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Abstract— Recently, neural implicit representations have
been widely introduced for robot mapping to achieve high-
resolution maps. Previous approaches perform well in stable,
and static environments but encounter difficulties when faced
with the challenges posed by moving objects. In this paper,
we propose a entire pipeline for neural implicit mapping and
robust filter-based localization in dynamic environments. The
entire scene can be decomposed into static and transient fields
by implicitly learning geometric information, without the need
for any external data. Moreover, this separation facilitates
robust localization in dynamic environments by integrating a
localization pipeline specifically tailored to the static field. Our
approach is validated against standard and custom datasets,
demonstrating that our implicit neural map has better perfor-
mance than the other neural rendering methods and that our
pipeline is effective in dynamic object removal and accurate
in localization, marking a step forward for efficient navigation
systems.

I. INTRODUCTION

Visual localization is a critical technology across several

domains, including robotics, augmented reality (AR), and

autonomous vehicles. It enables precise positioning within an

existing map, allowing mobile devices to interact seamlessly

with the real world and provide valuable services to humans.

A significant development in this field is the creation of

neural-based dense maps for localization which can generate

photo-realistic scenes from novel viewpoints. NeRF [1],

a representative of implicit neural rendering, can produce

continuous information using only MLP network, in contrast

to explicit representations that generate discrete one. Since

the former one does not directly store 3D points, memory

problem can be solved which is an essential consideration

in robotics task, and still a limitation of explicit map rep-

resentations. Moreover, the framework of NeRF [1] can

be extended to incorporate additional functionalities such

as semantic segmentation [2], and the disentanglement of

object categories [3], making it a versatile tool for various

applications.

One of the challenges in vision-based mapping systems is

the requirement for data devoid of dynamic objects, as their

presence can degrade the quality of the map. Since acquiring
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completely static map data is often impractical, there’s a need

to handle dynamic objects in the input images effectively.

Traditional approaches have relied on supplementary mod-

ules for detecting dynamic objects, such as [4, 5], which

identified moving objects and reconstructed the background

scene using camera motion and static segmentation in RGB-

D images.

Likewise, in traditional approaches, removing dynamic

objects is crucial in NeRF [1] for improved outcomes. STaR

[6] necessitated the use of multi-view video, enabling a

geometrically convenient decomposition but impractical for

the mapping process in robotics. DynamicNeRF [7] and

NSFF [8] required external inputs like semantic segmentation

or optical flow. NeRF-W [9] and NeuralDiff [10] segregated

static and dynamic networks, training them with an aleatoric

uncertainty loss. All these methods employed frequency

encoding [1] leading to a larger network that is unsuitable

for robotics application.

In this paper, we propose an implicit neural-based static

map reconstruction method suitable for robotics. The main

contributions of this work are the following.

1) We construct an implicit neural map optimized for

robotics, focusing on minimizing training and inference time.

This is achieved through the utilization of multiresolution

hash encoding [11] based on an efficient sampling method.

2) Leveraging the capabilities of implicit representations,

we introduce a mapping pipeline that effectively differenti-

ates between static and dynamic elements without relying on

additional external data.

3) We validate our method on both public and custom

datasets, demonstrating effective dynamic object removal

and improved localization accuracy through quantitative and

qualitative evaluations.

II. PROPOSED METHOD

A. Problem Formulation

Our research introduces an implicit neural-based mapping

and localization framework optimized for dynamic environ-

ments. We conceptualize the mapping problem as the process

of learning a transformation from source domain X , which

refers to train datasets obtained in a dynamic scene, to two

target domains: a static domain S and a dynamic one D.

Our mapping methodology can be represented as a function

as follows: G : X → {S,D}.

B. Network Structure

Our mapping algorithm is designed to utilize the concept

of implicit, representing static and dynamic scene separately



Fig. 1. Our advanced pipeline unfolds in two key phases. Initially, the process commences with mapping that leverages implicit neural representations to
delineate both static and transient fields. Subsequently, localization tasks are precisely executed on the static map, ensuring robust to dynamic environment.
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Fig. 2. The loss function (a) for training the coarse network and the
rendering results (b) with and without training it are depicted.

from discrete train database. To tackle this problem, two

systems are prepared as form of neural networks: a static

field (as illustrated in Fig. 1.a) representing the static back-

ground, and a transient field (depicted in Fig. 1.b), designed

for capturing dynamic motion through learning geometric

information.

1) Geometric Field (Fig. 1(a-1)): Prior to every step, we

aim to minimize computational latency for adopting to real-

world robotics tasks. To achieve this, our method is based on

multiresolution hash encoding, proposed Müller et al. [11],

which is called h by ours. After hash encoding h, MLP is

constructed for extracting the latent space for static color

and transient field. The process in Fig. 1(a-1) is as follows,

where v is a feature vector extracted by h and σ, ls, lt are

a static density, latent space of static color and of transient

field respectively:

v = h(x), (σ, ls, lt) = M(v) (1)

2) Static Color Prediction (Fig. 1(a-2)): This process con-

centrates on generating static color from viewing direction

(θ,φ) and static latent space ls.

cs = Sc(θ,φ, ls) (2)

3) Transient Field (Fig. 1(b-1)): Similar to static field

S, both density σt and color ct values are obtained for

representing dynamic field D. Additionally, to recognize

dynamic objects based on the degree of uncertainty, a 3D

uncertainty value β ∈ R
1 is extracted. The uncertainty value

β is utilized in the loss for decomposition of 3D scenes

mentioned in (6).

(σt, ct,β) = T (Et, lt) (3)

4) Sampling Method focused on Static Field (Fig. 1(a-3)):

Photometric-based localization contends with the challenge

of high-quality map reconstruction. In order to obtain accu-

rate RGB and depth values, an efficient sampling method

is required. We propose a sampling method focused on a

static field rather than a transient field to complete dynamic

removal, inspired in [12]. The equation is as follows:

Lprop(t,w
s−t, tc,wc) =

∑

i

1

ωs−t
i

max(0, ωs−t
i − bound(tc,wc, Ti))

2 (4)

ws−t = max(0,ws−wt), bound(tc,wc, T ) =
∑

j:T∩T̂j ̸=∅

ωc
j

(5)

, where t, and tc represent the sampling interval, while ws−t,

wc denote the sum of the weights for the static and coarse

fields, respectively.

C. Loss Function

Our mapping algorithm is trained with an aleatoric uncer-

tainty loss Lalea and sampling-supervision loss Lprop. The

aleatoric uncertainty loss (6) utilizes the rendering value of

3D uncertainty, denoted as β′, to detect dynamics based on

the degree of uncertainty.
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1

2
β′
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(6)

, where ci and ĉi are ground truth and estimated color

value (i.e. ci = ct
i
+ cs

i
). In summary, the training objective

function is as follows:

G∗
t = argmin

Gt

{λa ·Laleat + λp ·Lprop} (7)

, where λa and λb are 1.0 and 0.1 in our implementation,

respectively.

D. Localization based-on Static Map

To achieve neural rendering for interaction with robots,

a localization task is required, which transcends the literal

meaning of rendering. Consequently, our mapping methodol-

ogy extends beyond the foundation established in Loc-NeRF

[13]. Maggio et al. [13] did not account for moving objects

in the training phase, where the neural map can deteriorate

due to occlusions, leading to diminished localization perfor-

mance. Moreover, low update frequencies compromise the

stability of localization. Therefore, we propose a modified

pipeline with increased stability based on multiresolution

hash encoding [11] and consideration for particle weighting

in the static field S. As depicted in Fig. 1, particles on the

neural map are initialized and then propagated based on

odometry values. During the particle filter update process,

only pixels from static field S are utilized for particle

weighting, to avoid the effects of occlusions caused by

dynamic objects present at the time of map construction.

Particle weighting is conducted according to the following

equation:

Ωi = N

(

N
∑

i=1

(Xt(π
i)− S(θ, φ, sπi))

2

)−M

(8)

, where Xt(π
i) denotes the pixel value at pixel coordinate πi

in query image, while S(θ, φ, sπi) denotes the synthesized

scene intensity at that coordinate. Ultimately, our pipeline

applies a static-aware weight update function to not only

perform a dynamic-ignored map but also contribute to more

stable robot navigation through higher update frequencies.

III. EXPERIMENTAL RESULTS

A. Experimental Setting

(a)  Hardware  Setup System (b)  Experiment Place (c)  Reference Lidar Map

Robot  / 

Sensors

Fig. 3. For our experiments, we utilized a mobile robot equipped with a
RGB-D camera (rs-455i) and a MID360 LiDAR for acquiring the reference
pose.

The objective of this session is to evaluate the performance

of static map reconstruction under real-world scenarios

where dynamic objects are present. To achieve this, we

employ both open datasets that contain dynamic objects and

custom datasets which are generated in an indoor laboratory

setting using a mobile robot. The Nvidia RTX 3090 is uti-

lized for training the mapping pipeline, although the system

is designed to be scalable to lower-performance devices in

robotics, as the network is lightweight.

B. Evaluation: Implicit-based Static Map Reconstruction

1) Quantitative Results: Table I presents the average val-

ues of each evaluation on four datasets. For DynamicNeRF,

we only show results for rendering static fields because

DynamicNeRF(S+T) tended to diverge in loss on our custom

dataset. Our method enables the design of networks suitable

for robotics tasks with relatively short inference time and

high-quality rendering performance.

TABLE I

QUANTITATIVE PERFORMANCE COMPARISON FOR IMPLICIT MAPPING IN

STANDARD DATASETS: SCORES ARE SHOWN AS mean; THE FIRST AND

SECOND BEST SCORES (IN EACH COL) ARE COLORED RED, AND

ORANGE, RESPECTIVELY

PSNR ↑ Abs Err ↓ Train. Time (min) ↓ Infer. Time (sec) ↓
DynamicNeRF(S) 25.20 154.70 23.45 0.124

NSFF 25.03 24.44 160.2 0.247

NeRF 26.26 148.76 55.07 0.514

NeRF-W 26.40 111.45 197.66 0.594

Ours 30.37 7.26 58.72 0.026

2) Qualitative Results: We perform comparative exper-

iments on methodologies that involve reconstructing static

fields in datasets containing dynamic objects. To ensure fair

training, all models are trained for 20 epochs. As depicted

in Fig. 4, NSFF and DynamicNeRF struggle to achieve high

rendering performance or complete static map reconstruction

on our custom datasets. In contrast, our methodology consis-

tently achieves successful rendering across various datasets,

including forward-facing scenes in open datasets and indoor

custom and replica datasets. In Fig. 5(a), NeRF-W faces

challenges in achieving complete static map reconstruction

due to its transient field capturing high-frequency signals.

In contrast, our transient field exhibits minimal artifacts. As

illustrated in Fig. 5(b), our approach enables high-quality

rendering, surpassing NeRF-W, which inaccurately classifies

portions of the static environment as dynamic.

C. Evaluation: Localization based on Static Map

In this experiment, we demonstrate that our proposed

methodology contributes to the enhancement of localiza-

tion performance. The comparative model is Loc-NeRF, a

particle-filter based localization methodology. Additionally,

LiDAR localization is established as the reference pose for

our custom dataset.

1) Quantitative Results: To verify the quantitative perfor-

mance of our localization, we use the Absolute Trajectory

Error(ATE). According to Fig. 6, both methodologies show

stable performance in a static environment. However when



In
p

u
t

N
eR

F
N

eR
F

-W

D
y

n
a

m
ic

N
eR

F
N

S
F

F
3

G
S

O
u

rs

Kid-running ReplicaSkating Custom 1

Fig. 4. Qualitative comparison of static implicit mapping on standard and
custom datasets.
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Fig. 5. Comparative analysis of the qualitative performance in transient
color rendering between our method and NeRF-W. NeRF-W’s inaccurate
transient color estimation diminishes the quality of static map reconstruction
task.

it comes to dynamic, the artifacts left in Loc-NeRF’s map

make localization unstable, whereas our shows decent perfor-

mance, thanks to the capability of distinguishing static from

dynamic scenes. Table II evaluates the quantitative amount

of error in position and rotation after convergence. As shown

in Fig. 6, our method shows stable performance in dynamic

scene with low mean and variance error for position and

rotation.

2) Qualitative Results: In the realm of implicit neural

map-based localization, filter-based methodologies are sig-

nificantly affected by the inference time required for particle

updates. Fig. 7 presents sequential images rendered from the

estimated poses. Since pose estimation relies on analyzing

photometric error between the query and rendered images,

TABLE II

COMPARISON OF LOCALIZATION PERFORMANCE ON STATIC AND

DYNAMIC ENVIRONMENTS. SCORES REPRESENT

POSITION(P)/ROTATION(R) MEAN, VARIANCE ERROR AND POSE

UPDATING SPEED.

Method µp (m) σp (cm) µr (rad) σr (rad) FPS (Hz)

Loc-NeRF (Static) 0.0453 2.7222 0.0789 0.0061 3.56

Ours (Static) 0.0458 2.5217 0.0495 0.0110 5.25

Loc-NeRF (Dynamic) 0.1099 5.7383 0.3474 0.0140 3.72

Ours (Dynamic) 0.0645 3.4647 0.1151 0.0086 5.03
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Fig. 6. Localized trajectories by Loc-NeRF and our method, tested under
two conditions: with and without dynamic elements. Here, reference denotes
LiDAR localization.

any discrepancies observed between these images directly

translate into errors in the localization task. Notably, our

method has demonstrated superior precision in localization

compared to Loc-NeRF. This indicates that the higher update

rate of our approach enhances the accuracy of localization.
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Fig. 7. Rendered images at the poses estimated by each algorithm. Pixel-
wise discrepancies between the observed and rendered images indicate
localization errors.

IV. CONCLUSION

Our work contributes to the fields of robotics and neu-

ral rendering by presenting a static implicit neural map

with learning geometric information and then improving the

vision-based localization system. We proved that the static

map reconstructed by separating occlusion from real dynamic

scene play a crucial role in photometric-based robotics tasks.

In the future, it could be extended to large-scale, which is

limited to about the size of a room, yet.
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