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Abstract

Code switching (CS) is a very common phe-
nomenon in written and spoken communica-
tion, but is handled poorly by many natural lan-
guage processing (NLP) applications. Looking
to the application of building CS corpora, we
explore CS language identification (LID) for
corpus building. We make the task more real-
istic by scaling it to more languages and con-
sidering models with simpler architectures for
faster inference. We also reformulate the task
as a sentence-level multi-label tagging prob-
lem to make it more tractable. Having defined
the task, we investigate three reasonable archi-
tectures for this task and define metrics which
better reflect desired performance. We present
empirical evidence that no current approach is
adequate, and finally provide recommendations
for future work in this area.

1 Introduction

Code switching (CS), or the use of one or more
languages within the same utterance (Sitaram et al.,
2019), is a very common phenomenon in writ-
ten and spoken communication (Dogruéz et al.,
2021), but one which many natural language pro-
cessing (NLP) applications currently struggle to
deal with (Solorio et al., 2021; Winata et al., 2023).
An obvious first step in building better systems for
CS is gathering the data necessary for training ef-
fective models, which is currently lacking for CS
(Mendels et al., 2018). A fundamental part of this
process is identifying CS in the first place.

In this paper, we look at CS language identifica-
tion (LID) for text and the challenges in getting CS
LID systems to work at scale. Previous shared tasks
on CS LID have produced systems which achieve
impressive results (Solorio et al., 2014; Molina
et al., 2016), albeit limited to two languages. We
seek to extend CS LID systems to work in a real-
istic setting as part of a corpus building pipeline by
scaling up both the number of languages covered

and the speed of inference.

We therefore reformulate CS LID as a multi-
label task where the aim is to assign a set of lan-
guage labels to each sentence, rather than a word-
level or document-level tagging task as in previ-
ous work (Section 3). We experiment with high-
coverage LID systems (200+ languages) which are
simple enough to scale easily, and investigate three
different model architectures as reasonable baseline
approaches to the task (Section 4). We test on wide
range of CS and single-label LID test sets aiming
to cover as wide a range of languages as possible
(Section 5), and we measure performance with met-
rics chosen to better reflect true performance in our
multi-label setting than those commonly used for
LID (Section 6).

We find that even the best-performing models
are still inadequate for identifying CS text at scale
(Section 7), due to the inherent difficulty of defin-
ing CS and detecting the intended language(s) in
realistic settings. We make recommendations for
future work in this area based on our findings (Sec-
tion 8) and make our code freely available to aid
further research.!

2 Previous work

LID has been an active topic of research for a long
time in NLP (Jauhiainen et al., 2019). Much of
the most recent research on this topic has been
towards covering more and more languages, with
some models claiming to cover over a thousand lan-
guages (Brown, 2014; Dunn, 2020; Adebara et al.,
2022; NLLB Team et al., 2022; Burchell et al.,
2023). However, nearly all general-purpose LID
systems assume that text is entirely monolingual
(e.g. NLLB Team et al., 2022) or occasionally that
any different languages present occur in discrete
chunks (e.g. Ooms, 2023). This leads to pipelines
where CS text is ignored or discarded.
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Previous work on multiple-label LID specifically
can be split into two main sub-tasks: multilingual
LID, where the expected input is a document con-
taining discrete monolingual chunks in different
languages; and CS LID, where the expected in-
put is a sentence or short text containing CS text.
The former task has a longer history and its inten-
ded application is to segment web text (Baldwin
and Lui, 2010; Lui et al., 2014; Jauhiainen et al.,
2015; Kocmi and Bojar, 2017). The latter task
has received more attention recently including sev-
eral shared tasks on CS LID, where the aim was
word-level tagging of CS text given a known pair
of languages (Solorio et al., 2014; Molina et al.,
2016). However, both tasks have a limited applic-
ation to web-scale text, since they made the as-
sumption that the input could only be in a small
number of known languages and they relied on
computationally-expensive, high-capacity models
like transformers (Vaswani et al., 2017) or LLMs
for classification. We argue that these are not real-
istic for filtering web crawls.

Finally, we note that despite the wide range of
approaches towards monolingual LID (Jauhiainen
et al., 2019), LID algorithms are still found to
perform poorly in practice compared to test per-
formance, particularly for low resource languages
(Caswell et al., 2020; Kreutzer et al., 2022). This
shows that even the simpler task of monolingual
high-coverage LID remains a challenging problem.

3 Task definition

We define our task as follows: given a short in-
put text (around sentence length), return a set of
codes corresponding to the language(s) it contains.
Following NLLB Team et al. (2022), we output
modified ISO 639-3 language codes encoding both
the language variety and the script: for example,
eng_Latn means English written in Latin text.
This way of framing the task differs to most pre-
vious work on CS LID by assigning tags on the
sentence-level rather than on the word level (e.g.
Solorio et al., 2014; Molina et al., 2016). How-
ever, we felt there was too much ambiguity when
labelling at the word level. Our model covers many
more languages than the previous shared tasks (201
rather just two) in CS LID so the search space be-
comes much larger and less tractable at the word
level. In addition, the shared tasks included extra
tags aside from the two included languages, cov-
ering categories such as named entities, ‘foreign

words’, and non-linguistic content like emojis. We
wished to avoid this complication since it was not
relevant to our aim of dataset building. Finally, la-
belling at the sentence level rather than word level
speeds up inference and so is more practical for
web-scale text.

4 Models

We compare the performance of three model ar-
chitectures for CS LID: OpenLID, a pre-existing
single-label LID model adapted to a multi-label set-
ting (Burchell et al., 2023), MultiLID, a novel LID
architecture, and Franc, a high-coverage LID pack-
age.? The first two models are trained on the same
data (that provided by OpenLID) to help isolate the
effect of the change in architecture. We employ
Franc as a comparison point, since it allocates pre-
diction scores in a different way and covers more
languages than the other two. In this way, we aim
to measure the performance of three reasonable ap-
proaches to CS LID, explore their limitations, and
so guide further research.

4.1 Baseline: OpenLID

We use the OpenLID model provided by Burchell
et al. (2023) as a baseline approach, where we ad-
apt an existing single-label LID model to a multi-
label problem. We choose this model because it
covers a large number of languages with good per-
formance, it scales well to large datasets, and its
openly-available training data means we can com-
pare two models trained on the same data and thus
eliminate a potential confounding variable.

OpenLID is a fastText model (Joulin et al., 2017).
The architecture consists of a input sentence vector
obtained by averaging word and n-gram embed-
dings, which is then fed to a simple linear classifier.
The output logits are transformed to a probability
distribution over the output labels with a softmax
activation function. It uses cross entropy loss to
update the weights.

We use thresholding to obtain multi-label out-
puts, since this is a standard method to adapt
softmax-based classifiers to a multi-label task. This
means that rather than returning the label with
the maximum probability, we instead return all la-
bels with a predicted probability over some chosen
threshold k. This means that the classifier may
return no labels in the case where no language is
predicted a probability over the threshold. It also
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limits the maximum number of labels to [ k™! | be-
cause the predicted probabilities for all the classes
must sum to one. We set k = 0.3 so that the classi-
fier can return a maximum of three labels.

Softmax-based classifiers like OpenLID make
the implicit assumption that each input should
be assigned one and only one label. This is be-
cause their output is a probability distribution over
mutually-exclusive classes. We therefore experi-
ment with altering the basic architecture of Open-
LID to relax this assumption.

4.2 MultiLID

We create MultiLID, a novel LID architecture
which conceptualises LID as a multi-label rather
than single-label problem. In this way, we aim
to handle both monolingual and CS text. There
are a range of approaches for multi-label problems
(Zhang and Zhou, 2013), but inspired by Stahl-
berg and Kumar (2022), we explore using binary
cross entropy (BCE) loss: rather than use a soft-
max activation followed by cross-entropy loss as in
OpenLID, MultiLID uses a sigmoid activation plus
cross-entropy loss. The effect is that the predicted
scores are no longer normalised into a probabil-
ity distribution so the model can predict multiple
classes independently.

More formally, BCE is defined as follows. Let N
be the number of languages covered by the classi-
fier, L = {l1,...,l;,...,Ix} " be the output vec-
tor of predicted scores for each language where
Il € [0,1], and I} € {0,1} be the true label as-
signed to some input representation x;. The BCE
loss for some particular element [}, is thus:

BCELoss;, = [}, - log o (z)+
(1—=13) -log (1 — o(xp))

We sum the loss for each element to generate the
final loss since we have a sparse output vector.
When deciding which labels to return, we found
that a fixed threshold was ineffective due to the
unnormalised scores. Instead, we use the following
heuristic to choose the labels to return. We note that
the BCE loss function encourages most scores to
be close to zero, and so the mean score is very close
to zero. Only some of the scores are significantly
above the mean, and these correspond to the labels
we want to return. We therefore calculate the mean
and standard deviation of the output scores for a
particular example, and set a dynamic threshold of
two standard deviations above the mean based on

empirical results using the LinCE training sets. We
choose the language label with the highest score
to ensure we always return a label, and optionally
return a second label provided its score exceeds the
dynamic threshold.

We build our model architecture using Python
and Pytorch, and we aim to keep it as close to
fastText as possible by design. We first clean the
data and remove emoji and hash symbols, then
build the vocabulary from all words seen more
than 1000 times, plus the 2- to 5-grams of these
words. The input sentence representation vector is
formed as a bag of vocabulary embeddings, which
is then fed to a linear transformation layer. The
output logits are converted to output scores using a
sigmoid function.

We note that our model is trained on single-label
data rather than CS data, even though it is designed
to be able to return multiple labels if necessary. We
made this decision due to the lack of CS training
data for most languages so to be practical, a CS
LID model would need to work without specifically
CS data for every language pair. Future work could
look at exploiting what CS data does exist.

4.3 Franc

The final LID architecture we use is Franc, a LID
package covering 414 languages. We include Franc
because it is alternative pre-existing architecture
that covers an even larger number of languages than
the other two models, and it returns scores which
adapt easily to a multi-label setting. Franc is not
trained on the same training data as the other two
models, but rather we use the pre-trained Python
model to predict.?

At inference time, Franc returns scores for all
languages that use the same script as the input text
in decreasing order of probability. These scores are
calculated based on the distances of the trigram
distributions in the input text and the language
model, scaled such that the closest language will
have a score of 1. Since we often have short strings
in our test sets, we set the minimum valid string
length to 1 so Franc always returns a prediction. To
choose which language labels to return, we select
the closest predicted language label plus the second-
closest language label provided its predicted score
is higher than 0.99 (since this is sufficiently close
to still be a valid label). This selection heuristic is
based empirical results on the LinCE training sets.
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The language labels returned by Franc differ
somewhat to those assigned to the test sets. We nor-
malise these to some extent using the langcodes
Python package,* so if the language code is not
among those covered by FLORES-200%*, we find
an equivalent tag.> If a match exists, we replace
the predicted tag with this match; otherwise, we
simply return the original prediction. When calcu-
lating the metrics, we count all languages outside
of the languages not covered by FLORES-200* as
empty tags for ease of computation.

5 Test sets

Our aim when choosing test sets was to cover as
many CS language pairs as possible, despite the
limited number of easily-accessible CS test sets.
We were further hampered by the fact that the Open-
LID training data does not include Indian languages
written using Roman characters which are some of
the most common languages to include in CS test
sets (Aguilar et al., 2020; Khanuja et al., 2020;
Winata et al., 2023). Nonetheless, we source six
CS test sets which include eight languages, plus a
high-coverage monolingual test set.

We describe all test datasets below and include
fuller instructions on how to obtain them in Ap-
pendix A. Most of the datasets we use are annot-
ated with language tags at the token level. To fit
with our task, we convert these to sentence-level
tags by relabelling the sentence as CS if two lan-
guage labels are present, monolingual if only one
is present, and discarding the sentence if it has no
language labels (e.g. the sentence only contains
named entities or emojis).

Turkish-English dataset Yirmibesoglu and Ery-
i8it (2018) created a CS Turkish—English dataset as
part of their work on detecting CS for this language
pair. The data is sourced from Twitter and the Eksi
Sozliik online forum, then labelled at the token
level as either Turkish or English. After recombin-
ing sentences, the dataset consists of 376 lines of
data and 98.9% of the sentences are labelled as CS.

Indonesian—English dataset Barik et al. (2019)
created a CS Indonesian-English dataset from Twit-
ter data, where each token in each tweet is annot-
ated with a language tag. After pre-processing, the
dataset consists of 825 lines of data and 93.5% of
the sentences are labelled as CS.

4github.com/rspeer/langcodes
3Specifically, we filter on tag_distance < 10.

BaSCo Basque-Spanish corpus This corpus
contains Spanish and Basque sentences sourced
from a collection of text samples used in training
bilingual chatbots (Aguirre et al., 2022). These sen-
tences were shown to volunteers who were asked
to provide a realistic alternative text with the same
meaning in Euskafiol (Basque—Spanish CS). The
created sentences were checked for validity by a
team of annotators. We process this corpus into
our test set by extracting all Spanish, Basque, and
Euskaiiol utterances present in the final corpus and
labelling them using the provided utterance-level
language labels. After processing, the dataset con-
sists of 2304 lines of data, of which 59.8% are
labelled as CS.

LinCE Spanish-English and Modern Standard
Arabic-Egyptian Arabic Aguilar et al. (2020)
provide a benchmark for linguistic CS evaluation,
used in previous shared tasks on CS LID (Solorio
et al., 2014; Molina et al., 2016). We test on two
of its suite of language pairs and tasks, Spanish—
English LID and Modern Standard Arabic (MSA)-
Egyptian Arabic LID,® using the dev sets since
the test sets are private. These datasets are both
sourced from Twitter and are annotated at the word
level. After relabelling at the sentence level and
filtering, there are 3247 lines of Spanish—English
data, of which 35.2% are marked as CS, and 1107
lines of MSA—Egyptian Arabic data, of which only
14.5% are marked as CS.

ASCEND Mandarin Chinese-English Lovenia
et al. (2022) created a corpus of conversational
Mandarin Chinese—English CS speech which is
transliterated and labelled by language at the utter-
ance level. We extract the transliterated sentences
from the training split of this dataset. After pro-
cessing, there are 9869 lines of data of which 27.8%
are labelled as containing CS.

FLORES-200* We assess single-label LID per-
formance using this evaluation benchmark, which
consists of professional translations from 842 dis-
tinct web articles (Guzman et al., 2019; Goyal et al.,
2022). It includes 3001 sentences for each one of
204 language varieties. Following Burchell et al.
(2023), we test on 201 of these taken from the dev-
test split, which we refer to as FLORES-200*. We
test on this dataset to assess the monolingual per-
formance of our classifier. FLORES-200* consists

®The other two include transliterated Hindi and transliter-
ated Nepali, neither of which are covered by our LID models.
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of 203,412 lines of data.

6 Measuring performance

The most common metrics for single-label, multi-
class problems are precision and recall (defined in
Appendix B). However, whilst these metrics give
some insight into the functioning of our models, we
found them too easy to misinterpret in a multi-label
setting. The first reason for this is that precision
and recall are undefined when there are no true pos-
itive examples of a predicted class in the dataset.
This was very common given our high-coverage
models, but precision and recall could not detect
this key performance issue. Secondly, neither pre-
cision nor recall account for true negatives which
are key for our application to building web corpora,
since avoiding spurious labels is part of preventing
noisy datasets.

As a consequence of these findings, we decided
that precision and recall were not suitable for use
as main metrics. Instead, we chose three alternative
metrics as a better reflection of the desired down-
stream performance: exact match ratio, Hamming
loss, and false positive rate (FPR). These metrics
allow direct comparison between our different data-
sets and are easy to interpret correctly even in a
multi-label set up with many classes such as ours.
We define and discuss each metric below.

Exact match ratio This metric is simply that
for each sentence ¢ in our dataset of length NV, we
count a correct match if all the predicted labels (¢)
match the gold labels (y):

=2

1
1
Exact match ratio = N Iy = yi)
i=0

The higher the metric, the better. The exact match
ratio has the advantage of being easy to understand,
but it is a strict measure of success and does not
reward partial matches.

Hamming loss We therefore also report Ham-
ming loss which allows us to both give credit for
partial matches and to penalise predicting too many
labels. It can be understood as the fraction of wrong
labels to the total number of labels, and the smal-
ler the value of the loss the better. More precisely,
let L be the number of classes (languages), Y;;
(Yzl) signify the Boolean that the i** example (pre-
diction) is assigned the [*" language label, and &

denote exclusive-or:
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False positive rate Finally, we report the macro-
average of false positive rate (FPR) with respect
to each language class, or the ratio of number of
examples incorrectly identified as a particular lan-
guage (false positives, F'P) to the total number of
ground truth negatives (true negatives plus false
positives, TN + F'P).

FP

False positive rate = TN+ FP

The smaller the FPR, the better. Measuring non-
relevant predictions is particularly important given
our intended application of building web corpora.
This is because the internet mostly consists of non-
CS data, so using a classifier with a high FPR on
the web will result in a final dataset where most of
the content is not relevant (Caswell et al., 2020).

7 Results

MultiLID  OpenLID  Franc

Exact match 1 0.861 0.926 0.672
Hamming loss || 0.00121 0.000694  0.00279
FPR | 0.000885  0.000395 0.00123

Precision 1 0.879 0.942 0.666

Recall 1 0.933 0.939 0.706

Mean # preds. 1.11 1.02 1.08

Table 1: Results on FLORES-200* test set. We include
results using the OpenLID model returning all labels
with predicted probability > 0.3 and the top two predic-
tions from Franc with score > 0.99.

FLORES-200 results We first consider the res-
ults on the single-label LID test set FLORES-200*
in order to provide a point of comparison with later
results on CS datasets. Table 1 shows that the Open-
LID classifier achieves the best results for each as-
sessed metric, which is unsurprising given that it is
designed as a single-label classifier which covers
the languages of FLORES-200*. MultiLID still
shows reasonable performance, though Hamming
loss and FPR are markedly higher. This is likely
because MultiLID is more likely to predict mul-
tiple labels as shown at the bottom of Table 1. The
performance for Franc is markedly lower across all
metrics, though it should be noted that this model is
disadvantaged here by covering far more languages
than the other two.



Exact match 1

Hamming loss |

False positive rate |

% c/s MultiLID  OpenLID  Franc MultiLID  OpenLID  Franc MultiLID  OpenLID  Franc
tur-eng 989  0.0665 0.0213 0.00532  0.00732 0.00531 0.00903  0.00206 0.000291  0.00119
ind-eng 935  0.184 0.0448 0.0182  0.00617 0.00680 0.00995  0.00199 0.00153 0.00164
eus—spa  59.8 0317 0.360 0.201 0.00576 0.00383 0.00746  0.00213 0.000620  0.00169
spa—eng 352  0.379 0.417 0.146 0.00613 0.00451 0.00721  0.00314 0.00126 0.00168
zho-eng 27.8  0.508 0.507 0.301 0.00399 0.00386 0.00447  0.00197 0.00130 0.000332
arb-arz 145  0.345 0.625 0.691 0.00631 0.00281 0.00242  0.00500 0.00174 0.00481

Table 2: Main metrics calculated for predictions on the CS datasets, plus the percentage of CS in each dataset.

CS test sets: main metrics

Moving on to the

dictions are often a significant proportion of the

results for the CS test sets, Table 2 gives the exact
match ratio, Hamming loss, and FPR for the three
assessed models. As mentioned in Section 5, there
is a wide variation between how many sentences
labelled as CS are present in each test set, from
98.8% in the Turkish—-English dataset to just 14.5%
in the MSA—Egyptian Arabic dataset.

In terms of exact label match, MultiLID per-
forms better on the most code-mixed datasets,
though the absolute numbers are still much lower
compared to single-label performance: compare
0.93 for top-1 OpenL.ID on FLORES-200 to just
0.06 for MultiLID on the Turkish—English dataset.
Similarly, the Hamming loss for all models differs
by an order of magnitude compared to OpenLID
single-label performance in Table 1, showing that
they struggle to label CS text correctly.

Franc’s algorithm means that it is at a particular
disadvantage when dealing with CS text, since it
bases its prediction partially on the script. In the
case of mixed scripts (as in the Chinese—English
CS data), it often did not return a label at all. This
lead to the high FPR but low exact match on this
dataset. Additionally, Franc does not cover Arabic
dialects including Egyptian Arabic, so it labelled
nearly all sentences in the MSA—Egyptian Arabic
dataset as MSA. This gave it a high exact match
score and low Hamming loss compared to the other
models since it could not confuse similar Arabic
dialects and most of the dataset was actually single-
label. However, the fact remains that it does not
cover Egyptian Arabic at all, and the higher results
here show the limitations of the testing regime.

Notably, the FPR of the OpenLID model is lower
for every test set compared to the other two mod-
els (apart from for Chinese—English as discussed
above), sometimes by as much as an order of mag-
nitude. This is likely because the OpenLID model
is much more conservative when assigning labels.
Table 3 gives the percentage of empty predictions
by the OpenLID classifier. It shows that null pre-

results, and the proportion of null predictions is
nearly always larger for the CS sentences in partic-
ular. OpenLID’s conservatism lowers the FPR but
increases the probability of missing CS sentences.
This may not be desirable when building a corpus
since these sentences are a small proportion of the
total data to begin with.

% empty % c/s empty
FLORES-200 0.092 -
Turkish—English 0.798 0.806
Indonesian—English 9.46 9.21
Basque—Spanish 0.608 0.726
Spanish—-English 10.6 12.0
Chinese—English 1.91 442
MSA-Egyptian Arabic 0.632 1.24

Table 3: Percentage of empty predictions returned by
the OpenLID classifier. The left column gives results
over the entire dataset, the right only the CS sentences.

Performance on CS sentences Table 4 gives the
the main metrics solely on the CS sentences in each
dataset. MultiLID shows higher performance on
exact match for every test sets, but the absolute
numbers are still low and there is a notable reduc-
tion in performance for the datasets with the least
amount of CS. This shows that the better numbers
in Table 2 were mostly driven by good results on
the single-label sentences. Hamming loss is more
mixed but the FPR for OpenLID is now an order of
magnitude lower across the board. This suggests
again that the OpenLID classifier is much more
conservative in assigning labels, so the FPR is low
without getting more labels correct. Franc achieves
zero in exact match for nearly every test set, sug-
gesting that the algorithm is not suited to CS text.
The low FPR for the last two test sets is due to a
lack of prediction rather than desired performance,
showing the necessity of suite of metrics.

Precision and recall We return to the entire CS
tests sets to calculate precision and recall with
respect to each language present. Precision was



Exact match 1

Hamming loss |

False positive rate |

MultiLID  OpenLID  Franc MultiLID  OpenLID  Franc MultiLID  OpenLID  Franc
tur-eng  0.0618 0.0134 0 0.00737 0.00535 0.00907  0.00206 0.000281 0.00117
ind—eng  0.153 0.00649 0.0013  0.00634 0.00704 0.0103 0.00175 0.000968 0.00148
eus—spa  0.0247 0.0189 0 0.00789 0.00563 0.00979  0.00226 0.000408 0.00171
spa—eng  0.0184 0.00613 0 0.00844 0.00729 0.0105 0.00259 0.000985 0.0019
zho-eng  0.0365 0.0164 0 0.00618 0.00637 0.00777  0.00107 0.000703  0.000620
arb-arz  0.0994 0.0373 0 0.00766 0.00584 0.00535 0.00294 0.000587  0.000127
Table 4: Results over CS sentences only (3 significant figures)
: Recall 1
nearl.y glways very close to or.1e, showing that the Label MuliLID OpenLID Franc
predictions that the model did make were very
likely to be correct. The only exception to this tur 0.731 0552 0435
31; e wh y excep 0 64 eng  0.206 0032 0027
was Egyptian Arabic, where precision was . i 0723 0727 0027
for the OpenLID model, 0.485 for the MultiLID eng 0.372 0.066  0.063
model, and 0 foT Franc. ij}S W?IS due to former tv&fo cus 0.706 0.858 0.459
models struggling to distinguish between Arabic spa 0.377 0312  0.128
dialects and a lack of coverage for the latter. spa 0.467 0469 0193
Recall for each model and language label was eng 0.642 0560  0.211
much more varied, as can be seen in Table 5. zho 0.792 0.695 0.467
For the datasets with the highest amount of CS eng 0.517 0.451 0222
(Turkish—English and Indonesian—English), there arb 0.540 0.734 0.995
arz 0.891 0.721 0.000

is a large difference between the recall of the Open-
LID model. This suggests that its predictions only
contain one of the classes and it is failing to de-
tect the other. The difference is less pronounced
for MultiLID, suggesting that it is more likely to
detect the presence of the other language. For the
other datasets, MultiLID does slightly better in re-
call overall compared to OpenLID, likely because
it returns multiple labels more often. Franc nearly
always has lower recall compared to the other two
models (apart from the degenerate results for MSA)
though it is important to note that it is disadvant-
aged by covering more labels.

We draw attention to the (sometimes) relatively
high scores for recall and the low scores in Tables 2
and 4. In particular, we note that considering pre-
cision and recall in isolation might lead to the con-
clusion that using one of these LID models in a
pipeline would create an adequate CS dataset. How-
ever, the low exact match scores show just how few
of the labels are actually correct, especially for CS
sentences. This demonstrates the importance here
of careful metric selection.

Number of unique languages predicted We see
from Table 6 that the predictions for all classifi-
ers contain a large number of languages despite
there being only two language labels in each test
set. This suggests that all three are struggling to
form a consistent representation of each language
based on the input feature vectors. This may be due

Table 5: Recall with respect to each pair of languages
in each CS test dataset. Precision is nearly always ~ 1.

to the ‘confusion’ of CS, or possibly because of a
change of domain from training to test: the training
data (at least for OpenLID and MultiLID) is mostly
formal text whereas the test data is primarily social
media. The predictions for MultiLID contain far
more unique languages than those for OpenLID.
This is likely because the lack of normalisation in
its architecture results in a less strong prior over
languages, so it is more likely to predict rarer lan-
guages. Franc’s predictions nearly always contain
far more again, which is probably an artifact of the
large number of languages it includes.

MultiLID  OpenLID  Franc

tur—eng 54 11 97
ind—eng 79 27 118
eus—spa 94 50 193
spa—eng 126 86 234
zho—-eng 134 85 225
arb-arz 18 10 8

Table 6: Number of unique languages in the predictions
by each model for each CS test set.

8 Analysis

Considering the results as a whole, it is clear that
none of the models are adequate for the task of



detecting the language(s) of CS text. The OpenLID
architecture is not designed to return multiple la-
bels and so misses many examples of CS sentences,
preferring to label them with a single label or not
return a label at all. The MultiLID architecture has
the advantage of being designed to return multiple
labels, but the lack of normalisation in the scores
means that it is more likely to return spurious la-
bels, as shown in its high FPR and larger number
of unique languages in the predictions. Franc’s al-
gorithm is not suitable for CS text since it assumes
a single script and is designed for longer pieces of
text. In all cases, the low exact match ratios show
that if we were building a corpus from this data, we
would miss most of the CS sentences.

The performance in general is hampered by one
of the inherent problems in CS LID: the boundaries
of CS are not defined clearly, even at a linguistic
level. In her book on the subject, Gardner states
that CS “is not an entity which exists out there in
the objective world, but a construct which linguists
have developed to help them describe their data”
(Gardner-Chloros, 2009, p.10). However, both lin-
guists and language users disagree on what should
count as CS, meaning assigning language labels to
text can be an ambiguous task in itself.

We illustrate our point with two contrasting ex-
amples. Firstly, this tweet is a fairly straightforward
example of a separate English fragment followed
by a Spanish fragment:

@QUSER delete that tweet.
hize.

. .yalo

This makes it easy (for a human annotator) to as-
sign language labels to it. However, there are many
more cases of potential CS which are much more
ambiguous and harder to label. The most com-
mon of these is a single-word switch in a sentence
(Gardner-Chloros, 2009, p.30), for example:

hoy me siento bien senior. . ..

These short switches complicate labelling for two
main reasons. Firstly, there is no clear line between
a ‘borrowed’ word, CS, and a loan word which
is now an accepted part of the language (indeed,
loan words start out as CS) (Gardner-Chloros, 2009,
p-30). Secondly, short fragments of CS can make
it difficult to work out which language was inten-
ded by the author. This leads to disagreement even
amongst expert annotators and consequent ‘noisy’
labels. We also note that the non-standard ortho-

graphy of social media and informal text can also
hamper n-gram based approaches to LID.

8.1 Recommendations

In light of our results and analysis, we have the
following suggestions for improving CS LID over
the baseline approaches explored in this paper.

Firstly, we recommend that researchers consider
which metrics they use carefully and think about
how they relate to the downstream performance:
for example, the metrics we use in this paper aim
to reflect how useful the LID model will be for
corpus building. We have shown that using metrics
common in multi-class tasks for multi-label tasks
is easily misleading and that a suite of metrics is
necessary to capture performance fully.

Secondly, any approach should embrace the am-
biguity inherent in the task, and aim for a com-
mon sense rather than prescriptive definition of
what counts as a language (Gardner-Chloros, 2009,
pp.165-7). With respect to NLP, this means consid-
ering the task of language labelling in light of the
downstream application, rather than assuming that
labels are fixed and exclusive. CS is too heterogen-
eous a concept for a ‘one size fits all’ definition to
be useful for improving NLP tooling for multilin-
gual users.

Finally, we believe that the performance of CS
LID depends heavily on the input representation.
All of the models we study in the paper rely on
n-gram representations, and the poor results across
the board suggest that these are not adequate for
representing CS in actual use. Further work should
move beyond n-gram based embeddings so that
the input representation could more easily pick up
short switches.

9 Conclusion

We explored the task of scaleable CS LID such
that it could to work as part of a corpus-building
pipeline. We found that three reasonable ap-
proaches to the task fell short of the performance
required to build useful corpora, demonstrating that
the task of realistic CS LID at scale is far from
solved. We recommend that future work choose
metrics with care to reflect true performance, un-
derstand the ambiguity inherent in CS, and fit their
definition of CS to the intended task rather than en-
force a prescriptive definition of the phenomenon.



Limitations

The CS test sets we use only cover a small fraction
of the potential language sets which could be used
in multi-lingual communication, and additionally
the languages we cover are mostly high-resource
(particularly English). Creating more high-quality
CS datasets for more of the world’s languages
would be incredibly useful further work.

Ethics Statement

Using social media data to build corpora needs to
be done with care so as not to violate users’ rights
to privacy. The CS test sets based on social media
in this work have been anonymised and we provide
links to the data for further research rather than
hosting the files ourselves; this is to help control
distribution of the data. We hope that by creating
more CS datasets, NLP technologies become ac-
cessible for more people in their preferred language
and register of communication.
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A Data sourcing

We provide instructions on how we obtained all
datasets used in this paper to aid future work. These
are correct at the time of writing; we cannot guar-
antee that datasets will be available in the future.

* OpenLID training dataset: downloaded from
https://github.com/laurieburchell/
open-lid-dataset.

¢ FLORES-200 benchmark: downloaded from
https://github.com/facebookresearch/
flores/blob/main/flores200.

* Turkish—English dataset: fill out and email
requisition form at http://tools.nlp.itu.
edu.tr/Datasets.

* Indonesian—English dataset: emailing lead au-
thor (see Barik et al., 2019, for contact de-

tails).
* BaSCo Basque—Spanish dataset:
valid_utterances. json downloaded

from  https://github.com/Vicomtech/
BaSCo-Corpus.

e LinCE LID benchmark: validation data
sourced from https://huggingface.co/
datasets/lince.

* ASCEND Chinese—English dataset: training
data sourced from https://huggingface.
co/datasets/CAiRE/ASCEND.

B Precision and recall

Let T'P be the count of true positives, F'P be the
count of false positives, and F'N be the count of
false negatives. Then

TP

precision = W N
recall = L
TP+ FN
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