap-300

pendix A. Most of the datasets we use are annot-301

ated with language tags at the token level. To fit302

with our task, we convert these to sentence-level303

tags by relabelling the sentence as CS if two lan-304

guage labels are present, monolingual if only one305

is present, and discarding the sentence if it has no306

language labels (e.g. the sentence only contains307

named entities or emojis).308

Turkish–English dataset Yirmibeşoğlu and Ery-309

iğit (2018) created a CS Turkish–English dataset as310

part of their work on detecting CS for this language311

pair. The data is sourced from Twitter and the Ekşi312

Sözlük online forum, then labelled at the token313

level as either Turkish or English. After recombin-314

ing sentences, the dataset consists of 376 lines of315

data and 98.9% of the sentences are labelled as CS.316

Indonesian–English dataset Barik et al. (2019)317

created a CS Indonesian–English dataset from Twit-318

ter data, where each token in each tweet is annot-319

ated with a language tag. After pre-processing, the320

dataset consists of 825 lines of data and 93.5% of321

the sentences are labelled as CS.322

4github.com/rspeer/langcodes
5Specifically, we filter on tag_distance < 10.

BaSCo Basque–Spanish corpus This corpus 323

contains Spanish and Basque sentences sourced 324

from a collection of text samples used in training 325

bilingual chatbots (Aguirre et al., 2022). These sen- 326

tences were shown to volunteers who were asked 327

to provide a realistic alternative text with the same 328

meaning in Euskañol (Basque–Spanish CS). The 329

created sentences were checked for validity by a 330

team of annotators. We process this corpus into 331

our test set by extracting all Spanish, Basque, and 332

Euskañol utterances present in the final corpus and 333

labelling them using the provided utterance-level 334

language labels. After processing, the dataset con- 335

sists of 2304 lines of data, of which 59.8% are 336

labelled as CS. 337

LinCE Spanish–English and Modern Standard 338

Arabic–Egyptian Arabic Aguilar et al. (2020) 339

provide a benchmark for linguistic CS evaluation, 340

used in previous shared tasks on CS LID (Solorio 341

et al., 2014; Molina et al., 2016). We test on two 342

of its suite of language pairs and tasks, Spanish– 343

English LID and Modern Standard Arabic (MSA)– 344

Egyptian Arabic LID,6 using the dev sets since 345

the test sets are private. These datasets are both 346

sourced from Twitter and are annotated at the word 347

level. After relabelling at the sentence level and 348

filtering, there are 3247 lines of Spanish–English 349

data, of which 35.2% are marked as CS, and 1107 350

lines of MSA–Egyptian Arabic data, of which only 351

14.5% are marked as CS. 352

ASCEND Mandarin Chinese–English Lovenia 353

et al. (2022) created a corpus of conversational 354

Mandarin Chinese–English CS speech which is 355

transliterated and labelled by language at the utter- 356

ance level. We extract the transliterated sentences 357

from the training split of this dataset. After pro- 358

cessing, there are 9869 lines of data of which 27.8% 359

are labelled as containing CS. 360

FLORES-200* We assess single-label LID per- 361

formance using this evaluation benchmark, which 362

consists of professional translations from 842 dis- 363

tinct web articles (Guzmán et al., 2019; Goyal et al., 364

2022). It includes 3001 sentences for each one of 365

204 language varieties. Following Burchell et al. 366

(2023), we test on 201 of these taken from the dev- 367

test split, which we refer to as FLORES-200*. We 368

test on this dataset to assess the monolingual per- 369

formance of our classifier. FLORES-200* consists 370

6The other two include transliterated Hindi and transliter-
ated Nepali, neither of which are covered by our LID models.
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of 203,412 lines of data.371

6 Measuring performance372

The most common metrics for single-label, multi-373

class problems are precision and recall (defined in374

Appendix B). However, whilst these metrics give375

some insight into the functioning of our models, we376

found them too easy to misinterpret in a multi-label377

setting. The first reason for this is that precision378

and recall are undefined when there are no true pos-379

itive examples of a predicted class in the dataset.380

This was very common given our high-coverage381

models, but precision and recall could not detect382

this key performance issue. Secondly, neither pre-383

cision nor recall account for true negatives which384

are key for our application to building web corpora,385

since avoiding spurious labels is part of preventing386

noisy datasets.387

As a consequence of these findings, we decided388

that precision and recall were not suitable for use389

as main metrics. Instead, we chose three alternative390

metrics as a better reflection of the desired down-391

stream performance: exact match ratio, Hamming392

loss, and false positive rate (FPR). These metrics393

allow direct comparison between our different data-394

sets and are easy to interpret correctly even in a395

multi-label set up with many classes such as ours.396

We define and discuss each metric below.397

Exact match ratio This metric is simply that
for each sentence i in our dataset of length N , we
count a correct match if all the predicted labels (ŷ)
match the gold labels (y):

Exact match ratio =
1

N

N−1∑
i=0

I(ŷi = yi)

The higher the metric, the better. The exact match398

ratio has the advantage of being easy to understand,399

but it is a strict measure of success and does not400

reward partial matches.401

Hamming loss We therefore also report Ham-
ming loss which allows us to both give credit for
partial matches and to penalise predicting too many
labels. It can be understood as the fraction of wrong
labels to the total number of labels, and the smal-
ler the value of the loss the better. More precisely,
let L be the number of classes (languages), Yi,l
(Ŷi,l) signify the Boolean that the ith example (pre-
diction) is assigned the lth language label, and ⊕

denote exclusive-or:

Hamming loss =
1

LN

N−1∑
i=0

L−1∑
l=0

Yi,l ⊕ Ŷi,l

False positive rate Finally, we report the macro-
average of false positive rate (FPR) with respect
to each language class, or the ratio of number of
examples incorrectly identified as a particular lan-
guage (false positives, FP ) to the total number of
ground truth negatives (true negatives plus false
positives, TN + FP ).

False positive rate =
FP

TN + FP

The smaller the FPR, the better. Measuring non- 402

relevant predictions is particularly important given 403

our intended application of building web corpora. 404

This is because the internet mostly consists of non- 405

CS data, so using a classifier with a high FPR on 406

the web will result in a final dataset where most of 407

the content is not relevant (Caswell et al., 2020). 408

7 Results 409

MultiLID OpenLID Franc

Exact match ↑ 0.861 0.926 0.672
Hamming loss ↓ 0.00121 0.000694 0.00279

FPR ↓ 0.000885 0.000395 0.00123
Precision ↑ 0.879 0.942 0.666

Recall ↑ 0.933 0.939 0.706
Mean # preds. 1.11 1.02 1.08

Table 1: Results on FLORES-200* test set. We include
results using the OpenLID model returning all labels
with predicted probability > 0.3 and the top two predic-
tions from Franc with score > 0.99.

FLORES-200 results We first consider the res- 410

ults on the single-label LID test set FLORES-200* 411

in order to provide a point of comparison with later 412

results on CS datasets. Table 1 shows that the Open- 413

LID classifier achieves the best results for each as- 414

sessed metric, which is unsurprising given that it is 415

designed as a single-label classifier which covers 416

the languages of FLORES-200*. MultiLID still 417

shows reasonable performance, though Hamming 418

loss and FPR are markedly higher. This is likely 419

because MultiLID is more likely to predict mul- 420

tiple labels as shown at the bottom of Table 1. The 421

performance for Franc is markedly lower across all 422

metrics, though it should be noted that this model is 423

disadvantaged here by covering far more languages 424

than the other two. 425
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Exact match ↑ Hamming loss ↓ False positive rate ↓
% c/s MultiLID OpenLID Franc MultiLID OpenLID Franc MultiLID OpenLID Franc

tur–eng 98.9 0.0665 0.0213 0.00532 0.00732 0.00531 0.00903 0.00206 0.000291 0.00119
ind–eng 93.5 0.184 0.0448 0.0182 0.00617 0.00680 0.00995 0.00199 0.00153 0.00164
eus–spa 59.8 0.317 0.360 0.201 0.00576 0.00383 0.00746 0.00213 0.000620 0.00169
spa–eng 35.2 0.379 0.417 0.146 0.00613 0.00451 0.00721 0.00314 0.00126 0.00168
zho–eng 27.8 0.508 0.507 0.301 0.00399 0.00386 0.00447 0.00197 0.00130 0.000332
arb–arz 14.5 0.345 0.625 0.691 0.00631 0.00281 0.00242 0.00500 0.00174 0.00481

Table 2: Main metrics calculated for predictions on the CS datasets, plus the percentage of CS in each dataset.

CS test sets: main metrics Moving on to the426

results for the CS test sets, Table 2 gives the exact427

match ratio, Hamming loss, and FPR for the three428

assessed models. As mentioned in Section 5, there429

is a wide variation between how many sentences430

labelled as CS are present in each test set, from431

98.8% in the Turkish–English dataset to just 14.5%432

in the MSA–Egyptian Arabic dataset.433

In terms of exact label match, MultiLID per-434

forms better on the most code-mixed datasets,435

though the absolute numbers are still much lower436

compared to single-label performance: compare437

0.93 for top-1 OpenLID on FLORES-200 to just438

0.06 for MultiLID on the Turkish–English dataset.439

Similarly, the Hamming loss for all models differs440

by an order of magnitude compared to OpenLID441

single-label performance in Table 1, showing that442

they struggle to label CS text correctly.443

Franc’s algorithm means that it is at a particular444

disadvantage when dealing with CS text, since it445

bases its prediction partially on the script. In the446

case of mixed scripts (as in the Chinese–English447

CS data), it often did not return a label at all. This448

lead to the high FPR but low exact match on this449

dataset. Additionally, Franc does not cover Arabic450

dialects including Egyptian Arabic, so it labelled451

nearly all sentences in the MSA–Egyptian Arabic452

dataset as MSA. This gave it a high exact match453

score and low Hamming loss compared to the other454

models since it could not confuse similar Arabic455

dialects and most of the dataset was actually single-456

label. However, the fact remains that it does not457

cover Egyptian Arabic at all, and the higher results458

here show the limitations of the testing regime.459

Notably, the FPR of the OpenLID model is lower460

for every test set compared to the other two mod-461

els (apart from for Chinese–English as discussed462

above), sometimes by as much as an order of mag-463

nitude. This is likely because the OpenLID model464

is much more conservative when assigning labels.465

Table 3 gives the percentage of empty predictions466

by the OpenLID classifier. It shows that null pre-467

dictions are often a significant proportion of the 468

results, and the proportion of null predictions is 469

nearly always larger for the CS sentences in partic- 470

ular. OpenLID’s conservatism lowers the FPR but 471

increases the probability of missing CS sentences. 472

This may not be desirable when building a corpus 473

since these sentences are a small proportion of the 474

total data to begin with. 475

% empty % c/s empty

FLORES-200 0.092 -
Turkish–English 0.798 0.806

Indonesian–English 9.46 9.21
Basque–Spanish 0.608 0.726
Spanish–English 10.6 12.0
Chinese–English 1.91 4.42

MSA–Egyptian Arabic 0.632 1.24

Table 3: Percentage of empty predictions returned by
the OpenLID classifier. The left column gives results
over the entire dataset, the right only the CS sentences.

Performance on CS sentences Table 4 gives the 476

the main metrics solely on the CS sentences in each 477

dataset. MultiLID shows higher performance on 478

exact match for every test sets, but the absolute 479

numbers are still low and there is a notable reduc- 480

tion in performance for the datasets with the least 481

amount of CS. This shows that the better numbers 482

in Table 2 were mostly driven by good results on 483

the single-label sentences. Hamming loss is more 484

mixed but the FPR for OpenLID is now an order of 485

magnitude lower across the board. This suggests 486

again that the OpenLID classifier is much more 487

conservative in assigning labels, so the FPR is low 488

without getting more labels correct. Franc achieves 489

zero in exact match for nearly every test set, sug- 490

gesting that the algorithm is not suited to CS text. 491

The low FPR for the last two test sets is due to a 492

lack of prediction rather than desired performance, 493

showing the necessity of suite of metrics. 494

Precision and recall We return to the entire CS 495

tests sets to calculate precision and recall with 496

respect to each language present. Precision was 497
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Exact match ↑ Hamming loss ↓ False positive rate ↓
MultiLID OpenLID Franc MultiLID OpenLID Franc MultiLID OpenLID Franc

tur–eng 0.0618 0.0134 0 0.00737 0.00535 0.00907 0.00206 0.000281 0.00117
ind–eng 0.153 0.00649 0.0013 0.00634 0.00704 0.0103 0.00175 0.000968 0.00148
eus–spa 0.0247 0.0189 0 0.00789 0.00563 0.00979 0.00226 0.000408 0.00171
spa–eng 0.0184 0.00613 0 0.00844 0.00729 0.0105 0.00259 0.000985 0.0019
zho–eng 0.0365 0.0164 0 0.00618 0.00637 0.00777 0.00107 0.000703 0.000620
arb–arz 0.0994 0.0373 0 0.00766 0.00584 0.00535 0.00294 0.000587 0.000127

Table 4: Results over CS sentences only (3 significant figures)

nearly always very close to one, showing that the498

predictions that the model did make were very499

likely to be correct. The only exception to this500

was Egyptian Arabic, where precision was 0.645501

for the OpenLID model, 0.485 for the MultiLID502

model, and 0 for Franc. This was due to former two503

models struggling to distinguish between Arabic504

dialects and a lack of coverage for the latter.505

Recall for each model and language label was506

much more varied, as can be seen in Table 5.507

For the datasets with the highest amount of CS508

(Turkish–English and Indonesian–English), there509

is a large difference between the recall of the Open-510

LID model. This suggests that its predictions only511

contain one of the classes and it is failing to de-512

tect the other. The difference is less pronounced513

for MultiLID, suggesting that it is more likely to514

detect the presence of the other language. For the515

other datasets, MultiLID does slightly better in re-516

call overall compared to OpenLID, likely because517

it returns multiple labels more often. Franc nearly518

always has lower recall compared to the other two519

models (apart from the degenerate results for MSA)520

though it is important to note that it is disadvant-521

aged by covering more labels.522

We draw attention to the (sometimes) relatively523

high scores for recall and the low scores in Tables 2524

and 4. In particular, we note that considering pre-525

cision and recall in isolation might lead to the con-526

clusion that using one of these LID models in a527

pipeline would create an adequate CS dataset. How-528

ever, the low exact match scores show just how few529

of the labels are actually correct, especially for CS530

sentences. This demonstrates the importance here531

of careful metric selection.532

Number of unique languages predicted We see533

from Table 6 that the predictions for all classifi-534

ers contain a large number of languages despite535

there being only two language labels in each test536

set. This suggests that all three are struggling to537

form a consistent representation of each language538

based on the input feature vectors. This may be due539

Recall ↑
Label MultiLID OpenLID Franc

tur 0.731 0.952 0.435
eng 0.206 0.032 0.027

ind 0.723 0.727 0.227
eng 0.372 0.066 0.063

eus 0.706 0.858 0.459
spa 0.377 0.312 0.128

spa 0.467 0.469 0.193
eng 0.642 0.560 0.211

zho 0.792 0.695 0.467
eng 0.517 0.451 0.222

arb 0.540 0.734 0.995
arz 0.891 0.721 0.000

Table 5: Recall with respect to each pair of languages
in each CS test dataset. Precision is nearly always ≈ 1.

to the ‘confusion’ of CS, or possibly because of a 540

change of domain from training to test: the training 541

data (at least for OpenLID and MultiLID) is mostly 542

formal text whereas the test data is primarily social 543

media. The predictions for MultiLID contain far 544

more unique languages than those for OpenLID. 545

This is likely because the lack of normalisation in 546

its architecture results in a less strong prior over 547

languages, so it is more likely to predict rarer lan- 548

guages. Franc’s predictions nearly always contain 549

far more again, which is probably an artifact of the 550

large number of languages it includes. 551

MultiLID OpenLID Franc

tur–eng 54 11 97
ind–eng 79 27 118
eus–spa 94 50 193
spa–eng 126 86 234
zho–eng 134 85 225
arb–arz 18 10 8

Table 6: Number of unique languages in the predictions
by each model for each CS test set.

8 Analysis 552

Considering the results as a whole, it is clear that 553

none of the models are adequate for the task of 554
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detecting the language(s) of CS text. The OpenLID555

architecture is not designed to return multiple la-556

bels and so misses many examples of CS sentences,557

preferring to label them with a single label or not558

return a label at all. The MultiLID architecture has559

the advantage of being designed to return multiple560

labels, but the lack of normalisation in the scores561

means that it is more likely to return spurious la-562

bels, as shown in its high FPR and larger number563

of unique languages in the predictions. Franc’s al-564

gorithm is not suitable for CS text since it assumes565

a single script and is designed for longer pieces of566

text. In all cases, the low exact match ratios show567

that if we were building a corpus from this data, we568

would miss most of the CS sentences.569

The performance in general is hampered by one570

of the inherent problems in CS LID: the boundaries571

of CS are not defined clearly, even at a linguistic572

level. In her book on the subject, Gardner states573

that CS “is not an entity which exists out there in574

the objective world, but a construct which linguists575

have developed to help them describe their data”576

(Gardner-Chloros, 2009, p.10). However, both lin-577

guists and language users disagree on what should578

count as CS, meaning assigning language labels to579

text can be an ambiguous task in itself.580

We illustrate our point with two contrasting ex-581

amples. Firstly, this tweet is a fairly straightforward582

example of a separate English fragment followed583

by a Spanish fragment:584

@USER delete that tweet. . . ya lo585

hize.586

This makes it easy (for a human annotator) to as-587

sign language labels to it. However, there are many588

more cases of potential CS which are much more589

ambiguous and harder to label. The most com-590

mon of these is a single-word switch in a sentence591

(Gardner-Chloros, 2009, p.30), for example:592

hoy me siento bien senior. . . .593

These short switches complicate labelling for two594

main reasons. Firstly, there is no clear line between595

a ‘borrowed’ word, CS, and a loan word which596

is now an accepted part of the language (indeed,597

loan words start out as CS) (Gardner-Chloros, 2009,598

p.30). Secondly, short fragments of CS can make599

it difficult to work out which language was inten-600

ded by the author. This leads to disagreement even601

amongst expert annotators and consequent ‘noisy’602

labels. We also note that the non-standard ortho-603

graphy of social media and informal text can also 604

hamper n-gram based approaches to LID. 605

8.1 Recommendations 606

In light of our results and analysis, we have the 607

following suggestions for improving CS LID over 608

the baseline approaches explored in this paper. 609

Firstly, we recommend that researchers consider 610

which metrics they use carefully and think about 611

how they relate to the downstream performance: 612

for example, the metrics we use in this paper aim 613

to reflect how useful the LID model will be for 614

corpus building. We have shown that using metrics 615

common in multi-class tasks for multi-label tasks 616

is easily misleading and that a suite of metrics is 617

necessary to capture performance fully. 618

Secondly, any approach should embrace the am- 619

biguity inherent in the task, and aim for a com- 620

mon sense rather than prescriptive definition of 621

what counts as a language (Gardner-Chloros, 2009, 622

pp.165-7). With respect to NLP, this means consid- 623

ering the task of language labelling in light of the 624

downstream application, rather than assuming that 625

labels are fixed and exclusive. CS is too heterogen- 626

eous a concept for a ‘one size fits all’ definition to 627

be useful for improving NLP tooling for multilin- 628

gual users. 629

Finally, we believe that the performance of CS 630

LID depends heavily on the input representation. 631

All of the models we study in the paper rely on 632

n-gram representations, and the poor results across 633

the board suggest that these are not adequate for 634

representing CS in actual use. Further work should 635

move beyond n-gram based embeddings so that 636

the input representation could more easily pick up 637

short switches. 638

9 Conclusion 639

We explored the task of scaleable CS LID such 640

that it could to work as part of a corpus-building 641

pipeline. We found that three reasonable ap- 642

proaches to the task fell short of the performance 643

required to build useful corpora, demonstrating that 644

the task of realistic CS LID at scale is far from 645

solved. We recommend that future work choose 646

metrics with care to reflect true performance, un- 647

derstand the ambiguity inherent in CS, and fit their 648

definition of CS to the intended task rather than en- 649

force a prescriptive definition of the phenomenon. 650
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Limitations651

The CS test sets we use only cover a small fraction652

of the potential language sets which could be used653

in multi-lingual communication, and additionally654

the languages we cover are mostly high-resource655

(particularly English). Creating more high-quality656

CS datasets for more of the world’s languages657

would be incredibly useful further work.658

Ethics Statement659

Using social media data to build corpora needs to660

be done with care so as not to violate users’ rights661

to privacy. The CS test sets based on social media662

in this work have been anonymised and we provide663

links to the data for further research rather than664

hosting the files ourselves; this is to help control665

distribution of the data. We hope that by creating666

more CS datasets, NLP technologies become ac-667

cessible for more people in their preferred language668

and register of communication.669
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A Data sourcing 904

We provide instructions on how we obtained all 905

datasets used in this paper to aid future work. These 906

are correct at the time of writing; we cannot guar- 907

antee that datasets will be available in the future. 908

• OpenLID training dataset: downloaded from 909

https://github.com/laurieburchell/ 910

open-lid-dataset. 911

• FLORES-200 benchmark: downloaded from 912

https://github.com/facebookresearch/ 913

flores/blob/main/flores200. 914

• Turkish–English dataset: fill out and email 915

requisition form at http://tools.nlp.itu. 916

edu.tr/Datasets. 917

• Indonesian–English dataset: emailing lead au- 918

thor (see Barik et al., 2019, for contact de- 919

tails). 920

• BaSCo Basque–Spanish dataset: 921

valid_utterances.json downloaded 922

from https://github.com/Vicomtech/ 923

BaSCo-Corpus. 924

• LinCE LID benchmark: validation data 925

sourced from https://huggingface.co/ 926

datasets/lince. 927

• ASCEND Chinese–English dataset: training 928

data sourced from https://huggingface. 929

co/datasets/CAiRE/ASCEND. 930

B Precision and recall 931

Let TP be the count of true positives, FP be the 932

count of false positives, and FN be the count of 933

false negatives. Then 934

precision =
TP

TP + FP
, 935

recall =
TP

TP + FN
936
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