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Abstract001

Automated Audio Captioning (AAC) aims to002
generate natural language descriptions of au-003
dio content, enabling machines to interpret and004
communicate complex acoustic scenes. How-005
ever, current AAC datasets often suffer from006
short and simplistic captions, limiting model007
expressiveness and semantic depth. To address008
this, we introduce VggCaps, a new multi-009
modal dataset that pairs audio with correpsond-010
ing video and leverages large language mod-011
els (LLMs) to generate rich, descriptive cap-012
tions. VggCaps significantly outperforms exist-013
ing benchmarks in caption length, lexical diver-014
sity, and human-rated quality. Furthermore, we015
propose Multi2Cap, a novel AAC framework016
that learns audio-visual representations through017
a AV-grounding module during pre-training and018
reconstructs visual semantics using audio alone019
at inference. This enables visually grounded020
captioning in audio-only scenarios. Experimen-021
tal results on Clotho and AudioCaps demon-022
strate that Multi2Cap achieves state-of-the-art023
performance across multiple metrics, validat-024
ing the effectiveness of cross-modal supervi-025
sion and LLM-based generation in advancing026
AAC.027

1 Introduction028

Automated Audio Captioning (AAC) (Drossos029

et al., 2017) is a task that generates natural lan-030

guage descriptions of audio content, emerging as a031

significant challenge in artificial intelligence. Un-032

like Automatic Speech Recognition (ASR) (Ben-033

esty et al., 2008), which solely converts speech034

to text, AAC requires comprehensive understand-035

ing and description of both linguistic elements and036

non-verbal audio signals, including environmental037

sounds, animal vocalizations, and musical content.038

Despite being a relatively recent research direction,039

AAC has garnered increasing attention due to grow-040

ing demands in complex audio applications, par-041

ticularly in audio interaction and retrieval systems042

(Mei et al., 2022; Xu et al., 2024). Such demand has 043

catalyzed continuous technological advancement 044

in efficient processing and description of diverse 045

audio information (Liu et al., 2024). 046

Despite recent progress, existing AAC systems 047

face two core limitations. First, current datasets 048

such as AudioCaps (Kim et al., 2019) and Wav- 049

Caps (Mei et al., 2024), which contain only 050

short, template-like caption–typically fewer than 051

10 words–that fail to reflect the complexity of real- 052

world auditory scenes(Table 1). These overly con- 053

cise descriptions not only lack semantic richness 054

but also lead to increased risk of model overfit- 055

ting (Eldan and Li, 2023), as the limited lexical 056

variation constrains the diversity of training sig- 057

nals. Second, although AAC is inherently defined 058

as the task of generating captions from audio alone, 059

this poses a fundamental challenge: many acoustic 060

scenes are inherently ambiguous without additional 061

contextual information (Chen et al., 2021). For ex- 062

ample, the sound of cheering could correspond to 063

a sports event, a concert, or a public demonstra- 064

tion—distinctions that are difficult to resolve from 065

audio alone but easily clarified with visual cues 066

(Holmes et al., 2024). This observation motivates 067

our approach: rather than modifying the AAC task 068

to accept visual input at inference time, we propose 069

to train the model to internalize visual semantics 070

during training, enabling it to infer richer and more 071

grounded descriptions from audio alone. 072

To address these challenges, we introduce Vg- 073

gCaps, a large-scale multi-modal audio captioning 074

dataset. Built upon the VGGSound (Chen et al., 075

2020) corpus, we pairs audio segments with cor- 076

responding video frames and generates initial cap- 077

tions based on the audio content, which are then 078

refined and enriched using visual context. This pro- 079

cess leverages large language models (LLMs) to 080

produce high-quality captions that capture both 081

auditory and visual semantics. Compared to prior 082

datasets, VggCaps features significantly longer cap- 083
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tions (21.1 words on average), richer vocabulary,084

and higher readability complexity, encouraging the085

development of more expressive AAC models. Hu-086

man evaluation confirms the clarity and fidelity of087

these captions.088

Furthermore, we propose Multi2Cap, a novel089

framework that leverages visual supervision only090

during pre-training to enhance the semantic091

richness of audio representations. Specifically,092

Multi2Cap learns to align audio and visual fea-093

tures through an Audio-Visual Grounding module094

and recovers visual semantics from audio alone095

through a dedicated Visual Feature Reconstructor.096

This enables the model to indirectly leverage visual097

information during inference, resulting in higher-098

quality and more semantically grounded captions.099

We validate our approach on standard AAC bench-100

marks, including Clotho (Drossos et al., 2020) and101

AudioCaps (Kim et al., 2019), where Multi2Cap102

consistently outperforms existing methods across103

both lexical and semantic evaluation metrics. Our104

ablation studies further demonstrate the semantic105

fidelity of the reconstructed visual features and the106

effectiveness of grounding-based training.107

Our contributions are threefold: (1) We propose108

a new paradigm for AAC by incorporating visual109

context during pre-training and reconstructing it110

from audio at inference time.111

(2)We introduce VggCaps, a large-scale multi-112

modal dataset with LLM-generated captions that113

are longer, more diverse, and semantically richer114

than existing AAC corpora.115

(3)We present Multi2Cap, a grounding-based116

AAC model that achieves state-of-the-art perfor-117

mance on Clotho and AudioCaps, and demonstrate118

its ability to preserve and utilize visual semantics119

even in audio-only scenarios.120

2 Related works121

2.1 Automated Audio Captioning122

Automated Audio Captioning (AAC) is a task123

that generates natural language descriptions for124

audio content, requiring a comprehensive under-125

standing of both verbal and non-verbal acoustic126

events such as environmental sounds, music, or127

animal vocalizations. Unlike Automatic Speech128

Recognition (ASR) (Benesty et al., 2008), AAC in-129

volves a deeper semantic interpretation of auditory130

scenes (Narisetty et al., 2022). Due to these char-131

acteristics, AAC introduces unique challenges in132

capturing complex acoustic contexts and abstract133

Audio
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swing, with the ball 
soaring over the net 

amidst cheers from an 
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the rhythmic thump of 
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Figure 1: Pipeline of VggCaps Data Processing. Each
data sample consists of an video frames and a corre-
sponding 10-second audio segment, which are processed
into a Mel-spectrogram and combined as input to GPT-
4o. The generated captions undergo post-processing for
refinement and clarity.

concepts. AAC architectures have evolved from 134

early CNN-RNN hybrids (Drossos et al., 2017; 135

Mei et al., 2022) to transformer-based models (Xu 136

et al., 2024). The integration of Large Language 137

Models (LLMs) marked a significant advancement 138

in caption generation quality (Bommasani et al., 139

2021). However, current approaches remain con- 140

strained to audio-text modalities (Liu et al., 2024; 141

Kim et al., 2024a), prompting our investigation into 142

multi-modal AAC frameworks. 143

2.2 Audio-Visual Representation Learning 144

In recent years, the field of multimodal learning 145

has made notable progress in audio-visual repre- 146

sentation learning, aiming to integrate information 147

from both audio and visual modalities for more 148

informative representations. Prior research largely 149

follows two main approaches. The first learns a 150

shared embedding space to directly model seman- 151

tic relationships across modalities (Radford et al., 152

2021; Jia et al., 2021; Guzhov et al., 2021), align- 153

ing representations for strong downstream perfor- 154

mance. The second employs cross-attention to cap- 155

ture contextual interactions between audio and vi- 156

sual inputs (Jaegle et al., 2022; Nagrani et al., 2022; 157

Shi et al., 2022), enabling dynamic cross-modal de- 158

pendency modeling. 159

Building on these approaches, our research intro- 160

duces a method that combines these two strategies, 161

employing a Grounding Token mechanism and a 162

reconstruction process where visual information is 163

indirectly represented through audio. This design 164
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Dataset num. of row num. of audio avg(std). audio length(s) num. of caption avg(std). caption length additional modal

AudioCaps (2019) 57,188 51,308 10.0 (0.6) 57,188 9.0 (4.3) Image(Potentially)
Clotho (2020) 29,645 5,929 22.5 (4.3) 29,645 11.3 (2.8) X

WavCaps (2024) 403,050 403,050 67.6 (-) 403,050 7.8 (-) X

VggCaps (ours) 173,494 173,494 10.0 (0.1) 173,494 21.1 (5.3) Image

Table 1: Statistics of Dataset: We statistically compare the existing AAC dataset with VggCaps. VggCaps includes
longer captions and additional modalities compared to the existing datasets.

a) Readability Level b) Lexical Diversity

Figure 2: Readability Level and Lexical Diversity Comparison by Datasets VggCaps shows higher linguistic
complexity and vocabulary diversity than prior AAC datasets, demonstrating its potential to support richer and more
expressive audio captions.

allows the model to make use of visual context165

even in downstream tasks, providing a flexible and166

efficient approach to audio-visual representation167

learning.168

3 Proposed Dataset: VggCaps169

We present VggCaps, a novel dataset for multi-170

modal audio captioning research. This section de-171

tails the dataset construction methodology, analysis172

metrics, and human evaluation protocols.173

VggCaps builds upon VggSound (Chen et al.,174

2020), a large-scale audio-visual dataset originally175

designed for sound event classification in videos.176

While VggSound has been widely adopted in audio-177

visual research (Senocak et al., 2021; Wang et al.,178

2023), it lacks descriptive captions for its audio179

content and does not explicitly account for the se-180

mantic interplay between auditory and visual sig-181

nals. Moreover, existing audio captioning datasets182

often feature short, context-agnostic descriptions183

that fail to capture the complexity of real-world184

scenes. To address these limitations, we introduce185

VggCaps, a multi-modal dataset that provides rich,186

semantically grounded captions aligned with both187

audio and visual content.188

3.1 Data Processing189

Our core objective is to enable more expressive190

and context-aware audio captioning by incorporat-191

ing visual cues during caption generation. To this 192

end, we utilize large language models (LLMs) as a 193

practical tool to generate high-quality captions that 194

reflect both modalities as illustrated in figure 1. For 195

each data point, we extract a representative video 196

frames and its corresponding 10-second audio seg- 197

ment. The audio is converted to a Mel-spectrogram 198

(Hannun et al., 2014) and paired with the image 199

frame as input to GPT-4o (Shahriar et al., 2024). 200

Additionally, we provide the input with a prompt 201

to generate suitable captions. Generated captions 202

undergo post-processing to eliminate redundant ex- 203

pressions and enhance linguistic clarity. 204

In this study, we obtained a total of 173,494 Vg- 205

gCaps data samples. This dataset is used as the pre- 206

training dataset for the Multi2Cap framework dis- 207

cussed later. Additionally, 1% of the total dataset, 208

randomly selected, was used as a test subset for 209

validation and performance reporting. Further de- 210

tails and analysis of the dataset are provided in 211

section 3.2. 212

3.2 Dataset Analysis 213

The analysis of the constructed data focuses on 214

comparing the generated captions with existing 215

AAC datasets. Table 1 provides a statistical compar- 216

ison between our dataset and the existing datasets. 217

VggCaps significantly differs from existing AAC 218

datasets in two key aspects: caption length and 219
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a) VERB b) NOUN

Figure 3: Wordcloud in VggCaps

modality. Our captions are approximately twice the220

length of current benchmarks, enabled by LLM-221

guided generation. Additionally, VggCaps incorpo-222

rates corresponding visual information, facilitating223

multi-modal AAC research.224

The second analysis evaluates how the con-225

structed VggCaps dataset uses more diverse vocab-226

ulary and describes the content in a more complex227

manner compared to the existing datasets. The anal-228

ysis focuses on readability level and lexical diver-229

sity. The results of the analysis are provided in fig-230

ure 2. First, readability level (figure 2a) is evaluated231

using four metrics: Flesch-Kincaid(Flesch, 1948),232

Coleman-Liau(Coleman and Liau, 1975), Dale-233

Chall(Dale and Chall, 1948), and SPACHE(Spache,234

1953). These metrics indicate that the lower the235

score, the easier the text is to read, whereas higher236

scores indicate the need for deeper understand-237

ing. In all metrics, the VggCaps shows a higher238

level compared to the existing datasets. Lexical di-239

versity (figure 2b) is analyzed using four metrics:240

Type-Token Ratio(TTR)(Templin, 1957), Herdan’s241

VM(Herdan, 1960), Yulek(Yule, 2014), and Simp-242

son’s D(Simpson, 1949). Higher values for these243

metrics indicate the use of more diverse vocabulary.244

In the figure, each metric is normalized to a scale245

from 0 to 10, with the actual values before normal-246

ization displayed. The analysis confirms that the247

constructed dataset uses a more diverse vocabulary248

compared to the existing datasets.249

Finally, figure 3 shows the word cloud of the250

captions in the constructed dataset. For verbs, it can251

be observed that more linguistically sophisticated252

expressions such as “fill” and “reverberate” are253

used, rather than simple expressions like “hear” and254

“sound.” Additionally, for nouns, not only words255

with auditory meanings but also words with spatial256

or visual meanings are included.257

3.3 Human Evaluation/Performance258

To verify the validity and robustness of the con-259

structed dataset, we conducted an experiment to260

perform human evaluation on a subset of the Vg-261

Figure 4: Mean Opinion Score (MOS): This table
shows the distribution of MOS for VggCaps calculated
through human evaluation. It indicates that the vast ma-
jority of samples have appropriate captions.

gCaps dataset and derive human performance. For 262

this purpose, 100 samples were randomly selected 263

from the test subset of the VggCaps, and we re- 264

cruited 18 evaluators who volunteered to partici- 265

pate. Among them, 10 evaluators were responsible 266

for the human evaluation of the captions, while the 267

remaining 8 were tasked with human performance. 268

The purpose of the human evaluation was to as- 269

sess how accurately the captions of the VggCaps 270

describe the audio content. The evaluators were 271

provided with audio samples and asked to evaluate 272

how accurately each caption described the corre- 273

sponding audio. For this, they were instructed to 274

assign a score between 1 and 5 based on the Mean 275

Opinion Score(MOS) method. A score of 1 indi- 276

cates that the caption does not describe the audio 277

accurately at all, while a score of 5 indicates that 278

the caption perfectly describes the audio. The evalu- 279

ation results measured an MOS score of 4.1 ± 0.09. 280

This suggests that the captions of VggCaps are gen- 281

erally accurate and reliable, with a high level of 282

agreement among the evaluators. The distribution 283

of MOS scores is visually presented in figure 4. 284

Additionally, the evaluators checked whether the 285

evaluation data contained any sensitive information 286

and agreed that it did not. 287

Human performance experiment was conducted 288

in two stages. In the first stage, the evaluators were 289

asked to generate captions for the audio content pro- 290

vided to them. In the second stage, aligned video 291

snapshots were provided as supplementary mate- 292

rial along with the audio, and the evaluators were 293

asked to generate captions based on this informa- 294

tion. This aimed to evaluate how humans perform 295

in single-modality versus multi-modality situations. 296

In other words, it allowed us to assess the impact 297
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Figure 5: Overview of the Multi2Cap architecture with Audio-Visual Grounding and Visual Feature Recon-
struction. (a) During pre-training, audio and visual inputs are fused via the AV-Grounding Module to produce
a compressed representation g, which is passed to a trainable Ground Adapter. Simultaneously, a Visual Feature
Reconstructor (VFR) learns to reconstruct g from audio alone. Both the audio encoder and LLM decoder are
optimized using LoRA. (b) During downstream task, only the audio is provided. The VFR reconstructs ĝ, which is
used by the Ground Adapter to generate grounded representations, enabling the LLM decoder to produce captions
with visual grounding, even without image input.

of providing multi-modal information on caption298

generation and compare how performance changes299

when evaluators utilize multi-modal information.300

The specific results and analysis are further detailed301

in the section 5.2 and table 2.302

4 Proposed Framework: Multi2Cap303

This section provides a detailed description of304

the architecture and training procedure of the pro-305

posed Multi2Cap model. Multi2Cap is designed306

to generate descriptive captions from audio in sce-307

narios where visual information is available dur-308

ing pre-training. It leverages visual cues to learn309

rich audio-visual representations in the pre-training310

phase, while being structured to effectively utilize311

the learned representations even in downstream312

tasks where visual inputs are not provided. A de-313

tailed illustration of the overall workflow is pre-314

sented in the accompanying figure. 5.315

4.1 Creating Caption316

Multi2Cap is trained to convert audio inputs into317

textual captions by minimizing the cross-entropy318

loss with respect to the ground-truth captions.319

Given an audio input A, it is first encoded into320

a feature representation through the Audio Encoder.321

The resulting representation is then passed through322

a Ground Adapter and fed into the LLM Decoder. 323

Based on the encoded input, the decoder generates 324

a natural language caption, and the model is opti- 325

mized by minimizing the cross-entropy loss Lcap 326

between the generated caption and the ground-truth 327

reference: 328

Lcap = −
T∑
t=1

log p(yt|y<t, A; θ) (1) 329

where, yt denotes the t-th word, and θ represents 330

the trainable parameters of the model. 331

4.2 Audio-Visual Grounding 332

The Audio-Visual Grounding Module proposed 333

in this work fuses audio and visual information 334

into a single compact token, denoted as g. In this 335

process, visual input (V ) is first encoded through a 336

visual encoder and then spatially grounded with the 337

audio input (A). Cross-attention is applied between 338

A and V to emphasize the visual characteristics 339

embedded within the audio. The resulting represen- 340

tations are aggregated via average pooling to form 341

the compact grounding token g, which densely en- 342

capsulates the joint audio-visual information. 343

To further enhance alignment between audio and 344

visual representations during training, an additional 345
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Method LM BL RG-L ME CD SP SD SD-F SB FS

Pre-training w/o visual
Human - 46.1 29.6 13.5 15.4 7.5 11.4 11.4 48.6 48.6

Whisper (2023) - 29.3 21.9 9.7 32.1 9.3 20.7 19.2 51.4 49.3
AutoCap (2024) - 31.3 27.2 10.9 46.7 12.9 29.8 27.3 59.2 54.3

EnCLAP++ (2024a) BART 33.8 29.2 13.1 48.4 14.8 31.6 28.2 62.3 56.3
LOAE (2024) LLaMA2-7B 33.0 29.1 12.4 47.6 14.2 30.9 27.6 61.8 55.3

Pre-training w/ visual
Human 49.2 32.9 14.8 19.4 7.5 13.4 13.4 48.9 48.9

Multi2Cap(Ours) LLaMA2-7B 35.8 29.6 14.2 52.5 15.4 34.0 33.7 63.3 57.5
LLaMA3.1-8B 34.5 29.4 15.0 52.8 15.1 33.9 33.1 63.1 56.6
LLaMA3.2-3B 34.9 29.6 15.1 53.7 15.1 34.4 33.3 63.5 57.6

Mistral-7B 36.5 29.1 15.3 53.9 15.3 34.6 32.9 64.0 59.6
Qwen2.5-3B 34.4 29.2 15.1 53.1 15.2 34.1 32.8 64.5 59.5
Qwen2.5-7B 36.9 29.5 15.1 52.7 15.8 34.3 33.2 64.4 58.5

DeepSeek-R1-1.5B 34.9 29.6 15.3 53.9 15.2 34.6 32.6 64.9 57.7
DeepSeek-R1-7B 34.3 29.1 15.4 54.2 15.9 35.1 33.3 65.4 58.9

Table 2: Performance comparisons on VggCaps: This table shows the performance of Multi2Cap on the VggCaps
dataset. Each column represents an evaluation metric, and the abbreviations for the metrics are mentioned in
section 5.1. The performance shows superior results across all metrics. Best performance for each metric is in Bold,
and the second-best is Underlined.

loss term Lalign is introduced. This objective pro-346

motes semantic consistency across modalities and347

encourages the grounding token to effectively cap-348

ture multimodal context:349

Lalign =
α

2K

K∑
k=1

(CE(gk, Amean) + CE(gk, Vcls)) (2)350

where, CE denotes the cross-entropy loss, gk refers351

to the k-th audio-visual grounding token, Amean is352

the mean-pooled audio representation, and Vcls is353

the [CLS] token derived from the visual encoder.354

We empirically set K ＝ 4 based on optimal perfor-355

mance observed during experimentation.356

4.3 Visual Feature Reconstructor357

Since visual inputs are not available in down-358

stream tasks, it is necessary to compress and store359

visual information into the grounding token during360

pre-training and reconstruct it later. To achieve this,361

we introduce a Visual Feature Reconstructor (VFR),362

denoted as ψ(A), which is an MLP-based module363

designed to infer visual representations from audio364

alone.365

The VFR is trained by minimizing the mean366

squared error (MSE) loss between the recon-367

structed representation ĝ = ψ(A) and the original368

grounding token g generated from actual visual369

inputs:370

Lvfr = ∥g − ĝ∥2 (3)371

This allows the model to recover semantically372

meaningful visual context solely from audio, en-373

abling effective representation learning even in the 374

absence of images during downstream inference. 375

4.4 Objective of Multi2Cap 376

The final Multi2Cap model is trained using the 377

following combined loss function: 378

Ltotal =

{
Lcap + αLalign + βLvfr, in pre-training
Lcap otherwise

(4) 379

where, α and β are hyperparameters that control 380

the relative importance of each loss term. In this 381

study, we empirically set α = 0.02 and β = 0.05 382

based on optimal performance observed during ex- 383

perimentation. 384

5 Experiments 385

5.1 Experimental Setup 386

Datasets. We evaluate our model on two stan- 387

dard AAC benchmarks: Clotho(Drossos et al., 388

2020) and AudioCaps(Kim et al., 2019). Clotho 389

comprises 6,000 audio clips (15-30 seconds) with 390

five captions per clip, while AudioCaps contains 391

50,000 clips (10 seconds) with one caption for train- 392

ing and five for validation/testing. Clotho serves as 393

our primary benchmark, with AudioCaps providing 394

additional validation. 395

Evaluation Metrics. In this study, we use 396

various metrics, including BLEU(BL-1–4) (Pa- 397

pineni et al., 2002), ROUGE-L(RG-L) (Lin, 398

2004), METEOR(ME) (Denkowski and Lavie, 399

2014), CIDEr(CD) (Vedantam et al., 2015), 400

SPICE(SP) (Anderson et al., 2016), SPIDEr(SD) 401
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Method ME CD SP SD SD-F

ASR Whisper (2023) 17.2 41.4 12.3 26.9 26.7
ConvNeXt (2023) 19.3 48.6 14.2 31.4 31.4

BEATs (2024) 19.5 50.5 14.9 32.7 32.7
LOAE (2024) 19.7 51.3 14.7 33.0 33.0

EnCLAP++ (2024b) 19.9 48.0 14.8 31.4 31.4

Ours LLMs
Multi2Cap LLaMA3.1-8B 20.7 52.1 15.0 33.6 33.5

Mistral-7B 19.6 53.0 14.2 33.6 33.6
Qwen2.5-7B 19.9 51.7 14.9 33.3 33.3

DeepSeek-R1-7B 20.8 52.5 15.3 33.9 33.9

a) Clotho

Method ME CD SP SD SD-F

Human 28.8 91.3 21.6 - -
EnCLAP (2024c) 25.5 80.3 18.8 49.5 -

LOAE (2024) 26.7 81.6 19.3 50.5 50.4
AutoCap (2024) 25.3 83.2 18.2 50.7 -

EnCLAP++ (2024a) 26.9 82.3 19.7 51.0 -

Ours LLMs
Multi2Cap LLaMA3.1-8B 28.6 83.2 20.4 51.8 51.7

Mistral-7B 27.5 82.9 19.7 51.3 51.2
Qwen2.5-7B 27.8 82.7 19.5 51.1 51.0

DeepSeek-R1-7B 29.0 83.6 20.8 52.2 52.2

b) AudioCaps

Table 3: Performance Comparison on Clotho and AudioCaps: This table shows the comparison of the fine-tuning
results of pre-trained Multi2Cap on each AAC benchmark dataset with the performance of previous studies. It can
be seen that Multi2Cap achieved state-of-the-art performance in most metrics. Best performance for each metric is
in Bold, and the second-best is Underlined.

(Liu et al., 2017), SPIDEr-FL(SD-F) (Labbe et al.,402

2022), Sentence-BERT(SB) (Reimers, 2019), and403

FENSE(FS) (Zhou et al., 2022) to evaluate model404

performance. BLEU, ROUGE-L, and METEOR405

assess lexical similarity based on N-grams, while406

CIDEr measures lexical similarity using TF-IDF407

weighting with reference sentences. SPICE evalu-408

ates semantic similarity by considering objects, re-409

lationships, and attributes. SPIDEr balances lexical410

and semantic evaluation by averaging CIDEr and411

SPICE, and SPIDEr-FL and FENSE further assess412

fluency and grammatical correctness. Sentence-413

BERT measures semantic similarity through cosine414

similarity between sentence embeddings, providing415

a comprehensive analysis of model performance.416

Implementation Details. In this study, we eval-417

uate the performance of Multi2Cap using a vari-418

ety of backbone networks. For the audio encoder,419

we adopt CED (Dinkel et al., 2024); for the vi-420

sual encoder, we utilize CLIP-ViT-Large (Radford421

et al., 2021); and for the text decoder, we experi-422

ment with relatively lightweight LLMs, including423

LLaMA (Touvron et al., 2023), Qwen (Qwen et al.,424

2025), and DeepSeek (DeepSeek-AI et al., 2025).425

The models were trained using the AdamW opti-426

mizer(Loshchilov, 2017), with a learning rate of427

5e-5 for the pre-training phase and 1e-4 for the fine-428

tuning phase. In pre-training, a batch size of 320429

was used with 15 epochs and 2 warm-up epochs,430

while in fine-tuning, a batch size of 384 was used,431

and training was conducted for 30 epochs. Addi-432

tional implementation details are provided in Ap-433

pendix A.1.434

5.2 Overall Performance Comparison435

5.2.1 Performance of VggCaps436

The pre-training performance of the proposed437

method is compared with prior studies and human438

performance assessed in our own evaluation. The 439

results are summarized in Table 2. A key observa- 440

tion is that the inclusion of image modality consis- 441

tently improves performance for both humans and 442

AI models. Notably, human evaluators exhibited 443

strong performance on relatively simple n-gram- 444

based metrics (e.g., BLEU, ROUGE-L), indicating 445

that the VggCaps dataset is well-structured and 446

intuitively understandable for human caption gen- 447

eration. 448

In contrast, our proposed Multi2Cap framework 449

achieves superior performance on semantically 450

oriented metrics, including CIDEr, SPIDEr-FL, 451

Sentence-BERT, and FENSE. These improvements 452

are attributed to the introduction of the Audio- 453

Visual Grounding Module and Visual Feature Re- 454

constructor (VFR). During pre-training, the model 455

encodes visual context into a compact grounding to- 456

ken g and learns to reconstruct it from audio alone, 457

enabling Multi2Cap to retain visual semantics and 458

generate contextually coherent captions even in 459

audio-only downstream scenarios. In summary, the 460

VggCaps dataset provides a robust foundation for 461

training multimodal models, and the Multi2Cap 462

framework, through its novel grounding-based ar- 463

chitecture, significantly advances the state of se- 464

mantic audio captioning. 465

5.2.2 Performance of Benchmark 466

We compare our proposed method with state-of- 467

the-art baselines across two standard AAC bench- 468

marks, as shown in Table 3. On the Clotho dataset 469

(Table 3a), despite using comparatively less pre- 470

training data than prior methods, Multi2Cap consis- 471

tently outperforms existing approaches across most 472

evaluation metrics. On the AudioCaps dataset (Ta- 473

ble 3b), our model achieves competitive or superior 474

results, particularly excelling in CIDEr, SPIDEr 475
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Token R@1 R@5 CLIP Score Attn-Entropy

g 89.5 99.7 44.5 0.38
ĝ 71.8 91.3 38.3 0.44

audio 1.2 7.3 16.8 1.62
random 0 0.3 8.3 6.14

Table 4: Retrieval and semantic alignment perfor-
mance of reconstructed AV-Ground Token ĝ compared
to original g and baseline embeddings.

and SPIDEr-FL scores.476

These improvements can be attributed to our re-477

designed architecture, which effectively encodes478

and reconstructs visual context through grounding,479

even when visual inputs are absent during down-480

stream inference. Unlike previous methods that rely481

solely on audio-text alignment, Multi2Cap learns482

semantically enriched representations by leverag-483

ing visual supervision during pre-training, allow-484

ing it to generate more descriptive, coherent, and485

context-aware captions.486

5.3 Ablation Study487

5.3.1 Semantic Fidelity of Reconstructed g488

This case study investigates whether the Visual489

Feature Reconstructor (VFR) in Multi2Cap can ef-490

fectively reconstruct visual semantics from audio491

alone. Specifically, we evaluate how well the recon-492

structed AV-Ground Token ĝ preserves the original493

visual information, using the CLS token from the494

visual encoder (visual-CLS) as a reference. The495

comparison results are presented in table 4.496

First, we measure Recall@1 and Recall@5 in497

an image retrieval task, where each embedding is498

used as a query and the visual-CLS token serves499

as the key in the gallery. The results show that g500

performs on par with visual-CLS in both metrics,501

while ĝ retains approximately 80% of g’s perfor-502

mance. Next, we project each embedding into the503

CLIP ViT-L/14 text embedding space and compute504

the CLIP Score (Hessel et al., 2022) based on co-505

sine similarity with predefined category prompts. In506

this setting as well, ĝ exhibits semantic consistency507

comparable to g, indicating that the reconstructed508

token successfully preserves semantic class infor-509

mation even in the absence of visual input. Addi-510

tionally, we evaluate the attention entropy (Zhang511

et al., 2024) of each embedding to assess the degree512

of information concentration.513

These findings collectively demonstrate that the514

combination of the AV-Grounding module and the515

VFR enables the audio encoder to effectively inter-516

nalize latent visual semantics.517

CIDEr V-CLS
R@1 FLOPs (G) Latancy(ms)K VggCaps Clotho

1 53.5 51.7 66.3 0.67 23.2
4 54.2 52.5 71.8 0.77 24.7
16 54.1 52.6 71.6 1.18 28.8
64 53.7 52.1 71.3 2.83 34.3
256 53.4 51.8 70.7 9.72 41.9

Table 5: Effect of varying the number of Ground
Tokens (K) on captioning performance, visual retrieval
accuracy, and inference efficiency.

5.3.2 Token g Granularity vs. Performance 518

In this ablation study, we analyze the effect of 519

varying the number of Ground Tokens (K) on 520

both performance and computational efficiency. As 521

shown in Table 5, increasing K initially improves 522

performance—reaching the highest CIDEr and re- 523

trieval accuracy (V-CLS R@1) at K = 4—but 524

further increases lead to a gradual decline. This 525

suggests a potential trade-off, where excessively 526

large K values may dilute the model’s attention 527

over relevant visual cues. One possible explana- 528

tion is that the number of effective grounding to- 529

kens correlates with the number of salient visual 530

perspectives the model attends to. Based on this 531

observation, we select K = 4 as the final setting, 532

offering the best balance between performance and 533

efficiency. 534

6 Conclusion 535

To address the limitations of existing AAC 536

datasets—particularly their short and simplistic 537

captions—we introduce VggCaps, a large-scale 538

multi-modal dataset that pairs audio with static 539

video frames. Captions are generated using large 540

language models (LLMs) to reflect both auditory 541

and visual semantics, resulting in significantly 542

longer and more linguistically rich descriptions 543

than prior datasets. Human evaluation confirms 544

their clarity and expressive quality. 545

Furthermore, we present Multi2Cap, a frame- 546

work that incorporates visual supervision during 547

training but generates captions from audio alone 548

at inference. It employs an Audio-Visual Ground- 549

ing Module and a Visual Feature Reconstructor to 550

encode and recover visual semantics from audio. 551

Multi2Cap achieves state-of-the-art performance 552

on Clotho and AudioCaps benchmarks, with fur- 553

ther analysis showing strong semantic alignment 554

between reconstructed and actual visual represen- 555

tations. 556
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7 Limitations557

While Multi2Cap demonstrates strong perfor-558

mance across various automated audio captioning559

(AAC) benchmarks, several limitations remain that560

warrant further exploration.561

First, the model leverages visual context only562

during pre-training and relies on reconstructing it563

from audio during inference. Although our ablation564

study shows that the reconstructed AV-ground to-565

ken (ĝ) retains a substantial portion of the original566

visual semantics, this audio-only reconstruction is567

inherently limited. As AAC fundamentally aims568

to generate captions solely from audio inputs, fur-569

ther discussion is needed to delineate the bound-570

ary between permissible auxiliary information dur-571

ing training and the core objective of maintaining572

audio-only inference.573

Second, the VggCaps dataset, while signifi-574

cantly more descriptive and diverse than prior AAC575

datasets, is constructed using synthetic captions576

generated by large language models (LLMs). Al-577

though human evaluation confirms the general qual-578

ity of these captions, reliance on LLM-generated579

annotations may introduce stylistic artifacts or la-580

tent biases that diverge from human-authored con-581

tent, potentially affecting model generalization in582

real-world applications.583

Third, the current framework has been primarily584

validated on English-language benchmarks. The585

adaptability of both Multi2Cap and VggCaps to586

non-English or multilingual settings remains unex-587

plored, which poses a limitation in terms of cross-588

linguistic applicability and inclusivity.589

8 Risks and Ethics590

We acknowledge potential risks associated with591

the use of large-scale audio and visual data, particu-592

larly when paired with powerful language models.593

Our model is trained on multimodal data that594

may inherently reflect socio-cultural biases present595

in both the audio content and the captions generated596

by large language models (LLMs). While we imple-597

mented filtering and human evaluation procedures598

to ensure overall quality, we acknowledge that such599

measures cannot fully eliminate the presence of bi-600

ased or inappropriate content—particularly when601

scaling to more diverse or less curated datasets.602

In addition, the methodology of reconstructing603

visual context from audio introduces potential pri-604

vacy concerns. For instance, audio recordings cap-605

tured in public or semi-private spaces may enable606

the model to infer or hallucinate visual scenarios 607

that were neither recorded nor consented to. Such 608

capabilities could be misused in surveillance or 609

profiling applications. 610

To mitigate these risks, no personally identifi- 611

able or sensitive data were used in the construction 612

of the VggCaps dataset, and all human evaluators 613

confirmed the absence of sensitive content in the 614

validation subset. Furthermore, we advocate for 615

the responsible use and deployment of Multi2Cap 616

within ethical frameworks that emphasize trans- 617

parency, data governance, and informed user con- 618

sent. 619
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A Appendix 910

A.1 Additional Details 911

A.1.1 Pre-training Implementation Details 912

For reproducibility, the implementation details 913

used in pre-training are presented in table 6. Based 914

on Multi2Cap, the AdamW optimizer is used, with 915

the base learning rate set to 5×10−5 and the weight 916

decay set to 1 × 10−6 to prevent overfitting. The 917

batch size is 320, and training is conducted for a 918

total of 15 epochs, with the first 2 epochs set as 919

a warm-up phase to stabilize initial training. The 920

β parameters of the Adam optimizer are set to 921

(0.9, 0.999). The sampling rate of the audio input 922

is fixed at 16,000Hz, and four audio augmenta- 923

tion techniques—AddWhiteNoise, Shifting, Stretch- 924

ing, and Flipping—are applied. The visual infor- 925

mation is processed using CLIP-ViT-Large visual 926

encoders, with the visual resolution set to 224×224 927

pixels. Additionally, the RandomResizedCrop tech- 928

nique is used for visual augmentation. 929

Hyper-parameters Value

Optimizer AdamW
Base learning rate 5× 10−5

Weight decay 1× 10−6

Adam β (0.9, 0.999)
Batch size 320
Training epochs 15
Warmup epochs 2

Audio sample rate 16000
Audio augmentation AddWhiteNoise

Shifting
Stretching
Flipping

Visual encoder CLIP-ViT-Large
Visual resolution 224× 224
Visual augmentation RandomResizedCrop

Table 6: Default Pre-training Setting

A.1.2 Fine-tuning Implementation Details 930

The implementation details for the fine-tuning 931

phase of the Multi2Cap model on benchmark 932

datasets are presented in table 7. Based on 933

Multi2Cap, the AdamW optimizer is used. The 934

base learning rate is set to 1×10−4, and the weight 935

decay is set to 1× 10−6. The β parameters of the 936

Adam optimizer are specified as (0.9, 0.999). The 937

batch size is 384, and training is conducted for a 938

total of 30 epochs. Of these, the first 2 epochs are 939

used as a warm-up phase to stabilize the model dur- 940
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ing the initial stages of training. The audio input is941

processed at a sampling rate of 16,000Hz, and four942

audio augmentation techniques—AddWhiteNoise,943

Shifting, Stretching, and Flipping—are applied.944

Hyper-parameters Value

Optimizer AdamW
Base learning rate 1× 10−4

Weight decay 1× 10−6

Adam β (0.9, 0.999)
Batch size 384
Training epochs 30
Warmup epochs 2

Audio sample rate 16,000
Audio Augmentation AddWhiteNoise

Shifting
Stretching
Flipping

Table 7: Default fine-tuning setting

A.2 Additional Experiments945

A.2.1 Hyperparameter Optimization for α946

and β947

To balance the relative contributions of each948

loss term in the Multi2Cap framework, we intro-949

duce two hyperparameters: α for the alignment loss950

Lalign and β for the reconstruction loss Lvfr. The951

overall training objective is defined as Eq 4952

We perform a grid search over various combi-953

nations of α and β to empirically determine the954

optimal setting. Table 8 presents the CIDEr and955

SPICE scores for each pair of hyperparameter val-956

ues. The results indicate that moderate weighting957

values strike a better trade-off: overly small val-958

ues underutilize auxiliary supervision, while ex-959

cessively large values degrade caption quality by960

overemphasizing alignment or reconstruction. We961

observe that α = 0.02 and β = 0.05 yield the962

best overall performance, achieving a CIDEr score963

of 54.2 and a SPICE score of 15.9. We therefore964

adopt this configuration as the final setting in all965

subsequent experiments.966

α / β 0.01 0.02 0.05 0.09 0.10

0.01 53.5 / 14.8 53.7 / 15.0 54.0 / 15.4 53.6 / 15.2 53.4 / 15.0
0.02 53.6 / 15.0 54.0 / 15.6 54.2 / 15.9 53.9 / 15.4 53.7 / 15.2
0.05 53.4 / 14.7 53.8 / 15.3 54.0 / 15.7 53.6 / 15.2 53.3 / 15.0
0.09 53.0 / 14.6 53.4 / 15.0 53.7 / 15.4 53.5 / 15.1 53.2 / 14.9
0.10 52.9 / 14.5 53.3 / 14.9 53.6 / 15.3 53.4 / 15.0 53.5 / 15.2

Table 8: Performance comparison by α & β (CIDEr
SPICE)

Figure 6: t-SNE visualization of Visual-CLS and
ground token variants in 2D space.

A.2.2 t-SNE Visualization of Ground Token 967

Semantics 968

We project different embeddings—including 969

the original AV-Ground Token (g), its audio- 970

reconstructed counterpart (ĝ), the average-pooled 971

audio representation (a_mean), random vectors, 972

and the visual encoder’s CLS token (v_cls)—into a 973

2D space using t-SNE. The figure shows that g and 974

ĝ are closely distributed around v_cls, indicating 975

strong semantic alignment. In contrast, a_mean and 976

random embeddings are clustered far from v_cls, 977

suggesting limited visual semantic relevance. 978

A.2.3 Comparison About Audio Content 979

Augmentation 980

Additionally, the results based on whether audio 981

content augmentation was applied are examined. 982

The results are presented in table 9. The augmenta- 983

tion techniques used for pre-training in Multi2Cap 984

are AddWhiteNoise, Shifting, Stretching, and Flip- 985

ping. 986

Adding white noise is the simplest method, which 987

involves adding random noise to the audio signal. 988

This technique helps improve the model’s general- 989

ization performance in environments with various 990

noise by applying slight noise to the input data. 991

Shifting shifts the start point of the audio by a 992

certain amount of time forward or backward. This 993

contributes to increasing the model’s robustness to 994

temporal shifts in the data. 995

Stretching changes the playback speed of the au- 996

dio while maintaining the pitch. This provides the 997

model with generalization capabilities to handle 998

audio data at different speeds. 999
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Flipping inverts the phase of the audio waveform.1000

While this results in no perceptible change to the1001

human ear, it alters the mathematical structure of1002

the signal, providing additional data diversity.1003

These four augmentation techniques are dynami-1004

cally set in terms of whether to apply them during1005

training and in what order, to maximize diversity1006

during learning. This can be expressed in the fol-1007

lowing formula. Although augmentation generally1008

contributes positively to performance improvement,1009

it does not show consistent performance gains1010

across all evaluation metrics. Specifically, in BLEU1011

scores, the impact of augmentation on performance1012

is minimal or nearly nonexistent, whereas clear per-1013

formance improvements can be observed in met-1014

rics such as CIDEr(CD) and SPICE(SP). This sug-1015

gests that audio content augmentation techniques1016

do not significantly affect simple n-gram-based per-1017

formance but have a positive effect on semantic1018

consistency and the generation of sophisticated cap-1019

tions.

w/o augment w/ augment

B-1 34.1 34.3
B-2 18.7 19.2
B-3 10.9 11.6
B-4 6.9 7.6

RG-L 29.1 29.1
ME 12.7 15.4
CD 51.8 54.2
SP 14.2 15.9
SD 33.0 35.1

SD-F 30.9 33.3
SB 62.6 65.4
FS 58.2 58.9

Table 9: Comparison about audio content augmentation

1020

A.3 VggCaps1021

A.3.1 Prompt Templates1022

In Figure 1, the input-prompt and post-prompt1023

used in VggCaps data generation are illustrated.1024

The input-prompt provided in listing 1 receives1025

only the audio spectrum as input and is designed1026

to generate an initial caption that broadly describes1027

the auditory content. Basic rules are applied to1028

guide the captioning process, focusing solely on1029

audio-based elements. In contrast, the post-prompt1030

provided in listing 2 incorporates a visual frame in1031

addition to the audio input, and refines the raw cap-1032

tion into a more general, descriptive sentence. This1033

stage applies additional constraints and provides1034

examples to ensure the generation of contextually1035

rich and visually grounded captions. 1036

A.3.2 Examples 1037

Table 10 shows samples from the constructed 1038

VggCaps. 1039
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The image is an audio spectrum , categorized into {} category.
Write a caption that accurately describes the sounds represented in

this spectrum:

[Rules]
1. Focus solely on auditory elements.
2. Use clear and descriptive language.
3. Avoid any references to visual content.
4. Exclude anything outside of the caption.

>>> Caption:

Listing 1: Input Prompt Template for VggCaps

Revise the caption below to a more descriptive and contextually
accurate sentence , making appropriate use of visual details:

[Rules]
1. Focus on both audio and visual elements.
2. Avoid repetitive expressions and redundant descriptions.
3. Use expressive and idiomatic language for vivid imagery.
4. Maintain clarity and coherence in sentence structure.
5. Exclude anything other than captions.

[example]
1. A vibrant outdoor volleyball match in full swing , with the ball

soaring over the net amidst cheers from an enthusiastic crowd and
the rhythmic thump of the volleyball meeting players ' hands.

2. A quiet forest , where a gentle breeze rustles the leaves and a
bird 's melodious song weaves through the tranquil air.

3. An energetic street performance , the rhythmic beat of drums
accompanied by the cheering crowd , and the colorful dance moves
creating a festive atmosphere.

>>> Caption:

Listing 2: Post Prompt Template for VggCaps
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ID Image Caption Category

1v5mmZoJJ50

Her fingers dance gracefully on the
sitar strings, weaving a tapestry of
sound that resonates with the serene
and soulful essence of the music.

playing sitar

5IuRzJRrRpQ

The joyful bleats of sheep mingle with
the soft rustling of grass and the
occasional bark of an energetic dog,
bringing a lively atmosphere to the
green pastures.

sheep bleating

0fTwdhslb6E

The thunderous crack of the ball
against the wall reverberates as two
players immerse themselves in the
rhythm of their squash game.

playing squash

1tPjBLXRHqM

The lively hum of the festival is
accompanied by the drummer’s
rhythmic beats, their sticks creating a
pulsating rhythm that resonates through
the crowd.

playing drum kit

2zJiY9Mqhtc

A canopy alive with song as the
harmonious tweets and chirps of birds
enliven the surroundings, weaving a
vibrant tapestry of nature’s own
symphony.

bird chirping, tweet-
ing

3ymE2QOPRCA
The invigorating sounds of a volleyball
match fill the air, blending cheers with
the sharp slap of the ball.

playing volleyball

1mpFmBJ3nv0

The thunderous crescendo of a train
horn slices through the stillness of the
night, a wild call that reverberates
along the tracks.

train horning

1t3sNHA0Vd4
In the cacophony of urban sounds, the
police car’s siren pierces the night air,
signaling urgency and command.

police car (siren)

P0Mzdxr6F58I
In the stillness of the night, a lone
frog’s persistent ribbit pierces the quiet,
adding a rhythm to the tranquil scene.

cattle mooing

Table 10: Examples of VggCaps
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