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Abstract
Humans are thought to predict the next words001
during sentence comprehension, but under002
unique circumstances, they demonstrate an abil-003
ity for longer coherent word sequence predic-004
tion. In this paper, we investigate whether005
Transformers can model such hyperprediction006
observed in humans during sentence process-007
ing, specifically in the context of Japanese008
buzzer quizzes. We conducted eye-tracking ex-009
periments where the participants read the first010
half of buzzer quiz questions and predicted the011
second half, while we modeled their reading012
time using the GPT-2. The results showed that013
the GPT-2 can partially capture human hyper-014
prediction. When the language model was fine-015
tuned with quiz questions, the perplexity value016
decreased. Lower perplexity corresponded to017
higher psychometric predictive power; how-018
ever, excessive data for fine-tuning led to a de-019
crease in perplexity and the fine-tuned model020
exhibited a low psychometric predictive power.021
Overall, our findings suggest that a moderate022
amount of data is required for fine-tuning in023
order to model human hyperprediction.024

1 Introduction025

It is widely recognized that the probability of a026

word within a specific context (i.e., surprisal) af-027

fects the difficulty of processing during incremental028

human language comprehension (Hale, 2001; Levy,029

2008). Based on this premise, researchers have030

compared a variety of language models in terms031

of how well their surprisal correlates with human032

reading behavior (Wilcox et al., 2020; Kuribayashi033

et al., 2021; Van Schijndel and Linzen, 2021).034

However recent works found that this cannot035

be applied to very large language models, which036

provides a poorer fit to human reading times. Oh037

and Schuler (2023) argues that larger Transformer-038

based models ‘memorize’ sequences during train-039

ing, and their surprisal estimates diverge from hu-040

manlike expectations.041

In those studies on cognitive modeling, self- 042

paced reading experiments and eye-movement cor- 043

pora are employed to utilize data regarding human 044

reading times (Kennedy et al., 2013; Asahara et al., 045

2016; Futrell et al., 2018; Goodkind and Bicknell, 046

2018; Yoshida et al., 2021). These corpora typi- 047

cally use newspaper and novel texts as material and 048

measure the reading time required for participants 049

to read and comprehend the text. These works have 050

devoted much attention to understanding everyday 051

sentence comprehension, particularly the predic- 052

tion of the next word. 053

In such typical sentence comprehension, psy- 054

cholinguistics research has emphasized humans’ 055

use of contextual information to predict the next 056

word while reading (Kutas and Hillyard, 1984; Alt- 057

mann and Kamide, 1999; Kamide et al., 2003). 058

However, when comprehending a sentence, hu- 059

mans can sometimes make predictions about the 060

whole sentence that go beyond the next word pre- 061

diction (hereafter referred to as “hyperprediction”). 062

This phenomenon requires comprehenders to antic- 063

ipate not only the next word but also the structure 064

of subsequent sentences. Although hyperprediction 065

is an important aspect of human prediction in sen- 066

tence processing, it has received limited attention 067

in modeling research. 068

In this paper, we aim to fill this gap by evaluating 069

the language models’ capacity to model human pre- 070

dictive processes, particularly in tasks emphasizing 071

hyperprediction. Specifically, we investigate hyper- 072

prediction in the context of buzzer quiz. Buzzer 073

quiz is a popular type of quiz game (Tokuhisa, 074

2012), and buzzer quiz players are known to engage 075

in this predictive process (Izawa, 2021). By inves- 076

tigating hyperprediction, a critical aspect of human 077

predictive ability, we seek to provide insights into 078

the degree to which language models resemble hu- 079

man predictive ability in sentence processing, not 080

just the next word, but the entire sentence structure. 081

In summary, our key contributions are as fol- 082
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Figure 1: The process of the experiment. Human total reading time measured in the eye-tracking experiment was
modeled with surprisal computed by pre-trained GPT-2 and fine-tuned GPT-2.

lows:083

• This paper studies data collected from native084

Japanese speakers, which complements most085

studies using data collected in western lan-086

guages.087

• Our results demonstrate that the GPT-2 can088

partially model human hyperprediction to089

some extent.090

• Analyses on fine-tuning reveal that fine-tuned091

GPT-2 can model human hyperprediction092

more accurately.093

2 Related work094

2.1 Prediction in human sentence processing095

Psycholinguistics research spanning several096

decades has consistently suggested that humans097

engage in predictive processes while comprehend-098

ing sentences (Ehrlich and Rayner, 1981; Kutas099

and Hillyard, 1984; Altmann and Kamide, 1999;100

Kamide et al., 2003; Pickering and Garrod, 2013;101

Martin, 2018). Psycholinguists have employed102

diverse methodologies to explore human behavior103

in sentence comprehension. Altmann and Kamide104

(1999) and Kamide et al. (2003) employed the105

Visual World Paradigm and revealed that humans106

utilize contextual cues within sentences to predict107

upcoming words, such as direct objects or verbs.108

Additionally, Kutas and Hillyard (1984) conducted109

EEG experiments and demonstrated that encounter-110

ing a word unrelated to the context elicits a large111

N400 response in readers, which is associated with112

a semantic gap between a word and its context.113

Moreover, the process of next-word prediction114

during human sentence processing has been115

investigated and recent research has highlighted116

the necessity of the speech production system in 117

generating lexical predictions during sentence 118

comprehension (Martin, 2018). These studies 119

emphasize that humans utilize the preceding 120

context as a crucial cue for predicting upcoming 121

words. 122

However, humans demonstrate the ability to pre- 123

dict longer sequences of words in a special situation 124

such as in a buzzer quiz (Izawa, 2021). Skilled quiz 125

players can answer correctly by only listening to 126

a few words of the question sentence. In this con- 127

text, they are not only required to predict the next 128

word but also anticipate the structure of the entire 129

sentence. 130

This ability to make strong predictions during 131

sentence comprehension is a crucial aspect of sen- 132

tence processing, but it has received limited atten- 133

tion in previous research. Therefore, this study 134

specifically focuses on human hyperprediction. 135

2.2 Surprisal theory 136

Surprisal theory is a widely accepted concept in 137

computational psycholinguistics, particularly in 138

cognitive modeling research. As Eq(1) shows, sur- 139

prisal is calculated as the negative logarithm of the 140

probability of a word or sequence of words occur- 141

ring in a particular context. 142

Surprisal = − logP (word|context) (1) 143

This theory proposes that the processing diffi- 144

culty of a word is determined by its predictability 145

within its preceding context (Hale, 2001; Levy, 146

2008; Smith and Levy, 2013). Put simply, the eas- 147

ier a word is to predict, the lower the cognitive load 148

associated with it. Surprisal serves as a measure 149

of its processing difficulty. In order to evaluate 150
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Question Type

easy

easy

difficult

difficult

Table 1: Examples of parallel quizzes. In each question, the words in red in the first half are contrasted with those in
blue in the second half. The first and second quizzes are the easy type of parallel quizzes, and the third quiz is the
difficult type.

“human-like” trends of the language models, stud-151

ies have been conducted to compare the surprisal152

calculated by language models with data obtained153

from humans, such as eye movement and EEG154

(Fossum and Levy, 2012; Smith and Levy, 2013;155

Frank et al., 2015; Wilcox et al., 2020; Yoshida156

et al., 2021).157

For example, Wilcox et al. (2020); Goodkind158

and Bicknell (2018) compared various models by159

computing how well their next-word expectations160

predict human reading time behavior on naturalistic161

text corpora, and found that the less perplexity of a162

model, the better its psychometric predictive power.163

The previous research most closely related to our164

work is Kuribayashi et al. (2021). They exploited165

the Japanese eye-track corpus BCCWJ and showed166

that Japanese language models with lower perplex-167

ity did not always exhibit better psychometric pre-168

dictive power, which was different from English169

language models. This is the same trend that we170

reveal in this work on human hyperprediction.171

Our work uses eye movement data following172

previous research. The surprisal calculated by the173

“human-like” language model is expected to cor-174

relate better with the human reading time of each175

word.176

3 Buzzer quiz in Japanese177

Buzzer quiz is a type of quiz where participants178

compete to answer questions quickly by buzzing179

in with a buzzer. In a buzzer quiz, a moderator or180

host reads out questions to the players. Each player181

is equipped with a buzzer and when players know182

the answer to a question, they buzz in to signal that183

they want to answer. The first person or team to184

buzz in gets the opportunity to answer the question. 185

While quiz players are listening to the question, 186

they are said to predict the rest of the question sen- 187

tence, not just the next word, but the entire sentence 188

(Izawa, 2021). Typically, the players try to buzz 189

the button even before the question is fully read. 190

In order to investigate human predictive process- 191

ing when reading quiz questions, we experimented 192

with parallel quizzes, which are typical among 193

Japanese quizzes and where prediction is said to be 194

important (Izawa, 2021). Parallel quizzes always 195

have a consistent format as follows: 196

For A,X(A) = xa, but what is X(B) ? 197

The first half of the question sentence is the premise 198

of the question and the second half is the main topic 199

of the question, where B can be partially predicted 200

from A. 201

Table 1 shows examples of parallel quizzes, 202

which contrast two things in the first and second 203

halves of the question text. In terms of the ease of 204

predicting the second half of a question, parallel 205

quizzes fall into two categories. The first and sec- 206

ond questions of Table 1 are categorized as easy 207

parallel quizzes, which can be answered by only 208

listening to the first half of the question without 209

listening to the second half. For example, the first 210

parallel quiz on table 1 is about a football pitch. 211

The first half of the question sentence explains the 212

shorter edge of the pitch, then the quiz players can 213

predict that the longer edge of the pitch will be 214

contrasted and answer correctly (i.e., touchline) be- 215

fore the sentence is fully read. Skilled buzzer-quiz 216

players can answer this kind of parallel quiz very 217

quickly. 218
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Figure 2: sentence-production task (+predic). Partic-
ipants read the first half of a parallel quiz and predict
what will follow. They orally answered the completion
of the question in the second screen.

On the other hand, in the third difficult parallel219

quiz, the country contrasted with the word “the220

United States of America” is not obvious, so it is221

difficult to perfectly predict the second half of the222

question.1223

4 Experiment224

Figure 1 illustrates the experimental procedure,225

wherein human reading time was measured through226

eye-tracking experiments. Subsequently, these data227

were modeled using surprisal computed by lan-228

guage models.229

4.1 Eye-tracking experiment230

We conducted an eye-tracking experiment to mea-231

sure the time for reading and predicting parallel232

questions.233

Participants We recruited 32 native Japanese234

speakers, aged 18 to 24. Among them, seven par-235

ticipants were classified as experts due to their236

previous involvement in quiz clubs during high237

school or university, where they regularly partici-238

pated in buzzer quiz activities. The remaining 25239

novice participants had no prior experience with240

such activities.241

Before the experiment, each participant received242

detailed information about the study procedures243

and how their data would be used. Written consent244

to participate in the experiment was obtained from245

each participant.246

Stimulus sentences In this experiment, we used247

parallel quiz questions as stimulus sentences. All248

of them were extracted from a corpus of Japanese249

1One of the quiz players who participated in our experi-
ment told that he was able to anticipate that the United Mex-
ican States would be contrasted with the United States of
America because the only two countries known as “United
States” in the world are the USA and Mexico.

Figure 3: sentence-comprehension task (-predic). Par-
ticipants read a sentence and answer a comprehension
test on the following screen.

buzzer quiz questions called JAQKET. We prepared 250

20 easy parallel quizzes with a predictable second 251

half, and 20 difficult quizzes with an unpredictable 252

second half as stimulus sentences for the exper- 253

iment.2 Additionally, 40 random quiz sentences 254

were added as fillers. 255

Tasks In this experiment, participants performed 256

two types of tasks: a sentence-production task 257

(+predic) and a sentence-comprehension task (- 258

predic). These two tasks were shown to the partic- 259

ipants in a randomized order.3 In this experiment, 260

the total reading time (TRT) of each word on the 261

first screen was measured. 262

Figure 2 illustrates the process of a sentence- 263

production task. Participants viewed the first half of 264

a parallel quiz on the screen. They were instructed 265

that even though there was no set time limit, they 266

were encouraged to press the button as quickly as 267

possible once they hit upon a continuation for the 268

question.4 After pressing the button, they verbally 269

answered on the second screen. 270

Figure 3 depicts the procedure of the sentence- 271

comprehension task. The first half of the paral- 272

lel quiz was displayed as a declarative sentence. 273

The participants pressed the button after reading it 274

and answered the comprehension test on the next 275

screen. 276

4.2 Language models 277

The surprisal for each subword was calculated us- 278

ing GPT-2 (Radford et al., 2019) published by rinna 279

(Chou and Sawada, 2021) on Huggingface. Experi- 280

ments were conducted using both the pre-trained 281

2These questions were selected from a wide range of gen-
res to avoid bias.

3Each participant read 20 question sentences in +predic
condition and the other 20 in -predic condition.

4This replicates the situation in quiz competitions, where
participants must buzz in as quickly as possible.
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model5 and fine-tuned models.282

The surprisal for the ith subword wi is cal-283

culated based on the next-word probabilities284

P (wi|w1, ..., wi−1) computed by those language285

models:286

Surprisali = − logP (wi|w1, ..., wi−1) (2)287

Pre-trained GPT-2 GPT-2 calculated the sur-288

prisal for each in the sentence utilized in the eye-289

tracking experiment.290

Fine-tuned GPT-2 We fine-tuned the GPT-2291

with parallel quizzes extracted from the following292

resources.293

• JAQKET (Suzuki et al., 2020)294

The JAQKET corpus comprises Japanese295

buzzer quiz questions, originally assembled296

for an AI competition aimed at developing297

systems capable of answering such quiz ques-298

tions. It contains over 15,000 questions uti-299

lized in buzzer quiz competitions for college300

students.301

• QuizWorks 6302

This corpus comprises 18,477 questions cu-303

rated by enthusiasts of buzzer quizzes. Each304

question is categorized by genre and format.305

Questions identified as “parallel quiz” were306

selected for fine-tuning purposes. All the quiz307

questions in this corpus are available for sec-308

ondary use.309

• Quiz-no-Mori 7310

This website gathers numerous buzzer quiz311

questions utilized in competitions. Only ques-312

tions that are available for secondary use were313

used for fine-tuning.314

From these corpora, we extracted 4,100 parallel315

quizzes for fine-tuning. The dataset for fine-tuning316

was divided into 10 splits of increasing size, rang-317

ing from 10 to 4,100 data points(10, 100, 200, 300,318

500, 700, 1,000, 1,500, 2,000, 4,100).8 For each319

5GPT-2 used in this experiment was rinna/japanese-
gpt2-medium(https://huggingface.co/rinna/
japanese-gpt2-medium). This model is published
under MIT license.

6https://quiz-works.com/
7https://quiz-schedule.info/quiz_no_mori/data/

data.htm
8The fine-tuning process with the full dataset size (4,100

data points) required approximately 15 minutes using a single
NVIDIA Tesla T4 GPU.

data size, we conducted fine-tuning five times us- 320

ing different seed values. The epoch number in 321

training was set to ten for each fine-tuning. For 322

conditions with 2,000 data points or fewer, the sen- 323

tences used for fine-tuning were randomly selected. 324

Importantly, none of the questions employed in 325

the eye-tracking experiments were included in the 326

fine-tuning data. 327

4.3 Evaluation metrics 328

Psychometric Predictive Power (PPP): The 329

surprisal measure serves as a commonly uti- 330

lized information-theoretic complexity metric. In 331

essence, a model’s ability to predict human reading 332

behavior is often assessed by comparing the sur- 333

prisal values computed by the model with the read- 334

ing times of human participants. Higher correspon- 335

dence between the trends of model-generated sur- 336

prisals and human reading times indicates greater 337

psychometric predictive power. Previous studies 338

have evaluated the psychometric predictive power 339

of language models by comparing the surprisal val- 340

ues generated by each model with human reading 341

times. 342

In our eye-tracking experiment, we quantified 343

the reading time for each character and computed 344

the total reading time for each subword by sum- 345

ming the total reading times of all characters within 346

the subword. 347

To examine the impact of surprisal on model- 348

ing human reading behavior, we employed a linear 349

mixed-effects regression (Baayen et al., 2008) with 350

the lmer function in the lme4 package (Bates et al., 351

2014) in R (R Core Team, 2023). This model aimed 352

to predict the total reading time (TRT) of each sub- 353

word using the following formula: 354

log(TRT) ∼ surprisal+ length 355

+ is_first+ is_last+ lineN 356

+ segmentN+ log_freq 357

+ prev_length+ log_freq_prev 358

+ (1|subject_id) + (1|item_id) 359

The detailed description of each variable is pro- 360

vided in table 3 in the Appendix. 361

The regression model included the surprisal fac- 362

tor with other baseline factors, which were previ- 363

ously examined in existing studies (Asahara et al., 364

2016; Wilcox et al., 2020; Kuribayashi et al., 2021; 365

Yoshida et al., 2021). Factors found to be insignif- 366

icant (p > 0.05) for modeling reading time were 367

excluded. The frequency (freq) of each subword 368
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condition #data points
∆logLik

(/105)
-predic 7869 1.602
+predic 8361 1.856

+predic, novice 6351 1.801
+predic, expert 2010 2.140
+predic, easy 4579 2.390

+predic, difficult 3782 1.912

Table 2: PPP (i.e., ∆logLik) for each condition of the
pre-trained GPT-2. These values are the mean per-word
∆logLik of the model on held-out test data, averaged
over 10-fold cross-validation. “#data points” is the num-
ber of reading time annotations used in our experiments.
Surprisal values computed from the pre-trained GPT-2
were found to more accurately model the reading time
for expert participants than for novice participants. Ad-
ditionally, these values more effectively modeled the
reading time of easy questions as compared to difficult
ones.

was calculated based on the occurrences of each369

token within a corpus of 14 million paragraphs,370

extracted from Japanese Wikipedia.371

To isolate the effect of surprisal on reading time372

modeling, we trained a baseline regression model373

without including surprisal information. Following374

the approach outlined by Wilcox et al. (2020), we375

computed the mean by-segment difference of log-376

likelihood between the model with surprisal values377

and the baseline model. This metric is referred to378

as ∆logLik. A ∆logLik score of zero indicates that379

surprisal from a language model is ineffective at380

all for reading time modeling. Conversely, a high381

∆logLik score suggests that the language model’s382

surprisal values are effective for modeling read-383

ing time, indicating a high psychometric predictive384

power.385

Considering the low amount of data, we report386

mean per-word ∆logLik of the model on held-out387

test data, averaged over 10-fold cross-validation as388

suggested by Wilcox et al. (2020).389

Perplexity (PPL): In order to evaluate if fine-390

tuning enabled the language models to better pre-391

dict the next word in parallel quizzes, we calcu-392

lated the perplexity of each model. PPL is the393

inverse geometric mean of next-word probabili-394

ties P (wi|w1, ..., wi−1) in a text that consists of N395

words (w1, w2, ..., wN ), and it is a typical evalua-396

Figure 4: Relationship between the size of data used
for fine-tuning (X-axis) and mean perplexity of the five
fine-tuned models with different seeds (Y-axis). As the
fine-tuning data set enlarges, a corresponding decrease
in perplexity is observed.

tion metric for unidirectional language models: 397

PPL =
N∏
i=0

P (wi|w1, ..., wi−1)
− 1

N (3) 398

A low perplexity (PPL) suggests that the lan- 399

guage model effectively anticipates the next word 400

based on its contextual information. The goal of 401

training and fine-tuning language models is to min- 402

imize the perplexity computed by the model. In 403

our experiments, we evaluated the perplexity of a 404

language model using texts from the eye movement 405

data, ensuring they do not overlap with the training 406

dataset. 407

5 Results 408

5.1 GPT-2 409

Table 2 shows the psychometric predictive power 410

(i.e., ∆logLik) for each condition of the pre-trained 411

GPT-2. In the +predic condition, the surprisal term 412

was found to be significantly effective in the regres- 413

sion model. In the sentence-production experiment 414

(i.e., +predic condition), the participants read the 415

first half of parallel quiz questions, and predicted 416

what would follow. Therefore, these findings sug- 417

gest that the pre-trained language model can ef- 418

fectively model the reading time associated with 419

human ‘hyper-prediction’ when reading a parallel 420

quiz question. 421

In the +predic condition, the reading time of the 422

expert participants from the quiz club was modeled 423

more accurately than novice participants. As for 424

the question difficulty, the total reading time for 425
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Figure 5: Relationship between the size of data used for fine-tuning (X-axis) and psychometric predictive power, i.e.,
∆logLik (Y-axis). Error bars are standard errors of by-fold mean ∆logLik per token, using 10-fold cross-validation
for five fine-tuned models with different seeds.

each subword was better modeled in easy parallel426

quiz questions (+predic, easy condition) than in427

difficult ones (+predic, difficult condition).428

The results show that surprisal has more predic-429

tive power on human reading times in a condition,430

where one has to think of possible continuations,431

as compared to a baseline condition.432

5.2 Fine-tuned GPT-2433

Fig 5 illustrates the relationship between the size of434

the dataset used for fine-tuning and psychometric435

predictive power (∆logLik) of language models in436

+predic condition (i.e., sentence-production exper-437

iment). Each point represents a language model,438

with the Y-axis indicating the model’s psychomet-439

ric predictive power (higher scores indicate better440

performance) and the X-axis indicating the size of441

the dataset. The number of data points used for442

fine-tuning ranged from 10 to 4,100: 10, 100, 200,443

300, 500, 700, 1,000, 1,500, 2,000, and 4,100.444

Blue points represent the modeling of the read-445

ing time for novice participants, while red points446

represent expert participants.447

As Fig 4 shows, the perplexity tended to de-448

crease as the number of data used for fine-tuning449

increased.450

Novice participants Language models fine-451

tuned with parallel quiz questions exhibited higher452

psychometric predictive power values than the pre-453

trained model. Increasing the number of data used454

for fine-tuning resulted in a smaller increase in psy-455

chometric predictive power.456

The maximum value of psychometric predictive457

power was achieved with the language model fine-458

tuned with 1,500 sentences in the +predic, novice, 459

easy condition and 1,000 sentences in the +predic, 460

novice, difficult condition. 461

Expert participants The highest psychometric 462

predictive power for the fine-tuned model, regard- 463

less of the number of data points used, was ob- 464

served when expert participants read easy types of 465

parallel quizzes (i.e., +predic, expert, easy condi- 466

tion). 467

In both easy and difficult conditions, the psycho- 468

metric predictive power of fine-tuned models in- 469

creased with the number of data points used for fine- 470

tuning. The maximum psychometric predictive 471

power was reached at 2,000 (+predic, expert, easy 472

condition) or 1,500 data points (+predic, expert, dif- 473

ficult condition); however, beyond this threshold, 474

a sharp decrease in psychometric predictive power 475

was observed. Interestingly, across all four condi- 476

tions, the peak psychometric predictive power did 477

not coincide with the maximum quantity of training 478

data. 479

6 Discussion 480

In this study, we focused on a phenomenon defined 481

as hyperprediction, where humans are thought to 482

predict not just the immediate next word, as is 483

typically assumed during sentence comprehension, 484

but also longer sequences of words and overall 485

sentence structure. We utilized cognitive model- 486

ing techniques to examine if language models can 487

capture this particular aspect of human prediction 488

processing ability. 489

The pre-trained GPT-2 demonstrated its highest 490

psychometric predictive power in the +predic, ex- 491
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pert, easy condition, where human hyperprediction492

was expected to be most prominent. Conversely,493

it exhibited lower scores in the novice and diffi-494

cult conditions, where hyperprediction was more495

challenging. Our findings suggest that even the496

pre-trained GPT-2 can partially capture human hy-497

perprediction.498

The surprisal from GPT-2 correlates better with499

the reading times of experts rather than novices,500

and with the +predic condition over the -predic501

condition. We consider that this result potentially502

implies the following: These results suggest that503

the language processing of GPT-2 aligns more with504

the hyperprediction capabilities of experts, who ex-505

cel at predicting longer word sequences, rather than506

the prediction processing of average humans dur-507

ing normal reading. This may also suggest that the508

reason language models such as GPT-2 don’t repli-509

cate the average human behavior is that, at least in510

some instances, they emulate expert behavior.511

The fine-tuned models exhibited the highest psy-512

chometric predictive power in the +predic, expert,513

easy condition. This condition, characterized by514

participants’ familiarity with parallel quizzes and515

their ease in making predictions, can be considered516

to reflect human hyperprediction. Language mod-517

els demonstrated an ability to capture this aspect of518

human sentence processing.519

As Fig 4 shows, the process of fine-tuning re-520

sulted in a decrease in perplexity, indicating that521

language models became more adept at predict-522

ing the next word in parallel quizzes. Specifically,523

when fine-tuned with 1,500 or 2,000 parallel quiz524

sentences or less, lower perplexity corresponded to525

higher psychometric predictive power, suggesting526

improved model performance.527

However, The GPT-2 model fine-tuned with the528

most data did not necessarily exhibit the highest529

psychometric predictive power value. This could530

be attributed to the excessive data causing the531

model’s surprisal to the sentence to decrease exces-532

sively. Consequently, the model may have failed533

to prioritize important words that typically require534

longer human reading time. This trend aligns with535

previous findings in Japanese language modeling536

research (Kuribayashi et al., 2021), which argue537

that lower perplexity does not always equate to538

human-like performance. A similar trend has been539

reported by Oh and Schuler (2023). They revealed540

that very large language models underestimated541

human processing difficulty. Our results align with542

these assertions.543

7 Conclusion 544

This study investigated human hyperprediction in 545

buzzer quizzes. Human hyperprediction during 546

sentence processing involves not only predicting 547

the next word, but also longer sequences of words 548

and the overall structure of the sentence, which 549

distinguishes it from regular prediction process- 550

ing in sentence comprehension. In this study, we 551

conducted experiments to test whether language 552

models can capture this particular aspect of human 553

predictive processing ability. 554

Our results showed that the pre-trained GPT-2 555

partially modeled human reading time while read- 556

ing parallel quizzes, which suggested that language 557

models can indeed capture aspects of human hyper- 558

prediction. 559

Furthermore, language models fine-tuned with 560

parallel quizzes modeled human hyperprediction 561

in buzzer quizzes better than the pre-trained GPT-2. 562

Specifically, the highest predictive power was ob- 563

served in conditions where hyperprediction would 564

be most prominent (i.e., +predic, expert, and easy 565

condition). Notably, fine-tuning resulted in a sig- 566

nificant increase in predictive power values. How- 567

ever, excessive fine-tuning data (exceeding 1,500 568

or 2,000 data points) led to a decrease in perplexity 569

and subsequently to reduced psychometric predic- 570

tive power. This trend aligns with findings reported 571

in previous work (Kuribayashi et al., 2021). Over- 572

all, our findings suggest that a moderate amount of 573

data is required for fine-tuning in order to model 574

human hyperprediction. 575

Limitations 576

Our study focused on Japanese parallel quizzes and 577

employed an eye-tracking experiment to measure 578

the total reading time for each subword in parallel 579

quiz questions. However, in buzzer quiz compe- 580

titions, questions are typically orally read aloud. 581

Players utilize intonation and prominence cues to 582

consider the answer to the quiz, particularly in par- 583

allel quizzes where the moderator emphasizes the 584

contrasted words in the first half of the question. 585

Skilled players exploit such phonological informa- 586

tion to anticipate the answer and buzz in as quickly 587

as possible. Future research could explore incorpo- 588

rating these oral reading dynamics into language 589

models. Additionally, buzzer quiz players are influ- 590

enced by various factors, including game rules and 591

competitors’ scores. Factors like strict penalties 592

for wrong answers may lead players to hesitate to 593

8



buzz in unless they reach a reliable prediction for594

the question’s continuation. Conversely, players595

with lower scores may adopt a more aggressive596

approach, buzzing in even without full certainty597

about the answer. These varying confidence levels598

in predicting subsequent question text may differ599

from the prediction in the simplified situation of our600

eye-tracking experiment. Future studies can further601

explore these nuanced factors to gain a comprehen-602

sive understanding of quiz players’ hyperprediction603

and the language model’s ability to capture such604

hyperprediction.605

Additionally, this eye-tracking experiment re-606

cruited a relatively small number of expert partici-607

pants. There are 40 target items and 40 filler items,608

and given that the sentences are short, a total of 32609

participants were few.610

As for the statistical analysis, surprisal value611

was calculated for each subword. The GPT-2 to-612

kenizer utilized in our experiment was trained us-613

ing the Byte Pair Encoding (BPE) method. Con-614

sequently, since Japanese language is not written615

with a space between words, subwords that include616

a word boundary exist, resulting in reading time617

analyses based on subwords rather than individ-618

ual words. For future work, training a tokenizer619

using a method that does not contain word bound-620

aries within a single subword could allow for more621

cognitively valid analyses.622

Ethical considerations623

The eye-track experiment conducted in our work624

was approved by the research ethics committee of625

the university.626

Buzzer quiz is a game of knowledge where par-627

ticipants may feel defeated if they are unable to628

answer a question. Prior to conducting the eye-629

tracking experiment, we emphasized to participants630

that the purpose of the experiment was not to assess631

their knowledge level. We made efforts to ensure632

that participants felt comfortable and performed633

naturally, without undue stress or pressure.634

The data collected in this experiment included635

the timing of participants’ button presses and the636

reading time of each word, calculated from their637

gaze location on the screen. These data were638

anonymized by assigning a random subject ID to639

each participant, thereby ensuring the separation of640

personal information from experimental data.641

We aimed to ensure fair payment. As mentioned642

in the paper, our participants were recruited from643

the university and received compensation of 1,000 644

yen for their one-hour participation in the experi- 645

ment. The compensation amount was determined 646

following the university’s guidelines. 647

Furthermore, in line with the ACL 2023 Policy 648

on AI Writing Assistance, we utilized ChatGPT by 649

OpenAI and Grammarly for writing assistance. 650
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Factor name Type Description
surprisal num surprisal calculated by each language model

TRT num total reading time for each token
length int the number of characters

is_first factor the leftmost token within the line
is_last factor the rightmost token within the line
lineN int the serial number of the line where the token is displayed

segmentN int the serial number of the token within the line
log_freq num log of the frequency of the token

prev_length int length of the previous token
prev_freq num log_freq of the previous token
subject_id factor ID assigned to each participant
item_id factor ID assigned to each item

Table 3: Factors used in regression models.

n_layer 24
n_embd 1024
n_head 16

n_position 1024
vocab_size 32000

Table 4: Model architecture of GPT-2 we used in our work.

Optimizer AdamW
Learning rate 5e-05

Number of epochs 10
Dropout rate 0.1
Batch size 1

Table 5: Hyperparameters for our fine-tuning.

A Factors used in regression model 774

Table3 shows the description of the factors used in 775

our regression models. The frequency of a token 776

(used in log_freq) was calculated using 14 million 777

paragraphs extracted from Japanese Wikipadia. 778

B Model architecture 779

The model architecture of GPT-2 we used in our 780

work is shown in Table4. The model is available 781

on Hugging Face. 9 782

C Hyperparameters 783

Hyperparameters for our work are shown in Table 784

5, which followed default settings. 785

9https://huggingface.co/rinna/japanese-gpt2-medium
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