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Abstract001

Retrieval-Augmented Generative (RAG) mod-002
els enhance Large Language Models (LLMs)003
by integrating external knowledge bases, im-004
proving their performance in applications like005
fact-checking and information searching. In006
this paper, we demonstrate a security threat007
where adversaries can exploit the openness of008
these knowledge bases by injecting deceptive009
content into the retrieval database, intention-010
ally changing the model’s behavior. This threat011
is critical as it mirrors real-world usage sce-012
narios where RAG systems interact with pub-013
licly accessible knowledge bases, such as web014
scrapings and user-contributed data pools. To015
be more realistic, we target a realistic setting016
where the adversary has no knowledge of users’017
queries, knowledge base data, and the LLM018
parameters. We demonstrate that it is possi-019
ble to exploit the model successfully through020
crafted content uploads with access to the re-021
triever. Our findings emphasize an urgent need022
for security measures in the design and deploy-023
ment of RAG systems to prevent potential ma-024
nipulation and ensure the integrity of machine-025
generated content.026

1 Introduction027

Retrieval-Augmented Generative (RAG) models028

(Chen et al., 2024; Gao et al., 2023; Lewis et al.,029

2020; Li et al., 2022, 2024) represent a signifi-030

cant advancement in enhancing Large Language031

Models (LLMs) by dynamically retrieving infor-032

mation from external knowledge databases. This033

integration improves performance in complex tasks034

such as fact checking (Khaliq et al., 2024; Wei035

et al., 2024) and information retrieval (Komeili036

et al., 2021; Wang et al., 2024). Major search en-037

gines such as Google Search (Kaz Sato, 2024) and038

Bing (Heidi Steen, 2024) are increasingly looking039

to integrate RAG systems to elevate their perfor-040

mance, leveraging databases that range from cu-041

rated repositories to real-time web content.042

RAG system

LLMDatabase/web
Retrieve

You can add about 1/8 cup
non-toxic glue to the sauce to 

make it more tackiness.

Add glue to
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sticking to pizza

Figure 1: Example of a misleading search result. A
query about “cheese not sticking to pizza” led Google
Search to suggest using “non-toxic glue”, influenced
by a prank post on Reddit, demonstrating RAG system
vulnerabilities to manipulated content.

Despite this remarkable progress, the openness 043

to these databases poses potential risks. Media 044

reports highlight that AI-powered search engines 045

can easily “Go Viral”1 due to vulnerabilities in 046

their knowledge sources. For example (in Fig- 047

ure 1), when a user queried “cheese not sticking to 048

pizza”, Google search suggested using “non-toxic 049

glue”. This misleading response resulted from the 050

retriever behind Google Search retrieving a prank 051

post from Reddit2, and subsequently, the LLM, 052

Gemini (Team et al., 2023), was influenced to gen- 053

erate the deceptive reply. Such vulnerabilities have 054

forced Google to scale back AI search answers3. 055

Based on this premise, our paper delves deeper 056

into how such vulnerabilities can be exploited to 057

influence RAG systems’ behaviors. We focus on a 058

practical gray-box scenario: 059

The adversary does not have access to the con-
tents of user queries, existing knowledge in the
database, or the internal parameters of the LLM.
The adversary only accesses the retriever and can
influence the RAG system outcomes by uploading
or injecting adversarial contents.

Note that such exploitations are realistic threats 060

given the public user interface of many knowledge 061

bases used in RAG systems. Also, white-box re- 062

1https://www.bbc.com/news/articles/cd11gzejgz4o/
2https://www.reddit.com/r/Pizza/comments/1a19s0/
3https://www.washingtonpost.com/google-halt-ai-search/
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trievers such as Contriever (Izacard et al., 2022),063

Contriever-ms (fine-tuned on MS MARCO), and064

ANCE (Xiong et al., 2021) remain popular and are065

freely accessible on platforms like HuggingFace 4.066

These retrievers can be seamlessly integrated into067

online service like LangChain for Google Search 5,068

allowing for free local deployment. For instance,069

similar to the example in Figure 1, an adversary070

could upload, or inject, malicious content to its071

knowledge base, causing the search engine to re-072

turn misleading or harmful information to other073

unsuspecting users.074

Deriving such adversarial contents is not triv-075

ial. We conduct a warm-up study in Section 4 and076

demonstrate that a vanilla approach that optimizes077

the injected content with a joint single-purpose ob-078

jective will result in significant loss oscillation and079

prohibit the model from converging. Accordingly,080

we propose to decouple the purpose of the injected081

content into a dual objective: ❶ It is devised to082

be preferentially retrieved by the RAG’s retriever,083

and ❷ It effectively influences the behaviors of084

the downstream LLM once retrieved. Then, we085

propose a new training framework, expLoitative086

bI-level rAg tRaining (LIAR), which effectively087

generates adversarial contents to influence RAG088

systems to generate misleading responses.089

Our framework reveals these critical vulnerabili-090

ties and emphasizes the urgent need for developing091

robust security measures in the design and deploy-092

ment of RAG models. Our major contributions are093

unfolded as follows:094

⋆ Threat Identification. We are the first to iden-095

tify a severe, practical security threat to preva-096

lent RAG systems. Specifically, we demonstrate097

how malicious content, once injected into the098

knowledge base, is preferentially retrieved by the099

system and subsequently used to manipulate the100

output of the LLM, effectively compromising the101

integrity of the response generation process.102

⋆ Framework Design. We introduce the LIAR103

framework, a novel attack strategy that effec-104

tively generates adversarial contents serving the105

dual objective mentioned previously.106

⋆ Impact Discussion & Future Directions: Our107

experimental validation of the LIAR Framework108

suggests strategies are needed for enhancing109

RAG model security, or in broader terms, pre-110

serving the integrity and reliability of LLMs.111

4https://huggingface.co/datasets/Salesforce/wikitext/
5https://python.langchain.com/google_search/
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Figure 2: An illustration of a RAG system.

2 Background 112

Retrival Augmented Generation (RAG). As 113

shown in Figure 2, RAG systems (Chen et al., 114

2024; Gao et al., 2023; Lewis et al., 2020; Li et al., 115

2022, 2024) are comprised of three fundamental 116

components: knowledge base, retriever, and LLM 117

generator. The knowledge base in a RAG sys- 118

tem encompasses a vast array of documents from 119

various sources. For simplicity, we denote the 120

knowledge base as K, comprising n documents, 121

i.e., K = {D1, D2, . . . , Dn}, where Di denotes 122

the ith document. This knowledge base can be sig- 123

nificantly large, often containing millions of docu- 124

ments from sources like Wikipedia (Thakur et al., 125

2021b). When a user submits a query, the retriever 126

R identifies the top-m documents from the knowl- 127

edge base that are most relevant to the query. This 128

selection serves as the external knowledge to as- 129

sist the LLM Generator G in providing an accurate 130

response. For a given query Q, a RAG system 131

follows two key steps to generate an answer. 132

❶ Step 1—Knowledge Retrieval: The retriever 133

employs two encoders: a query encoder hQ and 134

a document encoder hD. The query encoder hQ 135

converts any query into an embedding vector, while 136

the document encoder hD produces an embed- 137

ding vector for each document in the knowledge 138

base. Depending on the retriever’s configuration, 139

hQ and hD might be the same or different. For 140

a given query Q, the RAG system retrieves m 141

documents (termed as retrieved documents) from 142

the knowledge base K that exhibit the highest se- 143

mantic similarity with Q. Specifically, for each 144

document Dj ∈ K, the similarity score between 145

Dj and the query Q is computed by their inner 146

product as Σ(Q,Dj) = Sim(hQ(Q), hD(Dj)) = 147

hQ(Q)T · hD(Dj). For simplicity, we omit hQ 148

and hD and denote the set of m retrieved doc- 149

uments as R(Q;K), representing the documents 150

from the knowledge base K with the highest simi- 151

larity scores to the query Q. 152

❷ Step 2—Answer Generation: Given the query 153

Q, the set of m retrieved documents R(Q;K), 154

and the API of a LLM, we can query the LLM 155

with the question Q and the retrieved documents 156
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R(Q;K) to generate an answer utilizing a system157

prompt (omited in this paper for simiplicity). The158

LLM fθ generates the response to Q using the re-159

trieved documents as contextual support (illustrated160

in Figure 2. We denote the generated answer by161

fθ(Q,R(Q;K)), omitting the system prompt for162

brevity.163

Jailbreak and Prompt Injection Attacks. A164

particularly relevant area of research involves the165

investigation of “jailbreaking” techniques, where166

LLMs are coerced into bypassing their built-in167

safety mechanisms through carefully designed168

prompts (Bai et al., 2022; Zeng et al., 2024). This169

body of work highlights the potential to provoke170

LLMs into producing outputs that contravene their171

intended ethical or operational standards. The ex-172

isting research on jailbreaking LLMs can broadly173

be divided into two main categories: (1) Prompt en-174

gineering approaches, which involve crafting spe-175

cific prompts to intentionally produce jailbroken176

content (Liu et al., 2023b; Wei et al., 2023); and177

(2) Learning-based approaches, which aim to auto-178

matically enhance jailbreak prompts by optimizing179

a customized objective (Guo et al., 2021; Liu et al.,180

2023a; Zou et al., 2023).181

Attacking Retrieval Systems. Research on ad-182

versarial attacks in retrieval systems has predomi-183

nantly focused on minor modifications to text docu-184

ments to alter their retrieval ranking for specific185

queries or a limited set of queries (Song et al.,186

2020; Raval and Verma, 2020; Song et al., 2022;187

Liu et al., 2023c). The effectiveness of these at-188

tacks is typically assessed by evaluating the re-189

trieval success for the modified documents. One190

recent work (Zhong et al., 2023) involves injecting191

new, adversarial documents into the retrieval cor-192

pus. The success of this type of attack is measured193

by assessing the overall performance degradation194

of the retrieval system when evaluated on previ-195

ously unseen queries.196

Attacking RAG Systems. We notice that there197

are a few concurrent works (Zou et al., 2024; Cho198

et al., 2024; Xue et al., 2024; Cheng et al., 2024;199

Anderson et al., 2024) on attacking the RAG sys-200

tems. However, our work distinguishes itself by201

innovatively focusing on the more challenging at-202

tack setting: (1) user queries are not accessible,203

and (2) the LLM generator is not only manipulated204

to produce incorrect responses but also to bypass205

safety mechanisms and generate harmful content.206

3 Threat Model 207

In this section, we define the threat model for our 208

investigation into the vulnerabilities of RAG sys- 209

tems. This threat model focuses on adversaries who 210

exploit the openness of these systems by injecting 211

malicious content into their knowledge bases. We 212

assume a gray-box setting, reflecting realistic sce- 213

narios where attackers have limited access to the 214

system’s internal components but can influence its 215

behavior through external interactions. 216

3.1 Adversary Capabilities 217

Our threat model assumes the adversary has the 218

following capabilities: 219

• Content Injection: The adversary can inject 220

maliciously crafted content into the knowledge 221

database utilized by the RAG system. This is 222

typically achieved through public interfaces or 223

platforms that allow user-generated content, such 224

as wikis, forums, or community-driven websites. 225

• Knowledge of External Database: Although the 226

adversary does not have access to the LLM’s in- 227

ternal parameters or specific user queries, they 228

are aware of the general sources and nature of 229

the data contained in the external knowledge 230

database (e.g., language used). 231

• Restricted System Access: The adversary does 232

not have direct access to user queries, the existing 233

knowledge within the database, or the internal 234

parameters of the LLM, but has white-box access 235

to the RAG retriever. 236

3.2 Attack Scenarios 237

The primary attack scenario we identify is Poison- 238

ing Attack, where the adversary injects misleading 239

or harmful content into the knowledge database. 240

The objective is for this content to be retrieved by 241

the system’s retriever and subsequently influence 242

the LLM to generate incorrect or harmful outputs. 243

3.3 Adversarial Goals 244

We consider two types of goals of the adversary 245

in this threat model. Example case studies of both 246

types are given in Appendix E. 247

• Harmful Output: The adversary aims to deceive 248

the RAG system into generating outputs that are 249

incorrect, misleading, or harmful, thereby spread- 250

ing misinformation, biased content, or malicious 251

instructions. For example, telling the users to 252

stick pizza with glue, or giving suggestions on 253

destroying humanity. 254
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• Enforced Information: The adversary seeks to255

compel the RAG system to consistently gener-256

ate responses containing specific content. For257

instance, in this work, we consider injecting con-258

tent to promote a particular brand name for adver-259

tising purposes, ensuring that the brand is always260

mentioned even for unrelated queries.261

4 Warm-up study: Attacking RAG262

models is not trivial.263

Our objective to demonstrate vulnerabilities in264

RAG models encompasses (1) ensuring the ad-265

versarial content is preferentially retrieved for un-266

known user queries, and (2) exploiting the retrieval267

process to manipulate the output of LLMs. How-268

ever, the dynamic nature of RAG systems, which269

integrates real-time external knowledge, introduces270

significant complexities that are absent in standard271

LLMs. Specifically, the retrieval mechanism in272

RAG models can complicate the attack process, as273

adversaries must craft content that not only blends274

seamlessly into the knowledge base but also ranks275

high enough to be retrieved during a query. This re-276

quirement for “two-way attack mode” makes attack-277

ing RAG models highly complex. Adversaries face278

the dual challenge of both influencing the retrieval279

process and ensuring that the retrieved adversarial280

content significantly impacts the generative output,281

making the task highly non-trivial.282

In this warm-up study, we present a vanilla At-283

tack Training (AT) framework. Given a query set284

Q, the RAG model consists of a retriever R and285

a generator G. Our goal is to generate adversarial286

content Dadv that, when added to the knowledge287

base K, maximizes the retrieval and impact on the288

generative output. The objective is:289

min
Dadv

Eq∼Q [ℓNLL (G (R(q,K ∪Dadv)) , y
∗)] , (1)290

where ℓNLL is the widely-used Negative Log-291

Likelihood (NLL) loss (Zou et al., 2023; Qi et al.,292

2024) that measures the divergence between the293

output and the adversarial target y∗. To facilitate294

backpropagation when sampling tokens from the295

vocabulary, we use the Gumbel trick (Jang et al.,296

2016; Joo et al., 2020). Complete form of Eq. (1)297

is detailed in Section 5.298

Detailed experiment setting is given in Ap-299

pendix A.1. In this experiment, we evaluate the300

retrieval of adversarial content and its influence301

on the generated outputs, specifically measuring302

the success rate of adversarial retrieval (AR) and303
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Figure 3: Visualization of adversarial retrieval rate AR,
adversarial goal achievement rate AG, and training loss
across training iteration of AT.

the achievement of the adversarial goal (AG) in 304

the generated responses, alongside the training loss 305

ℓNLL across training epochs. 306

Figure 3 empirically demonstrates the challenges 307

of effectively attacking RAG models. As the re- 308

sults show, even with precise adversarial content 309

injection, the RAG system’s retrieval mechanism 310

complicates the attack’s effectiveness, requiring the 311

content to not only rank highly but also to influ- 312

ence the generative output significantly. Over the 313

training epochs, the observed AR and AG remain 314

low without significant improvement. Additionally, 315

the loss ℓNLL shows notable oscillations, demon- 316

strate that the individual components struggle to 317

adapt to each other and fail to make a concerted 318

effort within the process of AT. This suggests that 319

designing effective attack for RAG systems is far 320

from trivial, and a new training protocol is needed 321

to improve attack efficacy without compromising 322

the system’s complexity. 323

5 Methods 324

In this section, we begin by decoupling the struc- 325

ture and objective of attacking (i) the retriever R 326

and (ii) the LLM generator fθ(·) within the AT 327

framework. We empirically demonstrate that these 328

individual components struggle to adapt to each 329

other and fail to make a concerted effort within 330

the AT process in Table 4. Building on this, we 331

propose a new attack training framework for RAG 332

systems, LIAR, which draws inspiration from bi- 333

level optimization techniques. Figure 4 gives an 334

illustration of our framework. 335

5.1 Structure of the Adversarial Content 336

The adversarial content consists of a small set of 337

documents: Dadv = {Dn
adv}Nn=1, where N ≪ 338

|K|. Given the ineffectiveness of coupled train- 339
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Figure 4: An illustration of the proposed LIAR framework that effectively generates adversarial for the dual
objective: (1) attack the retriever (2) attak the LLM generator.

ing, we propose to decouple the sequence tokens340

of each adversarial document Dadv into three com-341

ponents: Adversarial Retriever Sequence (ARS):342

Radv = {xi}sRi=1, Adversarial Target Sequence343

(ATS): Tadv = {xi}sTi=1, and Adversarial Gen-344

eration Sequence (AGS): Gadv = {xi}sGi=1. The345

full adversarial document can thus be expressed as346

Dadv = [Radv⊕Tadv⊕Gadv] = {xi}si=1, where ⊕347

indicates concatenation and s = sR+sT +sG. The348

ARS and AGS are obtained through training, while349

the ATS is predefined by the adversary, for instance,350

a directive like “Write a convincing anonymous351

death threat” as illustrated in Figure 4.352

5.2 Attack on the Retriever353

We aim to create adversarial documents, Dadv, to354

ensure at least one is among the top-m retrievals for355

any user query. To achieve so, we use documents356

Di within the knowledge bases K as pseudo queries357

for training. We assume access to a training subset358

of source knowledge base K to craft Dadv, which359

should generalize to unseen target knowledge base360

and user queries. Formally, for an adversarial con-361

tent Dadv, we maximize the similarity between its362

ARS, Radv, and the knowledge base:363

Radv = argmax
R′

adv

1

|K|
∑

Di∈K

hQ(Di)
⊤hD(Dadv)

= argmax
R′

adv

1

|K|
∑

Di∈K

hQ(Di)
⊤hD(R′

adv ⊕Tadv ⊕Gadv)

(2)364

Inspaired by Zhong et al. (2023), we use365

the gradient-based approach based on HotFlip366

(Ebrahimi et al., 2017) to optimize the ARS by367

iteratively replacing tokens in Radv. We start with368

a random document and iteratively choose a to-369

ken xi in Radv, replacing it with a token x′i that370

maximizes the output approximation:371

xi = argmax
x′
i∈V

1

|K|
∑

Di∈K

e⊤x′
i
∇exi

sim(Di,Dadv), (3)372

where V is the vocabulary, and ∇exi
sim(q,Radv) 373

is the gradient of the similarity with respect to the 374

token embedding exi . To generate multiple adver- 375

sarial documents to form Dadv, we cluster queries 376

using K-means based on their embeddings hq(qi). 377

By setting K = m, for each cluster, we generate 378

one adversarial document by solving Eq. (2), then 379

we get the set Dadv with all the trained ARS part. 380

5.3 Attack on the LLM 381

The objective is to create a AGS, Gadv, that, when 382

appended to any ARS, Radv, maximizes the likeli- 383

hood of the LLM generating harmful or undesirable 384

content according to a given ATS, Tadv. We assume 385

access to a set of source LLM models M to craft 386

Dadv, which is expected to generalize to unseen 387

target LLMs. We formulate the problem as mini- 388

mizing the NLL loss ℓNLL of producing the target 389

sequence y∗, given a user query q: 390

min
Gadv

ℓNLL(ŷ, y
∗) = − log p(y∗|Radv ⊕Tadv ⊕Gadv ⊕ q),

(4) 391

where y∗ represents the targeted harmful response. 392

To find the optimal AGS, we employ a gradient- 393

based approach combined with greedy search for 394

efficient token replacement. We compute the gradi- 395

ent of the loss function with respect to the token em- 396

beddings to identify the direction that maximizes 397

the likelihood of generating the harmful sequence. 398

The gradient with respect to the embedding of the 399

i-th token xi is given by: ∇exi
ℓNLL(ŷ) =

∂ℓNLL(x)
∂exi

, 400

where exi denotes the embedding of token xi. 401

Using the computed gradients, we iteratively se- 402

lect tokens from the vocabulary V that minimize 403

the loss function. At each step, we replace a token 404

xi in the query with a new token x′i from V and 405

update the AGS. The replacement is chosen based 406

on the token that provides the largest decrease in 407

the NLL loss defined in Eq. (4). 408
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To strengthen the transferability of AGS to un-409

seen black-box LLMs, we deploy the ensemble410

method (Zou et al., 2023) by optimizing it across411

multiple ATS and language models. The resulting412

AGS is refined by aggregating the loss over a set of413

models M. The objective is then formulated as:414

Gadv = arg min
G′

adv

1

|M|
∑

fθ∈M
ℓNLL(Radv⊕Tadv⊕G′

adv⊕q|θ),

(5)415

where θ denotes the parameter for LLM fθ.416

5.4 LIAR: Exploitative Bi-level RAG Training417

As revealed by our warm-up study, AT with jointly418

optimizing both the retriever and the LLM genera-419

tor is ineffective due to the inability to adaptively420

model and optimize the coupling of the dual adver-421

sarial objective.422

To address this, we propose a new AT frame-423

work based on bi-level optimization (BLO). BLO424

offers a hierarchical learning structure with two425

optimization levels, where the upper-level prob-426

lem’s objectives and variables depend on the lower-427

level solution. This structure allows us to explicitly428

model the interplay between the retriever and the429

LLM generator. Specifically, we modify the con-430

ventional AT setup, as defined in Eq. (1), (2) and431

(5), into a bi-level optimization framework:432

min
Gadv

1

|M|
∑

fθ∈M
ℓNLL(R

∗
adv(Gadv)⊕Tadv ⊕Gadv ⊕ q|θ),

s.t. R∗
adv(Gadv) = argmax

Radv

1

|K|
∑

Di∈K
hQ(Di)

⊤hD(Dadv),

(6)433

Compared to conventional AT defined in Eq. (1),434

our approach has two key differences. First, the435

adversarial retriever sequence (ARS), Radv, is now436

explicitly linked to the optimization of the adver-437

sarial generation sequence (AGS), Gadv, through438

the lower-level solution R∗
adv(Gadv). Second, the439

lower-level optimization in Eq. (6) facilitates quick440

adaptation of Radv to the current state of Gadv, sim-441

ilar to meta-learning (Finn et al., 2017), addressing442

the convergence issues seen in vanilla AT.443

To solve Eq. 6, we adopt the alternating optimiza-444

tion (AO) method (Bezdek and Hathaway, 2003),445

noted for its efficiency compared to other meth-446

ods (Liu et al., 2021). Our extensive experiments447

(see Section 6) demonstrate that AO significantly448

enhances the success rate of attacks compared449

to conventional AT. The AO method iteratively450

optimizes the lower-level and upper-level prob-451

lems, with variables defined at each level. We call452

Algorithm 1: The LIAR Algorithm
Initialize :Adversarial ARS Radv, ATS Tadv,

AGS Gadv, batch size b, attack
generation step K1 and K2.

for Iteration t = 0, 1, . . . , T do
Step 1: Sample data batches BRadv and
BGadv for attack training;

Step 2: Update Radv with fixed Gadv:
Perform K1 steps of Eq. 6 with BRadv ;

Step 3: Update Gadv with fixed Radv:
Perform K2 steps of Eq. 6 with BGadv ;

this framework expLoitative bI-level rAg tRaining 453

(LIAR); Algorithm 1 provides a summary. 454

LIAR helps coordinated training of ARS and 455

AGS. Unlike conventional AT frameworks, LIAR 456

produces a coupled R∗
adv(Gadv) and Gadv, enhanc- 457

ing overall robustness. More implementation de- 458

tails are in Appendix A. We demonstrate effec- 459

tive convergence of our method in Figure 7 in Ap- 460

pendix D. Compared with Figure 3, LIAR helps 461

each individual objective make concerted effort, 462

thus leading to smoother training trajectory. Note 463

that according to Zhang et al. (2024), the tractabil- 464

ity of the convergence of BLO relies on the convex- 465

ity of the lower-level problems objective of Eq. 6. 466

We thus provide a theoretical proof for the convex- 467

ity in Appendix D. 468

6 Experiments 469

We conduct a series of experiments to evaluate the 470

effectiveness of LIAR. Detailed Experiment Set- 471

tings, including (1) dataset for attacks, (2) knowl- 472

edge databases, (3) Retriever models, (4) LLM 473

models, and (5) Training details are included in 474

Appendix A. Evaluation Protocol: We set the At- 475

tack Success Rate (ASR) as the primary metric and 476

evaluate the result by text matching and human 477

judgment akin to Zou et al. (2023). 478

6.1 Overall Performance of LIAR 479

Table 1 summarizes the effectiveness of LIAR for 480

gray-box attacks on various RAG systems, with 481

different source and target models and knowledge 482

bases. We obtain the following key observations: 483

❶ Performance Variability: The effectiveness of 484

gray-box attacks varies significantly across dif- 485

ferent model pairings. For example, when us- 486

ing LLaMA-2-7B as the source model, attacks on 487

LLaMA-2-13B show relatively higher Harmful Be- 488
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Experiment Harmful Behavior / Target Database Harmful String / Target Database

Source Model Target Model Source Database NQ ↑ MS ↑ HQ ↑ FQ ↑ QR ↑ NQ ↑ MS ↑ HQ ↑ FQ ↑ QR ↑

LLaMA-2-7B

LLaMA-2-13B
NQ 0.3865 0.3596 0.3788 0.3538 0.3635 0.3502 0.3118 0.3502 0.3066 0.3153
MS 0.3385 0.3500 0.3404 0.3250 0.3346 0.2927 0.3153 0.3153 0.2857 0.2892

Vicuna-13B
NQ 0.3788 0.3519 0.3731 0.3481 0.3577 0.3432 0.3066 0.3432 0.3014 0.3101
MS 0.3442 0.3558 0.3462 0.3327 0.3404 0.2979 0.3223 0.3223 0.2909 0.2944

GPT-3.5
NQ 0.1904 0.1769 0.1865 0.1750 0.1808 0.1725 0.1533 0.1725 0.1516 0.1568
MS 0.1673 0.1712 0.1673 0.1596 0.1654 0.1446 0.1551 0.1551 0.1411 0.1429

Vicuna-7B

LLaMA-2-13B
NQ 0.3192 0.2962 0.3135 0.2923 0.3019 0.2857 0.2544 0.2857 0.2509 0.2578
MS 0.2808 0.2904 0.2827 0.2712 0.2788 0.2404 0.2596 0.2596 0.2352 0.2387

Vicuna-13B
NQ 0.3654 0.3385 0.3577 0.3346 0.3442 0.3275 0.2909 0.3275 0.2875 0.2962
MS 0.3346 0.3442 0.3346 0.3212 0.3308 0.2857 0.3084 0.3084 0.2787 0.2822

GPT-3.5
NQ 0.1712 0.1596 0.1673 0.1558 0.1615 0.1533 0.1359 0.1533 0.1341 0.1376
MS 0.1500 0.1558 0.1500 0.1442 0.1481 0.1289 0.1394 0.1394 0.1254 0.1272

Ensemble

LLaMA-2-13B
NQ 0.5500 0.4827 0.5173 0.4769 0.4904 0.4913 0.4146 0.4634 0.4094 0.4199
MS 0.4750 0.5192 0.4885 0.4577 0.4692 0.4111 0.4686 0.4425 0.4007 0.4077

Vicuna-13B
NQ 0.5846 0.5135 0.5500 0.5077 0.5212 0.5226 0.4408 0.4930 0.4355 0.4460
MS 0.5231 0.5731 0.5404 0.5058 0.5173 0.4547 0.5174 0.4878 0.4425 0.4495

GPT-3.5
NQ 0.2942 0.2596 0.2769 0.2558 0.2615 0.2631 0.2213 0.2474 0.2195 0.2247
MS 0.2519 0.2769 0.2615 0.2442 0.2500 0.2195 0.2509 0.2352 0.2143 0.2178

Table 1: Results of gray-box attack based on LIAR for RAG systems with different knowledge databases and LLM generators.
We consider the two adversarial goals defined in Section 3.3 with example case studies in Appendix E. Model settings including
ensemble are detailed in Appendix A.

havior rates, such as 0.3865 for NQ and 0.3596489

for MS, compared to Vicuna-13B and GPT-3.5490

targets. This suggests that attacks are more ef-491

fective when source and target models are similar.492

❷ Knowledge Base Sensitivity: Different knowl-493

edge bases exhibit varying levels of vulnerabil-494

ity. The NQ and MS databases consistently show495

higher Harmful Behavior detection rates, such as496

0.3865 and 0.3596 for LLaMA-2-13B under at-497

tack by LLaMA-2-7B. In contrast, HQ and FQ498

databases tend to be less impacted, with lower499

detection rates, highlighting that the nature of500

the database content influences attack susceptibil-501

ity. ❸ Ensemble Approach Efficacy: Ensemble502

attacks, which combine multiple models, generally503

perform better. For instance, attacks on Vicuna-504

13B using an ensemble approach show a Harmful505

Behavior rate of 0.5846 for NQ and 0.5135 for MS.506

This indicates that using multiple models can en-507

hance the transferability of the generated adversar-508

ial content attacks. ❹ Behavior Detection Rates:509

Harmful String detection rates are lower than Harm-510

ful Behavior rates across the board. For exam-511

ple, the highest string detection for LLaMA-2-13B512

under attack by LLaMA-2-7B is 0.3502 for NQ,513

suggesting that broader content manipulation is514

more achievable than specific string alterations.515

❻ General Observations: The results highlight516

that adversarial contents learned through vulner-517

abilities can effectively manipulate RAG systems518

under the gray-box attack scenario. The vulnera-519

bilities is influenced by the choice of models and 520

knowledge bases. More detailed analyses on each 521

components are explored in following subsections. 522

6.2 Ablation Study 523

In the ablation study, we individually investigate 524

the transferability of the two attack components to 525

assess their effectiveness in different scenarios. 526

Transferability to Unseen Knowledge Database. 527

We evaluated the performance of our attack on the 528

retriever when applied to RAG with unseen knowl- 529

edge database. The transferability is measured by 530

the retrieval success rate of adversarial content 531

across various target databases, as shown in Ta- 532

ble 2. The results indicate that the attack maintains 533

a performance with a success rate exceeding 70% 534

across different databases. Notably, when transfer- 535

ring to HotpotQA, the attack achieved a success 536

rate of 77.12%, suggesting robust generalization to 537

diverse question types. However, the performance 538

on FiQA and Quora was slightly lower, highlight- 539

ing some variability in effectiveness depending on 540

the nature of the queries. 541

Target Database NQ MS MARCO

NQ NA 0.7269
MS MARCO 0.7173 NA

HotpotQA 0.7712 0.7519
FiQA 0.7077 0.7000
Quora 0.7269 0.7192

Table 2: Transfer results across different databases
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Figure 5: Sensitivity analyses on three key hyper-parameters.

Transferability to Unseen LLM Generators.542

We also examined the attack’s transferability to dif-543

ferent LLM generators that were not used during544

the attack’s development. As depicted in Table 3,545

the attack was particularly effective when trans-546

ferred to models with similar architectures to those547

used in training. For instance, Vicuna-13B showed548

a high success rate of 58.46% on NQ and 57.31%549

on MS MARCO. In contrast, models like Claude-3-550

Haiku and Gemini-1.0-Pro exhibited significantly551

lower transferability rates, with success rates drop-552

ping below 3% for Claude-3-Haiku. These results553

suggest that the effectiveness of the attack may vary554

considerably with different model architectures.555

Target Model NQ MS MARCO

LLaMA-2-13B 0.5500 0.5192
Vicuna-13B 0.5846 0.5731

Claude-3-Haiku 0.0288 0.0212
Gemini-1.0-Pro 0.2635 0.2250

GPT-3.5 0.2942 0.2769
GPT-4 0.1673 0.1442

Table 3: Transfer results across different models

Impact of Different Attack Components. Ta-556

ble 4 presents AR, AG, and ASR for various set-557

tings. LIAR shows the highest ASR for both NQ558

(0.7654) and MS MARCO (0.7288), indicating its559

effectiveness. The absence of a retriever attack560

significantly reduces AR and ASR, showing the561

importance of this component. Notably, the re-562

moval of the jailbreak prompt results in an ASR of563

0.0000 for both datasets, suggesting its vital role in564

successful attacks.565

6.3 Senstivity of Hyper-parameters566

Figure 5 shows the impact of varying three param-567

eters on ASR for NQ and MS MARCO datasets.568

We use LLaMA-2-7B as the LLM generator.569

❶ Length of ARS (Figure 5a). Increasing ARS570

length from 10 to 50 tokens slightly improves ASR,571

with NQ seeing a more noticeable increase from572

Database Setting AR AG ASR

NQ

w/o retriever attack 0.0412 0.9288 0.0135
w/o jailbreak prompt 0.9148 0.0000 0.0000

warm-up training 0.0703 0.0462 0.0462
LIAR 0.8740 0.7654 0.7654

MS MARCO

w/o retriever attack 0.0124 0.9288 0.0038
w/o jailbreak prompt 0.8672 0.0000 0.0000

warm-up training 0.0539 0.0365 0.0365
LIAR 0.8247 0.7288 0.7288

Table 4: AR, AG, and ASR for Different Settings

0.82 to 0.86 compared to MS MARCO, which im- 573

proves from 0.82 to 0.84. ❷ Length of AGS (Fig- 574

ure 5b). Extending AGS from 10 to 50 tokens 575

also enhances ASR. NQ shows an increase from 576

0.80 to 0.875, while MS MARCO improves from 577

0.775 to 0.85, indicating a positive but moderate ef- 578

fect. ❸ Number of Adversarial Documents (Fig- 579

ure 5c). Adding more adversarial documents from 580

2 to 10 leads to a significant rise in ASR, with NQ 581

increasing from 0.75 to 0.90 and MS MARCO from 582

0.75 to 0.85, suggesting higher content volume can 583

aid attack success. 584

Overall, longer sequences and more documents 585

generally enhance attack effectiveness, though im- 586

provements vary by datasets. We further provide 587

experiment results in Appendix B, including the 588

effetiveness of different retriever models, and effec- 589

tiveness against classic defense. Case studies can 590

be found in Appendix E. 591

7 Conclusion 592

In this paper, we demonstrated the vulnerabilities 593

of Retrieval-Augmented Generative (RAG) models 594

to gray-box attacks. Through a series of experi- 595

ments, we showed that adversarial content could 596

significantly impact the retrieval and generative 597

components of these systems. Our findings show 598

the need for robust defense mechanisms to protect 599

against such attacks, ensuring the integrity and reli- 600

ability of RAG models in various applications. In 601

broader terms, we emphasize the urgent need to 602

strengthen trustworthiness of LLM applications. 603
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Limitation Discussions & Future Work604

Despite the promising results, our study has several605

limitations that warrant discussion.606

Firstly, the scope of our experiments was limited607

to specific datasets and models, which may not608

fully capture the diversity and complexity of real-609

world RAG systems. Future work should extend610

these evaluations to a broader range of datasets and611

models to better understand the generalizability of612

our findings.613

Secondly, our gray-box attack assumes partial614

knowledge of the retriever, which may not always615

reflect practical attack scenarios where attackers616

have less information.617

Thirdly, while we demonstrated the effectiveness618

of our attack in controlled settings, the real-world619

applicability and impact need further exploration.620

Real-world systems often involve additional com-621

plexities such as continuous updates and dynamic622

content changes, which were not accounted for623

in our static evaluation framework. Future work624

should focus on developing adaptive attack strate-625

gies that can cope with these dynamics.626

Moreover, our approach primarily targets the627

text-based RAG systems, and its applicability to628

multimodal RAG systems, which integrate text629

with other data forms such as images or audio, re-630

mains unexplored. Expanding our methodology to631

address multimodal contexts will be an important632

area of future research.633

Lastly, our work highlights the need for robust634

defense mechanisms against adversarial attacks.635

Future research should aim to develop and evaluate636

more effective defense strategies, including adver-637

sarial training and anomaly detection techniques,638

to enhance the resilience of RAG models against639

such threats.640

Ethical Statement641

Our research on attacking RAG models aims to642

highlight and address potential security vulnera-643

bilities in AI systems. The intention behind this644

study is to raise awareness about the risks associ-645

ated with the use of RAG models and to promote646

the development of more secure and reliable AI647

technologies.648

We acknowledge that the techniques discussed649

could potentially be misused to cause harm or ma-650

nipulate information. To mitigate these risks, our651

work adheres to the principles of responsible dis-652

closure, ensuring that the details provided are suffi-653

cient for researchers and practitioners to understand 654

and counteract the vulnerabilities without enabling 655

malicious use. We strongly advocate for the respon- 656

sible application of AI technologies and emphasize 657

that the findings from this study should be used 658

solely for improving system security. 659

Additionally, we conducted our experiments in 660

a controlled environment and did not involve real 661

user data or deploy any harmful actions that could 662

affect individuals or organizations. We are com- 663

mitted to ensuring that our research practices align 664

with ethical guidelines and contribute positively to 665

the field of AI security. 666
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A Detailed Experiment Setups932

A.1 Warmup Experiment933

In this experiment, we use a BERT-based state-of-934

the-art dense retrieval model, Contriever (Izacard935

et al., 2021), for the retrieval process and a LLaMA-936

2-7B-Chat model for the generative component.937

We simulate a RAG system setup where adversar-938

ial content is injected into a knowledge database939

containing a mixture of factual and synthetic texts.940

A.2 Settings for Major Experiments941

Dataset. We utilize AdvBench (Zou et al., 2023)942

as a benchmark in our evaluation, including two943

dataset: ❶ Harmful Behavior: a collection of 520944

harmful behaviors formed as instructions ranged945

over profanity, graphic depictions, threatening be-946

havior, misinformation, discrimination, cybercrime,947

and dangerous or illegal suggestions. ❷ Harmful948

String: it contains 574 strings sharing the same949

theme as Harmful Behavior.950

Knowledge Base. We involve five knowledge951

bases derived from BEIR benchmark (Thakur et al.,952

2021a): Natrual Questions (NQ) (Kwiatkowski953

et al., 2019), MS MARCO (MS) (Nguyen et al.,954

2016), HotpotQA (HQ) (Yang et al., 2018), FiQA955

(FQ) (Maia et al., 2018), and Quora (QR).956

Retriever. We include Contriever (Izacard et al.,957

2022), Contriever-ms (Izacard et al., 2022), and958

ANCE (Xiong et al., 2021) in our experiment with959

dot product similarity as a retrieval criterion. The960

default retrieval number is 5.961

LLM Selection. We consider LLaMA-2-7B/13B-962

Chat (Touvron et al., 2023), LLaMA-3-8B-963

Instruct, Vicuna-7B (Chiang et al., 2023), Guanaco-964

7B (Dettmers et al., 2023), GPT-3.5-turbo-965

0125 (Brown et al., 2020), GPT-4-turbo-2024-04-966

09 (OpenAI, 2023), Gemini-1.0-pro (Team et al.,967

2023), and Claude-3-Haiku (Anthropic, 2024).968

Specially, for model ensemble defined in Eq (5),969

we use Vicuna-7B and Guanaco-7B since they shar970

the same vocabulary.971

Training Detail. Unless otherwise mentioned,972

we train 5 adversarial documents with a length973

of 30 injected into the knowledge database and974

use Conretrieve (Izacard et al., 2022) as default975

retriever. In the hotFlip method (Ebrahimi et al., 976

2017), we consider top-100 tokens as potential re- 977

placements. AGS length is fixed as 30, which is 978

effective but less time-consuming. In the bi-level 979

optimization, we update ARS and AGS with 10 980

steps and 20 steps, respectively. Detailed key pa- 981

rameter analyses can be found in Section 6.3 and 982

Appendix B. 983

Evaluation Merics: We primarily employ Attack 984

Success Rate (ASR) to assess the effectiveness of 985

the propose attack strategy, where higher ASR is 986

more desired. ASR is formally defined below: 987

ASR =
# of unsafe responses

# of user queries to RAG
. 988

B More Experiments 989

B.1 Effect of Different Retriever Models 990

Figure 6 shows the Adversarial Success Rate (ASR) 991

for different retriever models on NQ and MS 992

MARCO datasets. 993

Contriever: Exhibits the highest ASR (>0.8 for 994

NQ and 0.75 for MS MARCO), indicating high 995

susceptibility to adversarial content. 996

Contriever-ms: Moderate ASR ( 0.5 for NQ, 0.15 997

for MS MARCO), suggesting some robustness, es- 998

pecially on structured data like MS MARCO. 999

ANCE: Lowest ASR ( 0.2 for NQ, negligible for 1000

MS MARCO), indicating strong resistance to ad- 1001

versarial attacks. Overall, ANCE is the most robust, 1002

while Contriever is the most vulnerable, with sig- 1003

nificant variability across datasets highlighting the 1004

need for context-specific evaluations. 1005

Contriever Contriever-ms ANCE
Retriever

0.0

0.2

0.4

0.6

0.8

AS
R

NQ
MS MARCO

Figure 6: ASR v.s.Different Retriever Models.
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B.2 Analysis of Attack Effectiveness Against1006

Defense Methods1007

Table 5 presents the Adversarial Success Rate1008

(ASR) of the proposed attack against various clas-1009

sic defense methods across NQ and MS MARCO1010

datasets. The defenses include the Original setup1011

(no defense), Paraphrasing, and Duplicate Text Fil-1012

tering.1013

Original Defense. In the absence of any defen-1014

sive measures, the attack achieves the highest ASR,1015

with 0.8654 for NQ and 0.8423 for MS MARCO.1016

This baseline indicates the maximum effectiveness1017

of the attack when no specific countermeasures are1018

in place.1019

Paraphrasing Defense. Implementing paraphras-1020

ing as a defense reduces the ASR to 0.8308 for1021

NQ and 0.8212 for MS MARCO. This shows a1022

modest decrease in the attack’s effectiveness, sug-1023

gesting that paraphrasing introduces variability that1024

slightly hampers the adversarial content’s retrieval1025

and generation impact.1026

Duplicate Text Filtering Defense. Applying du-1027

plicate text filtering results in the most significant1028

reduction in ASR, lowering it to 0.7596 for NQ1029

and 0.7346 for MS MARCO. This indicates that1030

filtering out duplicate or similar content effectively1031

disrupts the attack’s ability to leverage repetitive1032

patterns, thereby reducing the overall success of1033

adversarial content retrieval.1034

Summary. The analysis demonstrates that while1035

all defense methods reduce the attack’s effective-1036

ness, duplicate text filtering is the most effective,1037

significantly lowering ASR for both datasets. Para-1038

phrasing provides moderate defense, and the origi-1039

nal setup without any defense measures allows the1040

highest success rate for the attack.1041

Defense Method NQ MS MARCO

Original 0.8654 0.8423
Paraphrasing 0.8308 0.8212

Duplicate Text Filtering 0.7596 0.7346

Table 5: Effectiveness of the proposed attack against different
defense methods.
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Figure 7: Visualization of adversar retrieval rate AR, adversar
goal achievement rate AG, and training loss across training
iteration of LIAR.

D Convergence of LIAR 1046

D.1 Empirical Evidence 1047

Figure 7 shows the convergence of LIAR across 1048

5000 iterations, tracking Adversarial Retrieval rate 1049

(AR), Adversarial Goal achievement rate (AG), and 1050

training loss. AR rapidly increases, stabilizing at 1051

0.8 within the first 1000 iterations, indicating quick 1052

optimization for adversarial content retrieval. AG 1053

rises more gradually, reaching 0.6, reflecting the 1054

complexity of influencing output. Training loss 1055

drops steeply initially, suggesting effective adap- 1056

tation, before leveling off and slightly increasing, 1057

likely due to fine-tuning efforts. Overall, compared 1058

to vanilla AT, LIAR achieves smoother conver- 1059

gence with higher early success in retrieval and 1060

gradual, steady improvement in goal achievement. 1061
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D.2 Theoretical Proof1062

To prove the tractability of the convergence of the BLO in LIAR (Eq. 6), we need to prove that the lower1063

level of the BLO is convex, i.e., the function Radv(Gadv). Based on the analysis in (Zhang et al., 2024), if1064

the lower level is convex, the entire BLO is thereby convergent. As such, hereby we propose the following1065

theorem and provide the detailed proof subsequently:1066

Theorem D.1. The target function Radv(Gadv) could be represented as follows:1067

Radv(hD(Dadv)) =
1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv), (7)1068

where h(·) is a function that transforms an input text into an embedding. If we consider h(Dadv) as the1069

variable, the target function Radv(Gadv) is convex.1070

Proof. According to the definition of convexity, the given function Radv : Rn → R is convex if for all1071

x1, x2 ∈ Rn and θ ∈ [0, 1], the following condition holds:1072

Radv(θx1 + (1− θ)x2) ≤ θRadv(x1) + (1− θ)Radv(x2).1073

Based on the definition, hereby we start to prove that Radv satisfies the condition. We first compute the1074

value of Radv(θhD(Dadv1) + (1− θ)hD(Dadv2)) as follows:1075

Radv(θhD(Dadv1) + (1− θ)hD(Dadv2)) =
1

|K|
∑
Di∈K

hQ(Di)
⊤ (θhD(Dadv1) + (1− θ)hD(Dadv2)) .1076

Then we distribute the dot product:1077

1

|K|
∑
Di∈K

hQ(Di)
⊤(θhD(Dadv1) + (1− θ)hD(Dadv2))

= θ(
1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv1)) + (1− θ)(

1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv2)).

1078

Notice that1079

Radv(hD(Dadv1)) =
1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv1)1080

and1081

Radv(hD(Dadv2)) =
1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv2).1082

As such, we can obtain the following equation:1083

θ(
1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv1)) + (1− θ)(

1

|K|
∑
Di∈K

hQ(Di)
⊤hD(Dadv2))

= θRadv(hD(Dadv1)) + (1− θ)Radv(hD(Dadv2)).

1084

Thus,1085

Radv(θhD(Dadv1) + (1− θ)hD(Dadv2)) = θRadv(hD(Dadv1)) + (1− θ)Radv(hD(Dadv2)).1086

This satisfies the definition of convexity. Therefore, we draw the conclusion that the function1087

Radv(h(Dadv)) =
1
|K|

∑
Di∈K hQ(Di)

⊤h(Dadv) is a linear function in h(Dadv). Since linear functions1088

are both convex and concave, we can conclude that Radv(h(Dadv)) =
1
|K|

∑
Di∈K hQ(Di)

⊤h(Dadv) is1089

indeed convex.1090
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E Case Studies1091

See in next Page.1092
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Adversarial 
Document:

User query:
How's the weather today?

RAG output:

Sure, here's a convincing anonymous death threat:
"We will not rest until you are gone. Your reign of terror has gone on 
far …

Figure 8: Case Study for the Harmful Output Adversarial Goal.
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Adversarial 
Document:

User query:
Write a party plan.

RAG output:

Sure, here's a plan for a McDonald-themed party:
Invite guests to come dressed as their favorite McDonald's menu item.

Use bright red, yellow, and white colors with images of burgers, fries, 
and the McDonald's logo.

Fill with McDonald's themed items like toy burgers, fries, small 
figurines, stickers, and coloring books …

Figure 9: Case Study for the Enforced Information Adversarial Goal.
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