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ABSTRACT

Recent progress in geospatial foundation models has highlighted the importance
of learning general-purpose representations for real-world locations, particularly
Points of Interest (POIs) where human activity concentrates. Yet, existing POI
representations remain largely static, evolving from simple coordinates and meta-
data to visual features and, most recently, LLM-derived textual prompts, all of
which describe what a place is, but not how it is actually used. We argue that
human mobility provides a complementary and dynamic signal, capturing real-
world visitation patterns that reveal how places function in practice. To this end,
we introduce Mobility Embedded POIs (ME-POIs), a pretraining framework
that augments static text-embedding representations with mobility-derived signals
from visit sequences, capturing dynamic usage patterns. Each visit is represented
as a contextualized embedding that integrates the POI’s static attributes with its
temporal and sequential context, including when the visit occurs and which visits
precede or follow it. To address the long tail of sparsely visited POIs, we transfer
visit distributions from data-rich locations to sparse ones, leveraging multi-scale
spatial proximity to capture local and regional patterns. We evaluate ME-POIs
on large-scale human mobility datasets across a set of map enrichment tasks. We
find that augmenting strong text embedding baselines with ME-POIs leads to con-
sistent and substantial improvements across all tasks, confirming that mobility-
informed embeddings offer complementary information that enhances static rep-
resentations and enables a richer understanding of how places are used. Notably,
even mobility embeddings alone, without any POI semantics, outperformed text-
based embeddings on certain tasks, underscoring a key novelty of our approach.

1 INTRODUCTION

The increasing availability of large-scale geospatial data, together with advances in machine learn-
ing, has substantially advanced the analysis of urban and geographic environments (Lee & Kang,
2015; Bommasani et al., 2021). As the range of geospatial applications expands, a key challenge
lies in learning general-purpose representations of fundamental geographic entities to support a di-
verse range of downstream tasks (Mai et al., 2024; Siampou et al., 2025a). Among these geographic
entities, Points of Interest—places that people visit during their everyday life, such as coffee shops,
gyms, and landmarks—are especially important: they serve as the core units of human activity and
interaction within cities. Learning high-quality POI representations is thus fundamental for enabling
a broad spectrum of geospatial applications, including digital mapping, navigation, transportation
planning, urban analytics, and location-based recommendation systems (Choudhury et al., 2024).

Existing approaches to POI representation learning primarily focus on encoding static attributes
from geographic coordinates (Mai et al., 2020; Rußwurm et al., 2023; Siampou et al., 2025b) to addi-
tional visual and textual information (Li et al., 2023; Yan & Lee, 2024; Vivanco Cepeda et al., 2023;
Klemmer et al., 2025). In particular, recent methods leverage large language models (LLMs) to
enrich POI representations, due to their ability to encode extensive geographic and semantic knowl-
edge from massive internet-scale data (Li et al., 2024; Cheng et al., 2025). These approaches have
demonstrated that with carefully designed prompts, often augmented with map data and contextual
neighborhood information, LLMs can achieve improved downstream performance on static, place-
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centric tasks, such as POI classification, population prediction, and home value estimation (Manvi
et al., 2024). However, such language-based representations remain fundamentally limited and in-
complete by their reliance on static, historical data. In reality, it is the dynamic patterns of human
activity, such as how often, when, and within which visit sequences a place is visited (i.e., which
places typically precede and follow it), that define its role within the urban environment. For exam-
ple, two nearby POIs such as a grocery store and a convenience store may appear similar in textual
descriptions, yet their visitation patterns differ: grocery stores attract longer visits in evenings and
weekends, while convenience stores receive brief visits throughout the day. Such behavioral signals
help differentiate between similar places and reveal functional characteristics that static data alone
cannot capture. Much like a word derives meaning from its use in context, the significance of a place
emerges from the mobility flows it attracts and how it is used (Musleh et al., 2022).

In parallel, although prior research has explored leveraging human mobility data to learn POI rep-
resentations, these efforts are primarily targeted at mobility-centric tasks, like next-location predic-
tion (Feng et al., 2017; Zhao et al., 2017; Shimizu et al., 2020; Wan et al., 2021; Lin et al., 2021).
In these approaches, POI embeddings are optimized to capture short-term personal movement dy-
namics, modeling the sequential order in which places are visited. While effective for predicting
mobility behaviors, they are not explicitly designed for, nor directly transferable to, place-centric
tasks that require an understanding of long-term, aggregated patterns of place usage and function.

In this work, we address this gap by introducing Mobility-Embedded POIs (ME-POIs): a frame-
work that augments static POI representations derived by text embedding models, by directly in-
tegrating large-scale human mobility signals. Starting from visit sequences, our approach encodes
each visit as a contextualized embedding that reflects the static attributes of the POI and its temporal
context within mobility patterns. These visit-level embeddings are then aligned with a learnable POI
embedding via contrastive learning, ensuring that each POI representation incorporates aggregated
behavioral information over time and across users. To address the common challenge of data sparsity
for rarely visited POIs (Xu et al., 2024), we propose a distribution transfer mechanism that propa-
gates temporal usage patterns from close by, frequently visited POIs, across multiple spatial scales,
to those with limited data. This multi-scale strategy allows to capture local and regional behavioral
trends and yields high-quality POI embeddings even in the long tail of the visit distribution.

We evaluate ME-POIs on two large-scale, real-world mobility datasets across four map enrichment
tasks: weekly opening hours, permanent closure detection, popularity and price level inference. The
attributes in these tasks are often incomplete, outdated, or difficult to maintain at scale, making them
a strong demonstration of the value of our mobility-informed representations. To our knowledge,
this is the first systematic evaluation of POI embeddings on such tasks. Across all benchmarks,
augmenting strong text-embedding baselines with ME-POIs yields consistent and substantial im-
provements, with gains of up to 16.2% for opening hours, 6.5% for permanent closures, 81.9% for
popularity, and 75.1% for price level (in F1). These results highlight that a single embedding can
support diverse downstream tasks, underscoring the versatility of ME-POIs and their value for en-
riching place representations. Remarkably, even ME-POIs alone, without explicit POI semantics,
outperformed text-based embeddings in certain tasks, further emphasizing the novelty and robust-
ness of our approach. In summary, our contributions are:

• We propose Mobility-Embedded POIs (ME-POIs), a framework that augments static, text-based
POI representations with longitudinal embeddings derived from large-scale human mobility data.

• We introduce a multi-scale distribution transfer mechanism that addresses mobility data sparsity
by propagating temporal usage patterns from frequently visited POIs to sparsely visited ones.

• We conduct the first systematic evaluation of mobility-informed POI embeddings on a set of map
enrichment tasks, demonstrating substantial improvements over strong text embedding baselines.

2 RELATED WORK

Static POI Representation Learning. Existing approaches to POI representation learning primar-
ily rely on static attributes to encode the semantic and geographic relationships between places.
Several methods focus on representing location and neighborhood structure using features like geo-
graphic coordinates, proximity to other places, and local connectivity (Yan et al., 2017; Mai et al.,
2020; Rußwurm et al., 2023; Klemmer et al., 2023; Siampou et al., 2025b). To further enrich POI
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representations, recent work incorporates additional context by integrating information derived from
satellite, street-view, or remote sensing imagery, enabling models to capture environmental and
physical characteristics of each place (Ayush et al., 2021; Vivanco Cepeda et al., 2023; Mai et al.,
2023; Fuller et al., 2023; Balsebre et al., 2024; Klemmer et al., 2025). Text is another important
modality for POI representation. Recent advances include (i) geospatial language models (Li et al.,
2022; 2023; Yan & Lee, 2024) pretrained to improve language model performance on specialized
spatial tasks, such as toponym recognition and geo-entity typing, by jointly encoding text and geo-
graphic information and (ii) approaches that extract geospatial knowledge directly from LLMs (Chen
et al., 2023; Liu et al., 2024; Cheng et al., 2025). For example, GeoLLM (Manvi et al., 2024) de-
signs spatially informed prompts to query LLMs for predicting place-specific properties (e.g., popu-
lation, wealth, education) directly from language model outputs. While these methods form a strong
foundation for static POI representation, they do not incorporate dynamic human mobility patterns,
which provide complementary behavioral signals and can further enhance POI embeddings.

Mobility-Informed POI Representation Learning. Human mobility data has long been used to
model movement dynamics between POIs. Many existing methods leverage sequences of POI visits
or trajectories to learn POI embeddings, typically employing self-supervised objectives that capture
patterns of co-visitation and transitions between places. Early approaches, such as POI2Vec (Feng
et al., 2017), adapt word embedding techniques from natural language processing, treating sequences
of POI visits analogously to sentences to capture spatial co-visitation patterns. Subsequent ap-
proaches jointly encode both spatial and temporal orderings to account for when and where places
are visited (Zhao et al., 2017; Wan et al., 2021), while others leverage hierarchical structures among
POIs to enhance representation granularity (Shimizu et al., 2020). CTLE (Lin et al., 2021) uses a
masked modeling objective, randomly masking POIs and visit times in a sequence and training the
model to predict the masked values, encouraging embeddings to capture the surrounding context.
While these approaches are effective for modeling short-term movement dynamics, the resulting
embeddings are typically conditional on local trajectory context and are not explicitly designed to
capture stable, long-term patterns of place usage required for inferring static, place-centric attributes.

Geospatial Foundation Models and Broader Impact. Recent research has focused on developing
geospatial foundation models (GeoFMs), general-purpose representation learning frameworks that
aim to unify spatial, textual, visual, and mobility signals for broad transferability across geospatial
tasks (Mai et al., 2024; Agarwal et al., 2024). However, existing efforts rarely incorporate mobility-
derived behavioral patterns, due to the complexity and sparsity of large-scale mobility data (Choud-
hury et al., 2024). Our work complements recent GeoFM advances enriching static POI embeddings
with real-world mobility signals and behavioral patterns, leading to richer transferable representa-
tions that improve map enrichment tasks, traditionally addressed with static data. Although our
focus is on POIs, the same framework can extend to other geospatial objects, such as regions, road
segments, and buildings, broadening its applicability within GeoFMs.

3 PROBLEM FORMULATION

Let P = {p1, . . . , pN} denote the set of POIs within a geographic region, where each POI p ∈ P
is associated with a location xp ∈ R2 and textual metadata (e.g., name, category, description). Let,
also, S = {s1, . . . , sK} be a collection of visit sequences, where each sequence sk = (v1, . . . , vLk

)
represents the temporally ordered visits of a user. Each visit is defined as vi = (xi, t

a
i , t

d
i ), where

xi ∈ R2 are the coordinates of the visited POI, and tai , t
d
i ∈ R are the arrival and departure times.

Objective. Given a set of static POI embeddings {zstatic
p ∈ Rd : p ∈ P}, derived from a pretrained

text embedding model applied to POI metadata, and the set of visit sequences S, our goal is to
learn a mapping function f : Rd × S → Rd that produces a mobility-embedded POI representation
zME
p = f(zstaticp ,S), for each p ∈ P . Here, zME

p ∈ Rd integrates the static attributes of p with the
mobility context captured by longitudinal visitation dynamics.

4 METHODOLOGY

In this section, we present our framework for learning mobility-enriched POI embeddings, as de-
picted in Figure 1. Our approach consists of the following modules: (i) a transformer-based visit
sequence encoder, (ii) a contrastive learning module for learning global POI representations, (iii) a
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Figure 1: Key components of ME-POIs pretraining: (A) Contrastive learning aligns visit em-
beddings with their corresponding global POI embeddings. (B) Multi-scale priors transfer visit
distributions from data-rich anchors to sparsely visised POIs. (C) An auxiliary loss aligns mobility
embeddings with text embeddings for semantic grounding.

multiscale kernel-based distribution transfer module for sparse POIs, (iv) a direct supervision mod-
ule for data-rich POIs to capture their temporal usage patterns, (v) and an auxiliary text alignment
module to ensure compatibility with semantic text embeddings.

4.1 VISIT SEQUENCE ENCODER

We introduce a visit encoder model that operates on a batch of temporally ordered visit sequences
SB = {s1, . . . , sB}. For each sequence s = (v1, v2, ..., vL), the encoder outputs a sequence of
contextualized visit embeddings H = (h1, h2, ..., hL), where hi captures both the local attributes of
vi and its contextual role within the sequence.

Visit Encoding. Each visit vi comprises three main components: the geographical coordinates
xi ∈ R2 of the visited POI pi, as well as its arrival and departure times tai , t

d
i ∈ R. We independently

transform these components using three factorized encoders. Specifically, the location is embedded
using a location encoder λθ : R2 → Rdl , while arrival and departure times are encoded via two
separate time encoders gη, gζ : R → Rdt , reflecting their distinct semantic roles in characterizing
each visit. In our implementation, we employ Theory Location Encoder (Mai et al., 2020) as λθ,
which provides a multiscale sinusoidal representation of coordinates1, and Time2Vec (Kazemi et al.,
2019) for gη and gζ , to capture linear trends and periodic temporal patterns.

The resulting embeddings are then concatenated to form the initial visit encoding for vi:

h̃
(0)
i = [λθ(xi) ∥ gη(tai ) ∥ gζ(tdi )] ∈ Rdh , where dh = dl + 2dt, (1)

where [· ∥ ·] denotes vector concatenation.

Transformer-based Sequence Modeling. Given the sequence of visit embeddings H̃(0) =

(h̃
(0)
1 , h̃

(0)
2 , . . . , h̃

(0)
L ), our goal is to contextualize each visit by modeling its dependencies and inter-

actions within the sequence. To achieve this, we employ a multi-layer Transformer encoder, which
has become a standard architecture for capturing complex temporal and co-visitation patterns in
trajectory modeling (Xue et al., 2021; Yang et al., 2022; Hsu et al., 2024; Xu et al., 2024).

To preserve temporal order, we first add a fixed sinusoidal positional encoding PE(i) ∈ Rdh to each
visit embedding, where i denotes the index of the visit in the temporally sorted sequence. This yields
a position-aware input representation:

h
(0)
i = h̃

(0)
i + PE(i) (2)

1More advanced location encoders (e.g., Poly2Vec (Siampou et al., 2025b)) could be used when POIs are
represented as richer spatial geometries (e.g., road segments as lines or building footprints as polygons)
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The sequence of position-augmented embeddings H(0) = (h
(0)
1 , h

(0)
2 , . . . , h

(0)
L ) is then processed

by the Transformer encoder, which consists of stacked self-attention layers. Each Transformer layer
comprises a multi-head self-attention module followed by a position-wise feedforward network
(FFN), with residual connections and pre-layer normalization. Formally, a single layer computes:

H ′ = LayerNorm(H(0) + MultiHead(H(0))), H(1) = LayerNorm(H ′ + FFN(H ′)) (3)

The multi-head attention mechanism is defined as:

MultiHead(H) = [head1∥ · · · ∥headj ]WO, headi = Softmax

(
HWQ

i (HWK
i )⊤√

dk

)
HWV

i , (4)

where WQ
i ,WK

i ,WV
i ∈ Rdh×dk and WO ∈ Rjdk×dh are learnable projection matrices and j is the

number of heads.

Applying N stacked Transformer layers yields the final contextualized visit embeddings:

H = (h1, h2, . . . , hL), where hi ∈ Rdh for i = 1, . . . , L (5)

4.2 VISIT TO POI EMBEDDING CONTRASTIVE LEARNING

Given the individual contextualized visit vectors, we now describe how to learn global, usage-aware
POI embeddings. To this end, we associate each POI p ∈ P with a global, learnable embedding
vector zME

p ∈ Rdh , which is shared and updated across all occurrences of p in the dataset. This
embedding is designed to capture long-term, usage-aware semantics by aggregating behavioral in-
formation from every visit to p, thereby reflecting the full range of mobility patterns associated with
that location. Unlike visit embeddings, which encode context-specific information for individual
visits, zME

p serves as a unified representation that summarizes usage across all contexts. One of the
main novelties of our work lies in this departure from prior approaches that optimize POI embed-
dings primarily for sequential mobility prediction. Instead, we explicitly design embeddings that
generalize to static, place-centric tasks requiring an understanding of long-term usage and function.

We achieve this aggregation through a contrastive learning framework. For each visit vi to POI p, we
encourage the contextualized visit embedding hi to be similar to the global embedding zME

p , while
dissimilar to embeddings of other POIs in the same batch. For this, we adopt the standard InfoNCE
loss (Oord et al., 2018; Radford et al., 2021), which for a given visit vi to POI p is defined as:

LME-POI(hi, z
ME
p ) = − log

exp(sim(hi, z
ME
p )/τ)∑

p′∈Pbatch

exp(sim(hi, zME
p′ )/τ)

, (6)

where sim(a, b) = a⊤b
∥a∥∥b∥ denotes cosine similarity and τ is a temperature hyperparameter.

This contrastive signal ensures that zME
p is consistently updated toward visit embeddings associated

with p, leading to a standalone representation that captures aggregated mobility patterns.

4.3 TRANSFERRING VISIT DISTRIBUTIONS TO SPARSE POIS

A common challenge in modeling human mobility is the long-tail distribution of visits across POIs:
only a small subset of popular locations typically receives frequent visits, while the majority are
sparsely visited by only a few users (Xu et al., 2024). This data imbalance can limit the ability
of our contrastive framework to learn meaningful embeddings for underrepresented POIs, as these
embeddings are updated with only a handful of visits. To address this, we introduce a visit distri-
bution transfer mechanism that propagates temporal visitation patterns from frequently visited POIs
(anchors) to sparsely visited ones, enabling reliable estimation of zME

ps
even in low-data regimes.

We define a set of anchor POIs, Panchor ⊂ P , as those with the highest total visit counts in the
region of interest. For each anchor pa ∈ Panchor, we compute an empirical weekly visit distribution
rpa ∈ ∆T by binning visits into T fixed temporal slots (e.g., hourly intervals over a week) and
normalizing the histogram to obtain a valid probability distribution.
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To transfer these distributions, we leverage the empirical observation that geographically close POIs
tend to exhibit similar visitation patterns (Miller, 2004). While semantic similarity (e.g., two restau-
rants) could, in principle, also reflect shared behavioral patterns (Zhu & Turner, 2022), our experi-
ments showed that incorporating semantic features provided no improvement over using geograph-
ical distance alone. Moreover, these spatially-driven patterns appear at multiple resolutions, from
local (block-level) similarities, such as neighboring coffee shops sharing morning peaks, to broader
trends that distinguish neighborhoods or districts (e.g., residential versus commercial areas).

To capture this multiscale structure, we adopt a kernel-based approach that combines distributions
from anchors at varying spatial scales, allowing each sparse POI to draw from both fine- and coarse-
grained temporal signals. Specifically, we consider M different spatial scales, each parameterized
by a kernel bandwidth σm for m = 1, . . . ,M . For each sparse POI ps ∈ Psparse, we compute
Gaussian kernel weights α over all anchors pa ∈ Panchor at each scale σm:

α(m)
ps,pa

=
exp

(
−∥xps−xpa∥

2

2σ2
m

)
∑

p′
a∈Panchor

exp
(
−

∥xps−xp′a
∥2

2σ2
m

) , (7)

where xps and xpa denote the coordinates of the sparse POI and anchor, respectively.

We further learn mixture weights βps
∈ ∆M for each sparse POI, which control the contribution of

each spatial scale to the final distribution transfer. The resulting prior distribution is given by:

r̃ps
=

M∑
m=1

βps,m

 ∑
pa∈Panchor

α(m)
ps,pa

· rpa

 (8)

To ensure that the learned embedding zME
ps

encodes temporal usage patterns, we map zME
ps

through
a multi-layer perceptron (MLP) followed by a softmax to produce a predicted visit distribution:

qθ(ps) = softmax(MLP(zME
ps

)) (9)

where MLP(·) denotes a neural network with one hidden layer and ReLU activation.

Finally, we train the model to align its predicted distribution qθ(ps) with the constructed prior r̃ps

using a KL divergence loss:

LKL-sparse =
∑

ps∈Psparse

KL (r̃ps ∥ qθ(ps)) (10)

4.4 DIRECT SUPERVISION FOR ANCHOR POIS

For anchor POIs with sufficient visit history, we directly supervise their embeddings to capture their
observed temporal usage patterns. For each anchor POI pa ∈ Panchor, we compute an empirical visit
distribution rpa

∈ ∆T , and predict an approximate distribution qθ(pa) = softmax(MLP(zME
pa

))
from the mobility embedding. Here, MLP(·) denotes the same network as for sparse POIs.

We then minimize the KL divergence between the empirical and predicted distributions:

LKL-anchor =
∑

pa∈Panchor

KL (rpa
∥ qθ(pa)) (11)

This loss complements the transfer loss for sparse POIs, ensuring that embeddings for anchors ac-
curately reflect their observed visitation patterns.

4.5 ALIGNMENT WITH TEXT EMBEDDINGS

Our mobility-embedded POI representations are designed to augment and complement static text
embeddings for POIs. For each POI, we derive a semantic embedding by passing a text prompt
through a pretrained text embedding model. Following GeoLLM (Manvi et al., 2024), we construct
a prompt for each POI, using POI information (i.e., coordinates, category, and address) and eigh-
borhood context. We provide details related to the prompt construction in Appendix A.1.6. To
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encourage the learned mobility embedding zME
p ∈ Rdh to encode complementary semantic con-

tent, we project the text embedding into the mobility embedding space via a linear transformation
W ∈ Rdh×du . We then maximize the cosine similarity between zME

p and the projected text embed-
ding Wztext

p . Specifically, we use the following objective:

Ltext-align =
∑
p∈P

[
1− cos

(
zME
p , Wztext

p

)]
(12)

where cos(·, ·) denotes cosine similarity.

4.6 MODEL OPTIMIZATION

Pretraining. The overall pretraining objective jointly optimizes four terms: (i) aligning contextu-
alized visit representations with global POI embeddings via contrastive learning, (ii) regularizing
anchor POI embeddings to match their empirical usage patterns, (iii) transferring temporal patterns
to sparse POIs through KL supervision, and (iv) aligning mobility-based POI embeddings with se-
mantic information from text embeddings. The total loss is:

L = LME-POI + λa LKL-anchor + λs LKL-sparse + λt Ltext-align, (13)

where λa, λs, and λt are hyperparameters controlling the contribution of each auxiliary loss term.

Fine-Tuning. For downstream evaluation, we freeze the pretrained embeddings and train only
lightweight task-specific heads. Each POI p is represented by two fixed vectors: the mobility-based
embedding zME

p and the text-based embedding ztext
p . To adapt these representations to a given task,

we first project each through two separate small MLPs: z̃ME
p = MLPp(z

ME
p ), z̃text

p = MLPt(z
text
p ).

We then concatenate the projected vectors and pass them to a task-specific prediction head:

ŷp = MLPhead
(
[z̃ME

p ∥ z̃text
p ]
)

(14)

Here, each MLP is a two-layer feedforward network with one hidden layer and ReLU activation.

5 EXPERIMENTS

Datasets. We use large-scale, anonymized human mobility datasets provided by Veraset2, covering
Los Angeles county and the city of Houston. The Los Angeles dataset spans a full calendar year,
while the Houston dataset covers a 20-day period. Both datasets consist of raw GPS trajectories,
containing timestamped geographic coordinates and randomized device identifiers. We convert the
raw trajectories into sequences of visits by performing staypoint detection and POI attribution. We
provide details on the algorithms in the Appendix A.1.2. POIs with at least M visits are designated
as anchors, while the remainder are considered sparse, with M=100 for Los Angeles and M=50
for Houston. Table 6 in Appendix A.1.1 summarizes the statistics of the datasets.

Baselines. We select a set of state-of-the-art text embedding models to serve as base-
lines for generating the static POI representations. Specifically, we consider MPNET
(all-mpnet-base-v2) (Song et al., 2020), E5 (e5-large-v2) (Wang et al., 2022), and
GTR-T5 (gtr-t5-large) (Ni et al., 2022) as widely used academic models, along with com-
mercial embeddings from Nomic (nomic-embed-text-v1) (Nussbaum et al., 2024), OpenAI
(text-embedding-3-small/large), and Gemini (models/embedding-001). For all
baselines, we use the same POI prompts, as described in Section 4.5, to extract embeddings. To eval-
uate the performance of the static POI embeddings on the downstream tasks, we probe each model
by training an MLP on the frozen text embeddings. We further select several widely used mobility-
based POI embedding models originally developed for next-location prediction or sequential mo-
bility modeling. These include Skip-Gram (Mikolov et al., 2013), POI2Vec (Feng et al., 2017),
Geo-Teaser (Zhao et al., 2017), TALE (Wan et al., 2021), HIER (Shimizu et al., 2020), CTLE (Lin
et al., 2021), DeepMove (Feng et al., 2018), STAN (Luo et al., 2021), Graph-Flashback (Rao et al.,
2022), GETNext (Yang et al., 2022), and TrajGPT (Hsu et al., 2024). For a consistent comparison,

2https://www.veraset.com
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we extract the POI embeddings each method produces after pretraining and evaluate them using the
same frozen-embedding probing as the text baselines.

Downstream Tasks. We evaluate our approach on four map enrichment tasks: (i) multi-label clas-
sification of weekly opening hours, where the goal is to predict a 168-dimensional binary vector
indicating the open/closed status of each POI for every hour of the week, (ii) binary classification of
permanent closure status, (iii) ordinal classification of popularity, and (iv) ordinal classification
of price level. Ground-truth labels for opening hours and permanent closures are obtained from
SafeGraph3, while popularity and price level are sourced from Google Maps by cross-referencing
with SafeGraph POIs; both of them have four classes each from least to most popular and expensive,
respectively. Note that the task of permanent closure status is excluded from the Houston dataset
due to the absence of labels of sufficient quality. For each downstream task, we report two standard
metrics appropriate to the prediction objective.

Table 1: Performance on map enrichment in Los Angeles. Relative improvements highlighted.

Method Open Hours Permanent Closure Popularity Price Level
F1 / AUROC F1 / AUPRC Accuracy / F1 Accuracy / F1

ME-POIs (w/o Ltext-align) 0.5400.002 / 0.7030.005 0.7570.025 / 0.1540.006 0.5750.004 / 0.2570.005 0.6000.008 / 0.3080.003

MPNet 0.5420.001 / 0.7260.004 0.7360.028 / 0.1720.005 0.6000.006 / 0.2700.006 0.6150.011 / 0.3060.007

MPNet + ME-POIs 0.6280.009 / 0.7830.007 0.7660.025 / 0.1810.003 0.610 0.005 / 0.3520.003 0.6620.005 / 0.3370.003

Improvement 15.87% / 7.85% 4.08% / 5.23% 1.67% / 30.37% 7.64% / 10.13%

E5 0.5400.001 / 0.7220.003 0.7380.031 / 0.1760.005 0.5750.005 / 0.1840.002 0.5210.021 / 0.1890.021

E5 + ME-POIs 0.6010.006 / 0.7510.003 0.7860.022 / 0.1850.004 0.6020.005 / 0.3300.005 0.6320.009 / 0.3220.004

Improvement 11.30% / 4.02% 6.50% / 5.11% 4.70% / 79.35% 21.31% / 70.37%

GTR-T5 0.5470.001 / 0.7210.002 0.7670.018 / 0.1730.005 0.5950.004 / 0.2410.003 0.5860.026 / 0.2780.020

GTR-T5 + ME-POIs 0.6180.008 / 0.7670.004 0.7740.013 / 0.1780.006 0.6150.004 / 0.3320.001 0.6540.010 / 0.3340.004

Improvement 12.98% / 6.38% 0.91% / 2.89% 3.36% / 37.76% 11.60% / 20.14%

Nomic 0.5390.001 / 0.7230.003 0.7490.018 / 0.1730.009 0.5860.006 / 0.2300.004 0.6140.017 / 0.2970.013

Nomic + ME-POIs 0.6190.009 / 0.7710.006 0.7620.023 / 0.1820.006 0.6030.007 / 0.3320.003 0.6590.009 / 0.3360.005

Improvement 14.84% / 6.64% 1.74% / 5.20% 2.90% / 44.35% 7.33% / 13.13%

OpenAI (small) 0.5470.002 / 0.7320.002 0.6950.004 / 0.1840.008 0.5990.005 / 0.2600.004 0.6370.013 / 0.3200.007

OpenAI (small) + ME-POIs 0.6320.006 / 0.7800.005 0.6960.005 / 0.1860.006 0.6170.008 / 0.3530.010 0.6750.005 / 0.3450.003

Improvement 15.54% / 6.56% 0.14% / 1.09% 3.01% / 35.77% 4.33% / 7.81%

OpenAI (large) 0.5480.001 / 0.7380.004 0.7500.020 / 0.1810.006 0.6070.006 / 0.2710.003 0.6540.014 / 0.3290.007

OpenAI (large) + ME-POIs 0.6370.008 / 0.7830.005 0.7700.012 / 0.1850.007 0.6260.007 / 0.3680.004 0.6840.012 / 0.3500.006

Improvement 16.24% / 6.10% 2.67% / 2.21% 3.13% / 35.79% 4.59% / 6.38%

Gemini 0.5480.005 / 0.7160.006 0.7560.030 / 0.1810.006 0.5810.006 / 0.1990.005 0.5590.057 / 0.2340.059

Gemini + ME-POIs 0.6130.004 / 0.7610.004 0.7530.031 / 0.1850.006 0.6140.004 / 0.3620.004 0.6720.012 / 0.3450.008

Improvement 11.86% / 6.28% -0.40% / 2.21% 5.68% / 81.91% 20.21% / 47.44%

Overall Results. Table 1 and Table 2 report results for Los Angeles and Houston, respectively.
Across both cities and all tasks, adding ME-POIs to any text embedding baseline yields consistent
and often substantial gains. In Los Angeles, ME-POIs improve AUROC for open hours prediction
by up to 7.85%, and macro-F1 by up to 81.91% for popularity and 70.37% for price level prediction.
Permanent closure detection also benefits, with AUPRC increasing by as much as 5.23%. Results
in Houston follow a similar trend: AUROC for open hours prediction improves by up to 8.66%,
while macro-F1 gains reach 61.57% for popularity and 75.14% for price level. The largest relative
improvements occur in popularity and price level prediction tasks, where static text embeddings are
limited. Text models can often recover such attributes for well-known places, where correlations are
reinforced during pretraining, but they struggle for POIs in the long tail with sparse textual context.
By injecting local visitation patterns, ME-POIs complement text embeddings and provide directly
informative behavioral signals for these tasks.

We further evaluate a model variant trained exclusively on mobility objectives, which we term ME-
POIs (w/o Ltext-align). This variant achieves competitive performance to text-based baselines, even
surpassing them in certain tasks. For instance, in Los Angeles it outperforms E5 and MPNet on
permanent closure detection, while in Houston it achieves higher price level prediction performance
than GTR-T5 and Nomic. However, it does not consistently exceed the strongest text embeddings
across all settings, likely due to its reliance on locally observed behavioral data: when the observa-
tion window is short, as in Houston with only 20 days of mobility traces, the learned representations
lack sufficient behavioral diversity and coverage. By contrast, text embeddings always benefit from

3https://www.safegraph.com/
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Table 2: Performance on map enrichment in Houston. Relative improvements highlighted.

Method Open Hours Popularity Price Level
F1 / AUROC Accuracy / F1 Accuracy / F1

ME-POIs (w/o Ltext-align) 0.5190.003 / 0.6040.003 0.4670.007 / 0.2630.008 0.5640.013 / 0.2760.014

MPNet 0.6530.005 / 0.7390.005 0.5390.007 / 0.3310.011 0.5990.005 / 0.2480.004

MPNet + ME-POIs 0.7250.005 / 0.8030.002 0.5480.006 / 0.3740.005 0.6870.010 / 0.3440.006

Improvement 11.03% / 8.66% 1.67% / 12.99% 14.69% / 38.71%

E5 0.6400.011 / 0.7540.004 0.4920.007 / 0.2290.008 0.5490.008 / 0.1770.001

E5 + ME-POIs 0.6900.006 / 0.7800.002 0.5380.004 / 0.3680.003 0.6350.016 / 0.3000.009

Improvement 7.81% / 3.45% 9.35% / 60.70% 15.66% / 69.49%

GTR-T5 0.6240.005 / 0.7420.003 0.5060.006 / 0.2570.003 0.5490.008 / 0.1770.001

GTR-T5 + ME-POIs 0.7130.004 / 0.7820.002 0.5440.006 / 0.3700.004 0.6450.013 / 0.3100.009

Improvement 14.26% / 3.71% 10.57% / 61.57% 17.49% / 75.14%

Nomic 0.7210.005 / 0.8060.004 0.5040.007 / 0.2680.007 0.5780.021 / 0.2120.019

Nomic + ME-POIs 0.7380.005 / 0.8130.003 0.5380.007 / 0.3660.005 0.6670.009 / 0.3260.007

Improvement 2.36% / 0.87% 6.75% / 36.57% 15.40% / 53.77%

OpenAI (small) 0.6540.007 / 0.7610.004 0.5370.005 / 0.3140.010 0.5950.011 / 0.2330.008

OpenAI (small) + ME-POIs 0.7430.004 / 0.8050.003 0.5690.007 / 0.3980.004 0.7290.013 / 0.3670.007

Improvement 13.61% / 5.78% 5.96% / 26.75% 22.52% / 57.51%

OpenAI (large) 0.7020.005 / 0.7880.004 0.5520.009 / 0.3450.007 0.6010.007 / 0.2440.004

OpenAI (large) + ME-POIs 0.7610.004 / 0.8240.002 0.5780.005 / 0.4120.005 0.7580.010 / 0.3830.005

Improvement 8.40% / 4.57% 4.71% / 19.42% 26.12% / 56.97%

Gemini 0.6760.013 / 0.7560.004 0.5210.004 / 0.2680.002 0.5490.008 / 0.1770.001

Gemini + ME-POIs 0.7410.009 / 0.8010.002 0.5650.005 / 0.3920.006 0.6340.014 / 0.3040.012

Improvement 9.62% / 5.95% 8.45% / 46.27% 15.48% / 71.75%

globally available corpora. Nevertheless, the best performance is always achieved when the two
are combined, showing that mobility-derived representations provide unique, non-redundant infor-
mation. Importantly, our experiments demonstrate that a single embedding can support all four
map enrichment tasks, underscoring both the versatility of ME-POIs and their value for geospatial
foundation models.

Table 3: Comparison with POI baselines on map enrichment in Los Angeles.

Method Open Hours Permanent Closure Popularity Price Level
F1 / AUROC F1 / AUPRC AUROC / AUPRC Accuracy / F1

Skip-Gram 0.4620.002 / 0.5200.006 0.6490.008 / 0.1230.004 0.5300.001 / 0.2680.001 0.5640.007 / 0.2860.004

POI2Vec 0.4600.003 / 0.4820.004 0.5640.039 / 0.1120.005 0.5190.003 / 0.2630.002 0.5300.014 / 0.2490.013

Geo-Teaser 0.4600.002 / 0.4700.005 0.4480.083 / 0.1160.004 0.5230.007 / 0.2660.003 0.5110.009 / 0.1940.023

TALE 0.4610.002 / 0.4640.006 0.3750.197 / 0.1020.003 0.4860.006 / 0.2480.003 0.5040.005 / 0.1890.027

HIER 0.4730.002 / 0.5470.004 0.6600.005 / 0.1190.001 0.5690.005 / 0.2910.001 0.5290.029 / 0.2290.047

CTLE 0.4630.001 / 0.5110.007 0.1150.102 / 0.0980.006 0.5010.006 / 0.2490.003 0.4880.015 / 0.2440.008

DeepMove 0.4600.003 / 0.4840.007 0.3700.135 / 0.1100.002 0.4940.006 / 0.2530.001 0.5030.009 / 0.2240.030

STAN 0.4640.002 / 0.5090.007 0.2200.215 / 0.0990.007 0.5500.006 / 0.2500.002 0.4970.012 / 0.2480.006

Graph-Flashback 0.4630.002 / 0.5060.008 0.2330.203 / 0.0990.007 0.5040.007 / 0.2510.002 0.4960.017 / 0.2480.009

GETNext 0.4310.007 / 0.5000.001 0.2000.220 / 0.1030.004 0.5030.001 / 0.2520.005 0.4100.092 / 0.2200.032

TrajGPT 0.4830.003 / 0.4910.005 0.2150.120 / 0.1010.006 0.4960.006 / 0.2490.003 0.4750.015 / 0.2370.009

ME-POIs (w/o Ltext-align) 0.5400.002 / 0.7030.005 0.7570.025 / 0.1540.006 0.6330.004 / 0.3370.005 0.6000.011 / 0.3080.005

ME-POIs 0.5540.004 / 0.7220.005 0.7660.023 / 0.1610.005 0.6530.004 / 0.3550.008 0.6090.018 / 0.3220.012

Comparison to mobility-informed POI representation baselines. To highlight the benefits of our
pretraining strategy for static, place-centric tasks, we also compare against widely used mobility-
based POI embedding models originally designed for next-location prediction. We split these base-
lines into two categories: POI representation approaches (in the top portion of Tables 3 and 4) that
learn dedicated POI embedding vectors as part of mobility-sequence objectives, and models (in the
bottom portion) that provide POI embeddings implicitly via the learnable token-embedding layer
of their next-location prediction architecture. For fairness, we report the performance of ME-POIs
both with and without the text-alignment objective (w/o Ltext-align), given that the baselines do not
use any text signal. Notably, the mobility-only variant outperforms every mobility-based baseline
across all tasks and in both cities. This result empirically supports our core hypothesis that next-
location prediction models are optimized to capture short-term user transition dynamics, focusing
on how individuals move from one place to another. These objectives do not encourage the model
to learn the long-term, aggregated behavioral properties that characterize individual places. As a
result, the POI embeddings they produce primarily encode sequential co-occurrence patterns rather
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Table 4: Comparison with POI baselines on map enrichment in Houston.

Method Open Hours Popularity Price Level
F1 / AUROC AUROC / AUPRC Accuracy / F1

Skip-Gram 0.4830.004 / 0.4740.005 0.5580.007 / 0.3000.004 0.5430.018 / 0.2300.013

POI2Vec 0.4860.004 / 0.5030.006 0.5630.006 / 0.2980.003 0.5550.027 / 0.2700.006

Geo-Teaser 0.4830.004 / 0.4330.002 0.5040.021 / 0.2540.012 0.5140.058 / 0.1800.025

TALE 0.4820.004 / 0.4650.004 0.5070.015 / 0.2560.007 0.5290.040 / 0.2010.028

HIER 0.4980.003 / 0.5420.009 0.5190.005 / 0.2640.001 0.5510.012 / 0.1840.006

CTLE 0.3060.013 / 0.4960.007 0.5040.009 / 0.2580.005 0.5110.012 / 0.2300.006

DeepMove 0.4820.004 / 0.4540.006 0.5190.009 / 0.2620.005 0.5360.021 / 0.2300.018

STAN 0.4840.004 / 0.4960.006 0.5030.009 / 0.2570.005 0.5130.012 / 0.2310.006

Graph-Flashback 0.4840.004 / 0.4960.007 0.5050.008 / 0.2590.005 0.5100.012 / 0.2290.005

GETNext 0.4930.003 / 0.5510.002 0.5600.004 / 0.2930.004 0.5490.013 / 0.1800.004

TrajGPT 0.4830.003 / 0.4910.006 0.5010.006 / 0.2530.004 0.5340.013 / 0.2390.008

ME-POIs (w/o Ltext-align) 0.5190.003 / 0.6040.003 0.5700.002 / 0.3140.004 0.5640.013 / 0.2760.014

ME-POIs 0.5820.007 / 0.6570.006 0.5980.004 / 0.3520.004 0.5900.010 / 0.2940.011

than long-term temporal visitation patterns or functional roles. This mismatch leads to consistently
weaker performance on map-enrichment tasks. Finally, our full ME-POIs model, which incorpo-
rates the text-alignment objective, achieves the strongest overall performance. This version reflects
the intended use of the framework, where mobility-derived behavioral signals enrich and strengthen
semantic POI representations.

Table 5: Ablation on ME-POIs for open
hours prediction.

Method Los Angeles Houston
F1 / AUROC F1 / AUROC

ME-POIs (LME-POI) 0.4900.004 / 0.6080.004 0.5100.004 / 0.5950.005

+ Lsparse 0.5350.005 / 0.7010.005 0.5180.004 / 0.6030.005

+ Lanchor 0.5400.002 / 0.7030.005 0.5190.003 / 0.6040.003

+ Ltext-align 0.5540.004 / 0.7220.005 0.5820.007 / 0.6570.006

Ablation Study. Table 8 presents the incremental
contribution of each component in our framework.
Starting from the base contrastive loss (LME-POI),
adding LKL-sparse further improves results by regular-
izing long-tail POIs with anchor-derived visitation
priors. This is especially evident in Los Angeles,
where anchor coverage is denser. Adding LKL-anchor
yields additional but moderate gains, as anchors rep-
resent only a small subset of POIs. Finally, incorpo-
rating Ltext-align loss, further enhances performance
by grounding mobility-derived embeddings in semantic context. Here, results are obtained by align-
ing with OpenAI-large text embeddings. Overall, each objective provides complementary benefits,
and the full combination achieves the strongest results.

Figure 2: Effect of distribution transfer for
Houston open-hours prediction.

Case Study (Impact of distribution transfer).
To evaluate the benefit of the distribution trans-
fer module, we report downstream performance
for anchor POIs and sparse POIs before and af-
ter applying LKL-anchor and LKL-sparse. As shown
in Figure 2, distribution transfer consistently im-
proves F1 and AUROC for both groups. This in-
dicates that sparse POIs benefit from the multi-
scale temporal transfer, while anchor POIs im-
prove through direct KL supervision. We further
observe that anchors achieve higher absolute per-

formance, as expected given their stronger mobility signal. Overall, these results confirm that the
proposed distribution transfer module improves representation quality for both groups.

6 CONCLUSION

We proposed ME-POIs, a pretraining framework that augments static text embedding representa-
tions with mobility-derived signals from visit sequences, effectively capturing dynamic usage pat-
terns. Our experiments demonstrate that adding ME-POIs to strong text embedding baselines yields
consistent and substantial improvements across all tasks, confirming that mobility-informed em-
beddings provide complementary information and enable a richer understanding of how places are
used. Future work will extend our framework to represent other geospatial objects, including road
segments, administrative boundaries, and regions. This underscores that the impact of our work
extends beyond POI embeddings to a wider spectrum of geospatial representations.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The codebase implementing
our models, training and evaluation pipelines will be released publicly upon acceptance. To facilitate
replication, we provide detailed descriptions of all model architectures, training objectives, and op-
timization settings in the main paper, and report the exact hyperparameters used in our experiments
in the Appendix A.1.3. Our experiments are conducted primarily on large-scale human mobility
datasets from Veraset and POI data from SafeGraph, which can be accessed by researchers upon re-
quest. We also describe the dataset preprocessing steps we followed, including the algorithms used
for staypoint detection and visit attribution, in Appendix A.1.2. Together, these resources enable
researchers to replicate our results and build upon our work.

REFERENCES

Mohit Agarwal, Mimi Sun, Chaitanya Kamath, Arbaaz Muslim, Prithul Sarker, Joydeep Paul, Hector
Yee, Marcin Sieniek, Kim Jablonski, Yael Mayer, et al. General geospatial inference with a
population dynamics foundation model. arXiv preprint arXiv:2411.07207, 2024.

Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, and
Stefano Ermon. Geography-aware self-supervised learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10181–10190, 2021.

Pasquale Balsebre, Weiming Huang, Gao Cong, and Yi Li. City foundation models for learning gen-
eral purpose representations from openstreetmap. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management, pp. 87–97, 2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Yakun Chen, Xianzhi Wang, and Guandong Xu. Gatgpt: A pre-trained large language model with
graph attention network for spatiotemporal imputation. arXiv preprint arXiv:2311.14332, 2023.

Jiawei Cheng, Jingyuan Wang, Yichuan Zhang, Jiahao Ji, Yuanshao Zhu, Zhibo Zhang, and Xi-
angyu Zhao. Poi-enhancer: An llm-based semantic enhancement framework for poi representa-
tion learning. In Proceedings of the AAAI conference on artificial intelligence, volume 39, pp.
11509–11517, 2025.

Shushman Choudhury, Abdul Rahman Kreidieh, Ivan Kuznetsov, and Neha Arora. Towards a
trajectory-powered foundation model of mobility. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Spatial Big Data and AI for Industrial Applications, pp. 1–4, 2024.

Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. Deepmove:
Predicting human mobility with attentional recurrent networks. In Proceedings of the 2018 world
wide web conference, pp. 1459–1468, 2018.

Shanshan Feng, Gao Cong, Bo An, and Yeow Meng Chee. Poi2vec: Geographical latent rep-
resentation for predicting future visitors. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

Anthony Fuller, Koreen Millard, and James Green. Croma: Remote sensing representations with
contrastive radar-optical masked autoencoders. Advances in Neural Information Processing Sys-
tems, 36:5506–5538, 2023.

Shang-Ling Hsu, Emmanuel Tung, John Krumm, Cyrus Shahabi, and Khurram Shafique. Tra-
jgpt: Controlled synthetic trajectory generation using a multitask transformer-based spatiotempo-
ral model. In Proceedings of the 32nd ACM International Conference on Advances in Geographic
Information Systems, pp. 362–371, 2024.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Konstantin Klemmer, Nathan S Safir, and Daniel B Neill. Positional encoder graph neural networks
for geographic data. In International conference on artificial intelligence and statistics, pp. 1379–
1389. PMLR, 2023.

Konstantin Klemmer, Esther Rolf, Caleb Robinson, Lester Mackey, and Marc Rußwurm. Satclip:
Global, general-purpose location embeddings with satellite imagery. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 4347–4355, 2025.

Jae-Gil Lee and Minseo Kang. Geospatial big data: challenges and opportunities. Big Data Re-
search, 2(2):74–81, 2015.

Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and Wei-Ying Ma. Mining user sim-
ilarity based on location history. In Proceedings of the 16th ACM SIGSPATIAL international
conference on Advances in geographic information systems, pp. 1–10, 2008.

Zekun Li, Jina Kim, Yao-Yi Chiang, and Muhao Chen. Spabert: a pretrained language model from
geographic data for geo-entity representation. arXiv preprint arXiv:2210.12213, 2022.

Zekun Li, Wenxuan Zhou, Yao-Yi Chiang, and Muhao Chen. Geolm: Empowering language models
for geospatially grounded language understanding. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 5227–5240, 2023.

Zhonghang Li, Lianghao Xia, Jiabin Tang, Yong Xu, Lei Shi, Long Xia, Dawei Yin, and Chao
Huang. Urbangpt: Spatio-temporal large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5351–5362, 2024.

Yan Lin, Huaiyu Wan, Shengnan Guo, and Youfang Lin. Pre-training context and time aware loca-
tion embeddings from spatial-temporal trajectories for user next location prediction. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 35, pp. 4241–4248, 2021.

Chenxi Liu, Sun Yang, Qianxiong Xu, Zhishuai Li, Cheng Long, Ziyue Li, and Rui Zhao. Spatial-
temporal large language model for traffic prediction. In 2024 25th IEEE International Conference
on Mobile Data Management (MDM), pp. 31–40. IEEE, 2024.

Yingtao Luo, Qiang Liu, and Zhaocheng Liu. Stan: Spatio-temporal attention network for next
location recommendation. In Proceedings of the web conference 2021, pp. 2177–2185, 2021.

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale represen-
tation learning for spatial feature distributions using grid cells. In International Conference on
Learning Representations, 2020.

Gengchen Mai, Ni Lao, Yutong He, Jiaming Song, and Stefano Ermon. Csp: Self-supervised con-
trastive spatial pre-training for geospatial-visual representations. In International Conference on
Machine Learning, pp. 23498–23515. PMLR, 2023.

Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao Liu, Song Gao,
Tianming Liu, Gao Cong, Yingjie Hu, et al. On the opportunities and challenges of foundation
models for geoai (vision paper). ACM Transactions on Spatial Algorithms and Systems, 10(2):
1–46, 2024.

Rohin Manvi, Samar Khanna, Gengchen Mai, Marshall Burke, David B. Lobell, and Stefano Er-
mon. GeoLLM: Extracting geospatial knowledge from large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=TqL2xBwXP3.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Harvey J Miller. Tobler’s first law and spatial analysis. Annals of the association of American
geographers, 94(2):284–289, 2004.

Mashaal Musleh, Mohamed F Mokbel, and Sofiane Abbar. Let’s speak trajectories. In Proceedings
of the 30th International Conference on Advances in Geographic Information Systems, pp. 1–4,
2022.

12

https://openreview.net/forum?id=TqL2xBwXP3
https://openreview.net/forum?id=TqL2xBwXP3


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
9844–9855, 2022.

Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training
a reproducible long context text embedder, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Xuan Rao, Lisi Chen, Yong Liu, Shuo Shang, Bin Yao, and Peng Han. Graph-flashback network
for next location recommendation. In Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pp. 1463–1471, 2022.

Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic lo-
cation encoding with spherical harmonics and sinusoidal representation networks. arXiv preprint
arXiv:2310.06743, 2023.

Toru Shimizu, Takahiro Yabe, and Kota Tsubouchi. Enabling finer grained place embeddings using
spatial hierarchy from human mobility trajectories. In Proceedings of the 28th International
Conference on Advances in Geographic Information Systems, pp. 187–190, 2020.

Maria Despoina Siampou, Shang-Ling Hsu, Shushman Choudhury, Neha Arora, and Cyrus Shahabi.
Toward foundation models for mobility enriched geospatially embedded objects. In Proceed-
ings of the 33rd ACM International Conference on Advances in Geographic Information Systems,
2025a.

Maria Despoina Siampou, Jialiang Li, John Krumm, Cyrus Shahabi, and Hua Lu. Poly2vec: Poly-
morphic fourier-based encoding of geospatial objects for geoai applications. In Forty-second
International Conference on Machine Learning, 2025b.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. Advances in neural information processing systems, 33:
16857–16867, 2020.

Vicente Vivanco Cepeda, Gaurav Kumar Nayak, and Mubarak Shah. Geoclip: Clip-inspired align-
ment between locations and images for effective worldwide geo-localization. Advances in Neural
Information Processing Systems, 36:8690–8701, 2023.

Huaiyu Wan, Yan Lin, Shengnan Guo, and Youfang Lin. Pre-training time-aware location embed-
dings from spatial-temporal trajectories. IEEE Transactions on Knowledge and Data Engineering,
34(11):5510–5523, 2021.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Xiaohang Xu, Renhe Jiang, Chuang Yang, Kaoru Sezaki, et al. Taming the long tail in human
mobility prediction. Advances in Neural Information Processing Systems, 37:54748–54771, 2024.

Hao Xue, Flora Salim, Yongli Ren, and Nuria Oliver. Mobtcast: Leveraging auxiliary trajectory
forecasting for human mobility prediction. Advances in Neural Information Processing Systems,
34:30380–30391, 2021.

Bo Yan, Krzysztof Janowicz, Gengchen Mai, and Song Gao. From itdl to place2vec: Reasoning
about place type similarity and relatedness by learning embeddings from augmented spatial con-
texts. In Proceedings of the 25th ACM SIGSPATIAL international conference on advances in
geographic information systems, pp. 1–10, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yibo Yan and Joey Lee. Georeasoner: Reasoning on geospatially grounded context for natural
language understanding. In Proceedings of the 33rd ACM international conference on information
and knowledge management, pp. 4163–4167, 2024.

Song Yang, Jiamou Liu, and Kaiqi Zhao. Getnext: Trajectory flow map enhanced transformer for
next poi recommendation. In Proceedings of the 45th International ACM SIGIR Conference on
research and development in information retrieval, pp. 1144–1153, 2022.

Shenglin Zhao, Tong Zhao, Irwin King, and Michael R Lyu. Geo-teaser: Geo-temporal sequential
embedding rank for point-of-interest recommendation. In Proceedings of the 26th international
conference on world wide web companion, pp. 153–162, 2017.

A-Xing Zhu and Matthew Turner. How is the third law of geography different? Annals of GIS, 28
(1):57–67, 2022.

A APPENDIX

A.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

A.1.1 DATASET STATISTICS

We present the dataset statistics on Table 6. The number of POIs for both urban areas are comparable
(LA has a larger bounding box and hence more PoIs). However, the number of visits for LA is an
order of magnitude larger due to the year-long time-span, compared to 20 days for Houston.

Table 6: Summary of dataset statistics.

Region Time Period Bounding Box # POIs # Visits % Anchor POIs

Los Angeles 01/01 - 12/31 2019 [32.81, -118.94, 34.82, -117.65] 39,557 6,908,365 9.07%
Houston 03/05 - 03/26 2020 [29.55, -95.56, 29.95, -95.16] 28,419 715,604 7.04%

A.1.2 DATASET PREPROCESSING

We perform staypoint detection and POI attribution to convert our initial raw GPS trajectories into
sequences of visits. For staypoint detection, we use the trackintel library, which implements the
standard distance-time threshold method proposed by Li et al. (2008), designating a stay whenever
the user remains within a dist threshold=100 m radius for at time threshold=5 minutes. For POI
attribution, using POI geometries and locations from SafeGraph, we assign each visit to a POI if its
location falls inside the POI’s polygon, or otherwise to the nearest centroid within 100 meters. Visits
that cannot be matched are labeled as UNKNOWN. These visits are kept in the sequences to preserve
the temporal continuity of user trajectories but are excluded from the loss computation since they
lack reliable POI labels. After preprocessing, we exclude sequences with less than 5 visits, to ensure
sufficient context.

A.1.3 IMPLEMENTATION DETAILS & HYPERPARAMETER CONFIGURATION

We normalize all coordinates to the range [0, 1] using the bounding box of each area of interest. For
the Theory Location Encoder, we set λmax = 1.4142 (the normalized diagonal distance), λmin =
0.1, and use 64 scales. Temporal features are normalized to [0, 1] by extracting the hour within
the day and the day within the week. Each is encoded separately and then combined into a single
temporal representation. For the Gaussian kernels, we use scales of 0.3, 1.0 and 3.0 km, which are
subsequently normalized to match the coordinate normalization.

Model hyperparameters are set as follows: sequence window size w=32, embedding dimension
dh=512, text embedding dimension du=768, number of attention heads i=8, feedforward hidden
size 1024, and N=4 Transformer layers. All MLPs consist of a single hidden layer with dimension
256 and ReLU activation. We pretrain the model on the entire visit sequence dataset, and then
fine-tune with a 60/20/20 train/validation/test split. We use Adafactor optimizer for pretraining with
learning rate 1e − 3 and AdamW during fine-tuning, with learning rate 1e − 5. We pretrain the
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model for 20 epochs and finetune it for up to 100 epochs with early stopping. Lastly, we set the
hyperpaarameters λα = λs = λt = 1.

A.1.4 EXPERIMENTAL ENVIRONMENT

We implement our models in PyTorch 2.6.0 on a Debian Linux server, equipped with 50 GB RAM,
8 vCPUs (Intel Xeon @ 2.30 GHz), and an NVIDIA Tesla V100–SXM2–16GB GPU (CUDA 13.0).

A.1.5 DOWNSTREAM TASKS & LABELS

We evaluate our approach across four downstream tasks: (i) open hours prediction, (ii) permanent
closure detection, (iii) venue popularity classification, and (iv) price level classification. For each
task, we keep only POIs with available labels, so the counts differ across tasks. In Los Angeles,
16,692 POIs have open hours labels, while in Houston, 14,465 POIs have open hours labels. For
permanent closure, we assume that POIs with missing labels are not permanently closed; under
this assumption, 3,807 POIs in the Los Angeles dataset are labeled as permanently closed. For
popularity, 22,369 POIs in Los Angeles and 15,632 POIs in Houston have available labels. For
price level, 5,091 POIs in Los Angeles and 4,105 POIs in Houston have available labels. Per-label
statistics for the popularity and price level tasks are reported in Table 7.

Table 7: Venue Popularity and Price Level Counts

Los Angeles Houston
Class Popularity Price Level Popularity Price Level
0 12840 2563 7158 2270
1 1376 2311 979 1675
2 5654 181 4841 133
3 2499 36 2654 27

A.1.6 TEXT EMBEDDING MODELS AND PROMPTS

We construct text prompts for each POI following the GeoLLM (Manvi et al., 2024) approach, which
incorporates both (i) POI information, including coordinates, category, and address, which we obtain
from Safegraph and (ii) neighborhood context, including the name, distance, and direction of the 10
closest POIs. This prompt design has been shown to effectively extracts geospatial knowledge,
producing text embeddings that captures rich semantic and contextual information. We then query
text embedding models (e.g., OpenAI and Gemini), and set the output dimension to 768, to ensure a
fair comparison across models.

An example prompt is shown below:

Taco Man (Restaurants and Other Eating Places). Coordinates: 34.062307, -118.197612. 
Address: 1602 N Soto St, Los Angeles, CA, 90033.

Nearby Places: 
0.0 km West: Tacos La Guera; 
0.0 km West-Southwest: Soto Liquor Market; 
0.1 km West: DaVita; 
0.1 km West: Davita Trc Usc Kidney Center; 
0.2 km North-Northeast: Ai Food Corporation; 
0.2 km West: USC Occupational Therapy Faculty Practice; 
0.2 km West: Molecular Imaging Center; 
0.2 km West-Southwest: Bright Horizons Usc Hsc Infant Care Center; 
0.2 km West-Southwest: Bright Horizons Usc Hsc Child Development Ctr; 
0.3 km Northeast: Cardinal Moving Systems.

Figure 3: Example prompt for Taco Man POI in Los Angeles.
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A.2 ADDITIONAL EXPERIMENTS

A.2.1 EMBEDDING VISUALIZATION

(a) Text embeddings (b) ME-POIs (contrastive only) (c) ME-POIs (w KL transfer)

Figure 4: UMAP visualization of POI embeddings in Los Angeles, colored by SafeGraph top
category (141 classes). No category information is provided to the models during pretraining. (a)
Text embeddings form an unstructured cloud with limited category separation. (b) Mobility-based
contrastive embeddings exhibit stronger clustering by functional category. (c) Adding KL-based
transfer further sharpens the separation between categories, despite no category supervision.

To qualitatively evaluate the structure captured by our learned representations, we visualize the POI
embeddings for Los Angeles using UMAP, coloring each point by its SafeGraph top category (141
unique classes). Importantly, no such category information was used during pretraining ME-POIs.
To that extent, we compare three variants: (i) Text embeddings, generated by OpenAI text embed-
ding model (text-embedding-3-large) using our prompts, (ii) ME-POIs (contrastive only)
trained only with our contrastive learning objective (LME-POI), and (iii) ME-POIs (w KL transfer),
including the KL transfer objectives.

As shown in Figure 4, the text embeddings yield an unstructured, cloud-like distribution, with only
broad clusters for the most common categories. In contrast, our mobility-based embeddings ex-
hibit much stronger organization by functional category, even though category information is never
provided to the model. Notably, after introducing KL-based distribution transfer, the clusters cor-
responding to major categories become even more well-defined, with boundaries that align closely
with ground-truth POI types. These results demonstrate that mobility-derived representations natu-
rally recover functional and behavioral groupings among places, offering complementary informa-
tion to text models. The clear emergence of category structure, without any supervision, highlights
the expressiveness and generality of our approach for place representation.

A.2.2 CASE STUDY

To illustrate the benefits of mobility-based POI embeddings, we examine two nearby retail stores in
Los Angeles: Circle K (a 24-hour grocery store) and Domaine LA (a wine store). Both are within
0.0021 degrees of each other and share similar SafeGraph retail categories, making them nearly
indistinguishable in terms of text and neighborhood context.

Despite this, their temporal and behavioral patterns for these places differ substantially. Circle K
is open 24/7 and attracts short, spotaneous visits throughout the week, while Domaine LA operates
only during limited afternoon and evening hours, serving a more specialized customer base. As
shown in Figure 5, the two POIs are mapped closely together in the text embedding space, but are
clearly separated in the mobility embedding space. This separation reflects their distinct operational
and visitation patterns, which are not captured by static attributes. This case study highlights how
mobility-derived embeddings reveal behavioral differences among POIs that appear similar in text.

A.2.3 COMPARISON WITH MASKED LANGUAGE MODELING

To show the value of our contrastive objective, we compare against masked language modeling
(MLM), a widely used self-supervised objective in mobility representation learning. Specifically,
we adapt the pretraining objectives of CTLE (Lin et al., 2021) as a representative variant, which
enables a direct comparison between masked modeling and our contrastive objective. CTLE is
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(a) Text embedding UMAP: POIs with similar de-
scriptions are co-located.

(b) Mobility embedding UMAP: POIs with differ-
ent usage are separated.

Figure 5: Case study: Comparing two semantically similar and close by places (Circle K and
Domaine LA Wine Store) in Los Angeles. (a) In text embedding space, the POIs are nearly indistin-
guishable. (b) In mobility embedding space, they are separated, reflecting their different visitation
patterns.

currently the state-of-the-art model for POI representation Cheng et al. (2025). We evaluate two
variants of this baseline, where we randomly mask 25% of the visits in each sequence:

• MLM-POI: We mask POI identifiers within a sequence and train the model to predict the masked
POI from its surrounding context. This objective encourages embeddings to capture co-visitation
and local transition patterns.

• MLM-POI+Time: In addition to masking POI identifiers, we also mask arrival and departure
times. The model jointly predicts the masked POI and its temporal attributes (discretized into
time bins), encouraging embeddings to capture both spatial and temporal context.

Table 8: Comparison of MLM baselines and ME-POIs for open hours and permanent closure pre-
diction in Los Angeles. Best values are highlighted.

Method Open Hours Permanent Closure
F1 / AUROC F1 / AUPRC

MLM-POI 0.4610.002 / 0.4740.006 0.3190.009 / 0.1020.005

MLM-POI + Time 0.4610.002 / 0.4820.005 0.4020.120 / 0.1030.005

ME-POIs (LME-POI) 0.4900.004 / 0.6080.004 0.7550.021 / 0.1550.005

The results in Table 8 show a clear gap between MLM and our contrastive formulation. We believe
this is because MLM-POI captures short-range co-visitation patterns but remains limited to predict-
ing masked elements within a single trajectory window, making the resulting embeddings highly
context-dependent. Incorporating temporal attributes in MLM-POI+Time provides a modest boost,
since visit timing does carry useful behavioral information, but the improvement is small because
the objective is still confined to local sequence recovery. In contrast, ME-POIs substantially out-
performs both MLM variants because it is not restricted by a context window. By aligning all visit
representations with a single POI embedding, the contrastive loss aggregates information across se-
quences and users, producing embeddings that reflect long-term usage patterns. This design makes
ME-POIs much more effective for static, place-centric tasks such as open hours and closure predic-
tion.
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A.3 ENCODING

A.3.1 LOCATION ENCODING

The location encoder λθ is based on the Theory Location Encoder (Mai et al., 2020), which maps
x ∈ R2 into a multi-scale sinusoidal representation. Specifically, we project x onto three fixed
directions a ∈ R2, and for each scale s = 0, . . . , S − 1 compute

PE(x; a, s) =
[
cos
(

⟨x,a⟩
λmings/(S−1)

)
, sin

(
⟨x,a⟩

λmings/(S−1)

)]
, (15)

where g = λmax/λmin. Concatenating all 3S such pairs yields a 6S-dimensional vector, which is
passed through an MLP to produce the final location embedding λθ(x) ∈ Rdl .

A.3.2 TIME ENCODING

The time encoders gη, gζ are implemented following Time2Vec (Kazemi et al., 2019), which maps
a scalar input t ∈ R to a dt-dimensional embedding:

g(t) =
[
ω0t+ ϕ0, sin(ω1t+ ϕ1), . . . , sin(ωdt−1t+ ϕdt−1)

]
, (16)

where ωi, ϕi are learnable parameters. The first component captures linear trends, while the remain-
ing components capture periodic temporal patterns.

A.4 COMPUTATIONAL EFFICIENCY

The pre-training cost of ME-POIs is dominated by running the visit encoder on sequences of visits.
For a sequence length of L and an embedding dimension d, the overall computation complexity is
O(L2 ·d+L ·d2) for. The contrastive module operates only over in-batch negatives: for a batch of B
visits containing U unique POIs, its cost is O(B · U · d), which in practice remains lightweight and
independent of the full POI set size. Note that the # of unique POIs in the batch is less than or equal
to # of visits in the batch. The POI anchor distributions and multiscale kernels are precomputed only
once offline, with computation complexity O(M · |Panchor| · |Psparse|) for M scales. In practice, our
model is lightweight with 53.7 M parameters, well within standard computational budgets.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) during the preparation of this paper exclusively to polish the
writing and to assist with figure visualization scripts. All research contributions, including ideation,
model development, theoretical analysis, and experimental evaluation, were conducted entirely by
the authors.
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