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Abstract

With the onset of the COVID-19 pandemic, ultrasound has emerged as an effective tool
for bedside monitoring of patients. Due to this, a large amount of lung ultrasound scans
have been made available which can be used for AI based diagnosis and analysis. Sev-
eral AI-based patient severity scoring models have been proposed that rely on scoring the
appearance of the ultrasound scans. AI models are trained using ultrasound-appearance
severity scores that are manually labeled based on standardized visual features. We address
the challenge of labeling every ultrasound frame in the video clips. Our contrastive learn-
ing method treats the video clip severity labels as noisy weak severity labels for individual
frames, thus requiring only video-level labels. We show that it performs better than the
conventional cross-entropy loss based training. We combine frame severity predictions to
come up with video severity predictions and show that the frame based model achieves
comparable performance to a video based TSM model, on a large dataset combining public
and private sources.

Keywords: Contrastive Learning, Weakly Supervised, COVID-19 Lung Ultrasound, POCUS
AI

1. Introduction

Lung Ultrasound (LUS) imaging has presented itself to be an effective bedside tool for
monitoring COVID-19 patients (Mento et al., 2020; Raheja et al., 2019; Amatya et al., 2018).
Several AI based applications have emerged that help with diagnosis and identification
of COVID-19 lung biomarkers (Born et al., 2021, 2020; Roy et al., 2020; Van Sloun and
Demi, 2020; Xue et al., 2021; Gare et al., 2021). Most of these methods rely on expert
annotated data for learning, demanding scarce and expensive time from expert physicians
and radiologists involved in the mitigation of the COVID-19 pandemic. This raises a need
for label efficient learning techniques.

Monitoring patient severity and making prognostic predictions play a critical role in the
allocation of limited medical resources. For this, several AI based patient severity scoring
techniques have recently been proposed (Roy et al., 2020; Xue et al., 2021) which rely on
video- and frame-based annotations. Labeling all of the individual frames in an ultrasound
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video clip is time-consuming and expensive though. Just labeling the ultrasound video clip
is more suitable and treating the video clip severity label as the pseudo frame severity label
for the corresponding frames of the video would be preferable. But doing so introduces label
noise as not all the frames in a clip actually display the same severity sign. For instance,
B-line artifact which is indicative of an unhealthy lung would not be consistently seen in all
the frames of an unhealthy lung ultrasound clip, so not all the frames show the same level
of disease state. We propose a contrastive learning strategy as a way to mitigate the label
noise introduced by the use of such weak frame severity labels directly obtained from the
corresponding video severity label.

Contrastive learning has been used previously in the literature as semi- and self- super-
vised learning techniques (Chen et al., 2020a), quite a few applications of it have already
been presented in the medical domain (Zhang et al.; Wang et al., 2020; Xue et al., 2021).
Contrastive learning acts as a way to regularise feature embeddings to learn discrimina-
tive features that enforce intra-class features to have a greater overlap (or similarity) than
inter-class features by using objective functions that operate on the cosine similarity of the
feature embeddings. Many techniques apply contrastive learning for differentiating COVID-
19, Healthy and other pneumonic diseases (Zhang et al.; Chen et al., 2020b). Chen et al.
(2020b) applied contrastive learning on CT scans as a few-shot COVID-19 diagnosis tech-
nique by bringing together the feature embedding of the same classes and pulling apart the
feature embedding of different classes. Similarly, Zhang et al. applied contrastive learning
on CT scans and paired text to enhance the network’s domain invariance without using any
expert annotation. Xue et al. (2021) applied contrastive learning on the patient level feature
embedding in an attempt to align features from 2 different modalities corresponding to LUS
and clinical information, to predict the patient severity. The LUS feature embeddings are
high level feature embeddings that are aggregated from frame level features to ultrasound
zone level features. In addition to making the feature embedding of the two modalities align,
they take care of preserving the patient severity discriminate features, by the introduction
of novel additional loss components to the contrastive loss. Taking a cue from them, we
also augment the contrastive loss with additional terms to retain the ultrasound severity
discriminate features.

We propose a weakly supervised training methodology by applying contrastive learning
for the prediction of ultrasound video clip severity score, by making use of the noisy frame
severity scores directly obtained from the corresponding video severity score. We show that
the contrastive learning setup is more robust to the weak frame severity label noise and
thus generalizes better, compared to the cross-entropy loss based training.

2. Methodology

2.0.1. Problem Statement

Given an ultrasound B-mode grey image Ig, the task is to find a function F : [ Ig] → L
that maps the image Ig to ultrasound severity score labels L ∈ {0, 1, 2, 3}. Because the
pleural line produces distinct artifacts (A-lines, B-lines) when scattering ultrasound based
on the lung condition, the classification model should learn underlying mappings between
the pleural line, artifacts, and pixel values, for making the predictions.
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Figure 1: The distribution of ultrasound video
clips into various severity scores and
probes.
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Figure 2: RoC plots of the contrastive learn-
ing trained model for the video-
based severity scoring.

2.1. Data

We compiled a lung ultrasound dataset with linear and curvilinear videos sourced from the
publicly usable subset of the POCOVID-Net dataset (Born et al., 2020, 2021) (128 videos),
as well as our own private dataset (160 videos). Our dataset consists of multiple ultrasound
B-scans of left and right lung regions at depths ranging from 4cm to 6cm under different
scan settings, obtained using a Sonosite X-Porte ultrasound machine. The combined dataset
consists of ultrasound scans of healthy and COVID-19 patients, totaling 288 videos (113
Healthy and 175 COVID-19) resulting in about 50K images. Figure 1 shows the data
distribution into the various ultrasound severity scores and probes.

We use the same 4-level ultrasound severity scoring scheme as defined in (Sim) and
similarly used in (Roy et al., 2020). The score-0 indicates a normal lung with the presence
of a continuous pleural line and horizontal A-line artifact. Scores 1 to 3 signify an abnormal
lung, wherein score-1 indicates the presence of alterations in the pleural line with≤ 5 vertical
B-line artifacts, score-2 has the presence of > 5 B-lines and score-3 signifies confounding
B-lines with large consolidations. All the manual labeling was performed by individuals
with at least a month of training from a pulmonary ultrasound specialist. Refer to Figure 4
for sample images corresponding to the severity scores.

2.1.1. Data Preprocessing

We perform dataset over-sampling to address the class imbalance for the training data,
wherein we upsample (by duplicating) all the minority class labeled data to get a balanced
training dataset (Rahman and Davis, 2013). All the images are resized to 312x232 pixels
using bilinear interpolation. Data augmentation is not applied.

2.2. Training Strategy

To access the ultrasound severity score of the video clips, we make use of the video labels
as the noisy weak labels for the corresponding video frames. We augment the cross-entropy
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loss training objective for the classification task, using the contrastive learning objective in
order to learn features that are robust to the frame-level label noise.

2.2.1. Contrastive Learning Objective

We adapt the contrastive learning objective proposed by (Xue et al., 2021), wherein dis-
criminative representations are learned using the contrastive loss consisting of three parts,
which respectively cope with the intra-class alignment LIA, inter-class contrastive learning
LCL, and contrastive continuity LCC . The intra-class alignment LIA objective is to bring
the feature embeddings of the same severity score closer, the inter-class contrastive learning
LCL objective is to differentiate the feature embeddings of different severity scores and the
contrastive continuity LCC ensure that the hierarchy among the severity scores is preserved.
The adapted contrastive learning approach can be implemented by optimizing the following
objective:

Lcon =
1

N

N∑
i=1

[LIA
i + LCL

i + LCC
i ] (1)

where,

LIA
i = 1− sim(ui,uj) ∀i,∃j, |si − sj | = 0 (2)

LCL
i =

∑
s

sim(uk,ui) ∀i,∃k, |si − sk| > 0 (3)

LCC
i =

∑
s

max(sim(um,ui)− sim(un,ui), 0) (4)

∀i,∃m,n, |si − sm| > 0, |si − sn| > 0, |si − sm| > |si − sn|

where, N is the total number of frames, sim(a,b) = aTb
∥a∥∥b∥ is the cosine similarity

between vectors a and b. u is the feature embeddings extracted after the global average
pooling layer of the network, which is 2048-dimensional vector. s is the ultrasound severity
score of the corresponding frame feature u. During training, for the input frame under
consideration i, we randomly sample the frames k,m, n from different video clips which
have different severity scores than i and randomly select frame j corresponding to the same
video clip as i within a 10 frame window.

Unlike (Xue et al., 2021) which only relate the immediate severity levels, we explicitly
relate all severity levels to enforce linear relationships in order to preserve the sequential
nature of possible output choices (e.g. severity-1 is closer to severity-2 than severity-1 to
severity-3) while simultaneously achieving the desired contrast in the loss. Our approach
uniquely avoids the incorrect possibility of the model learning multi-dimensional distances
among outputs, which could for example make severity-0 seem very close to severity-3 if the
model incorrectly learned a cyclical order among the various severity levels. Prior systems
do not take this ordinal relationship into account which can give rise to unnatural ordering.
As can be observed in the confusion matrix shown in Figure 3.
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2.2.2. Overall Training Objective

The overall training objective Loverall consists of the weighted combination of cross-entropy
loss Lce for classification error and contrastive learning loss Lcon for feature regularization:

Loverall = αLce + (1− α)Lcon (5)

where, the cross-entropy loss Lce =
1
N

∑
i−gi logpi, in which N is the total number of

frames, gi is the ground truth one-hot severity score, pi is the predicted probability scores
from the last softmax layer of the network and the contrastive learning loss Lcon is as defined
in Equation (1). For all our experiments we set α as 0.5.

Using the frame predicted probability scores pi, we calculate the video’s predicted prob-
ability scores pv by taking the max severity-category score from all the corresponding video
frame’s predicted probability scores as:

pv = softmax(max
i∈v

pi[0],max
i∈v

pi[1],max
i∈v

pi[2],max
i∈v

pi[3]) (6)

where, pi[0], pi[1], pi[2], pi[3], is severity category probability scores 0 to 3 respectively
of frame i belonging to video v. Using these video predicted probability scores pv we
evaluate the video-based severity scoring metrics of the model. Appendix B shows an
ablation comparing various strategies.

2.2.3. Implementation

The network is implemented with PyTorch and trained using the stochastic gradient descent
algorithm (Bottou, 2010) with an Adam optimizer (Kingma and Ba, 2015) set with an initial
learning rate of 0.001. The model is trained on an Nvidia Titan RTX GPU, with a batch
size of 8 for 30 epochs for the classification task. The ReduceLRonPlateau learning-rate
scheduler was used which reduces the learning rate by a factor (0.5) when the performance
metric (accuracy) plateaus on the validation set. For the final evaluation, we pick the best
model with the highest validation set accuracy to test on the held out test set.

2.2.4. Metrics

For the severity classification, we report accuracy, precision, recall, and F1 score (Born
et al., 2020; Roy et al., 2020). The receiver operating characteristic (ROC) curve is also
reported along with its area under the curve (AUC) metric (Kim et al., 2020), wherein for
the calculation of the metric the weighted average is taken, where the weights correspond
to the support of each class and for the multi-label we consider the one-vs-all approach.
(Fawcett, 2006)

3. Experiment

We train the ResNet-50 (RN50) (He et al., 2016) model, commonly used for classification
and benchmarking methods using the contrastive learning setup and compare its perfor-
mance with the model trained only using the cross-entropy loss, in order to access the
robustness achieved using the contrastive learning objective to the noisy weak frame sever-
ity score labels. We also compare the performance with the model trained using the original
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contrastive learning loss in Xue et al. (2021) and a TSM (Lin et al., 2018) based video clas-
sification network similar to (Gare et al.), training details in Appendix-C. We conduct five
independent runs, wherein each run we randomly split the videos into train, validation, and
test sets with 70%, 10%, and 20% split ratio respectively, by maintaining the same split
ratio for all the individual severity scored clips and ensuring that all frames corresponding
to a video remain in the same split. The training set is upsampled to address the class
imbalance (Rahman and Davis, 2013). We report the resulting metrics in form of mean and
standard deviation over the five independent runs.

Table 1: Frame-based lung severity classification AUC of ROC, Accuracy, Precision, Recall,
and F1 scores on lung dataset (using noisy video labels). Highest scores in bold.

Method AUC of ROC accuracy severity precision recall F1-score

CE RN50 0.898 ± 0.016 0.693 ± 0.030

score-0 0.872 ± 0.071 0.809 ± 0.037 0.836 ± 0.021
score-1 0.529 ± 0.053 0.536 ± 0.195 0.517 ± 0.116
score-2 0.763 ± 0.068 0.705 ± 0.089 0.727 ± 0.047
score-3 0.167 ± 0.048 0.296 ± 0.067 0.212 ± 0.056
avg 0.730 ± 0.038 0.693 ± 0.030 0.703 ± 0.035

adapted CL RN50 0.903 ± 0.022 0.758 ± 0.042

score-0 0.851 ± 0.039 0.886 ± 0.056 0.866 ± 0.016
score-1 0.610 ± 0.131 0.612 ± 0.212 0.599 ± 0.156
score-2 0.775 ± 0.070 0.771 ± 0.040 0.771 ± 0.041
score-3 0.373 ± 0.168 0.223 ± 0.099 0.264 ± 0.100
avg 0.752 ± 0.048 0.758 ± 0.042 0.748 ± 0.044

Xue et al. (2021) CL RN50 0.899 ± 0.020 0.759 ± 0.041

score-0 0.855 ± 0.056 0.915 ± 0.024 0.883 ± 0.033
score-1 0.620 ± 0.060 0.555 ± 0.081 0.583 ± 0.065
score-2 0.764 ± 0.021 0.761 ± 0.076 0.760 ± 0.038
score-3 0.429 ± 0.294 0.295 ± 0.142 0.318 ± 0.171
avg 0.754 ± 0.046 0.759 ± 0.041 0.752 ± 0.041

Table 2: Video-based lung severity classification AUC of ROC, Accuracy, Precision, Recall,
and F1 scores on lung dataset. Highest scores are shown in bold.

Method AUC of ROC accuracy severity precision recall F1-score

CE RN50 0.842 ± 0.027 0.655 ± 0.055

score-0 0.851 ± 0.083 0.739 ± 0.027 0.788 ± 0.036
score-1 0.523 ± 0.058 0.527 ± 0.156 0.516 ± 0.098
score-2 0.751 ± 0.088 0.684 ± 0.120 0.708 ± 0.077
score-3 0.243 ± 0.095 0.440 ± 0.150 0.312 ± 0.116
avg 0.704 ± 0.053 0.655 ± 0.055 0.669 ± 0.055

adapted CL RN50 0.867 ± 0.020 0.734 ± 0.065

score-0 0.832 ± 0.051 0.843 ± 0.071 0.835 ± 0.044
score-1 0.630 ± 0.162 0.636 ± 0.199 0.621 ± 0.154
score-2 0.761 ± 0.095 0.768 ± 0.071 0.761 ± 0.060
score-3 0.457 ± 0.290 0.320 ± 0.160 0.364 ± 0.201
avg 0.738 ± 0.068 0.734 ± 0.065 0.730 ± 0.064

Xue et al. (2021) CL RN50 0.879 ± 0.026 0.731 ± 0.036

score-0 0.819 ± 0.077 0.861 ± 0.017 0.837 ± 0.040
score-1 0.639 ± 0.026 0.582 ± 0.093 0.606 ± 0.058
score-2 0.763 ± 0.048 0.747 ± 0.117 0.747 ± 0.051
score-3 0.503 ± 0.261 0.400 ± 0.219 0.396 ± 0.130
avg 0.739 ± 0.045 0.731 ± 0.036 0.726 ± 0.036

CE TSM 0.897 ± 0.025 0.710 ± 0.060

score-0 0.911 ± 0.059 0.730 ± 0.139 0.801 ± 0.082
score-1 0.604 ± 0.081 0.764 ± 0.109 0.672 ± 0.079
score-2 0.745 ± 0.085 0.768 ± 0.026 0.755 ± 0.056
score-3 0.276 ± 0.097 0.280 ± 0.098 0.270 ± 0.089
avg 0.744 ± 0.036 0.710 ± 0.060 0.716 ± 0.054
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4. Results and Discussions

Table 1 shows the mean and standard deviation of the frame-based severity scoring metrics,
obtained by evaluating on the held-out test set (using noisy video labels) using the models
from the five independent runs. We observe that the contrastive learning (CL) based trained
models perform better than the cross-entropy (CE) trained model, wherein the original (Xue
et al., 2021) and the adapted contrastive learning loss have similar scores.

We calculate the video-based severity scoring metrics of the models by calculating the
video predicted probability score pv obtained by taking the max severity-category score
from all the corresponding video frame’s predicted probability scores p, as defined in Equa-
tion (6). Table 2 shows the mean and standard deviation of the video-based severity scoring
metrics, obtained by evaluating on the held out test set using the models from the five in-
dependent runs. We again observe that the contrastive learning (CL) based trained models
preform better than the cross-entropy (CE) trained model and has comparable performance
with the video based TSM model. With our adapted loss function achieving the highest
accuracy, recall, and F1-score. The macro average and individual severity score’s RoC plots
of the CL trained model using the adapted loss for video-based prediction is shown in Fig-
ure 2. The lower performance on severity score-3 compared to other scores could be due
to the limited number of training data for severity score-3. Figure 3 shows the confusion
matrix of both the contrastive loss trained models on the combined 5 runs.

On comparing the model’s scoring metrics on the held out test set with the validation
(val) set used for hyperparameter optimization (see Table 3), we see that though the CE
trained model achieved higher accuracy and F1-score (avg) on the validation set compared
to our CL trained model, it was outperformed on the held out test set by the CL trained
model. This suggests that the CL trained model generalized better to the unseen data,
which is indicative of robust features learned using the contrastive loss.

We visualize the model’s layer-2 Grad-CAM (Selvaraju et al., 2016) and show the mean
Grad-CAM image corresponding to the four severity scores taken over the entire test set
(∼ 10K images) for the best run in Figure 4. We also shown Grad-CAM on four randomly
selected images for which our CL trained model appeared to be looking at the correct loca-
tions (pleural line and A-line & B-line artifacts), whereas CE trained model was basing its
predictions on non-lung tissue. For these four test images, the CL model correctly predicted
the severity scores, whereas the CE model got all predictions wrong. Which suggests that
the contrastive learning objective lead to learning better discriminative features.

Table 3: Performance comparison of frame-based score prediction on Test and Val dataset.

Dataset Method AUC of ROC accuracy F1-score

Test set
CE RN50 0.898 ± 0.016 0.693 ± 0.030 0.703 ± 0.035
CL RN50 0.903 ± 0.022 0.758 ± 0.042 0.748 ± 0.043

Val set
CE RN50 0.837 ± 0.074 0.689 ± 0.094 0.685 ± 0.093
CL RN50 0.839 ± 0.048 0.652 ± 0.069 0.633 ± 0.091

5. Conclusion

We demonstrated a weakly supervised method for scoring the COVID-19 lung ultrasound
scan clips, using contrastive learning objective. Which treats video-based severity labels
as frame-based severity labels thus reducing labeling cost. While these frame labels are
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Figure 3: Confusion matrix of the contrastive learning loss Xue et al. (2021) (left) vs adapted
(right). Our adapted loss is confused between immediate severity scores which is reason-
able and is less confused between non-immediate severity scores.
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Figure 4: Grad-CAM (Selvaraju et al., 2016) visualization of the layer-2 of cross-entropy (CE) and
contrastive learning (CL) trained model on the four severity score test images (B-mode
grey). We observe that CL trained model bases the predictions predominantly on the
pleural line and A-line & B-line artifacts, whereas the CE trained model predominantly
bases the predictions on the subcutaneous tissues above the pleural line. (Best seen in
Appendix Figure 5)

noisy, we demonstrated that the contrastive learning objective is robust to such label noise
compared to the cross-entropy learning objective. We showed that the frame based model
trained using the contrastive learning loss achieves comparable performance to a video based
TSM model.
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Appendix A. Data preprocessing

The ultrasound images were cropped to only retain actual ultrasound image content and
ensuring that all the artifacts (measure bars, texts, logos) are excluded, similar to (Born
et al., 2021) with the exception that we don’t crop to a quadratic window (for example see
Figure 4).
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To address the class imbalance we perform dataset over-sampling (Rahman and Davis,
2013) wherein the minority classes are duplicated at random such that their size on dupli-
cation matches the majority class. Thus ensuring that in every epoch the model sees equal
number of samples for every severity class.

Appendix B. Frame-score aggregation strategy

We compared various frame-score aggregation strategy to obtain video-based scores pre-
dicted probability scores pi on the adapted contrastive learning (CL) based trained model.
We compared taking the mean instead of max severity-category score in Equation (6) to
obtain the video’s predicted probability scores pv and also compared max-voting strategy
wherein we assigning the high occurring frame severity label to the corresponding video.
From the results in Table 4, we see that the max strategy gives significantly better scores.

Table 4: Performance comparison of the various frame-score aggregation strategy to obtain
video-based scores.

Method AUC of ROC accuracy precision recall F1-score

mean 0.884 ± 0.028 0.710 ± 0.043 0.705 ± 0.046 0.710 ± 0.043 0.701 ± 0.042

max 0.867 ± 0.020 0.734 ± 0.065 0.738 ± 0.068 0.734 ± 0.065 0.730 ± 0.064

max-voting - 0.714 ± 0.053 0.713 ± 0.059 0.714 ± 0.053 0.706 ± 0.054

Appendix C. TSM model Training Strategy

We follow the same setup of Gare et al. for training a TSM network (Lin et al., 2018)
with ResNet-18 (RN18) (He et al., 2016) backbone and bi-directional residual shift with
1/8 channels shifted in both directions. The model is fed input clips of 16 frames wide
(224x224 pixels) sampled using the same strategy as in Gare et al.. For testing, 3 sequential
sample clips per video are evaluated which are used to get the corresponding video predicted
probability scores pv, as defined in Equation (6). The model is trained for 30 epochs using
cross-entropy loss. For fair comparison with the frame based models no augmentation is
used.

Appendix D. Comparison with other existing work

We compare the dataset size, training labels, and performance of prior video-based scoring
methods in the literature (Roy et al., 2020; Xue et al., 2021) in Table 5. We see that our
method achieves higher scores by only using video labels, though noting that these scores
are obtained on different datasets.
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Table 5: Dataset size, training labels, and performance comparison of the video-based score
prediction with other existing work. Scores are obtained on different dataset.

Method Dataset Size Training Label AUC of ROC accuracy precision recall F1-score

(Roy et al., 2020) 277 videos frame + video label - - 0.70 0.60 0.61
(Xue et al., 2021) 1791 videos segmentation mask + video label - 0.5660 0.5648 0.5630 0.5639

ours 288 videos only video label 0.867 0.734 0.738 0.734 0.730
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Figure 5: Grad-CAM (Selvaraju et al., 2016) visualization of the layer-2 of cross-entropy (CE) and
contrastive learning (CL) trained model on the four severity score test images (B-mode
grey). We observe that CL trained model bases the predictions predominantly on the
pleural line and A-line & B-line artifacts, whereas the CE trained model predominantly
bases the predictions on the subcutaneous tissues above the pleural line.
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