
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISENTANGLED AND SELF-EXPLAINABLE
NODE REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Node representations, or embeddings, are low-dimensional vectors that capture
node properties, typically learned through unsupervised structural similarity objec-
tives or supervised tasks. While recent efforts have focused on explaining graph
model decisions, the interpretability of unsupervised node embeddings remains
underexplored. To bridge this gap, we introduce DISENE (Disentangled and
Self-Explainable Node Embedding), a framework that generates self-explainable
embeddings in an unsupervised manner. Our method employs disentangled rep-
resentation learning to produce dimension-wise interpretable embeddings, where
each dimension is aligned with distinct topological structure of the graph. We for-
malize novel desiderata for disentangled and interpretable embeddings, which drive
our new objective functions, optimizing simultaneously for both interpretability
and disentanglement. Additionally, we propose several new metrics to evaluate
representation quality and human interpretability. Extensive experiments across
multiple benchmark datasets demonstrate the effectiveness of our approach.

1 INTRODUCTION

Self-supervised and unsupervised node representation learning (Hamilton, 2020) provide a powerful
toolkit for extracting meaningful insights from complex networks, making them essential in modern
AI and machine learning applications related to network analysis (Ding et al., 2024). These methods
offer flexible and efficient ways to analyze high-dimensional networks by transforming them into
low-dimensional vector spaces. This transformation enables dimensionality reduction, automatic
feature extraction, and the use of standard machine learning algorithms for tasks such as node
classification, clustering, and link prediction (Khosla et al., 2019). Furthermore, self-supervised node
representations, or embeddings, enable visualization of complex networks and can be transferred
across similar networks, enhancing understanding and predictive power in fields ranging from social
networks to biological interactions.

Although widely adopted, unsupervised representation learning methods often face substantial
challenges in terms of interpretability, necessitating complex and indirect approaches to understand
what the learned embeddings actually represent (Piaggesi et al., 2024; Idahl et al., 2020; Gogoglou
et al., 2019). This raises a critical question: What information do these embeddings encode?

While there has been a large body of work on explainable GNN models, limited attention has been
given to embedding methods, which are the fundamental building blocks of graph based models.
Existing efforts to explain embeddings are predominantly post-hoc (Piaggesi et al., 2024; Gogoglou
et al., 2019; Khoshraftar et al., 2021; Dalmia et al., 2018) and heavily dependent on the initial
embedding techniques used. Some approaches (Piaggesi et al., 2024) build upon existing literature
for post-processing word embeddings (Subramanian et al., 2018; Chen & Zaki, 2017), focusing on
minimizing reconstruction errors of node embeddings using over-complete auto-encoders to improve
sparsity. Other works (Gogoglou et al., 2019; Khoshraftar et al., 2021; Dalmia et al., 2018) focus
solely on extracting meaningful explanations without addressing the learning process itself.

We propose DISENE (Disentangled and Self-Explainable Node Embedding), a framework that
addresses these gaps by generating self-explainable unsupervised node embeddings. Our methodology
is based on disentangled representation learning to encode node embeddings that are interpretable
on a dimension-wise basis. Disentangled representation learning (Wang et al., 2022) aims to encode
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Figure 1: DISENE gener-
ates dimension-wise disentan-
gled representations in which
each embedding dimension is
mapped to a mesoscale substruc-
ture in the input graph. The vec-
tor represents the embedding for
the node marked in blue and the
bars depict feature values.

Figure 2: The overlap in dimen-
sion explanations aligns with
the correlation between the node
feature values for those dimen-
sions. The dimension referenced
by the blue subgraph shows a
stronger correlation with the red
dimensions and a lower correla-
tion with the green dimension.

Figure 3: The node feature value
indicates its proximity to the ex-
planation substructure mapped
to the corresponding dimension.
The black node has a higher
value for the dimension corre-
sponding to the green subgraph
(since it is 1 hop away) than for
the dimension corresponding to
the red subgraph (3 hops away).

latent variables that represent separate factors of variation in data, ensuring that each latent dimension
corresponds to a distinct, independent aspect.

In graph data, node behaviour is strongly influenced by mesoscale structures like communities,
which shape the network’s organization and drive dynamics (Barrat et al., 2008). By leveraging
disentangled representation learning, we capture these topological substructures more effectively,
with each embedding dimension reflecting an independent graph unit (see Figure 1). We achieve
this by introducing a new objective function to ensure structural disentanglement. Specifically, we
optimize the embeddings so that each dimension is predictive of a unique substructure in the input
graph. To avoid degenerate solutions, we incorporate an entropy-based regularizer which ensures that
the mapped substructures are non-empty.

Our paradigm represents a shift in the language of explanations compared to the ones often considered
when dealing with GNNs (Yuan et al., 2022). Explainability for GNNs often involves understanding
which parts of the local computation graph (nodes, edges) and node attributes significantly influence
the model’s predictions (Funke et al., 2022; Ying et al., 2019; Schnake et al., 2021). On the other
hand, the explanations that we aim to discover are inherently non-local, since they could involve
mesoscale structures such as node clusters (Piaggesi et al., 2024), usually not included in the GNN
computational graph.

To provide a comprehensive evaluation of the embeddings and uncover novel insights, we introduce
several new metrics (for details refer to Section 3.3). For example, our overlap consistency measure
(depicted in Figure 2) confirms that the physical overlap between the topological substructures
identified as explanations aligns with the actual correlation of the corresponding embedding features
or dimensions. This overlap offers insights into the interdependencies of node characteristics within
the graph. Further, we attribute meaning to actual feature values by showing that the magnitude of
node embedding entries corresponding to a dimension is correlated with the proximity (depicted in
Figure 3) of the corresponding nodes to the “topological” subgraphs associated with that dimension.
This measurement aids in understanding the closeness of nodes to different graph features, thereby
enhancing spatial awareness within the graph structure.

To summarize we (i) formalize new and essential criteria for achieving disentangled and explainable
node representations, offering a fresh perspective on explainability in unsupervised graph-based
learning, (ii) introduce novel evaluation metrics to help quantifying the goodness of node representa-
tion learning in disentangled and explainable settings (iii) perform extensive experimental analyses to
establish state-of-the-art results in self-explainable node feature learning. We release our code and
data anonymously at this link.

2 PRELIMINARIES AND RELATED WORK

Given an undirected graph G = (V, E), node embeddings are obtained through an encoding function
h : V → RK that map each node to a points of a K−dimensional vector space RK , where typically
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D << |V|. We denote the K-dimensional embedding of a node v ∈ V as h(v) = [h1(v), . . . , hK(v)],
where hd(v) represents the value of the d-th feature of the embedding for node v. Alternatively,
we can represent all node embeddings collectively as a matrix H(G) ∈ RV×K , where each entry
Hvd = hd(v) corresponds to the d-th feature for node v. We can also refer to columns of such matrix,
H:,d, as the dimensions of the embedding model space.

Node embeddings interpretability. Node embeddings are shallow encoding techniques, often
based on matrix factorization or random walks Qiu et al. (2018). Since the latent dimensions in
these models are not aligned with high-level semantics (Şenel et al., 2018; Prouteau et al., 2022),
interpreting embeddings typically involves post-hoc explanations of their latent features (Gogoglou
et al., 2019; Khoshraftar et al., 2021). Other works propose alternative methods to modify existing
node embeddings, making them easier to explain with human-understandable graph features (Piaggesi
et al., 2024; Shafi et al., 2024). From a different viewpoint, Shakespeare & Roth (2024) explore how
understandable are the embedded distances between nodes. Similarly, Dalmia et al. (2018) investigate
whether specific topological features are predictable, and then encoded, in node representations.

Graph neural networks interpretability. Graph Neural Networks (GNNs) (Wu et al., 2020) are
deep models that operate via complex feature transformations and message passing. In recent years,
GNNs have gained significant research attention, also in addressing the opaque decision-making
process. Several approaches have been proposed to explain GNN decision process (Yuan et al., 2022),
including perturbation approaches (Ying et al., 2019; Yuan et al., 2021; Funke et al., 2022), surrogate
model-based methods (Vu & Thai, 2020; Huang et al., 2022), and gradients-based methods (Pope
et al., 2019; Sanchez-Lengeling et al., 2020). In parallel, alternative research directions focused
on concept-based explanations, i.e. high-level units of information that further facilitate human
understandability (Magister et al., 2021; Xuanyuan et al., 2023; Magister et al., 2022).

Disentangled learning on graphs. Disentangled representation learning seeks to uncover and
isolate the fundamental explanatory factors within data Wang et al. (2022). In recent years, these
techniques have gained traction for graph-structured data (Liu et al., 2020; Li et al., 2021; Yang et al.,
2020; Fan & Gao, 2024). For instance, FactorGCN (Yang et al., 2020) disentangles an input graph
into multiple factorized graphs, resulting in distinct disentangled feature spaces that are aggregated
afterwards. IPGDN (Liu et al., 2020) proposes a disentanglement using a neighborhood routing
mechanism, enforcing independence between the latent representations as a regularization term for
GNN outputs. Meanwhile, DGCL (Li et al., 2021) focuses on learning disentangled graph-level
representations through self-supervision, ensuring that the factorized components capture expressive
information from distinct latent factors independently.

3 OUR PROPOSED FRAMEWORK: DISENE

In this section, we begin by outlining the key desiderata for achieving disentangled and self-
explainable node representations. Next, we design a novel framework that meets these objectives by
ensuring that the learned node representations are both disentangled and interpretable. Finally, we
introduce new evaluation metrics to effectively assess the quality of node representation learning in
both disentangled and explainable settings.

3.1 CORE OBJECTIVES AND DESIDERATA

In the context of self-supervised graph representation learning, we argue that learning self-explainable
node embeddings amounts to reconstructing the input graph in a human-interpretable fashion. Tradi-
tionally, dot-product models based on NMF (Yang & Leskovec, 2013) and LPCA (Chanpuriya et al.,
2024) decompose the set of graph nodes into clusters, where each entry of the node embedding vector
represents the strength of the participation of the node to a cluster. In this scenario, the dot-product of
node embeddings becomes intuitively understandable, as it reflects the extent of shared community
memberships between nodes–thereby providing a clear interpretation of edge likelihoods. This con-
cept is also related to distance encoding methods (Li et al., 2020; Klemmer et al., 2023), where a node
feature hd(u) is expressed as a function of the node’s proximity ζ(u,Sd) = AGG({ζ(u, v), v ∈ Sd})
to the anchor set Sd ⊂ V , using an aggregation function AGG. Typically, distance encodings are
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constructed by randomly sampling anchor sets (You et al., 2019), and used as augmented node
features to enhance expressiveness and improve performance on downstream tasks.

Inspired by this idea, our goal is to optimize self-supervised node embeddings encoded by a GNN
function h : V → RK trained on the graph G = (V, E), such that node features resemble non-
random, structurally meaningful anchor sets, thus improving human-interpretability. To achieve this,
we propose three key desiderata for learning general-purpose node representations: (i) structural
faithfulness (ii), dimensional interpretability, and (iii) structural disentanglement. These desiderata
serve as the foundational components of our approach, as detailed below.

Structural faithfulness. To implement the approach, we first train node embeddings in recovering
the graph structure. We employ a random walk optimization framework based on the skip-gram
model with negative sampling (Huang et al., 2021). The loss function for this framework is defined
as:

Lrw = −
∑

(u,v)∼Prw

log σ
(
h(u)⊤h(v)

)
−

∑
(u′,v)∼Pn

log σ
(
− h(u′)⊤h(v)

)
,

where σ(·) is the sigmoid function, Prw is the distribution of node pairs co-occurring on random
walks (positive samples), Pn is a distribution over randomly sampled node pairs (negative samples),
and h(u)⊤h(v) represents the dot product between the embeddings of nodes u and v. By optimizing
this loss function, we encourage nodes that co-occur in random walks to have similar embeddings,
effectively preserving the graph’s structural information in the embedding space.

Dimensional interpretability. Given that our embeddings are structurally faithful–meaning they
effectively encode the input graph’s structure–we should be able to interpret each embedding
dimension in terms of the graph’s structural properties. We achieve this by attributing local
subgraphs to different latent dimensions. Consider the likelihood of an edge (u, v), defined as
ŷ(u, v;h) = σ

(∑K
d=1 hd(u)hd(v)

)
. To understand how each dimension d contributes to this

likelihood, we compute the edge-wise dimension importance ϕd(u, v;h) as the deviation of the
dimension-specific contribution from its average over all edges:

ϕd(u, v;h) = hd(u)hd(v)−
1

|E|
∑

(u′,v′)∈E

hd(u
′)hd(v

′). (1)

Since the dot-product is a linear function
∑K

d=1 αdhd(u)hd(v) + β with unitary coefficients αd ≡
1 and zero intercept β ≡ 0, Eq. (1) corresponds to the formulation of LinearSHAP attribution
scores (Lundberg & Lee, 2017), using the set of training edges as the background dataset. Essentially,
the attribution function ϕd(u, v;h) indicates whether a specific dimension d contributes positively to
an edge’s likelihood. A positive attribution score means that the dimension increases the likelihood
of predicting the edge. Leveraging this property, we generate dimension-wise explanations for the
latent embedding model by collecting edge subsets with positive contributions:

Ed = {(u, v) ∈ E : ϕd(u, v;h) > 0}. (2)

These self-explanations take the form of global edge masks M(d) ∈ R|V|×|V|
≥0 , where each entry is

defined as M (d)
uv (ϕd;h) = max{0, ϕd(u, v;h)}. By applying these masks to the adjacency matrix

A through Hadamard product (⊙), we obtain A(d) = A ⊙M(d). Each masked adjacency matrix
A(d) highlights the subgraph associated with dimension d. From these masked adjacency matrices,
we construct edge-induced subgraphs Gd = (Vd, Ed), where Vd is the set of nodes involved in edges
Ed. These subgraphs act as anchor sets for the model, providing interpretable representations of how
each embedding dimension relates to specific structural patterns within the graph. We will refer to
edge-induced subgraphs computed as the aforementioned procedure (pseudo-code in Appendix A.5)
as explanation subgraphs/substructures or topological components of the embedding model.

Structural disentanglement. To enhance the effectiveness of structurally faithful encodings, each
dimension of the latent space should encode an independent structure of the input graph, effectively
acting as an anchor subgraph. Inspired by community-affiliation models (Yang & Leskovec, 2013;
2012), we introduce a node affiliation matrix F ∈ R|V|×K that captures the association between each
node u ∈ V and anchor subgraph Gd = (Vd, Ed). Specifically, each entry Fud is proportional to the
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magnitude of predicted meaningful connections between node u and other nodes in Gd, expressed
using the per-dimension attribution scores from Eq. (1):

Fud({h}) =
∑
v∈Vd

ϕd(u, v;h) (3)

This aggregates the contributions of dimension d to the likelihood of edges involving node u. To
achieve structure-aware disentanglement, we enforce soft orthogonality among the columns of the
affiliation matrix1. This ensures that different embedding dimensions capture independent structures,
leading to nearly non-overlapping sets of predicted links for each dimension. We express the columns
of the affiliation matrix as F:,d and obtain the disentanglement loss function as:

Ldis =

K∑
d=1

K∑
l=1

[cos (F:,d,F:,l)− δd,l] (4)

where cos (F:,d,F:,l) denotes the cosine similarity between the d-th and the l-th columns of F, and
and δd,l is the Kronecker delta function (1 if d = l , 0 otherwise). This approach enables us to obtain
disentangled representations (Wang et al., 2022), where each dimension corresponds to a single
underlying structural factor in the graph. Although it is possible to obtain disentanglement at more
coarse-grained levels (e.g., with groups of dimensions), we focus on single-feature disentanglement
because it inherently leads to dimension-wise interpretability.

3.2 OUR APPROACH: DISENE

Building upon the above components, introduced to satisfy our desiderata for interpretable node
embeddings, we present our approach, DISENE. Specifically, DISENE takes as input the raw
node attributes X ∈ R|V|×F and, depending on the encoder architecture, also the adjacency matrix
A ∈ R|V|×|V|. The input is encoded into an intermediate embedding layer Z ∈ R|V|×D. Next,
DISENE processes the embedding matrix Z to compute the likelihood of link formation between
node pairs, given by ŷ(u, v;h) = σ(h(u)⊤h(v)) where h(v) = ρ(W⊤z(v)) are the final node
representations in H ∈ R|V|×K , obtained by applying a linear transformation W ∈ RD×K followed
by a non-linear activation function ρ. To encode z, we employ architectures incorporating fully
connected layers and graph convolutional layers (Wu et al., 2019). This process can be further
enhanced by integrating more complex message-passing mechanisms or MLP operations. For exam-
ple, the message-passing could initiate from an MLP-transformed node attribute matrix, MLP(X),
or incorporate more sophisticated architectures beyond simple graph convolutions for increased
expressiveness (Xu et al., 2018; Veličković et al., 2017).

The embeddings are optimized by combining the previously described objective functions for preserv-
ing structural faithfulness and achieving structural disentanglement, thereby improving dimensional
interpretability. To avoid degenerate disentanglement solutions–specifically, the emergence of “empty”
clusters characterized by near-zero columns in F that, while orthogonal to others, fail to convey
meaningful information–we introduce a regularization strategy. This regularization ensures a minimal
but significant level of connectivity within each topological substructure. Specifically, we enforce
that the total amount of predicted edges in each anchor subgraph Gk -

∑
u,v∈V ϕk(u, v;h) - to be

non-zero. We found a more stable and precise approach by enforcing that the aggregated node
features of each embedding dimension are non-zero, achieved by maximizing the entropy:

H = −
K∑

d=1

( ∑
u hd(u)

||
∑

u h(u)||1

)
log

( ∑
u hd(u)

||
∑

u h(u)||1

)
.

Thus, the model is optimized by minimizing the following comprehensive loss function:

L = Lrw + Ldis + λent

(
1− H

logK

)
The hyperparameter λent determines the strength of the regularization, controlling the stability for
explanation subgraph sizes across the various latent dimensions. We report the pseudo-code of
DISENE in Appendix A.3, along with a space-time complexity analysis.

1Note that Fud({h}) ≡
∑

v∈V hd(u)hd(v)− |V|
|E|

∑
(u′,v′)∈E hd(u

′)hd(v
′) and assuming |V| << |E|, the

second term becomes negligible, allowing us to approximate Fud({h}) and reduce computational costs.
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3.3 PROPOSED EVALUATION METRICS

In the following, we introduce novel metrics to quantify multiple aspects related to interpretability
and disentanglement in node embeddings, which we use to compare models in our experiments.

Comprehensibility. Comprehensibility measures how closely the identified topological expla-
nations align with ground-truth clusters, which are crucial in the evolution of numerous complex
real-world systems, i.e. community modules (Girvan & Newman, 2002; Hric et al., 2014). We
evaluate comprehensibility by treating edges in explanation masks {M(d)}d=1,...,K as retrieved
items from a query, and measuring their overlap with the edges in the ground-truth communities
using precision, recall, and F1-score. Let C(E) = {C(1), . . . , C(m)} denotes the set of truthful link
communities of the input graph2. Associated to partition C(i), we define ground-truth edge masks
C(i) ∈ {0, 1}V×V with binary entries C(i)

uv = [(u, v) ∈ Ci]. Comprehensibility score is given by the
maximum F1-score across ground-truth index:

Comp(M(d)) = maxi

{
F1(M

(d),C(i))
}
= maxi

{
2

prec(M(d),C(i))−1 + rec(M(d),C(i))−1

}
(5)

For precision, we weigh relevant item scores with normalized embedding masks values:

prec(M(d),C(i)) =
∑

u,v M(d)
uv C(i)

uv∑
u,v M

(d)
uv

. For recall, we weigh binarized embedding masks values with

normalized ground-truth scores3: rec(M(d),C(i)) =
∑

u,v [M
(d)
uv >0]C(i)

uv

|C(i)| .

Sparsity. We refer to sparsity as the amount of disorder in the dimension’s explanations, it is
generally defined as the ratio of the number of bits needed to encode an explanation compared
to those required to encode the input (Funke et al., 2022). Given that concise explanations are
more effective in delivering clear insights, enhancing human understanding, we evaluate sparsity by
measuring the normalized Shannon entropy over the mask distribution:

Sp(Md) = −
1

log |E|
∑

(u,v)∈E

(
M

(d)
uv∑

u′,v′ M
(d)
u′v′

)
log

(
M

(d)
uv∑

u′,v′ M
(d)
u′v′

)
. (6)

A lower entropy in the mask distribution indicates higher sparsity.

Overlap Consistency. In explaining latent space representations, it is essential to comprehend
how input space factors influence specific latent features. A well-structured, disentangled latent
space should correspond to distinct, uncorrelated topological structures. We aim to quantify how
different topological components affect pairwise feature correlations in the latent space. To achieve
this, we propose a metric that measures the strength of association between the physical overlap
of the explanation substructures {Gd} and the correlation among corresponding latent dimensions
{H:,d}. We compute the overlap between two subgraph components using the Jaccard Similarity
Index (JSI) of their edge sets from Eq. (2): JSI(d, l;h) = |Ed∩El|

|Ed∪El| . The overlap consistency (OvC)
metric measures the linear correlation between the pairwise JSI values and the squared Pearson
correlation coefficients (ρ2) of the embedding features:

OvC(h) = ρ
(
[JSI(d, l;h)]d<l, [ρ

2(H:,d,H:,l)]d<l

)
(7)

where [∗]d<l denotes the condensed list of pair-wise similarities. By using ρ2 we remain agnostic
about the sign of the correlation among latent features, since high overlaps could originate from both
cases. This metric provides a systematic way to assess the extent to which topological partitions
align with the distribution of features in the embedding space, thus offering deeper insights into the
interpretability and disentanglement of the learned representations.

2Synthetic graphs can be constructed with ground-truth relevant sub-structures (like BA-SHAPES (Ying
et al., 2019) or SBM graphs). In real-world graphs, it is usually reasonable to assume that the community
structure (Fortunato, 2010) can serve as ground-truth.

3For the precision, we normalize with the sum of scores because they are continuous. For recall, we use the
cardinality in place of the sum because the ground-truth has binary scores.
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Positional Coherence. In unsupervised node embeddings, it is crucial to assess how well the
latent space captures the graph’s structure by encoding the positional relationships of nodes. An
effective representation should preserve meaningful spatial properties that reflect node proximity
and connectivity patterns. To achieve this, we propose to measure the extent to which node entries
reflect their positions within the graph. Typically, positional encoding (Lu et al., 2021; Li et al., 2020;
You et al., 2019) involves the use of several sets of node anchors Sd ⊂ V that establish an intrinsic
coordinate system. This system influences the node u’s features based on the node’s proximity
ζ(u,Sd) = AGG({ζ(u, v), v ∈ Sd}), where AGG denotes a specific pooling operation. As node
proximity, we used the inverse of the shortest path distance ζspd(u, v) ≡ (1 + dspd(u, v))

−1. As the
anchor sets, we chose the embedding substructures used for explanations, Sd ≡ Vd.

For a specified pair of dimensions (d, l), we assess the correlation between node features along
dimension d and the corresponding distances to the topological component indexed by l via Feature-
Proximity Correlation: FPC(d, l;h) = ρ

([
ζspd(u,Vd)

]
u∈V ,H:,l

)
. The positional coherence metric

(PoC) is defined to specifically evaluate the degree to which each feature d is uniquely correlated with
its corresponding topological component Vd, without being significantly influenced by correlations
with other substructures. This metric is calculated as the ratio of the average FPC for the given
dimensions to the average FPC computed with pairs of permuted dimensions:

PoC(h) =

∑
d FPC(d, d;h)〈∑

d FPC(d, π(d);h)
〉
π

(8)

where ⟨.⟩π denotes an empirical average over multiple permutations. By comparing with random
feature-subgraph pairs, the metric avoid promoting models with redundancies in the latent features,
where high correlations with other topological components are possible.

classifier 
prediction Yes No

feature 
explanation

ground-truth 
explanation

Plausibility

Figure 4: Schematic view of Plau-
sibility metric computation. A high
plausibility score indicates that the
dimensions deemed more compre-
hensible also received higher im-
portance scores from the post-hoc
feature attribution technique.

Plausibility. Given the importance of node representations
in downstream tasks, it is crucial to assess whether the features
influencing predictions align with human expectations using
synthetic benchmarks. To this end, we construct instance-wise
explanations to determine if key features correspond to the
topological structures behind the ground-truth labels. Typical
post-hoc explainers (Bodria et al., 2023) that produce feature
importance scores often fail in this context because node em-
beddings are inherently uninterpretable, leading to useless ex-
planations. Our approach overcomes this limitation by mapping
feature importance back to the graph’s structural components,
enabling a more meaningful evaluation of how well the embed-
dings capture the underlying factors driving node behavior.

Consider training a downstream binary classifier b : RK →
[0, 1], such as for node classification or link prediction. We
detail the procedure for link prediction here (see also Figure 4),
but we will also report the methodology for node classification
in Appendix A.6. For an edge instance h(u, v) (which could be
derived from node-pair operations such as h(u)⊙h(v)), we employ post-hoc methods to determine the
feature relevance for the classifier prediction on the node pair instance (u, v), {Ψj(u, v; b)}j=1,...,K

that outputs important score for each of the embedding dimensions. Similarly to scores in Eq. (1),
we define task-based masks B(j) ∈ RV×V

≥0 which aggregate the individual logics of the classifier

predictions: B
(j)
uv (Ψj ; b) = max{0,Ψj(u, v; b)}. To evaluate the consistency of a prediction, we

consider the F1-score in Eq. (5) related to the ground-truth structure of the edge under study,
indexed by g(u, v). Specifically, we define plausibility for an individual prediction as the average
comprehensibility relative to the instance ground-truth, weighted by the computed feature importance:

Pℓ(u, v; b) =

∑K
j=1 f(Ψj(u, v; b))F1(B

(j),Cg(u,v))∑K
j=1 f(Ψj(u, v; b))

(9)

where f is a function guaranteeing the non-negativity of relevance weights. This ensures that only
the features that are both interpretable and significant to the local prediction contribute substantially
to the score, penalizing instead those important features that are not human-comprehensible.
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4 EXPERIMENTS

We conduct large-scale experiments to answer the following research questions.

• Human understandability: How comprehensible and sparse are the explanation substructures
generated by DISENE?

• Structural disentanglement: Do the disentangled subgraphs reveal intrinsic properties of node
embeddings, like feature correlations and latent positions?

• Utility for downstream tasks: Are the identified substructures plausible and coherent enough to
serve as explanations in downstream tasks?

To address our research questions, we extract topological components of multiple embedding methods,
trained on different graph-structured data, by computing edge subsets defined in Eq (2), and analyzing
embedding metrics defined in Section 3.3. In the following sections, we describe the data, models,
the experimental setup and results from the comparison.

4.1 DATASETS AND COMPETITORS

Datasets. We ran experiments on four real-world datasets (CORA, WIKI, FACEBOOK, PPI), and
six synthetic datasets (RING-OF-CLIQUES, SBM, BA-CLIQUES, ER-CLIQUES, TREE-CLIQUES
and TREE-GRIDS) containing 32 cliques with 10 nodes as ground-truth motifs. Statistics for these
datasets are provided in Table A1 in the Appendix. Additionally we employ several biological
datasets (see Appendix A.4) for the evaluation on multi-label node classification). BA-CLIQUES and
ER-CLIQUES are variations of the BA-SHAPES (Ying et al., 2019) where we randomly attach cliques
–instead of house motifs– to Barabási-Albert and Erdős-Rényi random graphs. TREE-CLIQUES and
TREE-GRIDS (Ying et al., 2019) are composed of a base balanced tree, with cliques and 3x3 grid
motifs respectively. RING-CLIQUES and SBM are implemented in NetworkX4. For synthetic data,
we present only results for plausibility metrics, leaving the other findings in the Appendix A.5.

Methods. We compare different node embedding methods. Competitors include DEEPWALK
(Perozzi et al., 2014), Graph Autoencoder (GRAPHAE) (Salha et al., 2021), INFWALK (Chanpuriya
& Musco, 2020), and GRAPHSAGE (Hamilton et al., 2017). Moreover, we apply the DINE retrofitting
approach (Piaggesi et al., 2024) to post-process embeddings from DEEPWALK and GRAPHAE. We
evaluate our method DISENE in two variants: a 1-layer fully-connected encoder (DISE-FCAE) and a
1-layer convolutional encoder (DISE-GAE). GNN-based methods are trained using the identity matrix
as node features. Details on hyperparameters and training settings are provided in the Appendix A.2.

Setup. In experiments on real-world graphs, we investigate latent space interpretability and disen-
tanglement metrics by keeping the output embedding dimension fixed at 128. This dimensionality was
chosen to ensure that all methods achieve optimal performance in terms of test accuracy, specifically
for link prediction (see the Appendix A.4 for extensive downstream task results). For synthetic data,
since we investigated plausibility metric referred to a downstream classifier, thus we did not focus on
a specific dimension but we selected the best score metric varying the output dimensions in the list
[2, 4, 8, 16, 32, 64, 128]. Each reported result is an average over 5 runs. For link prediction, we use a
90%/10% train/test split, and for node classification, we use an 80%/20% split. All results refer to
the training set, except for downstream task experiments, where we present results for the test set.

4.2 RESULTS AND DISCUSSION

Are the topological substructures both comprehensible and sparse to support human under-
standability? Here we explore how well the represented topological structures can serve as global
explanations for the node embeddings, quantifying the Comprehensibility in the terms of associations
between model parameters and human-understandable units of the input graph, as well as the Sparsity
of these associations. In Table 1 we show compact scores as the average values 1

K

∑K
d=1 Comp(Md)

and 1− 1
K

∑K
d=1 Sp(Md) over all the embedding features. For sparsity we report the value subtracted

from 1 to have all the scores better with higher values.
4
https://networkx.org/documentation/stable/reference/generators.html
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Table 1: Comprehensibility and sparsity results for real-world datasets. Best scores are in bold,
second best results are underlined.

Method Comprehensibility Sparsity
CORA WIKI FB PPI CORA WIKI FB PPI

DEEPWALK .363±.003 .356±.002 .602±.004 .281±.002 .183±.001 .165±.002 .130±.004 .136±.003
GRAPHAE .299±.001 .248±.002 .481±.014 .263±.003 .182±.002 .164±.004 .154±.003 .135±.003
INFWALK .281±.002 .288±.001 .658±.006 .312±.002 .211±.003 .185±.002 .318±.010 .177±.002
GRAPHSAGE .358±.004 .307±.007 .583±.003 .306±.005 .189±.001 .189±.003 .145±.002 .172±.001
DW+DINE .511±.051 .496±.014 .813±.025 .569±.022 .317±.036 .266±.007 .226±.009 .188±.002
GAE+DINE .569±.004 .591±.004 .843±.005 .484±.007 .290±.001 .252±.001 .195±.002 .198±.002

DISE-FCAE .822±.001 .755±.003 .971±.001 .484±.001 .504±.001 .419±.001 .297±.002 .282±.001
DISE-GAE .834±.003 .762±.004 .967±.001 .515±.001 .496±.001 .418±.001 .304±.003 .254±.002

DEEPWALK and INFWALK show moderate performance in Comprehensibility, excelling slightly
on FB but underperforming on PPI, while GRAPHAE consistently lags behind, particularly on WIKI
and PPI. GRAPHSAGE shows good comprehensibility across CORA and FB. Incorporating DINE
improves results, especially for GAE+DINE, which achieves improved scores on all datasets. The
proposed models, DISE-FCAE and DISE-GAE, deliver the highest overall performance. DISE-FCAE
performs well on FB, while DISE-GAE excels across CORA and WIKI. However, both models show
sub-optimal results on PPI, suggesting potential for further improvement on this dataset.

DEEPWALK and GRAPHAE offer moderate Sparsity, peaking on CORA, but underperform on
other datasets. INFWALK excels on FB but shows moderate results elsewhere, while GRAPHSAGE
performs poorly in terms of sparsity across all datasets. DEEPWALK and GAE significantly improve
their sparsity with DINE, particularly on CORA. For the proposed models, DISE-FCAE performs
best across datasets CORA, WIKI and PPI. Meanwhile, DISE-GAE obtains the highest value on FB.

Can the identified subgraphs explain the intrinsic characteristics of the node embeddings?
Here we explore how well the defined topological units represent information in the node embedding
space, providing insights into how the relative and absolute positioning of topological structures
influences the feature encoding within a graph. By quantifying these relationships, we can better
understand the underlying patterns and structural information in the graph, potentially leading to more
robust and interpretable models. In Table 2 we report Positional Coherence and Overlap Consistency
for the examined embedding methods. For the second metric, as node proximity we used the inverse
of the shortest path distance with sum as pooling.

Table 2: Overlap consistency and positional coherence results for real-world datasets. Best scores are
in bold, second best result are underlined.

Method Overlap Consistency Positional Coherence
CORA WIKI FB PPI CORA WIKI FB PPI

DEEPWALK .137±.009 .143±.006 .115±.007 .015±.003 1.078±0.025 0.835±0.025 1.119±0.015 1.009±0.015
GRAPHAE .269±.002 .295±.004 .273±.017 .452±.008 1.023±0.006 1.040±0.002 1.001±0.013 1.016±0.001
INFWALK .008±.003 .023±.002 .021±.002 .134±.002 1.004±0.011 0.998±0.004 0.938±0.053 0.999±0.002
GRAPHSAGE .211±.003 .136±.017 .230±.007 .097±.040 1.099±0.012 1.103±0.010 1.005±0.007 1.018±0.002
DW+DINE .900±.012 .804±.032 .851±.017 .855±.016 1.790±0.076 2.126±0.065 1.792±0.058 1.247±0.043
GAE+DINE .560±.010 .610±.006 .801±.016 .646±.003 2.317±0.028 2.551±0.048 1.783±0.037 1.098±0.004

DISE-FCAE .885±.008 .863±.006 .939±.030 .548±.001 5.210±0.080 3.540±0.082 3.348±0.085 1.283±0.004
DISE-GAE .853±.007 .811±.008 .889±.007 .887±.004 5.300±0.193 4.343±0.144 3.388±0.054 1.261±0.005

DEEPWALK and INFWALK perform poorly for Overlap Consistency, while GRAPHAE shows
moderate scores, particularly on PPI. GRAPHSAGE performs slightly worse, with the best over-
lap consistency on FB and CORA. DW+DINE achieves strong scores across all datasets, while
GAE+DINE performs solidly but slightly lower, with its best result on FB. The proposed models,
DISE-FCAE and DISE-GAE, outperform all others, achieving the highest consistency across all
datasets except on CORA. DISE-FCAE excels on FB and WIKI, while DISE-GAE achieves the best
overall score on PPI.
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Table 3: Plausibility results for synthetic datasets with best scores in bold, second best underlined.

Method Link Prediction Node Classification
RING-CL SBM BA-CL ER-CL BA-CL ER-CL TR-CL TR-GR

DEEPWALK .234±.003 .205±.008 .173±.002 .160±.006 .146±.002 .141±.003 .103±.007 .091±.002
GRAPHAE .183±.003 .160±.002 .145±.004 .145±.005 .130±.002 .135±.006 .083±.001 .072±.001
INFWALK .224±.005 .181±.005 .218±.007 .212±.008 .129±.002 .141±.004 .097±.002 .093±.004
GRAPHSAGE .252±.005 .217±.003 .186±.006 .178±.005 .160±.004 .154±.002 .093±.002 .084±.003
DW+DINE .943±.012 .904±.002 .744±.008 .724±.040 .320±.031 .327±.008 .549±.015 .627±.004
GAE+DINE .549±.005 .547±.014 .418±.011 .387±.002 .351±.011 .397±.003 .366±.013 .254±.005

DISE-FCAE .978±.001 .924±.006 .950±.006 .938±.014 .820±.011 .791±.012 .860±.004 .810±.008
DISE-GAE .969±.002 .910±.006 .936±.003 .941±.005 .813±.003 .797±.009 .791±.005 .800±.004

DEEPWALK, GRAPHAE, and GRAPHSAGE demonstrate moderate Positional Coherence. IN-
FWALK consistently scores around 1.0 on all datasets, indicating stable but unremarkable coherence.
Incorporating DINE leads to substantial improvements for both DEEPWALK and GAE, achieving
notable gains on CORA, WIKI and FB. The proposed models, DISE-FCAE and DISE-GAE, far out-
perform other methods, with DISE-FCAE achieving top scores on PPI, while DISE-GAE dominates
on CORA, WIKI and FB (though with higher variance): both models show consistent superiority.

Are the identified latent structures sufficiently meaningful to serve as explanations for down-
stream tasks? Node embeddings serve as versatile feature representations suitable for downstream
tasks, though they typically function as "tabular-like" feature vectors without semantic labels for
each feature. This limitation restricts the use of established post-hoc analysis methods (Bodria et al.,
2023) like LIME, SHAP, etc. Our method allows us to link topological substructures with embedding
features, thereby assigning semantic labels to node vectors. Consequently, we are able to explain
a downstream classifier trained with unsupervised embeddings using feature attribution. Our goal
is to assess whether the task-important features align with human understanding by measuring the
Plausibility.

In these experiments we consider node classification and link prediction as binary downstream tasks,
training a logistic regression classifier b(x;β) = σ(

∑K
j=1 βjhj(x) + β0), where x is a node/link

instance. We use SHAP (Lundberg & Lee, 2017) to compute the instance-wise feature attribution
values {Ψj(x; b)}j=1...K . For node classification, we consider positive instances as the nodes inside
a clique in the synthetic graph. Accordingly, the ground-truth explanation for a node is the clique it
belongs to. For link prediction, we focus on test edges that were inside a clique before removal, where
the ground-truth explanation is again the clique itself. We used f(∗) = max(0, ∗) as non-negative
weighting function for computing plausibility scores.

Table 3 shows average Plausibility scores for downstream tasks over test instances with correct
predicted label. DEEPWALK, GRAPHAE, and INFWALK perform modestly, with DEEPWALK
scoring the highest among these on RING-CL and INFWALK showing relative strength on BA-CL.
GRAPHSAGE significantly underperforms across all tasks, especially in node classification. The
addition of DINE improves both DEEPWALK and GAE. DW+DINE excels with strong performance on
RING-CL, SBM, and TREE datasets, while GAE+DINE achieves slightly worst results, particularly
on node classification tasks, such as in TR-GR. Within the proposed models, DISE-FCAE and
DISE-GAE consistently achieve the highest scores ranking as the best two methods overall.

5 CONCLUSIONS

We present DISENE, a novel framework for generating self-explainable unsupervised node embed-
dings. To build our framework, we design new objective functions that ensure structural faithfulness,
dimensional explainability, and structural disentanglement. Unlike traditional GNN explanation
methods that typically extract a subgraph from a node’s local neighborhood, DISENE introduces a
paradigm shift by learning node embeddings where each dimension captures an independent structural
feature of the input graph. Additionally, we propose new metrics to evaluate the human interpretability
of explanations, analyze the influence of spatial structures and node positions on latent features, and
apply post-hoc feature attribution methods to derive task-specific instance-wise explanations.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on complex
networks. Cambridge university press, 2008.

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, and
Salvatore Rinzivillo. Benchmarking and survey of explanation methods for black box models.
Data Mining and Knowledge Discovery, 37(5):1719–1778, 2023.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Sudhanshu Chanpuriya and Cameron Musco. Infinitewalk: Deep network embeddings as lapla-
cian embeddings with a nonlinearity. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1325–1333, 2020.

Sudhanshu Chanpuriya, Ryan Rossi, Anup B Rao, Tung Mai, Nedim Lipka, Zhao Song, and
Cameron Musco. Exact representation of sparse networks with symmetric nonnegative embeddings.
Advances in Neural Information Processing Systems, 36, 2024.

Yu Chen and Mohammed J. Zaki. KATE: K-Competitive Autoencoder for Text. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 85–94, Halifax NS Canada, August 2017. ACM. ISBN 978-1-4503-4887-4. doi: 10.1145/
3097983.3098017.

Ayushi Dalmia, Ganesh J, and Manish Gupta. Towards Interpretation of Node Embeddings. In
Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18, pp.
945–952, Lyon, France, 2018. ACM Press. ISBN 978-1-4503-5640-4.

Jingtao Ding, Chang Liu, Yu Zheng, Yunke Zhang, Zihan Yu, Ruikun Li, Hongyi Chen, Jinghua
Piao, Huandong Wang, Jiazhen Liu, et al. Artificial intelligence for complex network: Potential,
methodology and application. arXiv preprint arXiv:2402.16887, 2024.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu,
and Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and
rethinking. Advances in Neural Information Processing Systems, 35:5376–5389, 2022.

Di Fan and Chuanhou Gao. Learning network representations with disentangled graph auto-encoder.
arXiv preprint arXiv:2402.01143, 2024.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. Zorro: Valid, sparse, and stable
explanations in graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
2022.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

Antonia Gogoglou, C. Bayan Bruss, and Keegan E. Hines. On the Interpretability and Evaluation of
Graph Representation Learning. NeurIPS workshop on Graph Representation Learning, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

Darko Hric, Richard K Darst, and Santo Fortunato. Community detection in networks: Structural
communities versus ground truth. Physical Review E, 90(6):062805, 2014.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local
interpretable model explanations for graph neural networks. IEEE Transactions on Knowledge
and Data Engineering, 35(7):6968–6972, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zexi Huang, Arlei Silva, and Ambuj Singh. A broader picture of random-walk based graph embedding.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
685–695, 2021.

Maximilian Idahl, Megha Khosla, and Avishek Anand. Finding interpretable concept spaces in node
embeddings using knowledge bases. In Machine Learning and Knowledge Discovery in Databases:
International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I, pp. 229–240. Springer, 2020.

Shima Khoshraftar, Sedigheh Mahdavi, and Aijun An. Centrality-based Interpretability Measures for
Graph Embeddings. In 2021 IEEE 8th International Conference on Data Science and Advanced
Analytics (DSAA), pp. 1–10, October 2021. doi: 10.1109/DSAA53316.2021.9564221.

Megha Khosla, Vinay Setty, and Avishek Anand. A comparative study for unsupervised network
representation learning. IEEE Transactions on Knowledge and Data Engineering, 33(5):1807–
1818, 2019.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. In International Conference on Learning Representations, 2021.

Konstantin Klemmer, Nathan S Safir, and Daniel B Neill. Positional encoder graph neural networks
for geographic data. In International Conference on Artificial Intelligence and Statistics, pp.
1379–1389. PMLR, 2023.

Haoyang Li, Xin Wang, Ziwei Zhang, Zehuan Yuan, Hang Li, and Wenwu Zhu. Disentangled
contrastive learning on graphs. Advances in Neural Information Processing Systems, 34:21872–
21884, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Yanbei Liu, Xiao Wang, Shu Wu, and Zhitao Xiao. Independence promoted graph disentangled
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
4916–4923, 2020.

Yuheng Lu, Jinpeng Chen, ChuXiong Sun, and Jie Hu. Graph inference representation: Learning
graph positional embeddings with anchor path encoding. arXiv preprint arXiv:2105.03821, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, and Pietro Liò. Gcexplainer: Human-in-
the-loop concept-based explanations for graph neural networks. arXiv preprint arXiv:2107.11889,
2021.

Lucie Charlotte Magister, Pietro Barbiero, Dmitry Kazhdan, Federico Siciliano, Gabriele Ciravegna,
Fabrizio Silvestri, Mateja Jamnik, and Pietro Lio. Encoding concepts in graph neural networks.
arXiv preprint arXiv:2207.13586, 2022.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

Simone Piaggesi, Megha Khosla, André Panisson, and Avishek Anand. Dine: Dimensional in-
terpretability of node embeddings. IEEE Transactions on Knowledge and Data Engineering,
2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10772–10781, 2019.

Thibault Prouteau, Nicolas Dugué, Nathalie Camelin, and Sylvain Meignier. Are embedding spaces
interpretable? results of an intrusion detection evaluation on a large french corpus. In LREC 2022,
2022.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh
ACM international conference on web search and data mining, pp. 459–467, 2018.

Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. GEMSEC: graph embedding
with self clustering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pp. 65–72, Vancouver British Columbia Canada, August
2019. ACM. ISBN 978-1-4503-6868-1.

Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Simple and effective graph
autoencoders with one-hop linear models. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,
Proceedings, Part I, pp. 319–334. Springer, 2021.

Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Wang, Wesley Qian, Kevin
McCloskey, Lucy Colwell, and Alexander Wiltschko. Evaluating attribution for graph neural
networks. Advances in neural information processing systems, 33:5898–5910, 2020.

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T Schütt, Klaus-Robert
Müller, and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant
walks. IEEE transactions on pattern analysis and machine intelligence, 44(11):7581–7596, 2021.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DATASET STATISTICS

Table A1: Summary statistics of graph-structured data. In empirical data, we restrict our analysis to
the largest connected component of any graph.

CORA WIKI FB PPI RING-CL SBM BA-CL ER-CL TR-CL TR-GR

# nodes 2,485 2,357 4,039 3,480 320 320 640 640 831 799
# edges 5,069 11,592 88,234 53,377 1,619 1,957 3,138 4,196 2,081 972
# clusters/motifs 28 18 16 9 32 32 32 32 32 32
density 0.002 0.004 0.011 0.009 0.032 0.038 0.015 0.021 0.006 0.003
clust. coeff. 0.238 0.383 0.606 0.173 0.807 0.561 0.486 0.456 0.360 0.002

Table A2: Summary statistics of graph biological data used for multi-label node classification.

PPI PCG HUMLOC EUKLOC

# nodes 3,480 3,177 2,552 2,969
# edges 53,377 37,314 15,971 11,130
# labels 121 15 14 22
density 0.009 0.007 0.005 0.003
clust. coeff. 0.173 0.346 0.132 0.150

A.2 TRAINING SETTINGS

• For DEEPWALK (Perozzi et al., 2014), we train NODE2VEC5 algorithm for 5 epochs
with the following parameters: p= 1, q= 1, walk_length= 20, num_walks= 10,
window_size= 5.

• For INFWALK6 (Chanpuriya & Musco, 2020), a matrix factorization-based method linked
to DEEPWALK and spectral graph embeddings, we set the same value window_size= 5
used for DEEPWALK.

• In GRAPHAE (Salha et al., 2021), we optimize a 1-layer GCN encoder with a random-walk
loss setting analogous to DEEPWALK. The model is trained for 50 iterations using Adam
optimizer and learning rate of 0.01.

• in GRAPHSAGE7 (Kim & Oh, 2021), we optimize a 2-layer SAGE encoder with mean
aggregation and with a random-walk loss setting analogous to DEEPWALK. The model is
trained for 50 iterations using Adam optimizer, learning rate of 0.01.

• DINE8 (Piaggesi et al., 2024), autoencoder-based post-processing process trained for 2000
iterations, and learning rate of 0.1. Input embeddings are from DEEPWALK and GAE
methods, tuning the input embedding size in the list [8, 16, 32, 64, 128, 256, 512].

• DISE-FCAE and DISE-GAE trained for 50 iterations using Adam optimizer and learning
rate of 0.01. Random walk sampling follows the same setting as DEEPWALK, GRAPHAE
and GRAPHSAGE.

5
https://github.com/eliorc/node2vec

6
https://github.com/schariya/infwalk

7
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py

8
https://www.github.com/simonepiaggesi/dine
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A.3 ALGORITHM COMPLEXITY

Space and time complexity of DISENE can be analyzed by looking at the pseudo-code in Algo-
rithm A1. Part of the complexity depends on the complexity of the encoder. Here, we assume GCN
as encoding functions, with its own set of learnable parameters Θ. But, in the experiments, we have
also tested fully-connected encoders.

Algorithm A1: DISENE(G,A,K, T, L, λent)

Input : Graph G = (V, E)
Adjaceny matrix A ∈ {0, 1}|V|×|V|

Embedding size K, Context window T ,
Walks length L, Regularization λent

Output : Embedding matrix H ∈ R|V|×K

1 Init. encoder network EncΘ(∗);
2 Init. identity matrix features X;
3 while not converged do
4 Encoding step: H← ρ(W⊤EncΘ(A,X));
5 Sample batch of nodes: B ← Sample(V);
6 Init. random walksW ← ∅;
7 foreach v ∈ B do
8 Sample random walk:

W ←W ∪RandomWalk(A, v, L);
9 Random-walk loss: Lrw(H,W, T );

10 foreach d ∈ {1 . . .K} do
11 Aggregate rows of H: fd ←

∑
v Hvd;

12 Compute 1-norm: |f |1 ←
∑

v,d Hvd;
13 Node affiliation matrix: F← H⊙ f ;
14 Disentanglement loss Ldis(F)
15 Regularization loss Lent(F)
16 Total loss: L ← Lrw + Ldis + λentLent;
17 Backpropagate and update Θ,W;
18 return H;

Our method consists of four main steps:

• Encoding step generates the node embeddings
H and has the same per-layer time/space com-
plexity of standard GCNs (Duan et al., 2022),
i.e. O(||A||0K + |V|K2) and O(|V|K) re-
spectively.

• Random walk sampling and loss calculation
has time/space complexity O(|V|KTL) and
O(|V|L) respectively (Rozemberczki et al.,
2019), where T is the context window size
and L is the random-walk length (we sample
1 random walk per node, fixing as well the
number of negative samples to 1 for each posi-
tive sample). RandomWalk function sample
a first-order random walk starting from source
node v of length L.

• Node affiliation matrix involves computing
the entries Fud =

∑
v∈Vd

ϕd(u, v;h) as
Fud =

∑
v HudHvd = Hudfd, i.e. by mul-

tiplying node embedding entries Hud with
quantities fd =

∑
v Hvd. This step involves

O(|V|K) operations for computing and stor-
ing matrix F.

• Disentanglement and regularization losses in-
volve respectivelyO(|V|K2) andO(K) oper-
ations for cosine similarity (matrix products)
and entropy (vector sum).

Overall, given that ||A||0 is 2|E|, DISENE results inO(|E|K+|V|K2+|V|KTL) runtime complexity
and O(|V|K + |V|L) space complexity, which are in line with established node embedding methods
(see, for instance, Table 1 in Tsitsulin et al. (2021) for an exhaustive summary).

A.4 DOWNSTREAM TASKS RESULTS

We tested link prediction for the datasets reported in the main paper. For node classification, we
tested PPI and other benchmark biological datasets in multi-label setting (Zhao et al.): the PCG
dataset for the protein phenotype prediction, the HUMLOC, and EUKLOC datasets for the human and
eukaryote protein subcellular location prediction tasks, respectively. Characteristics of additional
biological datasets are reported in Table A2. We concatenated node attributes to node embeddings to
get an enriched set of predictors that, given our method extract interpretable features, can be used
in combination with feature-based explainers (e.g., SHAP) for building fully transparent prediction
pipelines. In Figure A1 we report AUC-PR scores for link prediction and node classification in
real-world graph data. Generally, scores increase with the number of latent embedding dimensions.
Tables A3 and A4 show the maximum scores for link prediction and node classification, demonstrating
that our approach can consistently achieve reasonable performances within the expected range of the
performance-interpretability trade-off.
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Figure A1: Downstream tasks results on real-world datasets (link prediction on the top panel,
multi-label node classification on the bottom panel) with varying feature dimensions size.

Table A3: Link prediction results (AUC-PR) on real-world datasets. Best scores are in bold, while
scores with a relative performance loss of no more than 2% respect to the best score are underlined.

CORA WIKI FB PPI

DEEPWALK .892±.005 .927±.002 .990±.001 .794±.002

GRAPHAE .911±.003 .950±.001 .994±.001 .916±.001

INFWALK .923±.003 .936±.002 .941±.006 .854±.003

GRAPHSAGE .913±.005 .944±.002 .991±.001 .892±.003

DW+DINE .896±.004 .931±.003 .987±.001 .817±.004

GAE+DINE .926±.001 .957±.003 .992±.002 .919±.002

DISE-FCAE .856±.007 .911±.004 .977±.001 .884±.002

DISE-GAE .885±.002 .947±.002 .993±.006 .913±.001

Table A4: Node classification results (AUC-PR) on real-world datasets. Best scores are in bold, while
scores with a relative performance loss of no more than 5% respect to the best score are underlined.

PPI PCG HUMLOC EUKLOC

DEEPWALK .476±.003 .210±.001 .314±.012 .241±.010

GRAPHAE .517±.003 .241±.001 .336±.004 .249±.005

INFWALK .442±.001 .207±.002 .287±.004 .212±.003

GRAPHSAGE .506±.001 .231±.002 .316±.004 .237±.011

DW+DINE .488±.002 .217±.001 .308±.004 .231±.008

GAE+DINE .526±.001 .241±.001 .333±.006 .234±.008

DISE-FCAE .498±.001 .233±.003 .291±.006 .230±.006

DISE-GAE .518±.001 .242±.004 .315±.003 .238±.006
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A.5 GLOBAL EXPLANATIONS RESULTS FOR SYNTHETIC DATASETS
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Figure A2: Subgraph-level global explanations for a representative subset of embedding dimensions,
along with corresponding pairwise feature correlation plots, on synthetic dataset BA-CLIQUES.

A.5.1 VISUALIZATION OF SUBGRAPH EXPLANATIONS

Algorithm A2:
UNSUPEDGESUBGRAPH(G,A,Z, d)

Input : Graph G = (V, E)
Embedding function z : V → RK

Dimension to explain d ∈ {1 . . .K}
Output : Graph mask M(d) ∈ R|V|×|V|

1 Init. graph mask: M(d) ← 0|V|×|V|;
2 Compute background average attribution:

ζd = 1
|E|

∑
(u,v)∈E zd(u)zd(v);

3 for (u, v) ∈ E do
4 Compute edge attribution:

ϕd(u, v; z) = zd(u)zd(v)− ζd;
5 Add explanation:
6 M

(d)
uv ← max{0, ϕd(u, v; z)};

7 return M(d);

In Figure A2 we show subgraph-level global
explanations on synthetic dataset BA-CLIQUES.
Subgraphs are generated for each feature dimen-
sion using the procedure described in Section 3.1
(summarized on the left in Algorithm A2) and
are based on various unsupervised embedding
methods. The explanatory subgraphs demon-
strate that our method effectively aligns embed-
ding dimensions with meaningful, non-random
functional components of the graph. In con-
trast, standard methods such as DEEPWALK and
GRAPHAE struggle to isolate individual structural
units within dimensions. Instead, their embed-
dings often associate dimensions with groups of
cliques or subgraphs that include elements from
the random Barabási-Albert scaffold. Addition-
ally, the visualization on the right shows the cor-
relation between latent features, further underscor-

ing that the alignment between embedding dimensions and graph structure is closely tied to the ability
to disentangle feature correlation through non-collinearity.

A.5.2 EXTENSIVE RESULTS FOR SYNTHETIC DATASETS

In Figure A3 we plot results for Comprehensibility and Sparsity, on the top and the bottom respectively,
on synthetic datasets. Generally, DISE-FCAE outperforms DISE-GAE and the other competitors
in all the datasets. In Figure A4 we plot results for Overlap Consistency and Positional Coherence,
on the top and the bottom respectively, on synthetic datasets. For the overlap metric, DISE-FCAE
and DISE-GAE consistently outperform the competitors, especially with more than 8 dimensions
where they achieve almost perfect overlap. For the positional metric, the competitors GAE+DINE and
DW+DINE slightly outperform DISE methods, especially in large dimensions, while DEEPWALK
also show good results.
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Figure A3: Comprehensibility and sparsity results on synthetic datasets with varying feature dimen-
sions size.
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Figure A4: Overlap consistency and positional coherence results on synthetic datasets with varying
feature dimensions size.
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A.6 LOCAL EXPLANATIONS RESULTS FOR SYNTHETIC DATASETS

A.6.1 EXPLANATION TASK DESCRIPTION IN DETAILS

Algorithm A3:
NODECLASSSUBGRAPH(G,A,Ψ, j)

Input : Graph G = (V, E)
Feature-base explanation matrix Ψ ∈ R|V|×K

Dimension to explain j ∈ {1 . . .K}
Output : Node mask B(j) ∈ R|V|

1 Init. node mask: B(j) ← 0|V|;
2 for v ∈ V do
3 Add explanation:
4 B

(j)
u ← max{0,Ψvj};

5 return B(j);

Local explanations for node embeddings are
extracted by using post-hoc feature impor-
tance method SHAP. For a given embedding
model h : V ← RK we train a downstream
classifier, e.g., in node classification task
or link prediction. For simplicity, here we
write the case when the classifier is a (bi-
nary) linear model, but it can be any arbi-
trary complex model. It is anyway reason-
able to assume that node embeddings come
from a deep graph model and downstream
classifier is a simple 1-layer neural network
on top of the embedding layers.

(node classification) b(v) = σ(

K∑
j=1

βjhj(v) + β0)

(link classification) b(u, v) = σ(

K∑
j=1

βjhj(u, v) + β0)

Given a vector representation of a graph instance (e.g., a node embedding h(v) or an edge embed-
ding h(u, v)), and the corresponding prediction from classifier b, we compute feature importance
with SHAP {Ψ(V)

v,j }j=1...K or {Ψ(E)
(uv),j}j=1...K and the corresponding task-based graph masks (we

illustrate the pesudo-code for node classification masks in Algorithm A3):

B(j)(Ψ(V)) ∈ R|V|; B(j)
v = max{0,Ψ(V)

v,j }

B(j)(Ψ(E)) ∈ R|V|×|V|; B(j)
uv = max{0,Ψ(E)

(uv),j}
It is valuable to remark that, training with logistic regression and applying SHAP, the resulting
importance scores are simply the coefficients of the regression (Lundberg & Lee, 2017) Ψx,j =
βj(hj(x)−E[hj ]). Thus, combining this methodology to interpretable graph features of DISENE,
we obtain a fully transparent node/edge classification pipeline for graph data.
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A.6.2 COMPARISON OF EMBEDDING METHODS

In Figure A5 we plot results for the plausibility metric on link prediction and node classification, on
the top and the bottom respectively, while comparing different unsupervised methods that output node
embeddings. Plausibility seems to benefit larger dimension values for DISE methods and DW+DINE
for link prediction. Figure A6 shows the corresponding downstream task accuracy results.
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Figure A5: Plausibility results on synthetic datasets (link prediction on the top panel, binary node
classification on the bottom panel) with varying feature dimensions size.
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Figure A6: Downstream tasks results on synthetic datasets (link prediction on the top panel, binary
node classification on the bottom panel) with varying feature dimensions size.
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A.6.3 COMPARISON WITH LOCAL EXPLAINER METHODS FOR GRAPHS

In this section, we report Plausibility results of local explanations for node classification tasks on
synthetic data, in comparison with standard local graph explainers: GNNEXPLAINER (Ying et al.,
2019) and PGEXPLAINER (Luo et al., 2020). These methods present local explanation in the form of
node and/or edge importance, whereas in our method –combined with feature-based explainer– the
explanation format is a vector of feature importance, associated with a subgraph for each feature. For
a fair comparison, we consider as the explanation presented by our method the subgraph associated
to the most important embedding feature (according to the logistic classifier). Recalling Eq. (9) in the
main paper for Plausibility, this approach is equivalent to choosing as f the function:

f(Ψj) =

1, if j = argmax
d∈{1...K}

Ψd

0, otherwise

We compare Plausibility from computed node masks for the test node instances. GNNEXPLAINER9

is trained for 30 epochs for each test node, while PGEXPLAINER10 is trained for 5 epochs on trained
nodes before being applied on test nodes. Moreover, since PGEXPLAINER is based on edge masks,
we derive node masks for that model with the average mask value from incident edges. Plausibility
results are computed over test nodes with correct predicted label, because the explanations extracted
from wrong predictions are not reliable for analyzing local model decisions. Graph explainers are
applied on the output of the following 2-layer GNNs method trained on node classification: GCN (Wu
et al., 2019), GRAPHSAGE (Hamilton et al., 2017), and GATV2 (Brody et al., 2022). All the
graph models (not the explainers) are tuned by searching the best embedding size from the list
[2, 4, 8, 16, 32, 64, 128], as the input to the classification layer.

Table A5: Plausibility results for synthetic datasets with best scores in bold, second best underlined.

Method Node Classification
BA-CLIQUES ER-CLIQUES TREE-CLIQUES TREE-GRIDS

GNNEXPL
GCN .729±.004 .638±.005 .846±.004 .809±.003
GRAPHSAGE .703±.006 .611±.005 .829±.005 .810±.002
GATV2 .707±.004 .633±.002 .832±.006 .808±.004

PGEXPL
GCN .895±.005 .923±.004 .863±.009 .573±.003
GRAPHSAGE .581±.038 .704±.032 .374±.006 .695±.025
GATV2 .596±.016 .724±.002 .422±.074 .721±.030

DISE-FCAE .919±.001 .881±.006 .926±.001 .889±.006
DISE-GAE .875±.009 .872±.008 .871±.005 .898±.001

We test explanation methods with synthetic datasets BA-CLIQUES, ERCLIQUES, TREE-CLIQUES and
TREE-GRIDS (Ying et al., 2019). From Table A5, we observe GNNEXPLAINER has uniform results
across different input GNN models, instead PGEXPLAINER performs best with GCN. DISE-FCAE
and DISE-GAE outperforms the competitors in most of the cases, except with GCN+PGEXPLAINER
in ER-CLIQUES.

Figure A7 present examples of local explanations for node classification tasks on the small-sized
synthetic datasets BA-CLIQUES and TREE-GRIDS, using different methods. The experimental
settings are consistent with those described above. Notably, DISENE demonstrates a strong ability to
produce meaningful and interpretable node masks, effectively competing with state-of-the-art GNN
explanation methods.

9
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.

algorithm.GNNExplainer.html#torch_geometric.explain.algorithm.GNNExplainer
10
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.

algorithm.PGExplainer.html#torch_geometric.explain.algorithm.PGExplainer
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Figure A7: Subgraph local explanations for node classification in BA-CLIQUES (top) and TREE-
GRIDS (bottom). On the leftmost column, we highlight the local ground-truth structures for the
instance nodes depicted in the illustrations. On the other columns, we display the explanation
subgraphs generated by each method, with nodes color-coded according to the respective explanation
masks. For GRAPHAE and DISENE, the visualized subgraphs represent the most relevant structures
extracted with Algorithm A3 and determined by feature importance attribution from the logistic
regression node classifier. For GNNEXPLAINER and PGEXPLAINER, the node masks correspond to
the algorithm’s output in explaining a 2-layer GCN (Wu et al., 2019) trained on node classification.
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