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Abstract

Research in Neuroscience, as in many scientific disciplines, is undergoing a re-
naissance based on deep learning. Unique to Neuroscience, deep learning models
can be used not only as a tool but interpreted as models of the brain. The cen-
tral claims of recent deep learning-based models of brain circuits are that they
make novel predictions about neural phenomena or shed light on the fundamental
functions being optimized. We show, through the case-study of grid cells in the
entorhinal-hippocampal circuit, that one may get neither. We begin by reviewing
the principles of grid cell mechanism and function obtained from first-principles
modeling efforts, then rigorously examine the claims of deep learning models of
grid cells. Using large-scale architectural and hyperparameter sweeps and theory-
driven experimentation, we demonstrate that the results of such models may be
more strongly driven by particular, non-fundamental, and post-hoc implementation
choices than fundamental truths about neural circuits or the loss function(s) they
might optimize. We discuss why these models cannot be expected to produce accu-
rate models of the brain without the addition of substantial amounts of inductive
bias, an informal No Free Lunch result for Neuroscience. Based on first principles
work, we provide hypotheses for what additional loss functions will produce grid
cells more robustly. In conclusion, circumspection and transparency, together with
biological knowledge, are warranted in building and interpreting deep learning
models in Neuroscience.

1 Introduction

Over the past decade, deep learning (DL) has underpinned nearly every success story in machine
learning, e.g., [57, 6] and increasingly many advances in fundamental science research, e.g., [36]. In
neuroscience, DL is similarly gaining widespread adoption as an indispensable method for behavioral
and neural data analysis [52, 50, 28, 43, 40, 46].

But DL offers a unique contribution to neuroscience that goes beyond its role in other fields, in that
deep networks can be viewed as models of the brain. The success of DL in matching or surpassing
human performance suggests it is now possible to construct models of circuits that may underlie
human intelligence. As a recent review wrote, “researchers are excited by the possibility that deep
neural networks may offer theories of perception, cognition and action for biological brains. This
approach has the potential to radically reshape our approach to understanding neural systems" [54].
Further, DL is a democratizing force for building neural circuit models of complex function.

Here, we examine the essential claims (and promises) of DL-based models of the brain, which are that
1) Because the models are trained on a specific optimization problem, if the resulting representations
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match what has been observed in the brain, then the models reveal which optimization problem(s)
the brain is solving, or 2) These models, when trained on sensible optimization problems, should
generate novel predictions about the brain’s representations and behavior.

These are extremely valuable potential contributions. However, given the nascent nature of such
approaches and the exuberance accompanying some claims in current work, we should examine
them carefully. In DL, some successes attributed to novel algorithms have been shown to instead
stem from seemingly minor or unstated implementation choices [65, 21, 35]. In this paper, we ask
whether Neuroscientists should similarly be cautious that DL-based models of neural circuits that
make specific claims about revealing the brain’s optimization functions or that generate specific
neural tuning curves may tell us less about fundamental scientific truths and more about programmers’
particular implementation choices, and might be more post hoc than predictive.

To explore these questions, we evaluate recent DL-based models of grid cells in the entorhinal-
hippocampal circuit. The medial entorhinal cortex (MEC) and hippocampus (HPC) are part of the
hippocampal formation, a brain structure critical for learning and memory. In a pair of Nobel-prize
winning discoveries, HPC was shown to contain place cells [48], and MEC, its cortical input, was
shown to contain grid cells [30]. Place cells each fire at one or several seemingly random locations in
small and large environments [51], while grid cells fire in a spatially periodic hexagonal lattice pattern
in all two-dimensional environments [30]. Over five decades, the hippocampal formation has been
central to understanding how the brain organizes spatial and episodic memory, for experimentalists
and theorists alike, with many mysteries remaining. A recent series of DL-based models of the circuit
[15, 3, 59, 68, 47]) present a story that training neural circuits on the task of path integration (PI)
(i.e., updating one’s positional estimate by integrating velocity from self-motion), possibly with the
addition of a non-negativity constraint on firing rates [59], results in the emergence of grid cells.

We use code from prior publications to demonstrate these results are due not to the core (path
integration) task the network was trained to perform but to separate and specific post-hoc implemen-
tation choices that implicitly made the known tuning shapes of grid cells part of the target, even
though the narrative accompanying many of these papers suggests that the emergence of those tuning
curves rather naturally “falls out” from training on the core task. By leveraging theoretically-guided
large-scale exploration and hypothesis-driven experimentation, we show:

1. Networks trained on path integration tasks almost always learn to optimally encode position,
but almost never learn grid-like representations to do so.

2. The emergence of grid-like representations depends wholly on specifically chosen structural
choices of the network and readouts, rather than on the path integration task, and the
structural choices are based on the implicit goal of obtaining grid-like responses.

3. Under more-realistic structural choices for the network readouts, grid cells disappear.
4. Even with the structural choices, grid emergence can be hyperparameter and seed sensitive

and non-generic.
5. Multiple grid modules, a fundamental characteristic of the grid cell system, do not emerge

from path integration.
6. Grid periods and period ratios, contrary to assertions [3], are not determined by the task and

are not fundamental properties that can serve as predictions about observed values in the
brain; rather, they are set by hyperparameters selected by the programmer.

In short, deep learning models of MEC-HPC yield grid-like units only when a sequence of specific
and biologically implausible implementation choices are made to intentionally bake grid-like units
into the task-trained networks, and the emergent grid-like units lack key grid cell properties. Given
the non-genericity of grid cell emergence in successfully path integrating networks, it is highly
improbable that DL models of path integration would have produced grid cells as a novel prediction
from task-training, had they not already been known to exist.

Moreover, it is unclear what new understanding the current models contribute, beyond or even up to
what has already been shown for these circuits by existing models. Our results challenge the notion
that deep networks offer a free lunch for Neuroscience in terms of discovering the brain’s optimization
problems or generating novel a priori predictions about single-neuron representations, and warn that
caution, transparency, and biological knowledge are needed when building and interpreting such
models.
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Figure 1: Setup and claim. (a-b) Schematic of recurrent neural network setup to predict some
encoding of 2D position from 2D velocity. (b-c) Grid cells in recent DL papers, obtained in part by
learning to path integrate [15, 3, 59, 60, 47], conclude that path integration creates grid cells. (d) We
show that most artificial neural networks (ANNs) trained to path integrate can do so, but only a very
small subset of such networks yield grid cells, and that grid cell emergence results in ANNs are post
hoc: they result from post-facto selection of architectures, functions, and hyperparameter settings
that specify grid cells as an implicit target.

Code availability: Our work benefited from previous publications’ published code[47]. To facilitate
further research, we similarly release ours: github.com/FieteLab/NeurIPS-2022-No-Free-Lunch.

2 Background: Grid Cells

Grid cells [30] are found in the medial entorhinal cortex of mammals and are tuned to represent the
spatial location of the animal as it traverses 2D space. Each cell fires at every vertex of a triangular
lattice that tiles the explored space, regardless of the speed and direction of movement through
the space. As a population, grid cells exhibit several striking properties that provide support for a
specialized and modular circuit. Grid cells form discrete modules (clusters), such that all cells within
a module share a common period and orientation, while different modules express discretely different
spatial periods [62]. The period ratios of successive modules have values in the range of 1.2-1.5.

The mechanism underlying grid cells is widely supported to be through attractor dynamics:
Translation-invariant lateral connectivity within the grid cell network results in a linear Turing
instability and pattern formation [9, 23, 7]. These models explain how grid cells can convert velocity
inputs into updated spatial estimates, and make several predictions that have been confirmed in exper-
iments, including most centrally the stability of low-dimensional cell-cell relationships regardless of
environment and behavioral state, that define a toroidal attractor dynamics [24, 72, 64, 26, 25].

3 Experimental approach

The central messaging of existing DL models of grid cells is that training ANNs on Path Integration
(PI) – using self-velocity estimates to track one’s spatial position – causes the networks to learn grid
cells [15, 3, 59, 47], even when the technical portions and code implementations of the papers involve
many other critical choices without which grid cells would not emerge.

Thus, we focus on asking: if a recurrent neural network is trained on PI, what is the approximate
probability that it will exhibit grid cells? We follow the setup used by many previous papers: a 2.2
m x 2.2 m arena is created, then, spatial trajectories (i.e. sequences of positions and velocities) are
sampled. Networks receive as inputs the initial position and velocities, and are trained to output (some
encoding of) the positions in a supervised manner (Fig. 1ab). There are multiple possible encodings
of position, and, as we will show, this choice is critical. Two simple encodings are Cartesian [15] or
polar [1]. Another encoding scheme is via bump functions in 2D space, with each output assigned
different positions that collectively tile the space with similar tuning curve shapes [3, 59, 59, 47]. This
encoding has been equated with place cells, even though place cells’ fields tend to be heterogeneous in
size and shape [51, 19], as well as in number [51], and, unlike the choice of a difference-of-Gaussians
(DoG) or difference-of-Softmaxes (DoS) readout tuning in ANN models, do not exhibit any inhibitory
surround. See Appendix A for position encoding details. For all encodings, supervised learning is
used to train the network via backpropagation through time.

Spatial tuning assessments The spatial tuning ratemaps of hidden units in the networks are the
primary basis for comparison with the brain’s grid cells. To compute ratemaps, a trained network is
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Figure 2: Grid-like response requires highly specific target encoding. (a) Readout encodings of
spatial position. (b) Top: Across readout encodings, most networks learn the PI task. Bottom: Few
networks display possible grid-like representations (threshold = 0.8). (c) Survival functions of grid
scores per readout encoding. (d) Rate maps of topgrid-scoring units in ANNs performing good PI
with i) Cartesian, ii) Polar, iii) Gaussian, iv) specifically selected (tuned) Difference-of-Softmaxes
(DoS) readouts. i)-iii) do not learn grid cells. Numbers above rate maps are 60◦ grid scores.

evaluated on long trajectories that cover the 2D environment, then each hidden unit’s average activity
per spatial bin is computed. Ratemaps of units are compared with grid cells through the gridness
score use by [3, 59, 60, 47]. We are extremely lenient with classifying a particular network training
run a success: if even a single hidden unit has a grid score above a certain threshold, we say the
model possibly possesses grid cells. The grid score, when applied to ANN units without additional
criteria, is not perfect since cells classified by grid scores represent only an upper bound on the total
number of grid cells (e.g. the high grid score given to units with triangular symmetry without a
periodic pattern, Fig. 2d (Gaussian readouts)); for details, see Appendices B and C.

4 Networks trained on path integration tasks learn to estimate position, but
rarely learn grid cells

We demonstrate that most path-integrating networks do not converge to a grid-like solution, instead
requiring very specific architectural choices including readout tuning functions. Grid-like representa-
tions emerge when the programmer makes choices that, rather than relating to the path integration
objective or biologically realistic place cells, are designed post-hoc to produce grid cells.

We ran large-scale hyperparameter sweeps across common implementation choices: 1) Architectures:
RNN [20]; LSTM [33]; GRU [13]; UGRNN [14]; 2) Activation: Sigmoid; Tanh; ReLU; Linear;
3) Optimizers: SGD, Adam [41]; RMSProp [32] 4) Supervised Targets: Cartesian; Polar; high-
dimensional bump-like readout population code with Gaussian [3], Difference-of-Softmaxes (DoS)
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[59, 60, 47] or Difference-of-Gaussians (DoG) tuning curves. 5) Loss: mean squared error on the
agent’s Cartesian position [37, 15]; geodesic distance on the agent’s polar position [1]; cross entropy
on a high-dimensional population of bump-like readout units [3, 59, 47] 6) Miscellaneous: recurrent
& readout dropout, initialization, parameter L2 regularization, seed.

For networks with bump-like population readouts, we additionally swept: 1) Width σ of Gaussian
readouts; 2) Whether the bump-like readouts have homogeneous or heterogeneous field widths; 3)
For DoG or DoS readouts, the surround scale s, i.e., the ratio between the inhibitory and excitatory
Gaussian standard deviations (s def

= σI/σE); 4) For DoG readouts, the ratio of amplitudes αE/αI

between the two Gaussians. 5) Number of fields per readout unit. Evaluating the entire hyperparameter
volume is computationally prohibitive, so we evaluated a subvolume most consistent with previous
papers, focusing our exploration around conditions that did produce grid cells. In this sense, our
search was biased toward configurations shown to produce grid cell emergence and thus our findings
about the fragility of these solutions conservatively favored these solutions as much as possible. All
sweeps are provided in Appendix F.

To evaluate whether a network learns to optimally estimate spatial position from velocity inputs, we
measured its position decoding error using previous papers’ methods [3, 59, 47]: using the network’s
output Cartesian positions (if trained on Cartesian targets) or by decoding position from the network’s
outputs. Any network with error < 10 cm was considered to have achieved optimal position encoding.

In total, we trained > 11, 000 networks and found that most succeed in learning to path integrate
(Fig. 2a, Top), but few learn grid cell representations (Fig. 2a, Bottom). This is consistent with
earlier work [37, 1] demonstrating that networks can learn to path integrate and solve other hard
navigational problems (e.g. self-localization across multiple environments and identification of
spatial environment from ambiguous cues, a case of self localization and mapping or SLAM) without
grid-like units emerging as a solution.

5 Grid-like unit emergence requires specific supervised target functions

We next sought to characterize when grid cells are learnt under different encodings of 2D spatial
position in the readout units (i.e. supervised targets). We tested multiple encodings: i) Cartesian, ii)
Polar, iii) Gaussian, iv) Difference-of-Gaussians (DoG), and v) Difference-of-Softmaxes (DoS).

We found we that in the ANN network architecture of Fig. 1a, grid cells do not emerge from Cartesian
or Polar readouts, consistent with earlier work [37]. Similarly, they do not emerge from Gaussian
encodings (Fig. 2) [37]. Consistent with this result, the Gaussian readouts of [3] used in tandem
with 50% dropout and a different architecture do not yield (square or hexagonal) grid cells without
dropout (result not shown). and, as shown recently and independently by [70], although grid-like
responses can be obtained with Gaussian readouts after the addition of another constraint, they
disappear without. [59, 60] critiqued [3] to show that the hexagonal patterning of cells in [3] was
indistinguishable from low-pass filtered noise. However, their [59, 60] focus was to argue that a neural
nonlinearity (which they termed a non-negativity constraint, though any non-odd function suffices)
robustly produces hexagonal firing – which they showed by replacing the simpler Gaussian-like
readouts of [3] with a specific DoG/DoS readout.

We found that DoG/DoS readouts [59, 60] were critical for producing grids (Fig. 2), reproducing the
main results of [59], even with non-negativity constraints: Lattices of any geometry (hexagonal or
square) only emerge with DoS fields, corresponding to a small and particular subset of DoG fields.

Grid period values set by hyperparameters, and multiple modules do not emerge. Next, two
prominent features of grid cells are their intrinsically set periods (invariant to the external environment)
and the existence of a discrete set of grid periods that scale by a rough factor of 1.4 between adjacent
scales [62]. Multi-periodicity is critical for unambiguous spatial coding over large scales. We asked
whether ANN models generate multiple periods and whether their the period values are fundamental
or hyperparameter dependent.

To ensure we would obtain at least some grid cells, we fixed the readouts to be DoS, and swept over
different scales σE of the DoS. We found that almost all runs had a unimodal distribution of grid
periods (Fig. 3a), meaning the networks learnt only one module of grid cells. Contemporaneously
with the NeurIPS review process, other researchers independently reported the same result [56].
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Figure 3: The spatial scale of grids is set by hyperparameters and multiple modules do not
emerge. (a) Over a wide sweep of DoS (Fig. 2a bottom) target field widths σE , the distribution of
grid periods is unimodal (each color: period distribution from 3 runs with same σE value; different
periods are only obtained by varying σE), meaning multiple grid modules do not emerge, in contrast
to the brain’s grid cell circuit. (b) The chosen target field width σE determines the grid period mode,
meaning that grid period is not a prediction of the models. (c) If we smoothly sweep σE as a proxy
for simulating different modules, the distribution of adjacent periods produces ratios closer to 1 than
the experimental ratios of ∼ 1.4.

Further, we found that the period of formed grid-like representation is completely determined by the
width σE of the externally imposed readout DoS (Fig. 3) and other specific parameter choices. The
period of the grid-like responses increased monotonically with the width of the DoS readout (Fig. 3b).
Since individual networks did not learn multiple modules, we used the somewhat discrete distribution
of peaks of the single module formed when sweeping the DoS σE more continuously to compute
grid period ratios. These period ratios from adjacent peaks led to non-biological values (Fig. 3c).

Other details with DoG/DoS readouts affect grid emergence. In all DL-grid cell papers we
examined [3, 15, 59, 60, 47], we discovered implementation details critical to the emergence of grid
cells that were not stressed in the claims. As one example, we discovered an implementation detail
essential for the emergence of grid cells in a series of papers [59, 60, 47] that is unmentioned in main
texts and supplements. These papers report using an unnormalized equi-norm Difference-of-Gaussian
(DoG) readout target function ([59] Appendix C1,[60] Methods 4.2, [47] Appendix C1), i.e. a DoG
with amplitude parameters set to 1, but their code uses a Difference-of-Softmaxes (DoS) target
function. When we trained ideal grid-forming ReLU networks with equi-norm DoG tuning curves,
sweeping the receptive field σ and surround scale s, they did not result in grids (Fig. 4b). The Fourier
analysis (below) explains why equinorm-DoG tuning should not produce lattices (Fig. 4c).

We next trained ReLU RNNs on general DoG readouts, sweeping the component amplitudes αE , αI

while holding σE , σI fixed at ideal values. The theory of [59] predicts that outside the feasible region
(blue boxed region of Fig. 4c), no lattices should emerge, but inside the feasible region, all/most
RNNs should learn grids. We found the first prediction held, but the second did not: most display grid
score distributions comparable to or worse than low-pass-filtered-then-thresholded noise, and well
below the ideal-width DoS grid score distribution (Fig. 4d). To investigate, we swept densely inside
the feasible region, additionally matching the amplitudes created by DoS (Fig. 4c; Fig. 10); one
run out of 1086 surpassed the DoS grid score distribution (αE/αI ≈ 3.5714, seed=1), but its two
“sibling” runs (all hyperparameters same; seeds: 0, 2), Fig. 4e. Thus, and contrary to [59]’s theory
based on static function-fitting, DoG readouts at most rarely produce lattices when implemented in
actual RNN simulations.

Fourier analysis of Turing instability provides intuition for the preceding empirical results.
Why do only Difference-of-Softmaxes (DoS) or very specific DoG readouts produce grid-like units?
We shed light on our present findings by restating the essence of previous analyses of first-principles
models [9, 38] here, and leveraging the connection made between these models and trained deep
networks in [59]. In the first-principles continuous attractor models, neural dynamics are given by
ṙ(x) = −r(x) + g(W ⋆ r), where x designates the neural index (in a continuum approximation
for neurons), W ⋆ r designates the total (integrated) inputs from the network to the neuron at index
x, and g is the non-linearity, if the recurrent weight interaction is translationally invariant, then
W (x, x′) = W (x− x′) = W (∆x). Under DoG interactions:

W (∆x) ≡ f(∆x) = αE exp
(
− (∆x)2

2σ2
E

)
− αI exp

(
− (∆x)2

2σI

)
(1)
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Figure 4: Other details with DoG/DoS readouts affect grid emergence: Even with DoS/DoG
translation-invariant targets, grid solutions are sensitive: (a) Modestly varying the DoS width σE can
cause grids to disappear. (b) Left: Grid scores of networks trained with equinorm-DoG versus DoS
readouts [59, 47, 60] shows DoS is critical for high grid scores. Right: Rate maps of top grid scoring
units from equinorm-DoG networks. (c) A necessary condition for grid emergence with DoG readouts
is that the Fourier transform of the readout correlation matrix contain an annulus of radius > 2π/L
(L is the size of the enclosure in which the RNN is trained). The hyperparameter region where this
condition is met is < 1 order of magnitude (FT annulus radius computed analytically (orange) and
through numerical construction of fields in finite environment (blue)). RNNs do not learn periodic
responses outside this region, but most RNNs inside the region do not either, meaning the annular
radius criterion is insufficient. DoS readouts are similar to one particular choice of DoG amplitudes,
and only DoG amplitudes very close to the DoS point succeed in producing periodic responses. (d)
Across αE/αI DoG ratios, DoG networks generally score worse than filtered-and-thresholded noise
(blue) and worse than DoS (black). (e) More densely sweeping within the theoretically feasible
αE/αI DoG region, and choosing αE and αI magnitudes closely matching DoS, shown in (c) still
showed only one ratio that did at least as well as a DoS (App. E), but this result was true for one out
of three seeds; two “sibling" runs with otherwise identical settings produced poor gridness.

where ∆x refers to the difference of indices between the neural pair linked by the weights. The
evolution of activity can be decomposed into the growth and decay of Fourier components of the rate
vector, which is fully determined by the Fourier transform of W , which is given by:

f̃(k) =

∫
R
d(∆x)f(∆x)eik∆x = αEσE exp

(
−σ2

Ek
2

2

)
− αIσI exp

(
−σ2

Ik
2

2

)
(2)

Here αE (αI ) denotes the strength and σE (σI ) denotes the scale of excitation (inhibition). For
linearized dynamics that approximate ṙ(x) ∼ −r(x) + f(∆x) ⋆ r (i.e., g has been linearized),
the solution will be periodic if the maxima of f̃(k), given by [k∗]2 = 2

σ2
E−σ2

I
log
(
αEσ

3
E/αIσ

3
I

)
,

contains sufficient power and if k∗ ̸= 0. Specifically, the condition for pattern formation is f̃(k∗) > 1
[10, 38]. In particular, the inhibitory surround contained in f(∆x), with strength σI , is key to pattern
formation; if σI → ∞ or αI → 0, the maximum of the Fourier-transformed weights is at the origin
(k∗ = 0), corresponding to a DC (non-patterned/non-periodic) activity state. Similarly, only particular
choices of the ratio αE/αI work, Fig. 4c. In sum, a Gaussian recurrent interaction cannot produce
periodic patterns in the continuum limit (relatively large number of cells, large environment), as
known from first principles models.

The theory of [59] contributes a connection between these first principles models and feedforward
networks performing supervised least-squares regression (“function approximation framework”) onto
a target readout P , through the observation that gradient optimization of the MSE reconstruction loss
||P −Wreadoutr||2 can be approximated as ṙ = −λr + Σr, where Σx,x′ =

∑
i Pi(x)Pi(x

′)T is the
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Figure 5: Adding place cell-like heterogeneity to readouts prevents grid emergence. We
selected DoS RNNs with the best hyperparameters for grid cell emergence (RNN or UGRNN,
ReLU, σE = 0.12 cm, s = 2.0, 3 seeds), then tested the effect of multiple fields per place cell
(∼ 1 + Pois(3.0)) and multiple scales (receptive field width σE ∼ Unif(0.06, 1.0) m and surround
scale s ∼ Unif(1.25, 4.5)). (a) Networks with multi-scale multi-field DoS readouts all obtain low
position decoding error. (b) Multi-scale multi-field DoS readouts do not learn grid cells. (c) Highest-
scoring rate maps from multi-field multi-scale networks.

specified spatial correlation matrix of the target readouts and λ is a regularization parameter. This
dynamics now resembles that of first-principles grid cell models, provided the readout correlation
matrix has the same form as the first-principles recurrent interaction matrix: W (x, x′) = Σxx′ , upto
scaling factors. If the readout target functions are set to be translationally invariant with DoG tuning
curves, the readout correlation matrix is a difference of multiple Gaussians (Appendix D), Fig 4c.
By the linear stability analysis outlined above, it follows that DoG tuning can sometimes produce
grids, but simple Gaussian tuning curves will not generically produce periodic patterns without
additional assumptions. This is true whether we consider discretized real and Fourier space or take the
continuum limit in both cases: Gaussian readouts generate roughly uniform (non-periodic) activation
as the dominant state. Only under the further assumptions of discretization induced by a small spatial
environment, higher-order non-linear effects, and orthogonality of hidden units, might Gaussians
be theoretically predicted to produce periodic responses [59], and then the periods and shapes of
the grids will depend on the environment properties. However, neither hexagonal nor square grids
emerge at a significance level beyond filtered and thresholded noise in actual RNNs trained to PI with
Gaussian and most DoG readouts.

6 Grid cells disappear with realistic readout population heterogeneity

Place cells, to which grid cells project, differ significantly from the highly idealized single-scale,
single-field translation-invariant ANN readouts, even ignoring the particular center-surround shape
for each field. Place cells have heterogeneous field widths, many with multiple fields [51, 19] and
non-uniform spatial correlations. Place cells at similar dorsoventral locations can exhibit a range of
field sizes, and single place cells themselves exhibit a diversity of field widths [19]. This naturally
leads to the question: Will readout targets with more place cell-like heterogeneous responses still
produce grid cells? We found that networks trained with multiple-field, multiple-scale DoS readouts
achieve position decoding error as low as single-field single-scale DoS encodings (Fig. 5a), but do
not learn grid cells (Fig. 5bc). This finding is consistent with the strong requirement in ANN models
of a translation-invariant readout code for grid emergence [3, 59]. Translation invariance is a specific
property of grid cells, but it is not likely true of place cells, which as a population over-represent
borders, landmarks and reward locations [53, 49, 69, 31, 34, 18, 16, 73, 27, 5]. These observations
further demonstrate that ANN models essentially build the known structure of grid cells into their
targets, rather than obtaining them from training on simple tasks with plausible readouts.

7 Why path-integrating ANNs might achieve high predictivity of MEC data

We conclude by introducing a puzzle. A recent NeurIPS spotlight [47] notes that networks trained
on single-field single-scale DoS readout encodings explain variance in mouse MEC neural activity
at nearly 100% of variance explained by other mice. In contrast, our results demonstrate that these
networks learn few grid cells, produce unimodal grid period distributions inconsistent with biological
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grid cells, and require readout encodings inconsistent with biological place cells to do so. How are
these networks able to predict mouse MEC neural activity so well?

The analysis code is not open source, so we are unable to investigate this puzzle. However, we offer a
conjecture with preliminary evidence. The analysis of [47] linearly regressed rate maps from one
agent (mouse or network) onto rate maps from another mouse, and used Pearson correlation as a
measure of “neural predictivity.” We conjecture that different architecture-activation pairs achieve
different neural predictivity scores because different pairs learn different intrinsic dimensionalities
that then provide richer/poorer bases for linear regressions.

Figure 6: Networks with higher (lower) di-
mensional rate maps display higher (lower)
“neural predictivity” of mouse MEC rate
maps. Each dot is an architecture-activation
pair; participation ratio averaged over 5 seeds.
Neural predictivity from [47].

To explore our conjecture, we trained [47]’s 5 ar-
chitectures (RNN, LSTM, GRU, UGRNN, SRNN)
with DoS readouts and ReLU activations (5 seeds
per architecture-activation pair). For each trained
network, we extracted rate maps and computed a
standard linear measure of dimensionality called par-
ticipation ratio [42], then plotted each pair’s average
participation ratio against the published neural predic-
tivity. We found networks with higher dimensional
rate maps have higher neural predictivity (Fig. 6).

We caution this correlation between dimensionality
and neural predictivity is not (yet) strong evidence.
However, we predicted that similar results would be
found for other species and modalities, and during the
subsequent NeurIPS review process, two independent
research groups confirmed our predictions in macaque vision [2] and human audition [66]. If correct,
the conjecture raises the interesting research question of whether linear regression-based comparisons
of ANNs with neural data might produce better matches to biology more because ANNs have higher
dimensional representations than competitors, than because of any detailed similarity.

8 Discussion

Figure 7: Challenges in achieving the two cen-
tral claims of recent DL models of neuroscience:
Top: Building a model that replicates observed
neural responses does not guarantee that the loss
function used is the brain’s objective, as multiple
objectives can share a solution. Bottom: Training
a network on a plausible loss function or even the
correct loss function need not yield the solution the
brain has selected because the loss function may
have multiple minima, of which the brain selects
one based on its constraints, while an ANN selects
another, based on the optimization technique used.

For research that uses deep networks as models
of the brain, there is a fundamental obstacle to
making the claim that a given optimization prob-
lem is what the brain is solving: If we know the
responses of a significant fraction of units from
biological networks performing a certain task,
we cannot infer the loss function that the brain
is optimizing since in principle, numerous dif-
ferent loss functions can have the same/similar
minima (Fig. 7 top). In other words, there is
typically a many-to-one mapping between loss
functions and some point in model space where
the losses have a minimum. Some of the dif-
ferent grid models from DL and first principles
show that this is possible [15, 3, 59, 68, 9]. Con-
versely, given a reasonable optimization prob-
lem that we select based on an organism’s eco-
logical niche, we cannot infer a single solution
(and thus build truly predictive single-cell tuning
models), since there exist several minima to that
optimization problem (Fig. 7 bottom). In other
words, there is typically a one-to-many mapping
from a loss function to its set of solutions.

To break this uniqueness problem and arrive at
truly predictive models and a better understanding of the brain’s optimization problems, we must
understand the specific inductive biases and constraints present in the biological system we are trying

9



to model. It is untenable to expect success without doing so. This is what we refer to as an informal
neural ‘No Free Lunch’.

Can we learn about brain circuits from DL models without considering biological inductive biases?
Low-dimensional latent representations and dynamics that emerge as necessary for solving difficult
problems are possibly sufficiently robust and abstract to be predictive of populations in a neural
circuit. For instance, any model solving the task of finding ripe apples in color photos, will create
some abstracted representation of round red objects; this would also be a robust prediction for
neural systems, but not unique to them. On the other hand, we should generally not expect detailed
single neuron tuning correspondences without specific additional constraints or inductive biases: If a
low-dimensional latent representation is necessary to solve a task, there are a multiplicity of ways to
project it onto the activities of a large number of neurons. Which projection the brain selects depends
on factors including energetics, neuron number, downstream uses, and the vagaries of evolutionary
dynamics; the projections of ANNs depend on similar factors but specific to the ANN’s loss and
the vagaries of gradient descent learning. Consistent with this, models of the visual pathway [71, 4]
and circuits that solve latent inference tasks [63, 55, 1, 67] exhibit population-level representations
of abstract variables necessary to solve the task. By contrast, DL-based grid cell models make
fine-grained claims about single-neuron tuning, which should be surprising without the incorporation
of significant additional constraints. Only in cases where task constraints completely overwhelm all
system-specific constraints, might we expect the natural emergence of alignment at the single-unit
level.

Returning to grid cells, since they do not generically arise in networks trained to path integrate,
path integration is not a sufficiently constraining task. Theoretical work on grid cell representations
[22, 61, 45] suggests additional critical features of the code: an exponentially large coding range
and robustness/intrinsic error correction, both of which translate into the problem of packing and
maximally separating a large set of coding states into a compact space [61]. We hypothesize
that the following key properties of the grid cell code may form a biologically relevant sufficient
set for their emergence: 1) non-negative activity; 2) path integrating (PI) code that is translation
invariant [23, 9, 12]; 3) exponential representational capacity [8, 61, 44]; 4) intrinsic error-correcting
capabilities [8, 61]; and 5) uniformly distributed (whitened) information across cells. Several of these
are general properties of neural codes, and could increase the ability of ANN models to make de novo
rather than post hoc predictions. For recent promising work, see [17].

First-principles continuous attractor network (CAN) models of grid cells made several novel predic-
tions subsequently confirmed in experiments [39]: the invariance of cell-cell relationships acrossen-
vironments and behavioral states (constituting, in the terminology of machine learning, “far out of
distribution” predictions) that define an invariant toroidal attractor manifold [72, 64, 26, 25], grid-like
patterning in the cortical sheet [29], and many others that remain to be tested. Deep learning-based
models should be held to similar standards.

In sum, ANN models of the brain that reproduce specific tuning curves should not center their claimed
achievement on producing the curves if these are used as implicit or explicit parts of the training
target (given the expressive power of deep networks, it is no revelation that training them to generate
a given tuning will in fact succeed), but rather should characterize the conditions under which the
particular tuning does and does not emerge, to consider which inductive biases are critical, and to
explicitly state what principles and de novo predictions can be extracted from the models.
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