Instruct 4D-to-4D: Editing 4D Scenes as Pseudo-3D Scenes Using 2D Diffusion
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Figure 1. Our Instruct 4D-to-4D edits 4D scenes as pseudo-3D scenes with 2D diffusion, achieving much sharper results with detailed
textures across a variety of editing tasks and scenes. Notably, Instruct 4D-to-4D generates realistic and 4D consistent editing results in both
monocular scenes and challenging multi-camera indoor scenes. Please refer to the supplementary video for additional visualization.

Abstract

This paper proposes Instruct 4D-to-4D that achieves 4D
awareness and spatial-temporal consistency for 2D diffu-
sion models to generate high-quality instruction-guided dy-
namic scene editing results. Traditional applications of 2D
diffusion models in dynamic scene editing often result in in-
consistency, primarily due to their inherent frame-by-frame
editing methodology. Addressing the complexities of ex-
tending instruction-guided editing to 4D, our key insight
is to treat a 4D scene as a pseudo-3D scene, decoupled
into two sub-problems: achieving temporal consistency in
video editing and applying these edits to the pseudo-3D
scene. Following this, we first enhance the Instruct-Pix2Pix
(IP2P) model with an anchor-aware attention module for
batch processing and consistent editing. Additionally, we
integrate optical flow-guided appearance propagation in
a sliding window fashion for more precise frame-to-frame
editing and incorporate depth-based projection to manage
the extensive data of pseudo-3D scenes, followed by itera-
tive editing to achieve convergence. We extensively evalu-
ate our approach in various scenes and editing instructions,
and demonstrate that it achieves spatially and temporally
consistent editing results, with significantly enhanced detail
and sharpness over the prior art. Notably, Instruct 4D-to-
4D is general and applicable to both monocular and chal-
lenging multi-camera scenes. Code and more results are
available at immortalco.github.io/Instruct-4D-to-4D.

1. Introduction

Being able to synthesize photo-realistic novel-view images
through rendering, neural radiance field (NeRF) [19] and
its variants have become the leading neural representation
for 3D and even 4D dynamic scenes. Moving beyond the
mere representation of existing scenes, there is a grow-
ing interest in creating new, varied scenes sourced from an
original scene via scene editing. The most convenient and
straightforward way for users to communicate scene edit-
ing operations is through natural language — a task known
as instruction-guided editing.

Success in this task for 2D images has been achieved by
a 2D diffusion model, namely Instruct-Pix2Pix (IP2P) [1].
However, extending this capability to NeRF-represented 3D
or 4D scenes poses a significant challenge. The inherent
difficulty arises from the implicit nature of the NeRF rep-
resentation, which lacks direct ways to modify the parame-
ters in a targeted direction, along with the significantly in-
creased complexity emerging in new dimensions. Recently,
there has been noticeable progress in instruction-guided
3D scene editing, as exemplified by Instruct-NeRF2NeRF
(IN2N) [10]. IN2N achieves 3D editing through distillation
from 2D diffusion models such as IP2P to edit NeRF, i.e.,
generating edited multi-view images from IP2P and fitting
them on the NeRF-represented scenes. Due to the high di-
versity in generation results of diffusion models, IP2P may
produce multi-view inconsistent images, with the same ob-



ject having different appearances in different views. There-
fore, IN2N consolidates the results by training on NeRF to
make it converge to an “average” editing result, which is
reasonable but often encounters challenges in practice.

Further extending the editing task from 3D to 4D, how-
ever, introduces fundamental difficulties. With the addi-
tional time dimension beyond 3D scenes, it requires not
only 3D spatial consistency for the 3D scene slice at each
frame, but also the temporal consistency between different
frames. Notably, as recent 4D NeRFs [7, 31] model the
property of each absolute 3D location in the scene instead
of the movement of individual object, the same object in dif-
ferent frames is not modeled by the same parameter. This
deviation prevents NeRF from achieving spatial consistency
by fitting inconsistent multi-view images, making the IN2N
pipeline unable to effectively perform editing on 4D scenes.

This paper introduces Instruct 4D-to-4D, making the first
attempt in instruction-guided 4D scene editing that over-
comes the aforementioned issues. Our key insight is to re-
gard a 4D scene as a pseudo-3D scene, where each pseudo-
view is a video consisting of all frames from the same view-
point. Subsequently, the task on the pseudo-3D scene can
be tackled in a similar way as real 3D scenes, decoupled
into two sub-problems: 1) achieve temporal-consistent edit-
ing for each pseudo-view, and 2) use the method from (1)
to edit the pseudo-3D scene. Then, we can solve (1) with a
video editing method, and leverage a distillation-guided 3D
scene editing method to solve (2).

Specifically, we utilize an anchor-aware attention mod-
ule to augment the IP2P model, inspired by [36]. The “an-
chor” in our module is a pair of an image and its editing re-
sult as a reference for the IP2P generation. The augmented
IP2P now supports batched input of multiple images, and
the self-attention module in the IP2P pipeline is substituted
with a cross-attention mechanism against the anchor image
of this batch. Consequently, IP2P generates editing results
based on the correlation between the current image and the
anchor image, ensuring consistent editing within this batch.
However, the attention module may not always correctly as-
sociate objects in different views, introducing potential in-
consistency.

To this end, we further propose an optical flow-guided
sliding window method to facilitate video editing. Leverag-
ing RAFT [32], we predict optical flow for each frame to es-
tablish pixel correspondence between two adjacent frames.
This enables us to propagate editing results from one frame
to the next, similar to a warping effect. With the augmented
IP2P and optical flow, we can edit the video in temporal or-
der, by segmenting frames and then applying editing to each
segment while propagating the editing to the next segment.
The process involves utilizing optical flow to initialize edit-
ing based on previous frames and subsequently applying the
augmented IP2P with the last frame of the preceding seg-

ment serving as the anchor.

As a 4D scene contains a large number of frames at each
view, it becomes time-consuming to compute all the views.
To address this, we adopt a strategy inspired by ViCA-
NeRF [5] to edit pseudo-3D scenes based on key views.
We first randomly select key pseudo-views and edit them
using the aforementioned method. Then for each frame, we
employ depth-based projection to warp the results from the
key views to other views, and utilize weighted average to
aggregate the appearance information, obtaining the edit-
ing results for all the frames. Given the complexity of 4D
scenes, we apply the iterative editing procedure of IN2N to
iteratively generate edited frames and fit the NeRF on the
edited frames, until the scene converges.

We conduct extensive experiments on both monocular
and multi-camera dynamic scenes to validate the effective-
ness of our approach. The evaluation shows the remarkable
capabilities of our approach in both achieving sharper ren-
dering results with significantly enhanced detail and ensur-
ing spatial-temporal consistency in 4D editing (Fig. 1).

Our contribution is three-fold. (1) We introduce In-
struct 4D-to-4D, a simple yet effective framework to per-
form instruction-guided 4D editing, by editing 4D scenes as
pseudo-3D scenes via distillation from 2D diffusion mod-
els. (2) We propose the anchor-aware IP2P and the opti-
cal flow-guided sliding window method, enabling efficient
and consistent editing of long videos or pseudo-views of
any length. (3) With the proposed method, we develop a
pipeline to iteratively generate fully and consistently edited
datasets, achieving high-quality 4D scene editing in vari-
ous tasks. Our work represents the first effort to investigate
and address the general instruction-guided 4D scene edit-
ing, laying the foundation for this promising task.

2. Related Work

Diffusion-Based Video Editing. The diffusion-based
generative models have achieved remarkable success in
text-based image editing [1, 4, 11, 18, 22, 28, 34]. How-
ever, extending these models to video editing introduces
greater complexity, necessitating the manipulation of visual
attributes while maintaining temporal consistency. A preva-
lent approach in video editing using diffusion models is the
transformation of Text-to-Image (T2I) models into Text-to-
Video (T2V) models. Tune-A-Video [36] incorporates tem-
poral self-attention layers into UNet and performs the one-
shot tuning. Make-A-Video [30] and MagicVideo [41] aug-
ment their networks by introducing the spatio-temporal at-
tention (ST-Attn) mechanism, enabling the seamless tran-
sition of a pre-trained Text-to-Image model to the tempo-
ral dimension. Further, there is a growing focus on local-
ized editing through the manipulation of attention maps in-
spired by Prompt-to-Prompt [11] and Plug-and-Play [34].
Video-P2P [16] introduces decoupled-guidance attention



Figure 2. Our Instruct 4D-to-4D edits a 4D scene by regarding it as a pseudo-3D scene with multiple pseudo-views, and then editing these
pseudo-views in an iterative key frame-based pipeline. (a) Our pipeline edits the 4D scene by iteratively generating a fully edited dataset
used to fit 4D NeRF. In each iteration, we first (b) edit each key pseudo-view through optical flow propagation and IP2P inpainting and
repainting, and then (c) edit other pseudo-views by aggregating propagated results from both previous frames through optical flow, and the

key pseudo-views at current frame through depth-based warping.

control to preserve the semantic consistency. Pix2Video [3]
utilizes the self-attention feature injection to propagate
modifications made in the anchor frame to other frames.
Fatezero [26] fuses self-attentions with a blending mask
extracted from cross-attention features to achieve the zero-
shot shape-aware editing.

Diffusion-Based NeRF Editing. Diffusion-based NeRF
editing has been gaining increasing attention in recent
times. Some works leverage powerful SD as 2D prior to
modifying the appearance of scenes, producing impressive
results. Instruct 3D-to-3D [13] and Instruct-NeRF2NeRF
(IN2N) [10] employ Instruct-Pix2Pix (IP2P) [1], an image-
conditioned diffusion model, to enable instruction-based
2D image editing. Specifically, Instruct 3D-to-3D uses
score distillation sampling (SDS) [24] loss to edit 3D
NeRFs using the 2D diffusion-prior. Meanwhile, Instruct-
NeRF2NeRF proposes Iterative Dataset Update (Iterative
DU) to alternate between editing the images rendered from
NeRF using the diffusion model and updating the NeRF
representation with the supervision of edited images dur-
ing the training process. ViCA-NeRF [5] follows IN2N
and utilizes the depth information derived from the NeRF
to propagate the modification in key views to other views,
achieving spatial consistency. DreamEditor [43] leverages
DreamBooth [28] as 2D prior and utilizes the SDS loss to
optimize the meshed-based neural field, performing faith-
ful editing to the text. Control4D [29] proposes to build a
more continuous 4D space by learning a 4D GAN [9] from
the ControlNet [39] to avoid inconsistent supervision sig-
nals for 4D portrait editing.

NeRF-Based Dynamic Scene Representation The field
of representing dynamic scenes using Neural Radiance
Fields (NeRFs) [19] has seen significant advancements,
which are essential for various real-world applications. Var-
ious methods have been developed to extend the capabili-
ties of NeRFs in capturing and rendering dynamic scenes.

DNeRF [25] and Nerfies [20] employ individual MLPs to
represent a deformation field and a canonical field for cap-
turing complex scene changes over time. DyNeRF [15] in-
tegrates time-conditioning into NeRFs using a set of com-
pact latent codes. TiNeuVox [6] employs an explicit voxel
grid to model temporal information. Additionally, Neural-
Body [23] and [35, 38, 40] focus on acquiring precise dy-
namic human body motion information, building upon the
SMPL [17] model. HexPlane [2] and K-Planes [7] propose
a planar factorization to decompose 4D spatiotemporal vol-
umes into six feature planes. NeRFPlayer [31] decomposes
the 4D space into static, deforming, and new areas based on
their temporal characteristics. Despite these advancements,
a common limitation across these methods is the lack of
user-friendly editing capabilities for dynamic scenes. Users
are currently unable to freely edit or modify these scenes,
particularly in terms of following specific instructions. This
limitation highlights an area for potential future research
and development, where user interactivity and editing ca-
pabilities could be integrated into the dynamic scene repre-
sentation models. Addressing this challenge would signif-
icantly enhance the practicality and applicability of NeRF-
based dynamic scene representations.

3. Method

We propose Instruct 4D-to-4D, a novel pipeline that edits
4D scenes by distilling from Instruct-Pix2Pix (IP2P) [1],
a powerful 2D diffusion model that supports instruction-
guided image editing. The basic idea of our method roots
in VICA-NeRF [5], a key view-based editing. By regarding
the 4D scene as a pseudo-3D scene where each pseudo-view
is a video of multiple frames, we apply the key view-based
editing, broken down into two steps: key pseudo-view edit-
ing, and propagation from key pseudo-views to other views,
as shown in Fig. 2. We propose several key components to



enforce and achieve spatial and temporal consistency during
these steps, generating 4D consistent editing results.

3.1. Anchor-Aware IP2P for Consistent Batched
Generation

Batch Generation with Pseudo-3D Convs. The editing
process for a pseudo-view can be regarded as editing a
video. Therefore, we need to enforce temporal consistency
when editing each frame. Inspired by previous work on
video editing [16, 36], we edit a batch of images together
in IP2P, and augment the UNet in IP2P to make the gener-
ation in consideration of the whole batch. We upgrade its
3 x 3 2D convolutional layers to 1 x 3 x 3 3D convolutional
layers by reusing the original parameters of kernels.
Anchor-Aware Attention Module. Limited by the GPU
memory, we cannot edit all frames of a pseudo-view all to-
gether in one batch, and need to separate the generation into
multiple batches. Therefore, it is crucial to keep the con-
sistency between batches. Following the idea of Tune-a-
Video [36], instead of generating the edited result of the new
batch from scratch, we allow the model to reference an an-
chor frame shared across all the generation batches, with its
original and edited version, to “propagate” the editing style
from it to the new edited batch. By substituting the self-
attention module in the IP2P with the cross-attention model
against the anchor frame, we would be able to connect the
same objects between the current image and the anchor
image, and generate the new edited images by mimicking
the anchor’s style, to perpetuate the consistent editing style
from the anchor. Notably, our usage of the anchor-attention
IP2P is different from Tune-a-Video, which queries cross-
attention between the anchor frame and the previous frame
instead of the current frame. Our design also further fa-
cilitates the inpainting procedure in Sec. 3.2, which also
requires a focus on the existing part of the current frame.
Effectiveness. Fig. 3 shows the generation results of dif-
ferent versions of IP2P. The original IP2P edits all images
inconsistently, in different color distributions, even for im-
ages within one batch. With anchor-aware attention layers,
IP2P is able to generate the batch as an entirety and, there-
fore, generates consistent editing results within one batch.
However, it is still unable to generate consistent images
within different batches. With reference to the same anchor
image shared across batches, the full anchor-aware IP2P
is able to generate consistent editing results for all 6 im-
ages across 2 batches, showing that even without additional
training, the anchor-aware IP2P would be able to achieve
consistent editing results.

3.2. Optical Flow-Guided Sliding Window Method
for Pseudo-View Editing

Optical Flow as 4D Warping. To enforce the temporal
consistency in a pseudo-view, we need the correspondence

of the pixels between different frames. 3D scene editing
methods [5, 14, 37] exploits depth-based warping to find
the correspondence of different views, using a deterministic
method with NeRF-predicted depth and camera parameters.
In 4D, however, there are no such explicit ways. Therefore,
we use an optical flow estimation network RAFT [32] to
predict the optical flow, in a format of 2D motion vector for
each pixel, which can be derived into correspondence pixel
in another frame. Using RAFT, we are able to warp between
adjacent frames, like in 3D. As each pseudo-view is taken
at a fixed camera location, optical flow performs well.
Sliding Window Method. We follow the idea of video
editing methods [12, 16, 33, 36] to edit a pseudo-view.
However, those methods focus only on short videos and ap-
ply video editing by editing all the frames in a single batch,
making them unable to deal with long videos. Therefore,
we propose a novel sliding window (of width B being the
maximum allowed batch size) method to exploit the anchor-
aware IP2P along with the optical flow. As shown in Fig. 2
(a), for the current window containing B images, say frames
t,t+1,--- ,t4+ B —1, we first propagate the editing results
from frame ¢ — 1 to all these B images one by one with 4D
warping. For the unmatched pixels, which correspond to
the occluded part in frame ¢ — 1, we set their value as their
origin, obtaining a fused image of the original and warped
editing images.

Then, similar to the idea in ViCA-NeRF [5], we use [P2P
to inpaint and repaint the fused image at each view in the
sliding window, by adding noise to the fused image and de-
noising using IP2P, so that the generated edited image will
follow a similar pattern on the warped results, while repaint-
ing the whole image to make it natural and reasonable. To
make the style all-consistent over the pseudo-view, we use
the first frame as the anchor shared across all the windows,
so that the model will generate images in a consistent style
like the first view. As camera is fixed for one pseudo-view,
there are many common objects between different frames,
therefore such a method is very effective in producing con-
sistent editing results for the frames in the window.

After completing the editing in the current window, we
will advance the window by B frames. Therefore, for a
pseudo-view of T' frames in total, our Instruct 4D-to-4D
only needs to call IP2P for 7'/ B times. By caching the op-
tical flow prediction between adjacent frames in one view,
we could achieve temporal-consistent pseudo-view editing
very efficiently.

3.3. Pseudo-View Propagation Based on Warping

Generating First Frame. As we need to propagate the
edited pseudo-views to all other views while achieving spa-
tial consistency, it is crucial to edit the first frames at all key
pseudo-views in a spatially consistent way — they are not
only used to start the editing of the current pseudo-view,



Figure 3. Generation results show that our augmented IP2P achieves consistency within a batch via our anchor-aware attention module,
and achieves consistency between different batches via the same anchor shared across batches. The white bounding box shows the most

noticeable part of inconsistency.

but also used as the anchor or the reference for all the pro-
ceeding generations. Therefore, we first edit one first frame
in an arbitrary pseudo-key view, then use our anchor-aware
IP2P with it as the anchor to generate other first frames. In
this way, all the first frames are edited in a consistent style,
being a good start to editing the key pseudo-views.
Propagate from Key Views to Other Views. After edit-
ing the key pseudo-views, aligned with VICA-NeRF [5], we
propagate their editing results to all other key views. ViCA-
NeRF uses depth-based spatial warping to warp an image
from another view at the same timestep, while we also pro-
pose optical-flow-based temporal warping to warp from the
previous frame at the same view. With these two types
of warping, we can warp the edited images from multiple
sources.

We propagate for each timestep in the order of time.
When we propagate at timestep ¢, for each frame (v, t) at
view v, we obtain its edited version as the weighted aver-
age of warped results from two sources: (1) the edited re-
sults of the previous frame at the same view, namely frame
(v,t — 1), using temporal warping; and (2) the edited re-
sults of the current frame at one each of the key view, us-
ing spatial warping. By propagating the frames for all the
timesteps, we obtain a consistent edited dataset containing
all the editing frames. We use such a dataset to train NeRF
towards the edited results.

With this propagation method, we would be able to effi-
ciently generate a full dataset of consistently edited frames
within nT'/ B time-consuming IP2P generations, with n key
pseudo-views out of all V' pseudo-views, where in our ex-
periments n = 5 while V' can be more than 20. Such high
efficiency makes it possible to deploy an iterative pipeline
to update the datasets.

3.4. Overall Editing Pipeline

Iterative Dataset Update. Following the idea of
IN2N [10], we apply iterative dataset replacement on
our baseline that iteratively re-generates the full dataset
using the methods in Secs. 3.1,3.2,3.3, and fits our NeRF
on it. In each iteration, we first randomly select several

pseudo-views as the key views in this generation. We use
the method in Sec. 3.3 to generate spatial-consistent editing
results for the first frames of all these key pseudo-views,
then propagate the editing for all pseudo-views using the
sliding window method in Sec. 3.2. After obtaining all the
edited key pseudo-views, we use the method in Sec. 3.3 to
generate spatial and temporal consistent editing results for
all other pseudo-views, ending up with a consistent edited
dataset. We replace the 4D dataset with this edited dataset,
and fit NeRF on it.

Improving Efficiency Through Parallelization and An-
nealing Strategies. In our pipeline, the NeRF only needs
to be trained on the dataset and provide current rendering
results, while IP2P only needs to generate results accord-
ing to NeRF’s rendering to form new datasets - there are
few dependencies and interactions between IP2P and NeRF.
Therefore, we parallelize our pipeline by running these two
parts asynchronously on two GPUs. In the first GPU, we
train NeRF continuously with the current dataset, while
caching NeRF’s rendering results in a rendering buffer;
while in the second GPU, we apply our iterative dataset-
generation pipeline to generate new datasets, using the im-
ages from the rendering buffer, and update the dataset used
to train NeRF. In this case, we maximize the parallelization
by minimizing the interactions, leading to a significant re-
duction in the training time.

On the other hand, to improve the generation results
and convergence speed, we apply the annealing trick from
HiFA [42] to achieve fine-grained editing on NeRF. The
high-level idea is that we use the noise level to control the
similarity of rendered results and IP2P’s editing results. We
generate the dataset at a high noise level to generate suf-
ficiently edited results, and then gradually anneal the noise
level to stick to the edited results that NeRF is converging to
and refine such results. Instead of IN2N which always gen-
erates at a random noise level, our Instruct 4D-to-4D could
converge to high-quality editing results at a fast speed.

With these two techniques, our Instruct 4D-to-4D is able
to edit a large-scale 4D scene with 20 views and hundreds
of frames in only hours.



Figure 4. Qualitative results on various scenes demonstrate that our Instruct 4D-to-4D generates high-qualify editing results in style
transfer tasks on various scenes. The edited scenes are well-consistent with the instructed style, showing bright colors and natural textures.

4. Experiments

Editing Tasks and NeRF Backbone. The 4D scenes we
use for evaluation are captured by single hand-held cameras
and multi-camera arrays including: (I) Monocular Scenes
in DyCheck [8] and HyperNeRF [21], which are simple,
object-centric scenes with a single moving camera; and (II)
Multi-camera Scenes in DyNeRF/N3DV [15], including in-
door scenes with face-forward perspective and human mo-
tion structure. For monocular scenes, we edit all the frames
as a single pseudo-view. We use the NeRFPlayer[31] as our
NeRF backbone to produce high-quality rendering results
of 4D scenes.

Baselines. Instruct 4D-to-4D is the first work on
instruction-guided 4D scene editing. No previous work fo-
cuses on the same task, while the only similar work Con-
trol4D [29] has not released their code. Therefore, we can-
not conduct any baseline comparison with existing meth-
ods. To show the effectiveness of our Instruct 4D-to-4D,
we construct a baseline IN2N-4D, by naively extending
IN2N [10] to 4D, which iteratively generates one edited
frame and add it to the dataset. We compare our Instruct
4D-to-4D with IN2N-4D both qualitatively and quantita-
tively. To quantify the results, as both our pipeline and the
model are training NeRF with generated images, we use tra-
ditional NeRF [19] metrics to evaluate the results, namely
PSNR, SSIM, and LPIPS, between the IP2P generated im-
ages (generating from pure noise so that it will not be condi-

tioned on NeRF’s rendering image) and the NeRF’s render-
ing results. We conduct our ablation studies against Instruct
4D-to-4D variants in the supplementary.

Qualitative Results. Our qualitative results are shown in
Figs. 6, 5, and 4. The qualitative comparison with baseline
IN2N-4D is in Figs. 5 and 6. As shown in Fig. 5, in the task
of changing the cat into a fox in the monocular scene, IN2N-
4D generates blur results with multiple artifacts: multiple
ears, multiple noses and mouths, efc., while our Instruct
4D-to-4D generates photo-realistic results where the shape
of the fox is well aligned with the cat in the original scene,
with clear textures on the fur and no artifacts. These results
show that our anchor-aware IP2P, optical flow-based warp-
ing, and sliding window method for pseudo-view editing
produces temporal-consistent editing results for a pseudo-
view. Without such a module, the original IP2P in IN2N-4D
produces inconsistent edited images for each frame, consol-
idating to a strange result on the 4D NeRF. Fig. 6 shows the
style transfer results on multi-camera scenes. Our paral-
lelized Instruct 4D-to-4D achieves consistent style transfer
results that match the description in a very short time period
of two hours, while IN2N-4D takes 24 x longer than our In-
struct 4D-to-4D but still fails to get the 4D NeRF converged
to the indicated style. This shows that 4D scene editing is
highly non-trivial, while our Instruct 4D-to-4D’s strategy
to iteratively generate a full edited dataset facilitates high-
efficiency editing. All these results collectively show that all



Figure 5. Qualitative results on mochi-high-£five scene in DyCheck dataset show that our Instruct 4D-to-4D achieves high-quality
editing results over various editing instructions in the monocular scene. Our Instruct 4D-to-4D can even achieve consistent editing with
complicated textures, e.g., in the Tiger editing, while baseline IN2N-4D generates blurred results with lots of artifacts.

Figure 6. Qualitative comparison with baseline IN2N-4D on multi-camera cof fee_martini shows that our Instruct 4D-to-4D gen-
erates high-quality, faithful style transfer editing results in a very short time. As a comparison, IN2N-4D even fails to converge at any style

with 24X time consumption.

our design of Instruct 4D-to-4D is reasonable and effective,
and Instruct 4D-to-4D can produce high-quality editing re-
sults in a very efficient way.

The experiments in Fig. 5 show the monocular scene
mochi-high-five under different instructions, includ-
ing local editing on the cat, or style transfer instructions for
the whole scene. Our Instruct 4D-to-4D achieves photo-
realistic local editing results in the Fox and Tiger instruc-
tions, with clear and consistent textures e.g., the stripes of
the tiger. In the style transfer instructions, the edited scene
faithfully reflects the style indicated in the prompts. These

show Instruct 4D-to-4D’s great ability in editing monocular
scenes under various prompts.

The experiments in Fig. 4 show other style transfer re-
sults, including monocular scenes in HyperNeRF and Dy-
Check and multi-camera scenes in DyNeRF. Instruct 4D-to-
4D consistently produces high-fidelity style transfer results
with bright colors and clear appearance in various styles.
Quantitative Comparison. The quantitative comparison
between our Instruct 4D-to-4D and baseline IN2N-4D on
the multi-camera coffee_martini scene is in Tab. 1.
Consistent with the qualitative comparison, our Instruct 4D-



Instruction | Method |PSNRT SSIMT LPIPSajex| LPIPSvggd
Van Gogh Ours 23.62 0.820 0.220 0.349
IN2N-4D| 17.43 0.645 0.466 0.573
Hopper Ours 17.47 0.533 0.356 0.429
IN2N-4D| 11.96 0.299 0.655 0.645
Ours 12.92  0.362 0.520 0.598
Munch
IN2N-4D| 11.96 0.299 0.655 0.645
Fauvism Ours 18.86 0.728 0.245 0.377
IN2N-4D| 14.15 0.520 0.408 0.532
(Average) Ours 19.67 0.635 0.323 0.405
IN2N-4D| 14.11 0.457 0.512 0.587

Table 1. In the quantitative evaluation on the multi-camera
coffeemartini scene, our Instruct 4D-to-4D significantly
and consistently outperforms the baseline IN2N-4D in all metrics.

to-4D significantly and consistently outperforms the base-

line IN2N-4D. This shows that the NeRF trained by Instruct

4D-to-4D fits the IP2P’s editing results much better than the
baseline, further validating the effectiveness of our Instruct
4D-to-4D.

Ablation Study: Variants and Settings. We validate our

design choices by comparing our approach to the following

variants.

e IN2N-4D. A baseline method based on IN2N [10].

* Video Editing. This variant serves as the most basic im-
plementation of our Instruct 4D-to-4D — edit each pseudo-
frame with any video editing methods, and propagate to
other frames using 3D warping. We use a zero-shot text-
driven video editing model, FateZero [26], via pretrained
stable diffusion models. We follow the settings of the offi-
cial Fatezero implementation in style editing and attribute
editing. Since they can only process 8 video frames
in a batch, we use a batch-by-batch editing strategy for
pseudo-view editing.

* Anchor-Aware IP2P w/o Optical-Flow. In this variant,
we perform video editing without optical flow guidance,
in which anchor-aware IP2P directly edits all training im-
ages using the same diffusion model setting.

e One-time Pseudo-View Propagation. In this variant,
we perform only one-time pseudo-view propagation, in
which all rest-pseudo-views are warped from 4 randomly
selected key-pseudo-views, and the NeRF is trained until
convergence on those edited images.

The task for ablation study is “What if it was painted by
Van Gogh” on the cof fee_martini in DyNeRF dataset.
As the “Video Editing” variant does not use the same diffu-
sion model, IP2P [1], to edit the video, we cannot use the
metrics in the main paper. Therefore, consistent with IN2N
[10], we use CLIP [27] similarity to evaluate how successful
an editing operation is applied.

Ablation Study: Results. The qualitative results are in

Fig. 7 and the demo video. Most of the variants do not apply

sufficient editing to the scene, with a gloomy appearance

and no Van Gogh’s representative color. This shows that our

Instruct 4D-to-4D’s design choices are effective and crucial

to achieve high-quality editing.

Figure 7. Most of the variants are unable to edit the scene suffi-
ciently, showing that the design choices of our Instruct 4D-to-4D
are reasonable and effective. These results are also shown in the
demo video.

Type Name CLIP Similarity?

Baselines  |[IN2N-4D 0.2790
Video Editing 0.2631

Our Variants |Ours w/o Optical Flow 0.2792
One-time P.-V. P. 0.2876
Full (Ours) 0.3085

Table 2. Ablation study showing the effectiveness of our de-
sign choices. The optical flow and iterative editing pipeline help
achieve successful editing.

The quantitative comparisons are in Tab. 2. Our full
Instruct 4D-to-4D achieves significantly higher CLIP sim-
ilarity in the ablation task, showing that our design is ef-
fective. Also, we observe that the Video Editing strategy
cannot even achieve a better metric than IN2N-4D, which
shows that it is non-trivial to edit the 4D scene even after
converting it to a pseudo-3D scene.

5. Conclusion

This paper proposes Instruct 4D-to-4D, the first instruction-
guided 4D scene editing framework that edits 4D scenes by
regarding them as pseudo-3D scenes and applies an itera-
tive strategy to edit pseudo-3D scenes using a 2D diffusion
model. Qualitative experimental results show that Instruct
4D-to-4D achieves high-quality editing results in various
tasks, including monocular and multi-camera scenes. In-
struct 4D-to-4D also significantly outperforms the baseline,
a naive extension of the state-of-the-art 3D editing method
to 4D, showing the difficulty and non-trivialness of the task
and the success of our method. We hope that our work could
inspire more future work on 4D scene editing.
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