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ABSTRACT

Although Neural Scene Flow Prior (NSFP) and its variants have shown remark-
able performance in large out-of-distribution autonomous driving, the underlying
explanation for their generalization capabilities remains unclear. To this end, we
analyze the generalization capabilities of NSFP via uniform stability and find that
it exhibits a generalization bound, which is inversely proportional to the number of
point clouds. These findings provide solid theoretical evidence to explain the ef-
fectiveness of NSFP in large-scale point cloud scene flow estimation tasks for the
first time. To enhance practical scene understanding, we extend NSFP and pro-
pose a multi-frame neural scene flow (MNSF) scheme, which extracts temporal
information across multiple frames. In this way, MNSF has better temporal con-
sistency than NSFP. Moreover, we theoretically analyze its generalization abilities
and demonstrate that it achieves a tight generalization bound with a convergence
rate similar to NSFP. Extensive experimental results on large-scale autonomous
driving Waymo Open and Argoverse datasets demonstrate that MNSF achieves
state-of-the-art performance. The code is attached to the submission.

1 INTRODUCTION

Scene flow estimation stands out as a key endeavor for perception and understanding the 3D world in
autonomous driving and robotics, aiming to determine motion fields within dynamic environments
based on RGB images or point clouds (Teed & Deng, 2020; Liu et al., 2019b; Wang et al., 2022b).
The existing point cloud scene flow consists of learning-based and optimization-based methods.
Most learning-based methods (Liu et al., 2019b; Zhang et al., 2023; Peng et al., 2023) demonstrate
superior performance on small-scale synthetic datasets (Menze & Geiger, 2015; Mayer et al., 2016),
but struggle to generalize effectively to large-scale real-world scenarios (Chodosh et al., 2024; Li
et al., 2023). In contrast, optimization-based methods (Li et al., 2021; 2023) show superior general-
ization performance in real-world autonomous driving scenarios, e.g., Waymo and Argoverse (Sun
et al., 2020; Chang et al., 2019).

As a classical optimization-based method, NSFP (Li et al., 2021) has demonstrated its strong ca-
pability to handle dense point clouds (about 150k+ points), showcasing remarkable generalization
capabilities in open-world perception scenarios (Najibi et al., 2022; Chodosh et al., 2024). In addi-
tion, FNSF (Li et al., 2023) employs a distance transform strategy (Rosenfeld & Pfaltz, 1966; Breu
et al., 1995) to significantly accelerate the optimization speed of NSFP without sacrificing its perfor-
mance on out-of-distribution (OOD) autonomous driving scenes. Thus, NSFP and FNSF emerge as
potentially powerful and dependable methods. However, the exceptional performance of NSFP and
FNSF in processing large-scale point clouds needs theoretical analysis and still remains an intuition
or empirical finding. The lack of a deeper understanding of NSFP hinders further progress in the
field of neural scene flow estimation.

To address this issue, we conduct a theoretical investigation into the generalization error of NSFP
through the framework of uniform stability (Bartlett & Mendelson, 2002; Bousquet & Elisseeff,
2002). Our findings reveal that the upper bound of NSFP’s generalization error inversely correlates
with the number of input point clouds. This analysis provides a foundational understanding of why
NSFP excels in managing large-scale scene flow optimization tasks.

However, we can not further improve NSFP and FNSF by directly increasing the number of points,
because the full point cloud in a frame (about 100k points) has already been used as the input. There-
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fore, we seek to exploit the valuable information from previous frames from a temporal perspective,
which improves the temporal consistency and overcomes the upper bound of point numbers in each
frame. In this way, we aim to improve the scene flow estimation (t→ t+1) by using previous frames
(t-1→ t). Surprisingly, there appears to be a notable gap in research focused on utilizing such valu-
able temporal information for improving the two-frame point cloud scene flow estimations. Such
a gap is particularly unexpected, because the extensive body of research in optical flow estimation
(Wulff et al., 2017; Janai et al., 2018; Maurer & Bruhn, 2018; Liu et al., 2019a; Stone et al., 2021;
Hur & Roth, 2021; Mehl et al., 2023) have shown the importance of temporal information from
previous frames, even amidst rapid motion changes in optical flow.

In this paper, we propose a straightforward and efficient approach, namely MNSF, for estimating
scene flow by using multiple frames. Specifically, we employ two FSNF models to calculate the
forward (t→ t+1) and backward (t→ t-1) flows, respectively. These flows, naturally opposing in
direction, are then reconciled through a motion model that inverts the backward flow. In this way,
the inverted backward flow and forward flow are aligned in the same temporal direction. Further-
more, we introduce a temporal fusion module to encode these flows and predict the final flow. More
crucially, we theoretically derive that the generalization error of MNSF is bounded, which guaran-
tees the convergence of optimization. Experimental results on Waymo Open and Argoverse datasets
show that MNSF outperforms FNSF by a large margin. We expect this study to provide analytical
insights and encourage investigation into exploiting temporal information in scene flow estimation.

2 RELATED WORK

Scene flow estimation. Scene flow estimation from 2D images has been extensively explored in
recent years (Teed & Deng, 2020; Menze & Geiger, 2015; Ma et al., 2019; Schuster et al., 2021;
Maurer & Bruhn, 2018; Hur & Roth, 2021; Jiang et al., 2019). On the other hand, researchers
estimate scene flow directly from 3D point clouds via full/self-supervised training schemes (Liu
et al., 2019b;c; Gu et al., 2019; Wang et al., 2020; Puy et al., 2020; Kittenplon et al., 2021; Wang
et al., 2021; Wu et al., 2020; Vedder et al., 2023; Wang et al., 2022b; Li et al., 2022; Zhang et al.,
2023; Peng et al., 2023; Lang et al., 2023; Jiang et al., 2024). Specifically, these methods mainly
extract point-based features and compute correspondences between two point clouds. Based on
accurate correspondences, these methods achieve superior performance on synthetic KITTI Scene
Flow (Menze & Geiger, 2015) and FlyingThings3D (Mayer et al., 2016) datasets. However, they fail
to generalize to more realistic and larger autonomous driving scenarios (Pontes et al., 2020; Li et al.,
2021; Najibi et al., 2022; Dong et al., 2022; Jin et al., 2022; Chodosh et al., 2023), e.g., Waymo
Open (Sun et al., 2020) and Argoverse (Chang et al., 2019) datasets. In comparison, NSFP (Li et al.,
2021) uses a Multi-Layer Perception (MLP) to estimate the scene flow and demonstrates powerful
generalization ability in large-scale autonomous driving scenarios. More recently, FNSF (Li et al.,
2023) speeds up NSFP by using Distance Transform without sacrificing the performance.

Multi-frame optical flow. Extensive studies focus on using multi-frames to estimate optical flow
(Golyanik et al., 2017; Maurer & Bruhn, 2018; Ren et al., 2019; Schuster et al., 2021; Hur & Roth,
2021; Mehl et al., 2023). Ren et al. (2019) discovers that performance improvements are relatively
smaller when the frame number is more than three. In this way, these studies obtain more accurate
results by considering three consecutive frames, which achieves a compromise between temporal
information and efficiency (Wulff et al., 2017; Janai et al., 2018; Liu et al., 2019a; Stone et al.,
2021). Specifically, these methods aim to learn a motion model across different frames, because
optical flow fields are temporally smooth and distributed around a low-dimensional linear subspace
(Irani, 1999; Janai et al., 2018). The motion model can exploit valuable information and predict the
motion field of the current frame based on previous frames. Then, a fusion module combines the
previous and current predictions to estimate an accurate result in the current frame.

3 APPROACH

Preliminary: Two-frame point cloud scene flow optimization. Let S1 and S2 denote the 3D
point cloud sampled from a dynamic scene at time t-1 and t, respectively. Due to the movement and
occlusion, the number of points in S1 and S2 are different and not in correspondence, i.e., |S1| ̸= |S2|.
Let f ∈ R3 denote a translational vector (flow vector) of a point p ∈ S1 moving from time t-1 to
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time t, i.e., p′ = p + f . The scene flow F1 = {fi}|S1|
i=1 is the set of translational vectors for all 3D

points in S1. The optimal scene flow F∗ obtains the minimal distance between the two point clouds
S1 and S2. Due to the non-rigidity motion field of the dynamic scene, the optimization of the scene
flow is inherently unconstrained. To this end, a regularization term C is usually used to constrain the
motion field, e.g., Laplacian regularizer (Pontes et al., 2020; Zeng et al., 2019). The optimization of
the scene flow is defined by

F∗ = argmin
F1

∑
p∈S1

D (p+ f ,S2) + λC, (1)

where D is a point distance function, e.g., Chamfer distance (Fan et al., 2017). λ is a the coefficient
for the regularization term C.

Neural scene flow prior. NSFP employs traditional runtime optimization to determine the optimal
weights for the neural network without relying on prior knowledge or human annotations. NSFP
utilizes the loss function L, treating the architecture of the neural network as an implicit form of
regularization, as follows:

L (Θ,p;S2) = argmin
Θ

∑
p∈S1

D (p+ g (p;Θ) ,S2) , (2)

where Θ denotes the weights of the neural network g. p is the input point cloud sampled at time
t-1, and the flow vector f = g (p; Θ) represents the output of the neural network g. In this way,
f∗ = g (p; Θ∗) denotes the optimal flow vector. NSFP implements the neural network g as an MLP
and uses Chamfer distance as the loss function to optimize the scene flow.

3.1 THEORETICAL EXPLAINING THE GENERALIZATION ABILITY OF NSFP

Despite NSFP demonstrating astonishing generalization ability, it lacks a foundational theoretical
analysis for its underlying mechanism. This mystery impedes the reliability and development of the
neural scene flow area. In this section, we explore NSFP in-depth and present a detailed theoretical
analysis based on uniform stability, which is defined as follows.
Definition 1. Given some algorithm A and training data pairs (x, y), its uniform stability β exists
with respect to (w.r.t.) its loss function ℓ and some domain Z if the flowing holds

∀S ∈ Z, ∀m ∈ {1, · · · , |S|} , ∀z = (x, y) , z
′
i ∈ Z, |ℓ (y, hS (x))− ℓ (y, hSm (x))| ≤ β, (3)

where hS represents the hypothesis function output by a learning algorithm given the training sample
S. Additionally, Sm refers to a modified version of the training sample S, where the i-th example zi is
substituted with an independent and identically distributed example z

′
i . We note here that ℓ (y, hS (x))

and ℓ (y, hSm (x)) are related to the empirical and generalization errors of the algorithm A.

We aim to determine bounds on the discrepancy between empirical and generalization errors for
specific algorithms, e.g., NSFP. To derive the theoretical results, we need some mild assumptions
for the statistics of the point clouds and the related neural networks. The interested readers are
referred to the works (Devroye & Wagner, 1979; Bousquet & Elisseeff, 2002; Zhang, 2002; Liu
et al., 2016) for more applications of the related assumptions.
Assumption 1. Finite point clouds and bounded neural network parameters: All considered point
clouds, such as P ∈ S1 and Q ∈ S2, contain a finite number of points (|Si|), and the vector spaces
of both the point clouds and the neural network parameters (Θ) are bounded:

|Si|i=1,2 < ∞, ∥P∥F ≤ σP , ∥Q∥F ≤ σQ, ∥Θ∥F ≤ σΘ. (4)

In this assumption, we bound the norm of point clouds and related neural networks, which is rea-
sonable and achievable in practice for point clouds without outliers (substantial value).

Next, to facilitate downstream theoretical analysis on the generalization bound of the NSFP, we can
reformulate the loss function in Eq. (2) as

L (Θ,p;S2) = Lp (Θ,p; x̂k) + Lq (Θ, p̂l;qk) , (5)

where Lp (Θ,p; x̂k) =
1

|S2|

|S2|∑
j=1

∥Θpj + pj − x̂k∥22, and Lq (Θ, p̂l;qk) =
1

|S3|

|S3|∑
k=1

∥(Θp̂l + p̂l)− qk∥22
with the minimum of summation operators being defined by

x̂k = argmin
x∈S3

∥p− x∥22 ; p̂l = argmin
y∈S2

∥q− y∥22 = argmin
p∈S2

∥q− (Θp+ p)∥22 . (6)

We have the following mild assumptions for the loss functions Lp and Lq:
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Assumption 2. Bounded Loss Functions: For some σp, for any Θ,Θm ∈ Θ, the loss function Lp is
bounded by

|Lp (Θ,p; x̂k)− Lp (Θm,p; x̂k)| ≤ σP ∥(Θ−Θm)p∥2. (7)

For any network outputs Θp̂k + p̂k and Θp̂l + p̂l, the loss Lq is σΘ + 1 admissible, such that

|Lq (Θ, p̃l;qk)− Lq (Θm, p̂l;qk)| ≤ (σΘ + 1) ∥p̃l − p̂l∥2 (8)

Besides, Lq is c -strongly convex:

⟨p̃l − p̂l,∇Lq (., p̃l)−∇Lq (., p̂l)⟩ ≥ c ∥p̃l − p̂l∥22 . (9)

The above assumption has been made or adopted across various scientific fields (Zhang, 2002; Liu
et al., 2016). In our case, it is employed to establish an upper bound on network loss functions.
The bounded Lp, as described in Eq. (7), addresses scenarios where training remains stable and
no outliers exist in either the network or the point cloud. The assumptions for Lq ensure that q
is optimally selected based on an estimate p̂, which is reasonable, as once the forward flow is
optimized, this selection becomes static, and identifying the best candidate q in S3 is optimal.
Assumption 3. Bounded reconstruction from point cloud subset: There exists a subset Ω ={
d1, · · · ,d|Ω|

}
⊂
{
p1, · · · ,p|S2|

}
such that for any point cloud p in considered tasks, p can be

reconstructed with a small error (∥η∥ ≤ ε): p =
∑|Ω|

j=1 αjdj + ηj , where α ∈ R and ∥α∥ ≤ r.

We note that Assumption 3 is quite mild. For instance, if the feature space exhibits low-rank char-
acteristics, which is common in point clouds, or if the data lies on a manifold, satisfying this as-
sumption can be relatively straightforward, even in the context of conventional Chamfer distance
estimation. Likewise, if the feature vectors are randomized, the assumption holds as long as the
point cloud size approaches the dimensionality of the feature vector.
Theorem 1. (Proof is in Appendix A) With the above definitions and some assumptions, for some
random sample in {S2,S3}, with high probability, we have,

βNSFP ≤ |Ω|σp

4

(
rv +

√
r2v2 +

8vσΘε

|Ω|

)
+ σΘσpε, (10)

where v =
σp

|S2|
+ σΘ+1

|S3|
and all variables except S2 and S3 can be considered as constants1.

Remark 1. In our investigation of large-scale point cloud data analysis utilizing NSFP families, we
are intrigued by the question of how enlarging the sample size influences its learning performance.
Theorem 1 indicates that NSFP has a generalization bound with a fast convergence rate of order

(O
(

1√
|S2|

+ 1√
|S3|

)
) with respect to its sample size |S2| and |S3|. This theoretical result provides

strong support for the superior performance of NSFP in the large-scale scene flow estimation (please
see Tables 1 and 2), where |S2| → ∞ and |S3| → ∞.

3.2 MULTI-FRAME SCENE FLOW OPTIMIZATION

In this section, we propose MNSF as a simple and effective strategy for multi-frame point cloud
scene flow estimation. Following previous multi-frame optical flow estimation methods (Wulff et al.,
2017; Janai et al., 2018; Liu et al., 2019a; Stone et al., 2021), we consider three consecutive frames
(t-1, t, and t+1) and aim to estimate the scene flow from frame t to frame t+1. Specifically, let S1, S2,
and S3 be three 3D point clouds sampled from a dynamic scene at time t-1, t, and t+1. The number
of points in each point cloud, |S1|, |S2|, and |S3|, are typically different and not in correspondence,
i.e., |S1| ≠ |S2| ̸= |S3|.

Motion fields across different frames are temporally smooth (Irani, 1999; Janai et al., 2018), we aim
to use motion fields in previous frames to improve the estimation of the scene flow in the current
frame. Specifically, Figure 1 shows that two FSNF models are used to calculate the forward and
backward flows, respectively. Then, a temporal inversion and a fusion module predict the final flow.

To effectively exploit temporal information from previous frames, we propose to use two models
gf (p; Θf ) and gb (p; Θb) to predict the forward scene flow F2 = {fi}|S2|

i=1 (t→ t+1) and the back-
ward scene flow B2 = {bi}|S2|

i=1 (t→ t-1), respectively. The optimization of these two models can be
1Detailed definitions of these variables and constants are provided in the Appendix A.
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frame t-1

frame t

frame t+1
𝓕𝓕2

𝓑𝓑2

𝑔𝑔𝑏𝑏(⋅ ;𝚯𝚯𝑏𝑏)
𝓕𝓕2
′

fused scene flow

𝑔𝑔invert

𝑔𝑔fusion( ⋅ ;𝚯𝚯fusio𝑛𝑛)

𝑔𝑔𝑓𝑓(⋅ ;𝚯𝚯𝑓𝑓)

t-1

t

t

t+1

t-1

t

Figure 1: Overview of the MNSF. Given three consecutive frames (t-1, t, and t+1), we aim to
estimate the scene flow from frame t to frame t+1. Specifically, we use two models gf (· ; Θf ) and
gb (· ; Θb) to predict the forward scene flow F2 (t→ t+1) and the backward scene flow B2 (t→ t-1),
respectively. Furthermore, a motion inverter ginvert and a temporal fusion model gfusion (· ;Θfusion)
are used to estimate the fused scene flow. The upper left color wheel in the fused scene flow repre-
sents the flow magnitude and direction.

formulated as follows.
Θf

∗ = argmin
Θf

∑
p∈S2

D (p+ gf (p;Θf ) ,S3) ,Θb
∗ = argmin

Θb

∑
p∈S2

D (p+ gb (p;Θb) ,S1) . (11)

Temporal scene flow inversion. Given the forward and backward scene flow, we aim to further
exploit useful temporal information from these flows. However, useful temporal information cannot
be directly extracted, because the forward and the backward flow represent the opposite motion
field, i.e., t→ t+1 is opposite to t→ t-1. In this way, these flows conflict with each other. To this
end, we introduce a motion model ginvert (b; Θinvert) to invert the backward flow B2 = {bi}|S2|

i=1

to the flow F
′
2 = {f

′
i }

|S2|
i=1 , which has the same direction of the forward flow. Therefore, we have

f
′
= ginvert (b;Θinvert), where b ∈ B2.

Temporal fusion. We can fuse the forward and the inverted backward scene flow and ex-
ploit useful temporal information. Specifically, we adopt an effective temporal fusion model
gfusion

(
f , f

′
; Θfusion

)
to estimate the final scene flow, which is based on multi-frame point clouds.

In this way, the fused flow can better overcome occlusions and out-of-view motion, because addi-
tional information on the occluded regions can be extracted from different frames/views (Maurer &
Bruhn, 2018; Schuster et al., 2020; 2021).

Θinvert
∗,Θ∗

fusion = arg min
Θinvert,Θfusion

∑
p∈S2

D
(
p+ gfusion

(
f , f

′
;Θfusion

)
,S3

)
, (12)

where f = gf (p;Θf ) and f
′
= ginvert (b;Θinvert).

Using a similar theoretical framework for the generalization analysis of the NSFP, we extend our
analysis to the MNSF method in the subsequent sections.

Theorem 2. (Proof is in Appendix A) Let Θfusion =
[
Θ⊤

1 ,Θ
⊤
2

]⊤ denote the parameters of the
fusion model. For the proposed MNSF scheme, with high probability, its uniform stability (βMNSF)
is bounded by

βMNSF ≤ βNSFP +O
(

1
|S2|

)
, (13)

where O
(

1
|S2|

)
=

4κ2σ2
S3

λ|S2|
+

(
8κ2σ2

S3
λ

+ 2σS3

)√
ln 1/δ
2|S2|

and λ =
∥Θ2Θb∥22

∥Θ1Θf+I∥2

2

. Variables κ, σS3 , and δ

can be considered as constants.
Remark 2. Theorem 2 highlights two crucial properties of MNSF based on the loss function in
Eq. (5): 1) The generalization bound of MNSF maintains a convergence rate comparable to that
of NSFP, confirming that the incorporation of multiple frames in neural scene flow does not detract
from convergence. 2) The upper bound of MNSF’s generalization error aligns with that of NSFP
as the size of S2 approaches infinity. This suggests that including the t-1 frame in the optimization
preserves generalization. Further evidence supporting this claim can be found in the case study, and
Tables 1 and 2.
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Table 1: Evaluation on the Waymo Open Scene Flow dataset. We follow previous studies (Li
et al., 2021; 2023) to pre-process the Waymo Open dataset and generate 202 testing examples. Each
point cloud contains 8k-144k points. The upper tabular between blue bars are evaluated with the
full point cloud as the input, and the lower tabular between orange bars are evaluated with random
samples 8,192 points as the input.

Method Supervision Train set size E(m) ↓ Acc5(%) ↑ Acc10(%) ↑ Outliers(%) ↓ θϵ(rad) ↓ t (ms) ↓

NSFP (Li et al., 2021) Self 0 0.087 78.21 90.18 37.44 0.295 15310
NSFP (linear) Self 0 0.153 60.28 75.89 53.19 0.353 7964
FNSF Self 0 0.075 85.34 92.54 32.80 0.286 609
FNSF (linear) Self 0 0.114 71.03 85.54 43.59 0.339 451
FNSF (joint) Self 0 0.081 82.61 92.16 34.58 0.291 920
FNSF (temporal encoding) Self 0 0.079 82.75 92.22 33.90 0.291 1011
Ours (cycle consistency) Self 0 0.071 81.09 91.58 35.28 0.300 1831
Ours Self 0 0.066 87.16 93.39 30.89 0.273 989

FLOT (Puy et al., 2020) Full 18,000 0.694 2.62 11.89 94.74 0.792 133
3DFlow (Wang et al., 2022b) Full 18,000 2.088 1.60 4.92 98.94 1.845 80
GMSF (Zhang et al., 2023) Full 18,000 8.058 0.00 0.01 99.96 1.341 245
SCOOP (Lang et al., 2023) Self 1,800 0.313 41.86 65.02 64.71 0.474 558
NSFP (Li et al., 2021) (8,192 pts) Self 0 0.109 64.63 81.82 45.60 0.338 4450
FNSF (Li et al., 2023) (8,192 pts) Self 0 0.110 72.78 87.73 39.75 0.324 84
Ours (8,192 pts) Self 0 0.102 79.42 90.87 36.51 0.321 160

Table 2: Evaluation on the Argoverse Scene Flow dataset. We pre-process the Argoverse dataset
and generate 508 testing examples. Each point cloud contains 30k-70k points.

Method Supervision Train set size E(m) ↓ Acc5(%) ↑ Acc10(%) ↑ Outliers(%) ↓ θϵ(rad) ↓ t (ms) ↓

NSFP (Li et al., 2021) Self 0 0.083 75.15 86.49 39.13 0.361 15214
NSFP (linear) Self 0 0.107 58.39 76.39 55.21 0.337 2994
FNSF Self 0 0.049 87.04 94.08 29.88 0.307 472
FNSF (linear) Self 0 0.082 71.03 87.32 41.64 0.338 396
FNSF (joint) Self 0 0.050 84.77 93.46 31.77 0.319 793
FNSF (temporal encoding) Self 0 0.052 85.14 93.26 31.93 0.322 879
Ours (cycle consistency) Self 0 0.054 83.26 92.36 32.81 0.325 1432
Ours Self 0 0.044 88.75 94.83 28.86 0.299 851

FLOT (Puy et al., 2020) Full 18,000 0.767 2.33 9.91 96.19 0.971 130
3DFlow (Wang et al., 2022b) Full 18,000 1.672 3.08 9.22 96.92 1.845 82
GMSF (Zhang et al., 2023) Full 18,000 9.089 0.00 0.01 99.99 1.781 247
SCOOP (Lang et al., 2023) Self 1,800 0.248 39.09 62.56 68.81 0.481 542
NSFP (Li et al., 2021) (8,192 pts) Self 0 0.077 63.39 81.26 46.72 0.366 4390
FNSF (Li et al., 2023) (8,192 pts) Self 0 0.081 75.87 87.85 39.10 0.372 83
Ours (8,192 pts) Self 0 0.069 82.10 92.93 32.86 0.344 157

4 EXPERIMENTS

In this section, we evaluate MNSF on large-scale and realistic autonomous driving scenes. Specif-
ically, we first introduce datasets and evaluation metrics. Then, we compare the proposed method
with NSFP, FNSF, and different learning-based methods. Finally, we verify the effectiveness of each
component in the proposed method with an ablation study.

Datasets. In this study, we focus on large-scale and lidar-based autonomous driving scenes. To
this end, we conduct experiments on the Waymo Open (Sun et al., 2020) and the Argoverse (Chang
et al., 2019) datasets. Specifically, we follow previous studies (Li et al., 2021; 2023) to pre-process
these two open-world datasets and generate the pseudo ground truth scene flow. Please see more
discussions in Appendix A.3.

Metrics. We evaluate the performance of the scene flow estimation based on widely used metrics
from (Wu et al., 2020; Pontes et al., 2020; Li et al., 2021; 2023). (1) 3D end-point error E(m)
measures the mean absolute distance between the estimated scene flow and the pseudo ground truth
scene flow; (2) Strict accuracy Acc5(%) represents the ratio of points that the absolute point error
E < 0.05m or the relative point error E ′ < 0.05; (3) Relaxed accuracy Acc10(%) represents the ratio
of points that the absolute point error E < 0.1m or the relative point error E ′ < 0.1; (4) Outlier
Outliers(%) represents the ratio of points that the absolute point error E > 0.3m or the relative point
error E ′ > 0.1. In this way, Inliers = 1−Outliers; (5) Angle error θϵ(rad) measures the mean angle
error between the estimated scene flow and the pseudo ground truth scene flow; (6) Inference time
t(ms) measures the computation time for the scene flow estimation.
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Figure 2: Visual comparison between FNSF and MNSF on the Argoverse dataset. For each point,
color represents the normalized 3D end-point error E . In this way, blue indicates the estimation of
the flow is accurate. The detailed view demonstrates two point clouds aligned by the estimated flow.

Implementation details. We introduce details of implementation for each compared method. (1)
NSFP (Li et al., 2021). We follow NSFP (Li et al., 2021) to use an 8-layer MLP, and the weights
of the MLP are randomly initialized before optimizing each pair of point clouds; (2) NSFP (linear).
Following (Li et al., 2023), we implement NSFP via 8 linear layers and compute the Kronecker
product of the per-axis encoding; (3) FNSF (Li et al., 2023). For a fair comparison, we implement
FNSF with an 8-layer MLP, and the grid cell size is 0.1 meters; (4) FNSF (linear). We also imple-
ment FNSF via a linear model with complex positional encodings. The settings of the linear model
and positional encodings are the same as in NSFP (linear); (5) FNSF (joint). To demonstrate the
necessity of a dedicated strategy for utilizing temporal information, we use a single FNSF to jointly
estimate the previous flow (t-1→ t) and the current flow (t→ t+1); (6) FNSF (temporal encoding).
Following (Zheng et al., 2023), we also use an FNSF to estimate the previous flow (t-1→ t) and the
current flow (t→ t+1) with temporal encoding. Please see more discussions in Appendix A.3; (7)
Ours. We implement models gf and gb with 8-layer MLPs. These two models are independently
trained. We simplify the model ginvert as a constant model (ginvert(b) = −b) and adopt a 3-layer
MLP as the fusion model gfusion. The architecture of the fusion model is discussed in Section A.3.
The grid cell size of FNSF is consistently set to 0.1 meters; (8) Ours (cycle consistency). We also
implement the proposed method with a cycle consistency constraint in (Li et al., 2021), which aims
to improve the smoothness of the scene flow estimation. Please see more discussions in Appendix
A.3; (9) FLOT (Puy et al., 2020), 3DFlow (Wang et al., 2022b), and GMSF (Zhang et al., 2023)
are supervised learning-based methods trained on the synthetic FlyingThings3D (Mayer et al., 2016)
and the KITTI (Menze & Geiger, 2015) datasets. On the other hand, SCOOP (Lang et al., 2023) is
a self-supervised method. These models are directly evaluated with pre-trained models and official
codes released by the authors.

All experiments are conducted on a computer with a single NVIDIA RTX 3090Ti GPU and a Gen
Intel (R) 24-Core (TM) i9-12900K CPU. We implement all compared models based on PyTorch.

4.1 COMPARISON OF PERFORMANCE

We evaluate and compare the proposed method with various state-of-the-art methods on the Waymo
Open (Table 1) and the Argoverse (Table 2) datasets. For simplicity, we represent results on the
Waymo Open (xx) and the Argoverse (yy) as xx/yy in the following paragraph. Figure 2 shows the
visual comparison between FNSF and MNSF on the Argoverse dataset.
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Table 3: Performance of the proposed method with different components on the Waymo Open
dataset. All compared methods are evaluated with the full point cloud as the input.

Model Multi-frame ginvert gfusion E ↓ Acc5 ↑ Acc10 ↑ Outliers ↓ θϵ ↓ t ↓
FNSF 0.075 85.34 92.54 32.80 0.286 609

(a) ✓ 0.083 84.06 92.58 33.52 0.325 734
(b) ✓ ✓ 0.070 82.94 92.64 32.89 0.284 613
(c) ✓ ✓ 0.088 78.96 88.97 37.43 0.320 987
(d) ✓ ✓ ✓ 0.066 87.16 93.39 30.89 0.273 989

Dense scene flow estimation. The ability to estimate dense scene flow is crucial, because each
LiDAR scan often contains 100K - 1000K points in real-world autonomous driving scenarios (Jund
et al., 2021). Therefore, we evaluate scene flow methods with the full point cloud as the input.
NSFP achieves 78.21/75.15% strict accuracy, but the computation time costs 15310/15214 ms. To
accelerate the optimization process, NSFP (linear) replaces the MLP with a linear model and po-
sitional encoding. In this way, NSFP (linear) speedups the optimization process almost two times
and achieves worse performance compared to NSFP, i.e., accuracy decreases by about 15%. FNSF
achieves almost 30× speedup and improves the strict accuracy to 85.34/87.04%. Meanwhile, FNSF
(linear) slightly accelerates FNSF, suffering from a relatively large drop in performance.

All the above methods only use two frames (t and t+1) and neglect to utilize previous frames.
FNSF (joint) estimates the previous flow (t-1→ t) and the current flow (t→ t+1) at the same time.
However, such an intuitive scheme obtains worse strict accuracy (82.61/84.77%) than FNSF. The
interpretation of this phenomenon is that a single MLP fails to encode different motion fields si-
multaneously, because points in the frame t-1 and the frame t may have the same position (x, y, z)
with different motion fields. These inconsistent samples are difficult to be learned by DNNs (Liu
et al., 2023). In contrast, the proposed method exploits valuable temporal information from previous
frames and outperforms FNSF and FNSF (joint).

OOD generalizability. To conduct a fair comparison with learning-based methods (Puy et al., 2020;
Wang et al., 2022b; Zhang et al., 2023; Lang et al., 2023), we further extend the proposed method
to process a reduced number of points, i.e., 8,192 points. Current learning-based methods could
only process a fixed and small number of points due to their cumbersome networks (Peng et al.,
2023; Zhang et al., 2023), e.g., transformer-based architectures. To this end, these methods have to
downsample or divide the entire lidar scan into smaller subsets/regions. Then, these learning-based
methods can be iteratively used to predict the scene flow of each subset point cloud. In this way,
such a compromising point cloud pre-process operation limits the generalization ability of learning-
based methods on the large-scale OOD data and may lead to out-of-memory issues (Jund et al.,
2021; Chodosh et al., 2023).

Table 1 and Table 2 show that supervised learning-based methods, including FLOT, 3DFlow, and
GMSF, achieve limited performance on large-scale autonomous driving Waymo Open and Argov-
erse datasets. It is because of the huge domain shift between the training data and testing data (Pontes
et al., 2020; Li et al., 2021; Najibi et al., 2022; Dong et al., 2022; Jin et al., 2022; Chodosh et al.,
2023). In contrast, the self-supervised SCOOP outperforms its supervised counterparts and achieves
41.86/39.09% strict accuracy. However, the performance of SCOOP is still inferior to NSFP and
FNSF. The proposed method outperforms FNSF by exploiting and utilizing temporal information
from multi-frames. Although the computation cost of 3DFlow is the lowest among all compared
methods, the proposed method achieves a balance between the performance and computational
complexity. These experimental results and analysis indicate that the proposed method is robust
for OOD data and is applicable to real-world autonomous driving scenarios.

Discussions about learning-based methods. Learning-based scene flow methods (Puy et al., 2020;
Liu et al., 2019b;c; Wang et al., 2022b; Zhang et al., 2023; Peng et al., 2023) have exhibited remark-
able speed and performance on small-scale synthetic datasets, e.g., KITTI Scene Flow2 (Menze &
Geiger, 2015) and FlyingThings3D (Mayer et al., 2016) datasets. However, these methods heavily

2Point clouds in the KITTI dataset are limited to a specific range (35-meter within the scene center) with a
small number of points (2048 or 8192 points).
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Table 4: Performance of fusion models with
different depths on Waymo Open dataset.

Setting E↓ Acc5↑ Acc10↑ θϵ↓
2 layers 0.069 86.84 93.07 0.286
3 layers 0.066 87.16 93.39 0.273
5 layers 0.068 86.33 93.16 0.281
7 layers 0.107 83.50 92.30 0.303

Table 5: Performance of different frame num-
bers on Waymo Open dataset.

Setting E↓ Acc5↑ Acc10↑ θϵ↓
2 frames 0.083 84.46 92.58 0.313
3 frames 0.066 87.16 93.39 0.273
4 frames 0.070 87.64 93.38 0.279
5 frames 0.085 87.48 93.31 0.291

rely on the high consistency between training scenarios and testing scenarios (Pontes et al., 2020;
Li et al., 2021; Najibi et al., 2022; Dong et al., 2022; Jin et al., 2022; Chodosh et al., 2023), e.g.,
viewpoints and coordinate systems. Thus, it is a challenge to use these learning-based methods in
real-world applications, where training scenarios and testing scenarios are often inconsistent.

4.2 ABLATION STUDY AND CASE STUDY

In this section, we first conduct comprehensive experiments to verify the effectiveness of each com-
ponent in the proposed method on the Waymo Open dataset. Specifically, given the forward and
backward flows, the following four models are evaluated: (a) use the model gfusion to refine the for-
ward flow; (b) use the model ginvert to invert the backward flow, then directly compute the average
of the inverted flow and the forward flow as the fused flow; (c) use the model gfusion to directly fuse
the forward and backward flows; (d) equip all components, i.e., MNSF.

Table 3 shows that each component is effective. Model (a) achieves comparable performance with
FNSF without exploiting valuable information from previous frames. By coarsely using previous
frames, model (b) slightly outperforms FNSF. Although model (c) uses information from previous
frames, it performs worse than FNSF. This is because the forward and backward flows represent op-
posite directions and conflict with each other. Therefore, the direct fusion leads to performance
degradation. Combining an inverter model ginvert and a fusion model gfusion (i.e., model (d)),
achieves better performance than FNSF.

Number of Layers

𝐴𝐴𝐶𝐶
𝐶𝐶

(%
)

Figure 3: Performance of MNSF and FNSF
with different number of layers on Waymo
Open dataset.

Scaling up model size. To evaluate the performance
of MNSF with increased model size, we demonstrate
the scaling chart for MNSF and FNSF. Specifically,
we increase the layer numbers of both MNSF and
FNSF from 1 to 16 for a fair comparison. Figure
3 shows that MNSF achieves the best performance
with a ten-layer MLP and FNSF with an eight-layer
MLP. Increasing the layer number of FNSF does not
further improve its performance when the layer num-
ber is larger than eight. Therefore, MNSF is more
suitable to equip with deep MLPs and outperforms
FNSF across different layer numbers.

Depth of the temporal fusion model. We il-
lustrate the results of the proposed method with
different depths of the temporal fusion model
gfusion (·Θfusion). Specifically, the temporal fusion

model is set as 2-layer MLP, 3-layer MLP, 5-layer MLP, and 7-layer MLP. Table 4 shows that a
3-layer MLP temporal fusion model achieves the optimal performance. Therefore, a relatively small
layer number of the temporal fusion model could better accomplish the fusion procedure.

Number of frames. We demonstrate the results of MNSF with different frame numbers. Table
5 shows that the multi-frame setting outperforms the 2-frame setting. It verifies that exploiting
temporal information is useful for scene flow estimation. Table 5 indicates that the contribution of
the temporal information is incremental, when the number of frames is larger than three. Such a
finding is consistent with the previous work in the optical flow estimation (Ren et al., 2019) and
object detection (Chen et al., 2022).
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Figure 4: (a) The loss landscapes of FNSF and MNSF on the Argoverse dataset. Color represents
the testing loss. MNSF eases the scene flow optimization process and has a more flat minimum. (b)
Fast motion cases on the Argoverse and the Waymo Open datasets. Color represents the normalized
3D end-point error E for each point, and blue indicates the estimation of the flow is accurate.

Loss landscape. To further analyze the optimization difficulty of the neural scene flow estimation,
we demonstrate the loss landscape of FNSF and MNSF in Figure 4(a). It is well known that the
high flatness of the minima indicates good generalization ability (Li et al., 2018; Keskar et al., 2016;
Ma et al., 2021; Chen et al., 2023). Figure 4(a) shows that the minima of MNSF are more flat than
FNSF. Therefore, MNSF eases the scene flow optimization process and has better generalization
ability, which also verifies the correctness of Theorem 2.

Fast motion cases. The ability to estimate dense scene flow of fast motion is important in real-world
autonomous driving. Therefore, we demonstrate the error of the scene flow estimation in fast motion
cases. Specifically, we select two fast motion cases from Argoverse and Waymo Open datasets based
on the pseudo ground truth scene flow, respectively. Figure 4(b) shows that although the proposed
method uses temporal information from previous frames, it can still accurately estimate the fast
motion field. Such experimental results verify the robustness of MNSF in fast motion cases.

5 CONCLUSION

In this paper, we theoretically analyze NSFP’s generalization ability and explain its effectiveness
for large-scale point cloud scene flow estimation. Inspired by the theoretical findings, we propose
an MNSF dedicated to large-scale point clouds. Furthermore, we conduct a theoretical analysis and
demonstrate that MNSF’s generalization error is bounded. Comprehensive case studies across five
metrics confirm that MNSF significantly improves performance. Additionally, MNSF’s robustness
in processing fast motion cases and the high flatness of the minima in loss landscape underscore its
effectiveness in large-scale OOD autonomous driving scenarios.

6 LIMITATION

MNSF needs to create a DT map using rasterization following (Li et al., 2023), which may bring
discretization errors. In our case studies, we build a DT map with relatively fine-resolution grids,
balancing the computation and the accuracy. In this way, the resolution of the DT map needs to be
chosen for different scenarios. Moreover, from a theoretical standpoint, we present for the first time
a generalization evaluation based on uniform stability for both NSFP and MNSF. We acknowledge
that we do not verify the applicability of theoretical results for all methods, whether within or outside
the NSFP families. We leave them in the future work.
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A THEORETICAL ANALYSIS

Drawing on the theoretical frameworks proposed by (Devroye & Wagner, 1979; Bartlett & Mendel-
son, 2002; Bousquet & Elisseeff, 2002; Liu et al., 2016), we adopt uniform stability, as introduced
by (Bartlett & Mendelson, 2002; Bousquet & Elisseeff, 2002), as a metric to evaluate the general-
ization performance of both NSFP and the method proposed in this study. We initiate by presenting
the essential technical tools.

A.1 NOTATIONS

Let X ∈ R and Y ∈ R be the input and output space, we consider the training dataset

Φ =
{
z1, · · · , z|Φ|

}
, (1)

where we have zi = {xi, yi} |i=1,··· ,|Φ| and Z = X × Y drawn independent and identically dis-
tributed from some unknown distribution Ξ. The learning algorithm, denoted by A, is to learn some
function from Z |Φ| into F ⊂ YX , mapping the dataset Φ onto the function AΦ from X to Y . Since
we are considering a neural network-based algorithm, A here is related to the learnable neural net-
work parameters. We use Ez to represent the expectation operator. Given a training dataset Φ, we
also consider a modified version by replacing the i-th element by a new sample z

′

m, yielding

Φm =
{
z1, · · · , zm−1, z

′

m, , zm−1, · · · , z|Φ|

}
. (2)

We assume the replacement example z
′

m is drawn from Ξ and is independent of Φ. We use the risk
(also known as generalization error) to measure the performance of a learning algorithm (Bartlett
& Mendelson, 2002; Bousquet & Elisseeff, 2002), which can be denoted by

R (A,Φ) = Ez [ℓ (AΦ, z)] , (3)

where ℓ represents the loss function of a learning algorithm. The classical estimator for the risk
of the dataset Φm is the resubstitution estimate (also known as empirical error)(Bousquet &
Elisseeff, 2002), defined as

R (A,Φm) =
1

|Φ|

|Φ|∑
i=1

ℓ (AΦm , zi). (4)

A.2 ASSUMPTIONS AND MAIN TOOLS

The objective of this study is to establish bounds on the disparity between empirical and generaliza-
tion errors for particular algorithms, which can be defined in the following.
Definition 1. Given some algorithm A, its uniform stability β exists with respect to (w.r.t.) its loss
function ℓ if the flowing holds

∀Φ ∈ Z,∀m ∈ {1, · · · , |Φ|} ,

∆R
∆
= |R (A,Φ)−R (A,Φm)| ≤ β. (5)

To bound the uniform stability, we need some probability measure, such as the Bregman divergence
(Mohri et al., 2018), which is defined by
Definition 2. Bregman divergence: Let L : H → R be a strictly convex function that is contin-
uously differentiable on int H. For all distinct g, h ∈ H, then the Bregman divergence is defined
as

BL (g||h) = L (g)− L (h)− ⟨g − h,∇L (h)⟩ (6)

Some key properties of Bregman divergence (Mohri et al., 2018) are given in the following:
Lemma 1. Bregman divergence is non-negative and additive. For example, give some convex func-
tions F1, F2 and F = F1 + F2, for any g, h ∈ H, we have

BF (g||h) = BF1 (g||h) +BF2 (g||h) (7)

and
BF (g||h) ≥ 0. (8)
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To get the theoretical results, we need some mild assumptions for the statistics of the point clouds and
the related neural networks. The interested readers are referred to the works (Devroye & Wagner,
1979; Bousquet & Elisseeff, 2002; Zhang, 2002; Liu et al., 2016) for more applications of the related
assumptions.

Assumption 1. Any point clouds (P ∈ S) considered in the work contain a finite points and vector
spaces of point clouds and neural network (Θ) are bounded,

|Si|i=1,2,3 < ∞, ∥P∥F ≤ σP ,

∥Q∥F ≤ σQ, ∥R∥F ≤ σR, ∥Θ∥F ≤ σΘ. (9)

In this assumption, we bound the norm of point clouds and related neural networks (forward model),
which is reasonable and achievable in practice for point clouds without outliers (substantial value).

To enable the downstream analysis without loss of generality, we assume the minimum of the sum-
mation operators are given by

x̂k = argmin
x∈S3

∥p− x∥22 (10)

and
p̂l = argmin

y∈S2

∥q− y∥22 = argmin
p∈S2

∥q− (Θp+ p)∥22 . (11)

Let pi and qj be the i-th and j-th point clouds in the S2 and S3, respectively. Then, for the NSFP
problem, we can rewrite the corresponding loss function as

L (Θ,p;S3) = Lp (Θ,p; x̂k) + Lq (Θ, p̂l;qj) , (12)

where

Lp (Θ,p; x̂k) =
1

|S2|

|S2|∑
i=1

∥Θpi + pi − x̂k∥22,

and

Lq (Θ, p̂l;q) =
1

|S3|

|S3|∑
j=1

∥(Θp̂l + p̂l)− qj∥22

We include the following mild assumptions for the loss functions Lp and Lq:

Assumption 2. For some σp, for any Θ,Θm ∈ Θ, the loss function Lp is bounded by

|Lp (Θ,p; x̂k)− Lp (Θm,p; x̂k)| ≤ σP ∥(Θ−Θm)p∥2. (13)

For any network outputs (estimates) Θp̂k + p̂k and Θp̂l + p̂l, the loss Lq is σΘ + 1 admissible,
such that

|Lq (Θ, p̃l;qk)− Lq (Θm, p̂l;qk)| ≤ (σΘ + 1) ∥p̃l − p̂l∥2 (14)

Besides, Lq is c -strongly convex:

⟨p̃l − p̂l,∇Lq (., p̃l)−∇Lq (., p̂l)⟩ ≥ c ∥p̃l − p̂l∥22 . (15)

Assumption 3. There exists a subset Ω =
{
d1, · · · ,d|Ω|

}
⊂
{
p1, · · · ,p|S2|

}
such that for any

point cloud p in considered tasks, p can be reconstructed with a small reconstruction error (∥η∥ ≤
ε): p =

∑|Ω|
j=1 αjdj + ηj , where α ∈ R and ∥α∥ ≤ r.

The above four assumptions were used to bound the network function, and similar assumptions
have been used and demonstrated effective in theoretical works (Zhang, 2002; Liu et al., 2016).
We begin our demonstration by presenting an outline of the proofs for our principal theories. We
start by utilizing the statistical characteristics (specifically, Bregman convergence) of selected subset
point clouds, constructing these subsets from the original point clouds. Subsequently, we delve into
examining the upper bounds of these subset point clouds. The pivotal findings are then derived from
this theoretical analysis and subsequent calculations.
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A.2.1 KEY THEOREMS

Our first goal here is to upper-bound the NSFP algorithm as defined in the following:

Definition 3. Uniform Stability of NSFP: An algorithm is β uniformly stable with respect to the
loss function L if the following holds with high probability:

∆R (L, {S2,S3}) = |Lp (Θ,p; x̂k)− Lp (Θm,p; x̂k)| ≤ β, (16)

where Θm is the optimal forward models of the loss function L over the datasets Sm
2 and Sm

3 in

which we replace its m-th sample (pm, p̂l) by a random new point cloud
(
p

′

m, p̂
′

l

)
.

Based on the provided definitions, certain mild assumptions, and comprehensive derivations, we
obtain the following theoretical theoretical results.

Theorem 1. With the above definitions and some assumptions, for some random sample in {S2,S3},
with high probability, we have,

βNSFP ≤ |Ω|σp

4

(
rv +

√
r2v2 +

8vσΘε

|Ω|

)
+ σΘσpε, (17)

where v =
σp

|S2| +
σΘ+1
|S3| and all variables except S2 and S3 can be considered as constants.

Proof. Proof sketch: To define limits on the differences between empirical errors and generaliza-
tion errors for specific algorithms, we initially explore the statistical correlation between the subset
and original point clouds. This exploration enables us to ascertain an upper limit for forward model
errors. Subsequently, we focus on the Bregman divergence, utilizing it as a pivotal statistical metric,
from which we deduce the crucial inequality. This process culminates in the formulation of a com-
prehensive proof of our theorems. It’s important to mention that, although our analysis is based on a
linear network model, empirical evidence from case studies has shown that it performs well in both
linear and nonlinear network models.

Statistical Relationship between the Subset and Original Point Clouds: With Assumption 2 and
Cauchy-Schwarz inequality, we have

|Lp (Θ,p; x̂k)− Lp (Θm,p; x̂k)|
≤ σp∥(Θ−Θm)p∥2

≤
√∑

j

α2
j

√
|Ω|∑
j=1

∥(Θ−Θm)dj∥22 + ∥(Θ−Θm)∥2∥η∥2

≤ r

√
|Ω|∑
j=1

∥(Θ−Θm)dj∥22 +
2σΘε
|S2|

(18)

Then our goal is to bound the ∥(Θ−Θm)d∥2, which is based on the Bregman divergence between
the point clouds Φ and its subset Ω.

With the definitions in Section A.1, we know that the loss function L and Lm are defined over the
original dataset S2 and S3. For the same loss functions defined over the subset Ω, we can denote
them as LΩ and LΩ

m for notation compactness. Considering the non-negativity and additivity of the
Bregman divergence (Lemma 1), we can have

BLq (Θm||Θ) ≤ BL (Θm||Θ) , BLq (Θm||Θ) ≤ BLm (Θm||Θ) (19)

and
BLΩ

q
(Θm||Θ) +BLΩ

q
(Θ||Θm)

≤ κ
[
BLq

(Θm||Θ) +BLq
(Θ||Θm)

] , (20)

for some κ > 0.

Key Inequalities: We concentrate on establishing the critical inequalities between the Bregman
divergence of the initial point clouds and the divergence observed in their subsets. We start by
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showing the key inequality of BLΩ
q
(Θm||Θ) +BLΩ

q
(Θ||Θm):

BLΩ
q
(Θm||Θ) +BLΩ

q
(Θ||Θm)

= 1
|Ω|

|Ω|∑
i=1

〈
Θ−Θm,∇Lq (Θ, p̂l;qi)d

T
i

〉
− 1

|Ω|

|Ω|∑
i=1

〈
Θ−Θm,∇Lq (Θm, p̂l;qi)d

T
i

〉
= 1

|Ω|

|Ω|∑
i=1

⟨(Θ−Θm)di,∇Lq (Θ, p̂l;qi)−∇Lq (Θm, p̂l;qi)⟩

≥ c
|Ω|

|Ω|∑
i=1

∥(Θ−Θm)di∥22

(21)

where the inequality holds from Assumptions 2 and results given in Eq. (19). Since the mean square
error is considered, we have c = 2.

Since Θm and Θ are the optimal forward models of L and Lm, we have ∇L (Θ) = 0 and
∇Lm

(Θm) = 0. Then with the definition in Eq. (6), we obtain
BL (Θm||Θ) +BLm

(Θ||Θm)
= L (Θm)− L (Θ) + Lm (Θ)− Lm (Θm)
= (L (Θm)− LmΘm) + (Lm (Θ)− L (Θ))
= 1

|S2| [Lp (Θ,pm; x̂k)− Lp (Θm,pm; x̂k)]

+ 1
|S2|

[
Lp

(
Θ,p

′

m; x̂k

)
− Lp

(
Θm,p

′

m; x̂k

)]
+ 1

|S3|

[
Lq (Θ, p̂l;qi)− Lq

(
Θm,

′

l p̂l;q
′

i

)]
+ 1

|S3|

[
Lq (Θ, p̂;qi)− Lq

(
Θm, p̂

′

l;q
′

i

)]
. (22)

Considering Eq. (20) and Assumptions 1-3, we get
BL (Θm||Θ) +BLm (Θ||Θm)

≤ κ
(

σp

|S2|
+ σΘ+1

|S3|

)(
∥(Θ−Θm)pm∥2 +

∥∥∥(Θ−Θm)p
′
m

∥∥∥
2

)
≤ κ

(
σp

|S2|
+ σΘ+1

|S3|

)(
r∥(Θ−Θm)d∥2 +

2σΘε
|Ω|

) (23)

The last inequality in Eq. (23) holds with some mathematical manipulation of the reconstruction
function shown in Assumption 3 and the inequality shown in Eq. (18).

Proof Completing: Let U =
|Ω|∑
i=1

∥(Θ−Θm)di∥2, comparing the inequalities shown in Eq. (22)

and Eq. (23), we can get

2
|Ω|

|Ω|∑
i=1

∥(Θ−Θm)di∥22

≤ κ
(

σp

|S2| +
σΘ+1
|S3|

)(
r∥(Θ−Θm)d∥2 +

2σΘε
|Ω|

) (24)

or equivalently,
2

|Ω|
U2 ≤ κ

(
σp

|S2|
+

σΘ + 1

|S3|

)(
rU +

2σΘε

|Ω|

)
, (25)

which can be further simplified by

U ≤ |Ω|
4 κr

(
σp

|S2| +
σΘ+1
|S3|

)
+ |Ω|

4

√
κ2r2

(
σp

|S2| +
σΘ+1
|S3|

)2
− 8κσΘε

|Ω|2

(
σp

|S2| +
σΘ+1
|S3|

) . (26)

Putting the above results into Eq. (16) gives
|Lp (Θ,p; x̂k)− Lp (Θm,p; x̂k)|
≤ σp∥(Θ−Θm)p∥2
≤ σp

(
r∥(Θ−Θm)d∥2 +

2σΘε
|Ω|

)
≤ |Ω|σpr

4

(
σp

|S2| +
σΘ+1
|S3|

)
+ σΘσpε

+
|Ω|σp

4

√
r2
(

σp

|S2| +
σΘ+1
|S3|

)2
+
(

σp

|S2| +
σΘ+1
|S3|

)
8σΘε
|Ω|

. (27)
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which completes the proof of Theorem 1.

Theorem 1 shows that the generalization error of NSFP decreases with the reciprocal of the number
of point clouds (|S2| and |S3|), demonstrating its superior performance in the large-scale scene
flow estimation (please see Tables 1 and 2), where |S2| → ∞ and |S3| → ∞, demonstrating the
effectiveness of NSFP in the large-scale settings. We further provide the analysis for the MNSF
method in the following.
Remark 3. Theorem 1 establishes the bounded nature of the uniform stability of the NSFP, offering
a fresh perspective on deriving stability properties for learning algorithms, including the NSFP and
its various iterations.
Theorem 2. Let Θfusion =

[
Θ⊤

1 ,Θ
⊤
2

]⊤ denote the parameters of the fusion model. For the proposed
multi-frame scheme (MNSF), with high probability, its uniform stability (βMNSF) is bounded by

βMNSF ≤ βNSFP +O
(

1
|S2|

)
, (28)

where O
(

1
|S2|

)
=

4κ2σ2
S3

λ|S2| +

(
8κ2σ2

S3

λ + 2σS3

)√
ln 1/δ
2|S2| and λ =

∥Θ2Θb∥2
2

∥Θ1Θf+I∥2
2

. Variables κ, σS3 ,

and δ can be considered as constants.

Proof. With the theoretical results, we are ready to prove Theorem 2. Let Θfusion =
[
Θ⊤

1 ,Θ
⊤
2

]⊤
denote the parameters of the fusion model. Considering a linear fusion function and inverter (defined
by Eq. (12)), we have

Θ

[
f

f
′

]
=
[
Θ1 Θ2

] [ f

f
′

]
=
[
Θ1 Θ2

] [ Θfp
−Θbp

]
(29)

Then, using Eq. (29), we can rewrite the loss function Lp in MNSF optimization as

1
|S2|

|S2|∑
j=1

∥(Θ1Θf −Θ2Θb)pj + pj − x̂k∥22

≤ ∥Θ1Θfpj + pj − x̂k∥22 + ∥Θ2Θbpj∥22
= ∥g (p)− x̂k∥22 + λ ∥g (p)∥22

(30)

where λ =
∥Θ2Θb∥2

2

∥Θ1Θf+I∥2
2

. With Eq. (30) and Theorem 12 (Bousquet & Elisseeff, 2002), we finally
obtain the theoretical results shown in Theorem 2.

Remark 4. As demonstrated in Eq. (30), by employing an appropriate fusion strategy, our proposed
MNSF emerges as a polynomial function of the approach utilized in NSFP, revealing a straightfor-
ward but essential variation of the NSFP algorithm.
Remark 5. Theorem 2 illustrates the advantageous impact of increasing the number of tasks for
MNSF. To gain an intuitive grasp, let’s examine an extreme scenario where all tasks (forward flow
and backward flow optimization) are interconnected, each with an independently drawn sample
size of one. Elevating the number of related tasks is akin to augmenting the independently drawn
examples, undoubtedly aiding in the acquisition of related information. Theorem 2 substantiates
this intuition with a theoretical assurance of rapid convergence rates comparable to those of NSFP.

Theorem 2 reveals two key aspects of MNSF based on loss function in Eq. (5): 1) The algorithm’s
generalization error is inversely proportional to the number of point clouds, indicating its efficacy
with large-scale point clouds (please see Tables 1 and 2); 2) Theoretical analysis shows that MNSF’s
generalization error upper bound is on par with NSFP’s when |S2| → ∞. This indicates that adding
the t-1 frame into the optimization maintains and even enhances the generalization, as supported by
the case studies.

A.3 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

Descriptions for dataset construction. Following (Li et al., 2021; 2023), we first use the object in-
formation provided by Argoverse/Waymo to separate rigid and non-rigid segments. Then we extract
the ground truth translation of rigid parts using the self-centered poses of autonomous vehicles and
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(a) Visualization of scene flow at different frames. (c) Effectiveness the proposed method.

Ground truth flow at frame t Ground truth flow at frame t+1

(b) A multi-frame scheme is nontrivial.

0.6

0.8

FNSF
Joint

𝐴𝐴𝑐𝑐𝑐𝑐5 𝐴𝐴𝑐𝑐𝑐𝑐10 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

1/𝜀𝜀

𝐴𝐴𝑐𝑐𝑐𝑐5

𝐴𝐴𝑐𝑐𝑐𝑐10𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

1/𝜃𝜃𝜀𝜀

Ours
FNSF

Figure 5: NSFP and FNSF show powerful generalization ability in large lidar autonomous driving
scenes. However, none of these studies exploit the useful temporal information from previous point
cloud frames. Extensive studies on optical flow estimation (Wulff et al., 2017; Golyanik et al., 2017;
Janai et al., 2018; Maurer & Bruhn, 2018; Liu et al., 2019a; Stone et al., 2021; Hur & Roth, 2021;
Mehl et al., 2023) and (a) have shown that scene flow in consecutive frames are similar to each
other (i.e., the upper left color wheel represents the flow magnitude and direction). To this end,
an intuitive approach for exploiting temporal information, namely Joint, is to force a single FNSF
to jointly estimate the previous flow (t-1→ t) and the current flow (t→ t+1). (b) shows that such
an intuitive multi-frame scheme achieves worse performance than two-frame FNSF on the Waymo
Open dataset. In this paper, we propose a multi-frame point cloud scene flow estimation scheme. (c)
shows that the proposed method achieves state-of-the-art on the Waymo Open dataset.

non-rigid parts using object poses, respectively. Thus, we can combine these translational vectors to
generate the ground truth scene flow. Moreover, we remove the ground points using the information
provided by the ground height map.

Temporal encoding. We also compare the proposed multi-frame scheme with the temporal encod-
ing strategy, because temporal encoding is useful to process point cloud sequences (Wang et al.,
2022a; Zheng et al., 2023). As aforementioned, it is difficult for FNSF (joint) to distinguish point
clouds from different frames. To mitigate this issue, we use temporal encoding and concatenate the
temporal coordinate into the spatial coordinate, i.e., obtaining a 4D point cloud. In this way, we
construct FNSF (temporal encoding) to jointly estimate the previous flow (t-1→ t) and the current
flow (t→ t+1). Table 1) and Table 2 show that FNSF (temporal encoding) slightly outperforms
FNSF (joint). Such experimental result indicates that using temporal encoding partially addresses
the issue in FNSF (joint) with limited performance improvement. However, FNSF (joint) is still
inferior to the proposed method. The interpretation is that temporal encoding may be more suitable
for long sequence point clouds than short sequence point clouds (Wang et al., 2022a). Therefore, the
proposed method provides a promising solution to multi-frame point cloud scene flow estimation.

Cycle consistency constraint. We conduct experiments to figure out whether the proposed method
can be further improved by the cycle/temporal consistency loss, because it is common practice to
encourage the trajectory of point cloud to be smooth (Liu et al., 2019b; Mittal et al., 2020; Wang
et al., 2022a) for multi-frame point clouds, by constraining the distance between point clouds from
different frames. To this end, a temporal consistency loss or a cycle consistency loss is usually used
during the training process of point cloud models. Table 1 and Table 2 show that adding the cycle
consistency loss decreases the performance of the proposed method, i.e., strict accuracy decreasing
from 87.16/88.75% to 81.09/83.26%. In addition, the cycle consistency loss significantly increases
the computational complexity, and the inference time costs 1831 ms. Thus, the cycle/temporal
consistency loss is not necessary in our case. Such a finding also verifies the empirical observation
in (Li et al., 2023). Therefore, we implicitly enforce cycle/temporal smoothness, instead of explicitly
constraining cycle/temporal smoothness.

Architecture of the temporal fusion model. We provide results of MNSF with different architec-
tures of the temporal fusion model. The temporal fusion model is an average operation, a learnable
matrix W , and an MLP, respectively. Specifically, mean denotes directly computing the average of
the forward and the inverted backward scene flow, i.e., (f + f

′
)/2. The weighted sum represents

using the learnable matrix W to adjust the weights between the forward and the inverted backward
scene flow, i.e., W f + (I −W )f

′
. In comparison, these two flows are concatenated as the input to
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Table 6: Performance of different architectures of the temporal fusion model on the Waymo
Open dataset. All compared methods are evaluated with the full point cloud as the input.

Operation E(m) ↓ Acc5(%) ↑ Acc10(%) ↑ θϵ(rad) ↓
Mean 0.070 82.55 92.64 0.285
Weighted sum 0.097 84.18 92.42 0.286
MLP 0.066 87.16 93.39 0.273

the MLP, and the output is the fused flow. Table 6 shows that setting the temporal fusion model as
an MLP achieves optimal performance.

Number of frames. We demonstrate the results of MNSF with different frame numbers. Specif-
ically, we have point clouds from t-(m-2), · · · , t-1, t, and t+1 for the m-frame setting. We inde-
pendently train m-1 models, predicting the forward flow t → t+1 and m-2 backward flow t→ t-1,
t→ t-2, · · · , t→ t-(m-2), respectively. Finally, we use a fusion model to estimate the final flow, i.e.,
t→ t+1. Table 5 shows that the multi-frame setting outperforms the 2-frame setting. It verifies that
exploiting temporal information from previous frames is useful for scene flow estimation. Table 5
also reveals that the contribution of the temporal information is incremental, when the number of
frames is larger than three. Such a finding is consistent with the previous work in the optical flow
estimation (Ren et al., 2019).
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