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Abstract

Generating realistic graphs faces challenges in estimating accurate distribution of
graphs in an embedding space while preserving structural characteristics. However,
existing graph generation methods primarily focus on approximating the joint
distribution of nodes and edges, often overlooking topological properties such
as connected components and loops, hindering accurate representation of global
structures. To address this issue, we propose a Topology-Aware diffusion-based
Graph Generation (TAGG), which aims to sample synthetic graphs that closely
resemble the structural characteristics of the original graph based on persistent
homology. Specifically, we suggest two core components: 1) Persistence Diagram
Matching (PDM) loss which ensures high topological fidelity of generated graphs,
and 2) Topology-aware Attention Module (TAM) which induces the denoising
network to capture the homological characteristics of the original graphs. Extensive
experiments on conventional graph benchmarks demonstrate the effectiveness of
our approach indicating high generation performance across various metrics, while
achieving closer alignment with the distribution of topological features observed in
the original graphs. Furthermore, application to real brain network data showcases
its potential for complex and real graph applications.

1 Introduction
The major goal of graph generation is to achieve high resemblance between generated graphs and
their reference counterparts. To achieve this goal, various graph generation approaches have been
studied based on conventional generative models, e.g., recurrent neural networks [47], variational
autoencoders [38] and diffusion models [23, 43], and each exhibited promising results. Despite the
achievement in the context of the quantitative measures, e.g., similarity in distributions of graph
characteristics such as degree and clustering coefficients, there remains a limitation on generating
graphs coherent to the graph structure via the lens of graph topology.

Brain network is perhaps a suitable example to demonstrate the challenges above. A brain network
characterizes intricate wiring system of the brain, which is represented as a graph with anatomical
regions of interest (ROIs) defining its nodes and the connectivity between different ROIs serving
as edges [7, 16]. It is often large and dense, and its topological properties are well-known critical
biomarkers [35, 39]. Moreover, brain networks are expensive; acquiring diffusion magnetic resonance
images (dMRI) and processing them via tractography [42] to obtain structural brain connectome is
costly in both cost and labor. In this regime, generating realistic graphs (e.g., brain networks) that
preserve their inherent connectivity as well as global structures is highly demanding.

In recent years, various graph generative models have been heavily studied, but they often fall short in
capturing essential topological features crucial for modeling interconnected brain regions with high
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fidelity. The methods in [23] and [32] proposed score-based diffusion methods in a continuous time
domain, originally defined for images [40]. However, the continuous diffusion methods suffer from
high computational cost, as the forward and reverse diffusion process is performed on infinitesimal
continuous time point. Moreover, the uniformly added Gaussian noise results in a noisy and complete
graph, which causes the loss of structural information, e.g., sparsity of a graph. Later, [43] proposed
a discrete diffusion method, applying additive noise to each node and edge independently for graphs,
nevertheless, existing methods overlook the topologically invariant characteristics, e.g., geometric
shape and connectivity, limiting the generation.

To overcome such issues, we propose a novel Topology-Aware Graph Generation (TAGG), in which
the sampled graphs resemble not only in the distributions of the original graphs in the embedding
space but also in the homological features of the original graphs. Conventionally, topological data
analysis (TDA) from algebraic topology has been studied in various graph analyses [6, 9, 21, 44]
to investigate topological features, and we bridge the gap between TDA and graph diffusion model
to generate topologically realistic graphs. We define Persistence Diagram Matching (PDM) loss
with persistence homology, which regularizes homological features of the reference graphs to be
incorporated in graph generation process via 1-Wasserstein distance. Furthermore, we introduce a
Topology-aware Attention Module (TAM) which utilizes persistence landscape [5] of a given graph
to foster the denoising network with global structural information.

Contributions. To this end, our main contributions are summarized as follows: 1) We propose a
novel topology-aware graph generation method that yields homologically similar graphs with high
structural fidelity. 2) We propose PDM loss, utilizing persistent homology to encode the graph
topology. 3) We propose a Topology-aware Attention Module (TAM) that leverages persistence
landscape to enhance the denoising network in capturing graph topology.

Our model demonstrates superior performance on real and synthetic graph generation, with intuitive
visualizations for topological comparisons. Especially with the application on brain network gen-
eration from Alzheimer’s Disease Neuroimaging Initiative (ADNI), our method demonstrates its
adaptability to diverse real-world graph generation tasks.

2 Related work
Graph Generation. Graph generation has been developed in two major branches; autoregressive
and one-shot. Auto-regressive methods [4, 22, 25, 38, 46, 47] recursively capture the intricate graph
dependencies, and sequentially generate the graph structure conditioned on the current incomplete
graph. In spite of their impressive performance, auto-regressive approaches exhibit considerable
computational demands due to the increasing number of generation steps along with the graph
size. Also, they face a challenge stemming from the absence of an inherent node generation order.
Conversely, one-shot methods [12, 27, 28, 48] generate the whole graph, i.e., every node and edge, at
once. By doing so, they reduce computational requirements while facing performance degradation as
the dataset scale grows. Recently, diffusion-based methods [4, 11, 23, 29, 30, 43] showed promising
capability in graph generation, by defining the forward and reverse diffusion processes and training a
neural network that mimics the reverse process to reconstruct the graphs.

Persistent Homology. Persistent homology from computational topology studies the topological
features of given objects, such as the number of holes [15]. It provides a way to capture and quantify
the shapes and global structures by computing homological features of objects. By treating a graph
as a topological object, the concept of persistent homology can be utilized to analyze the global
structure of graphs, which leads improvements for graph classification [18, 20, 49] and link prediction
[45]. Furthermore, persistent homology has been successfully applied in biology [6, 10, 33], signal
processing [44], and point cloud [31], demonstrating its versatility and robustness.

3 Preliminaries
We briefly review persistent homology, which extracts homological properties from objects. We refer
readers to [8] and [15], should further questions arise regarding topological data analysis.

Simplicial Complex. Let V be a non-empty set. A simplicial complex K is a collection of non-empty
finite subsets of V which satisfies the following two properties; (1) for any v ∈ V , {v} ∈ K, and
(2) if σ ∈ K and τ ⊆ σ, then τ ∈ K. An element of K is called a simplex and the dimension of a
simplex is determined by the length of its elements. For example, an element τ ∈ K with |τ | = k+1
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is a k-simplex whose dimension is k. The dimension of a simplicial complex K is defined by the
highest-dimension of its simplices.

Graph as a Simplicial Complex. Consider an undirected graph G = (V,E), where V is a set of
N nodes and E ⊆ V × V is a set of edges. Then, a graph G can be interpreted as a 1-dimensional
simplicial complex KG whose 0-simplices are the nodes and 1-simplices are the edges, i.e.,

G = KG = {{v} : v ∈ V } ∪ E. (1)
The homological properties of a graph G can be characterized by its connected components and
loops, each corresponding to the 0- and 1-dimensional features, respectively. These properties are
fundamental in capturing the underlying topological structure of the graph. The quantity of such
properties in a given dimension k is referred to as the Betti number βk, which serves as a key
descriptor of the topological characteristics of the graph.

Filtration. Filtration of a graph G is a sequence of nested subgraphs of G, i.e., ∅ = G(0) ⊆ G(1) ⊆
G(2) ⊆ ... ⊆ G(N−1) ⊆ G(N) = G. Specifically, the filtration of G can also be defined using a
0-simplex (i.e., vertex) filter function f : V → [0,∞) on node degree deg(·), as in [19]:

∀{v} ∈ G, f({v}) := deg({v})/ max
{v′}∈G

(deg({v′})). (2)

Suppose that the computed filter values ai are given in an ascending order 0 = a0 < a1 < a2 <
· · · < aN , where ai ∈ {f({v}) : {v} ∈ G}. To define the filtration of a graph G, we adopt a
non-negative scale parameter ϵ, which is incrementally increased from 0. Upon reaching ϵ = a1,
we construct Gf,1 from Gf,0 = ∅ by adding the node v1. When ϵ subsequently reaches at a2, we
extend Gf,1 to Gf,2 by adding the node v2 and the edge connecting v2 and the nodes in previous
subgraph, i.e., Gf,1, if the edge exists. By repeating this process, we systemically define the sublevel
set filtration induced by f for 0 ≤ i ≤ N as:

Gf,i = {σ ∈ G : max
v∈σ

f(v) ≤ ai} = f−1 ([0, ai])

∅ = Gf,0 ⊆ Gf,1 ⊆ Gf,2 ⊆ · · · ⊆ Gf,N−1 ⊆ Gf,N = G.
(3)

Persistent Homology. The homological features can be extended via tracking the filtration of G.
Filtration leads to the notion of persistent homology by monitoring the (de)formation of homological
features in each Gf,i along the filtration, thereby allowing us to obtain their homological relevance in
a given dimension, i.e., how long each homological feature persists. Specifically, if a homological
feature, e.g., a connected component, first appears at Gf,i and disappears at Gf,j in 0-dimension, its
birth and death are defined as i and j, respectively.

Representation of Persistent Homology. Suppose that a homological feature is born at Gf,i and
dies at Gf,j , i.e., that it persists from i to j. It can be denoted as a tuple of birth and death pair, i.e.,
(i, j), known as persistence barcode. By considering each i and j as coordinates and plotting the
barcodes (i, j) on the R2 plane, we can obtain a persistence diagram DG of the graph G:

DG = {(b, d) : (b, d) is a barcode of G} ⊆ R2. (4)
Note that a persistence diagram DG can be obtained separately with respect to the dimension of
the barcodes, i.e., the dimension of the homological feature a barcode encodes. For every n points
(b, d) ∈ DG, i.e., |DG| = n, we define a piece-wise linear function f(b,d) : R→ [0,∞), as:

f(b,d)(x) =


0 if x /∈ (b, d) ,

x− b if x ∈
(
b, b+d

2

]
,

d− x if x ∈
(
b+d
2 , d

)
.

(5)

Persistence landscape [5] of a persistence diagram DG can be established as a sequence of functions
λl : R → [0,∞) for l ∈ N, where λl(x) denotes the lth largest value of the functions f(bi,di)(x),
for i ≤ n. We obtain s points by dividing the domain of the function λl(x) where λl(x) ≥ 0 into
(s+ 1) equal sub-intervals. With chosen L and S ∈ N, we can obtain a homological feature vector
µG ∈ RL·S for a given graph G as follows:

µl
G = [λl(x1), . . . , λl(xs), . . . , λl(xS)] ∈ RS

µG = [µ1
G, . . . , µ

l
G, . . . , µ

L
G] ∈ RL·S ,

(6)

where 1 ≤ l ≤ L, and 1 ≤ s ≤ S. The persistence diagram DG and the homological feature vector
µG encode the entire information about persistent homology of a given graph [5, 15].

3



Figure 1: Training of the denoising network ϕθ (Gt, µG0). This network takes a noisy graph Gt and the
embedding µG0 obtained from persistence landscape of the original graph G0 as an input, and outputs the
probability vector of nodes and edges, p̂V0 and p̂E0 , to predict G0. During training, we utilize these predictions
in two ways: 1) cross-entropy loss LCE over all nodes and edges, and 2) Persistence Diagram Matching loss
LPDM which computes the discrepancy between persistence diagrams of G0 and p̂G0 .

4 TAGG: Topology-aware graph generation

Unlike conventional diffusion-based graph generation methods which utilize Gaussian noise in
continuous space [23, 32], we perform the diffusion process in discrete space to preserve the sparsity
of the graph for every diffusion time steps. We follow the settings in [43], which successfully
expanded the method in [3] for generating graphs with categorical node and edge attributes by
treating each node and edge as a categorical random variable.

Let G0 = (V0, E0) be the original graph with N nodes, where V0 ∈ RN×FV and E0 ∈ RN×N×FE

are the node and edge matrices with FV and FE attributes, respectively. At time step t, we denote the
attribute of the i-th node vi as a one-hot vector vit ∈ RFV and that of the edge ei,j between vi and vj

as a one-hot vector ei,jt ∈ RFE . Thus, each element of Vt and Et is represented as a one-hot vector.

4.1 Forward process

Considering node and edge attributes as one-hot vectors, we follow the settings of [3] and [43] to
define the forward and reverse process of diffusion acting on the node and edge attributes. We denote
the forward diffusion process of each time step to impose noise as transition matrices Qt, where
t = 1, 2, . . . , T , and each element of the matrices, [Qt]η,ξ, represents the probability that state η

changes to state ξ as the time step changes from t−1 to t, i.e.,
[
QV

t

]
ηV ,ξV

= q(vt = ξV | vt−1 = ηV )

and
[
QE

t

]
ηE ,ξE

= q(et = ξE | et−1 = ηE).

From time step t− 1, a noised graph Gt can be obtained by sampling the type of nodes and edges
from the categorical distribution after transition, which is derived as:

q (Gt | Gt−1) =
(
Vt−1Q

V
t , Et−1Q

E
t

)
. (7)

Specifically, the transition matrix QV
t is determined by the dimension of node categories, i.e.,

QV
t = (1−βt)I+(βt/FV )JFV

, where I ∈ RFV ×FV is an identity matrix and JFV
∈ RFV ×FV is a

matrix of ones, and βt is a real value in range [0, 1]. The transition matrix for edge QE
t is determined

in the same manner.

Assuming Markovian property of the process, we can derive the transition matrix from time 0 to time t
by simply multiplying each transition matrices: Q̄V

t = QV
1 ·QV

2 · · ·QV
t , and Q̄E

t = QE
1 ·QE

2 · · ·QE
t .

Then, similar to Eq. (7), the noised graph Gt can also be obtained from time 0 by sampling from
q (Gt | G0) =

(
V0Q̄

V
t , E0Q̄

E
t

)
. Details on the forward process are provided in Appendix A.1.

4.2 Topology-aware denoising network

In this section, we introduce a topology-aware graph denoising network ϕθ parametrized by θ, which
estimates the probability vector p̂ of the nodes and edges of the original graph G0, i.e., p̂G0

= (p̂V0
,

p̂E0
). In addition to the noisy graph Gt, we leverage the homological feature µG0

of G0 obtained via
Eq. (6) as an input of ϕθ to retain the topological structure of the original graph during estimation.
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Figure 2: Topology-aware Attention Module (TAM). ⊗
and ⊙ denote the outer and element-wise product. The
blue rectangle is the topology-aware attention score Am

t .

For this, we introduce a novel Topology-aware
Attention Module (TAM), which serves as a fun-
damental component within the denoising net-
work ϕθ. Given a noisy graph Gt and µG0

, TAM
is iteratively applied to refine the node and edge
attributes within ϕθ. TAM operates as illustrated
in Fig. 2: at the m-th iteration, node and edge at-
tributes V m

t and Em
t are inputted to TAM, which

produces refined output V m+1
t and Em+1

t as
(V m+1

t , Em+1
t ) = TAM(V m

t , Em
t , µG0). Ulti-

mately, the denoising network ϕθ estimates the
categorical probability vector of the original graph, i.e., p̂G0 = (p̂V0 , p̂E0), by iteratively applying
TAM M times as:

(p̂V0
, p̂E0

) = ϕθ(Gt, µG0
) = TAMM (V 0

t , E
0
t , µG0

), (8)

where m = 0, 1, · · · ,M − 1, and the initial conditions are given by V 0
t = Vt and E0

t = Et.

In TAM, the node attribute V m
t is passed through three distinct linear transformations to produce the

queryQm
t , keyKm

t , and value Vm
t matrices. Similarly, the edge embedding ZEm

t
and the homological

embeddingHG0 are obtained by applying a linear transformation to Em
t and µG0 , respectively. After

obtaining these representations, the topology-aware attention score Am
t is computed as:

Am
t = softmax

(
Qm

t · Km
t

T

√
dk

· ZEm
t
+HG0

)
, (9)

where dk is the dimension of the query and key matrices.

Using the topology-aware attention score Am
t , we obtain the updated node and edge attributes, i.e.,

V m+1
t and Em+1

t , with additional linear transformations NV and NE as:

V m+1
t = NV (Am

t Vt) , Em+1
t = NE (Am

t ) . (10)

Notice that TAM further adds the homological embedding HG0 as a global attention bias term to
induce the attention to capture the graph’s topological features. Conventional graph transformers
multiply the edge embeddings to the node-wise attention computation, i.e., multiplication of the
query and key matrices, thereby leveraging edge information [14]. However, as edge information
represent local structures, utilizing the edge embedding alone may be insufficient for incorporating
global structural information into the attention score. To address this limitation, TAM integrates the
homological embeddingHG0

as a bias term to inject global structural information into the attention.

Since µG0 encodes the homological information by tracking every subgraph in the filtration of G0

(from Eq. (3)), it contains rich structural information that is challenging for the network to capture
solely from the final subgraph of the filtration, i.e., the original graph. Therefore, incorporatingHG0 ,
the homological embedding obtained from µG0

, as a global attention bias term enables TAM to
estimate topology-aware node and edge embeddings, facilitating the final estimation of the topology-
aware probability vector p̂G0

. Consequently, the integration of µG0
bolsters the denoising network

ϕθ in generating more realistic graphs.

Moreover, it is noteworthy that the homological feature vector µG0 can be pre-computed during the
data preprocessing step, thereby minimizing the need for additional computation for training. We
empirically demonstrate in Sec. 5 that the homological feature vector µG0 helps the model to better
learn the original distribution of nodes and edges.

4.3 Training objective of TAGG
To produce accurate estimation of the probability vector p̂G0

, we optimize the denoising network ϕθ

with two loss terms: 1) Persistence Diagram Matching loss, which aligns the homological features of
the generated graphs, and 2) Cross Entropy (CE), which ensures the node and edge attributes of the
generated graphs to resemble those of original graphs.

Let us first introduce Persistence Diagram Matching lossLPDM . As discussed in Sec. 3, persistence
diagrams hold comprehensive homological information of graphs obtained via persistent homology.
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In order to ensure the generated graphs to resemble the homological features of the original graphs,
which is our main contribution, we aim to minimize the discrepancy between the persistence diagrams
of the original and the generated graph.

Given the original graph G0 and the estimate p̂G0
, the persistence diagrams DG0

and Dp̂G0
can be

computed, as defined in Eq. (4). Considering the diagrams as distributions [26], we compute the
discrepancy between the two distributions via 1-Wasserstein distance W1(·) as:

LPDM (G0, p̂G0) = W1(DG0 ,Dp̂G0
) = inf

π

 ∑
x∈DG0

||x− π(x)||

 , (11)

for any bijection π : DG0
→ Dp̂G0

.

Note that the bijection π between two persistence diagrams holds the following two challenges: 1)
the bijection does not exist if the persistence diagrams have different number of points, which is true
in most cases, and 2) the matching between points from two different persistence diagrams may be
misleading, i.e., the two matched points may hold homological features of different dimension, such
as matching a connected component to a loop. Hence, following the common approach in TDA [24],
we pad the diagrams with points on the diagonal to ensure a proper matching between points of the
two persistence diagrams. Also, as described in Sec. 3, persistence diagrams for each dimension
can be acquired separately by plotting the barcodes of each dimension. Therefore, the PDM loss is
computed over DG0

and Dp̂G0
of the same dimension, with the bijection guaranteed to match points

with homological features of the same dimension. The final LPDM is determined by summing the
distances across all dimensions.

In addition, we guide the probability vectors from ϕθ to approximate the ground truth attributes of G0.
This is conventionally done by minimizing the Cross Entropy CE(·) loss over all nodes and edges:

LCE (G0, p̂G0
) = LV

CE (G0, p̂G0
) + α1LE

CE (G0, p̂G0
)

=
∑

1≤i≤N

CE
(
vi, p̂vi

t

)
+ α1

∑
1≤i,j≤N

CE
(
ei,j , p̂ei,jt

)
, (12)

where α1 ∈ (0, 1] is a real value. The final training objective linearly combines the two losses:
Lfinal = LCE(G0, p̂G0

) + α2LPDM (G0, p̂G0
), for a real value α2 ∈ (0, 1]. During the training

process, LPDM helps the network to learn the topological structure of the original graphs. The
overall training framework is shown in Fig. 1 and the effect of LPDM is validated in Sec. 5. For
further details of TAGG, refer to Appendix A.2.

4.4 Reverse process

After optimizing the denoising network ϕθ, we utilize the reverse process in [43] to generate new
graphs. By iteratively estimating the denoised graph p̂G0

from a noisy graph Gt and imposing noise
to the estimated graphs p̂G0

by q (Gt−1 | G0) from t = T to 1, we can synthesize a new graph.
Note that unlike in the training step, where each homological feature vector µG0

is derived from its
corresponding original graph G0, the matching of µG0

to its original graph G0 cannot be defined in
the reverse process, thus requiring homological feature vectors based on graphs from the training
dataset. Hence, we utilize the averaged homological feature vector µG′ ∈ RL·S , where L and S are
the number of piece-wise linear functions and the number of sub-intervals as introduced in Eq. (6).
The average operation is performed over all training graphs.

5 Experiments

5.1 Dataset and experimental settings

Graph Benchmark. To obtain a coherent analysis of graph generation performance, we adopt three
conventional benchmarks of real and synthetic graphs: (1) Community-small: 200 synthetic graphs
with 12 ≤ |V | ≤ 20 generated from a stochastic block model with two communities, (2) Ego-small:
200 small sub-graphs of the Citeseer network dataset [37] with 4 ≤ |V | ≤ 18, and (3) ENZYMES:
600 protein tertiary structures of the enzymes in graphs from the BRENDA database [36]. Additional
experiments on other datasets, i.e., SBM and Planar graphs, are included in the Appendix A.5.
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Table 1: Quantitative comparison with baseline models on synthetic and real graph datasets. The best and
second best results are highlighted in bold and underline, with lower values indicating better performance.

Method

ADNI ENZYMES Community-small Ego-small

Real, |V | = 160 Real, 10 ≤ |V | ≤ 125 Synthetic, 12 ≤ |V | ≤ 20 Real, 4 ≤ |V | ≤ 18

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓
GraphRNN [47] 1.392 0.916 0.153 0.820 0.161 0.942 0.112 0.405 0.183 0.182 0.113 0.159 0.069 0.090 0.052 0.071
EDP-GNN [32] 1.063 1.430 0.626 1.039 0.052 0.895 0.474 0.474 0.056 0.038 0.069 0.054 0.029 0.046 0.008 0.028
GDSS [23] 0.949 1.104 0.165 0.739 0.314 0.506 0.084 0.301 0.033 0.112 0.009 0.051 0.045 0.076 0.008 0.043
DiGress [43] 0.504 1.168 0.379 0.683 0.023 0.051 0.205 0.093 0.089 0.091 0.049 0.076 0.026 0.090 0.023 0.046
LocalPPGN [4] 0.777 0.149 0.954 0.627 0.037 0.068 0.048 0.051 0.034 0.218 0.018 0.090 0.014 0.091 0.006 0.037

TAGG 0.160 0.886 0.237 0.427 0.003 0.045 0.015 0.021 0.048 0.068 0.004 0.040 0.012 0.024 0.010 0.015

Brain Network. To validate practicability of TAGG, we use brain connectivity from Alzheimer’s
Disease Neuroimaging Initiative (ADNI). In house tractography pipeline was applied to Diffusion
Weighted Imaging (DWI) of healthy subjects from ADNI adhering to the Destrieux atlas [13] with
160 regions of interest (ROIs) comprising 148 cortical and 12 sub-cortical regions. The dataset is
composed of 844 undirected weighted graphs, i.e., structural brain connectivity, where the edge
weights represent the number of fiber tracts connecting different ROIs. The edges were thresholded
by removing those below 5%p of the maximum edge weights to obtain sparsity.

Baselines. We used the following one-shot deep generative methods as baselines: EDP-GNN [32],
GDSS [23], DiGress [43], and the one-shot version of LocalPPGN [4]. In addition, a conventional
auto-regressive generation method, i.e., GraphRNN [47], is used for comparison.

Evaluation Setting. The (dis)similarity between distributions of graph statistics on the same number
of generated and test graphs were computed using the maximum mean discrepancy (MMD) [17].
Specifically, we compared the distributions of degree, clustering coefficient, and the number of
occurrences of orbits with 4 nodes, as in [23] and [32]. For consistency, we adhered to the train/test
split reference from [23] and performed three replicate experiments to report averaged performance.

5.2 Quantitative analysis

Results. The comparison between the baselines and the proposed method is shown in Table 1.
Note that although the models for the best and the second best performances vary in each metric,
TAGG steadily shows highly promising performance, especially in the averaged value of the three
MMD metrics. Specifically, we observed that DiGress, the referenced discrete diffusion based graph
generation method, did not perform well on small-scale graphs, showing 0.076 (4th) and 0.046
(5th) averaged MMD on Community-small and Ego-small dataset, whereas TAGG showed superior
performance across all metrics, including the averaged MMD score of 0.040 (1st) and 0.015 (1st).

Ablation study on µG0
. We conducted an ablation study to evaluate the impact of the homological

feature µG0 . In Table 2, we show that the feature µG0 introduced in Sec. 4.2, enhances the denoising
network to generate quantitatively improved realistic graphs by providing the underlying global
structural information. Note that utilizing µG0 provides performance gain (i.e., from 0.061 to 0.096
decrease in averaged MMD gains) in most categories in Table 2.

Ablation study on LPDM . To evaluate the effectiveness of our PDM loss LPDM , we also provide
an ablation study in Tab. 3. Similar to the method explained in Sec. 4.3, we applied the LPDM on the
persistence diagrams of the original graph G0 and the estimate p̂G0 on the one-shot graph generation
baselines to observe the general performance gap when utilizing LPDM . Shown in Table 3, we
empirically demonstrate that LPDM successfully guides baseline networks to produce topologically
reliable graphs. Notably, the average metric values improved by 1.09 ∼ 3.29 times across all methods,
highlighting the impact of LPDM .

Table 2: Ablation study on µG0 . Gain refers to the performance gain obtained by adding µG0 to the denoising
network with lower MMD discrepancy. ¯|V | denotes the averaged number of nodes.

Metric

ADNI ENZYMES Community-small Ego-small

Avg. Gain¯|V | = 160, (|V | = 160) ¯|V | = 32.63, (10 ≤ |V | ≤ 125) ¯|V | = 15.28, (12 ≤ |V | ≤ 20) ¯|V | = 6.41, (4 ≤ |V | ≤ 18)

w/o µG0
with µG0

Gain w/o µG0
with µG0

Gain w/o µG0
with µG0

Gain w/o µG0
with µG0

Gain

Deg.↓ 0.399 0.160 -0.239 0.017 0.003 -0.014 0.106 0.048 -0.058 0.007 0.012 0.005 -0.096
Clus.↓ 1.006 0.886 -0.120 0.049 0.045 -0.004 0.123 0.068 -0.055 0.039 0.024 -0.015 -0.084
Orbit↓ 0.267 0.237 -0.030 0.146 0.015 -0.131 0.020 0.004 -0.016 0.021 0.010 -0.011 -0.061
Avg.↓ 0.557 0.427 -0.130 0.071 0.021 -0.050 0.083 0.040 -0.043 0.022 0.015 0.007 -0.080
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Table 3: Ablation study on LPDM . The superior values are highlighted in bold.

Method
ADNI ENZYMES Community-small Ego-small

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓
EDP-GNN 1.063 1.430 0.626 1.039 0.052 0.895 0.474 0.474 0.056 0.038 0.069 0.054 0.029 0.046 0.008 0.028
EDP-GNN+LPDM 1.011 0.854 0.600 0.822 0.134 0.729 0.143 0.335 0.041 0.041 0.015 0.032 0.024 0.041 0.007 0.024
GDSS 0.949 1.104 0.165 0.739 0.314 0.506 0.084 0.301 0.033 0.112 0.009 0.051 0.045 0.076 0.008 0.043
GDSS+LPDM 0.403 0.675 0.539 0.539 0.127 0.529 0.058 0.238 0.026 0.096 0.005 0.043 0.040 0.059 0.010 0.036
DiGress 0.504 1.168 0.379 0.683 0.023 0.051 0.205 0.093 0.089 0.091 0.049 0.076 0.026 0.090 0.023 0.046
DiGress+LPDM 0.399 1.006 0.267 0.557 0.017 0.049 0.146 0.071 0.059 0.089 0.045 0.064 0.007 0.039 0.021 0.022
LocalPPGN 0.777 0.149 0.954 0.627 0.037 0.068 0.048 0.051 0.034 0.218 0.018 0.090 0.014 0.091 0.006 0.037
LocalPPGN+LPDM 0.374 0.120 0.695 0.396 0.025 0.061 0.031 0.039 0.030 0.154 0.019 0.068 0.012 0.081 0.009 0.034

TAGG (w/o LPDM ) 0.379 1.263 0.247 0.630 0.010 0.049 0.148 0.069 0.047 0.079 0.028 0.051 0.005 0.060 0.017 0.027
TAGG 0.160 0.886 0.237 0.427 0.003 0.045 0.015 0.021 0.048 0.068 0.004 0.040 0.012 0.024 0.010 0.015

Regardless of the size of the graph, the ablation studies presented in Tab. 2 and Tab. 3 demonstrate
that our proposed method, which utilize the topology-aware self-attention module and PDM loss,
consistently improves performance across the overall dataset. However, in the case of small graphs,
its limited number of simplices results in a restricted set of topological features, which may diminish
the effectiveness of our method when compared to larger graph datasets. As a result, the MMD metric
results (degree, clustering, orbit) in Tab. 1 may not show significant differences. Nevertheless, the
averaged MMD scores outperform all baselines on both the community-small and ego-small datasets,
highlighting the meaningful impact of our method on generation performance of small graphs.

Moreover, the improvements in clustering and orbit metrics emphasize the effectiveness of µG0
and

LPDM in preserving essential topological structures. The improved clustering metrics demonstrate
TAGG’s ability to capture local connectivity patterns, while the improved orbit metrics reflect its
capacity to preserve structural patterns in each node’s local subgraphs. These findings validate the
significant contribution of the proposed topology-aware framework in generating high-fidelity graphs.

5.3 Qualitative analysis

Visualization of generated graphs. We qualitatively compare TAGG with other baselines via
visualization of the generated samples. As seen in Fig. 3, TAGG produces more realistic graphs that
closely resemble test graphs across various datasets. More visualization of the generated graphs of
TAGG on benchmark datasets can be found in Appendix D. Baseline models [4, 23, 32, 43] often
failed to capture the nuanced patterns present in benchmark datasets. Particularly, TAGG better

(a) EDP-GNN (b) GDSS (c) DiGress

(d) LocalPPGN (e) TAGG (Ours) (f) Test Dataset

Figure 3: Visualization of the averaged brain network of 50 samples from (a) EDP-GNN, (b) GDSS, (c)
DiGress, (d) LocalPPGN, (e) TAGG, and (f) test dataset. The close-up box (red) highlights the inter-hemisphere
connections, a key structural property of a brain network. The global structure, e.g., the sparsity and the
inter-hemisphere connectivity, are well preserved using TAGG.
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(a) EDP-GNN (b) GDSS (c) DiGress (d) LocalPPGN (e) TAGG

Figure 4: ATOL visualization of homological features on a 2D plane, where each point represent samples from
test (Blue) and generated (Pink) ADNI dataset. Graphs generated with TAGG shows the highest resemblance.

represents critical characteristics compared to baselines, i.e., sparse inter-hemisphere connections and
symmetry of hemispheres. Although the brain networks generated from the other discrete diffusion
method, i.e., DiGress [43] , also exhibit high quality, they failed to capture the inter-hemisphere
connection, a subtle but critical structural information of a brain network. Also in a topological
perspective, the existence of inter-hemisphere connection determines the number of connected
components, and TAGG is capable of capturing such topological structures. This demonstrates the
effectiveness of topology-aware learning in capturing both global and detailed structural properties.

5.4 Homological assessment

To further validate the homological (dis)similarity between the test and the generated graphs, we
utilize three distinct measures: 1) Automatic Topologically-Oriented Learning (ATOL) [34], 2)
Persistence Image (PI) [2], and 3) Curvature Filtrations (CF) [41]. ATOL and PI are established
vectorization methods in TDA that encode the homological features from the persistence diagrams
into vectors of desired dimensions, and CF quantifies the (dis)similarity between graph distributions
based on their topological structures. Below are the ADNI results. See Appendix F for more results.

Table 4: Quantified homological assessment.

ATOL ↓ PI ↓ CF ↓
EDP-GNN 16.25 15.39 1115.00
GDSS 1.43 3.18 154.62
DiGress 0.33 0.67 31.68
LocalPPGN 0.60 0.91 45.75

TAGG 0.23 0.59 27.96

Quantification. In the evaluation setting, we compute
multivariate kernel density estimation with Kullback-
Leibler (KL) divergence for ATOL, and Mean Squared
Error (MSE) for PI, to quantify the distance between ref-
erence and generated graph distributions. Forman-Ricci
Curvature was utilized in CF as the basis for curvature
filtration to measure the topological differences.

As shown in Tab. 4, TAGG consistently exhibited the
lowest dissimilarity values across all three metrics, indi-
cating superior topological alignment with the reference graphs compared to all baseline methods.
Specifically, compared to the second best method, i.e., DiGress, TAGG showed 30.3%, 11.9% and
11.7% reduction on ATOL KL-divergence, PI MSE, and CF, respectively.

Table 5: Averaged Betti numbers
of 0-, 1-dimension, i.e., β̄0, β̄1.

β̄0 β̄1

Test 2.98 225.64
EDPGNN 1.00 1120.64
GDSS 6.54 90.98
DiGress 5.76 238.45
LocalPPGN 6.00 148.50

TAGG 2.92 229.96

Additionally, as discussed in Sec. 3, Betti numbers are the key
descriptor of the topological characteristics of a graph. To quan-
titatively assess this aspect, we report the averaged Betti numbers
(mean of 50 generated graphs) for each model, as shown in Table 5.

Given that the real brain network exhibits β̄0 = 2.98 and β̄1 =
225.64, TAGG closely approximates these real topological features,
yielding β̄0 = 2.92 and β̄1 = 229.96, thereby demonstrating strong
homological similarity. In contrast, most other models generally
yield higher β̄0 values (around 5-6) and exhibit a wide variation in
β̄1 values, deviating more significantly from the real data.

Visualization. We visualize the homological feature vectors of each
sample obtained by ATOL on a 2-dimensional plane to evaluate the impact of our topology-aware
learning. As shown in Fig. 4, the proximity between the blue (test) and pink (generated) points in (e)
is far closer than in (a)-(d), indicating higher topological alignment and showcasing the impact of our
topology-aware generation.
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6 Conclusion

In this study, we proposed a novel graph generation framework preserving the intricate topology of
the network. Through the proposed topology-aware attention module and the Persistence Diagram
Matching Loss, we achieve high generation performance while maintaining the essential topological
features of the original graphs. This approach improves the fidelity of generated graphs and provides
valuable insights into their structure for both synthetic and real graph datasets. Our research addresses
a critical challenge in complex real-world graph generation, particularly in the context of brain
networks, and pave the way for practical graph generation with topological consistency.

Limitation. Despite the various methods on visually and empirically assessing the effect of topology-
aware learning, e.g., ATOL, and ablation studies, it is hard to track the influence of individual
topological features on the training of the denoising network. In addition, we utilized some of the
most representative vectorization methods on persistence homology, i.e., persistence landscapes,
which can be changed into other methods. Therefore, a more thorough investigation regarding other
various vectorization methods may be done for future studies. (Partially discussed in Appendix C.)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction include the problem statements, where
conventional graph generation methods often overlook topological features of a graph,
which can be a critical factor in graph generation. We claim that applying topological data
analysis can help the neural network to learn topological features and produce topology-alike
graphs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of the work in Sec. 6, about the difficulties of
tracking the impact of the topological features on training process.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not provide any theoretical problems that require proofs for assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The model structure is described in detail with figures, equations, and expla-
nations in Sec. 4. Also, additional implementation details are described in Appendix A.3,
ensuring the paper is self-contained for reproducibility. Furthermore, we will release the
source code upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We utilize open datasets (Community-small, Ego-small, ENZYMES and
ADNI) and open-source TDA libraries (GUDHI) with detailed descriptions on the model
architecture (Sec.4) and a minimum number of hyperparameters (Appendix A.3).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Settings for training and experiments were provided in Appendix A.3 and
Sec. 5, respectively, with sufficient amount of explanations, tables, and references.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeated the same procedure and reported the average performance over
three independent experiments in Sec.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of computation resources including memory and time of execution are
discussed in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
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Justification: This work presents a topology-aware graph generation framework that faith-
fully preserves global structural properties of graphs, such as connectivity and cycles. The
proposed approach can benefit various fields where structural integrity is essential, including
brain connectomes analysis and drug discovery. Moreover, the model enables effective data
augmentation and facilitates downstream tasks in domains with limited labeled data.
However, overreliance on generated graphs without expert validation may lead to misin-
terpretation, especially in sensitive domains. To mitigate this, the model should be used
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A Additional details

A.1 On forward process

The additional details of the forward process described in Sec. 4.1, i.e., obtaining the noised graph
Gt from the original graph G0, are provided. The notations below are reused from those introduced
in Sec. 4. Note that we denoted the forward diffusion process at each time step, which imposes
noise, as transition matrices Qt, where t = 1, 2, . . . , T . Each element of the matrices, [Qt]η,ξ,
represents the probability that state η changes to state ξ as the time step changes from t− 1 to t, i.e.,[
QV

t

]
ηV ,ξV

= q(vt = ξV | vt−1 = ηV ) and
[
QE

t

]
ηE ,ξE

= q(et = ξE | et−1 = ηE).

A noised graph Gt = (Vt, Et) from the previous graph Gt−1 can be obtained by sampling the type
of nodes and edges from the categorical distribution after transition, which is derived as:

q (Gt | Gt−1) =
(
Vt−1Q

V
t , Et−1Q

E
t

)
. (13)

More precisely, each row vector of Vt−1 ∈ RN×FV contains the node attributes of the graph Gt−1,
as a form of one-hot row vector. By performing matrix multiplication Vt−1Q

V
t , we impose the noise

to Vt−1 and obtain a new matrix, where each row vector represents the categorical distribution after
the transition. Subsequently, we finally obtain the noised node attributes Vt by sampling the type of
nodes from the calculated categorical distribution Vt−1Q

V
t . The transition of the edge attributes is

processed similarly to that of the node attributes.

The forward process from time t− 1 to time t is mathematically formulated as follows:

q (Gt | Gt−1) =
(
Vt−1Q

V
t , Et−1Q

E
t

)
=


Cat

(
v1t ; v

1
t−1Q

V
t

)
...

Cat
(
vNt ; vNt−1Q

V
t

)
 ,


Cat

(
e1,1t ; e1,1t−1Q

E
t

)
. . . Cat

(
e1,Nt ; e1,Nt−1Q

E
t

)
...

. . .
...

Cat
(
eN,1
t ; eN,1

t−1Q
E
t

)
. . . Cat

(
eN,N
t ; eN,N

t−1 QE
t

)

 ,

(14)
where Cat(z;ω) denotes the categorical distribution over one-hot row vector z with a probability
vector ω, and the dimensions of ω are FV and FE for node and edge, respectively.

Moreover, assuming the Markovian property of the process, we can derive the transition matrix from
time 0 to time t by simply multiplying the individual transition matrices: Q̄V

t = QV
1 ·QV

2 · · ·QV
t ,

and Q̄E
t = QE

1 · QE
2 · · ·QE

t . Then, similar to Eq. (14), the noised graph Gt can also be obtained
from time 0 by sampling from the distribution q (Gt | G0), which is mathematically formulated as
follows:

q (Gt | G0) =
(
V0Q̄

V
t , E0Q̄

E
t

)
=


 Cat

(
v1t ; v

1
0Q̄

V
t

)
...

Cat
(
vNt ; vN0 Q̄V

t

)
 ,


Cat

(
e1,1t ; e1,10 Q̄E

t

)
. . . Cat

(
e1,Nt ; e1,N0 Q̄E

t

)
...

. . .
...

Cat
(
eN,1
t ; eN,1

0 Q̄E
t

)
. . . Cat
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)

 .

(15)
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A.2 On training algorithm of TAGG

The overall scheme of TAGG is demonstrated in Algorithm 1. The homological feature vector µG0

is obtained via persistence landscape of the original graph G0, which is derived from the filtration
of G0. Using the resultant µG0

as an additional input, the denoising network of TAGG iteratively
utilize the topology-aware attention module (TAM) to update the node and edge embeddings. The
homological feature µG0

enhance the attention module to estimate topology-aware node and edge
embeddings, i.e., Vt and Et, which leads to high fidelity of generated graphs. Consequently, the
denoising network outputs a probability vector p̂G0

= (p̂V0
, p̂E0

) of the original graph, which is then
optimized using the Cross-Entropy and Persistence Diagram Matching loss.

Algorithm 1 Overall scheme of TAGG

1: Input: Original graph G0 = (V0, E0), number of diffusion step T , number of TAM M , hyperpa-
rameter α1 and α2.

2: 1. Obtain homological feature µG0

3: phG0
← Filtration(G0)

4: Obtain persistence barcodes and persistence diagram DG0 from phG0

5: µG0 = PersistenceLandscape(DG0) ▷ Homological feature of the given graph G0.

6: 2. Training TAGG
7: Sample t ∼ U(1, 2, ..., T )
8: Sample noisy graph Gt = (Vt, Et) ∼

(
V0Q̄

V
t , E0Q̄

E
t

)
9: Model input: Gt = (Vt, Et), µG0

10: 2-1. Estimate p̂G0 via TAGG
11: Given V 0

t = Vt and E0
t = Et,

12: for m = 0 to M − 1 do
13: Qm

t ,Km
t ,Vm

t ← Linq(V
m
t ),Link(V

m
t ),Linv(V

m
t ) ▷ dk is the dimension of Qt and Kt.

14: ZV m
t

= (Qm
t ⊗Km

t ) /
√
dk ▷ Self-attention of node features.

15: ZEm
t
,HG0 ← Line(E

m
t ),Linµ(µG0)

16: Am
t ← ZV m

t
⊙ ZEm

t
+HG0

▷ Utilize µG0
as a global attention bias term.

17: Am
t ← Softmax(Am

t ) ▷ Compute topology-aware attention score.

18: V m+1
t , Em+1

t ← NV (Am
t ⊙ Vm

t ),NE(Am
t )

19: end for
20: p̂G0 = (p̂V0 , p̂E0) =

(
LayerNorm(V M

t ),LayerNorm(EM
t )
)

21: Model output: probability of denoised graph p̂G0

22: 2-2. Training Objective
23: Lfinal = LV

CE (G0, p̂G0) + α1LE
CE (G0, p̂G0

) + α2LPDM (G0, p̂G0
)
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A.3 On implementation

We provide additional details of experiment settings used in TAGG. As explained in Sec. 4.3, the
training objective of TAGG has two real valued hyperparameters α1 ∈ (0, 1] and α2 ∈ (0, 1], each
used to control the cross-entropy loss of edges LE

CE and the persistence diagram matching (PDM) loss
LPDM , respectively. The hyperparameters α1 and α2 were chosen through a grid search of values in
{1, 0.1, 0.01, 0.001, 0.0001} on each dataset, and the settings are shown in Tab. 6. We followed the
hyperparameters provided in the original papers for the baseline methods. For the datasets that were
not included in the original papers, we conducted the same hyperparameter search as with TAGG to
ensure a fair comparison. Additionally, after the reverse diffusion process to sample the generated
graphs, we quantize the entries of the adjacency matrices using the operator 1x>0.5, resulting in a
binary adjacency matrix.

Table 6: Hyperparameters of TAGG on different datasets

Hyperparameter ADNI ENZYMES Community-small Ego-small

α1 1 1 0.001 0.01
α2 0.001 0.0001 0.001 0.0001

A.4 On additional ablation studies

We conducted an additional ablation study on PDM loss to provide a homological assessment to
disentangle the effects of our core components as below. As mentioned in Sec. 5.4, each metric
measures the topological difference, meaning that a lower score is better.

Table 7: Quantitative comparison of ATOL, PI, and CF metrics across models. Lower values indicate
better performance.

Method ATOL PI CF
EDP-GNN 16.25 15.39 1115.00
EDP-GNN+LPDM 16.22 14.91 1038.69
GDSS 1.43 3.18 154.62
GDSS+LPDM 1.28 2.90 124.30
DiGress 0.33 0.67 31.68
DiGress+LPDM 0.27 0.63 28.80
LocalPPGN 0.60 0.91 45.75
LocalPPGN+LPDM 0.52 0.89 42.20

The result clearly shows that PDM loss ensures topological alignment, leading to improvement in all
metrics, which supports the results of the manuscript.
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A.5 On additional experiments

To further demonstrate the robustness and superiority, we have conducted additional experiments on
the standard Planar and SBM datasets.

Table 8: Performance comparison on Planar and SBM datasets. Lower is better.
Planar SBM

Method Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

GraphRNN 0.234 1.429 1.239 0.967 1.459 1.797 0.988 1.414
GDSS 0.232 1.032 1.137 0.800 0.991 1.705 0.484 1.060
DiGress 0.106 0.314 1.430 0.617 0.242 0.744 1.344 0.777

TAGG 0.058 0.311 1.056 0.475 0.112 0.476 0.798 0.462

As evident from the table, TAGG consistently achieves superior or highly comparable performance
across all evaluated metrics on both the Planar and SBM datasets. This further supports and strength-
ens the experimental results presented in the main manuscript.

In addition, validity, novelty, and uniqueness are common metrics used in molecular graph generation,
mainly to validate their molecular properties. The table below presents these additional metrics
(results of SPECTRE are from its original paper [29]):

Table 9: Comparison of additional metrics on Planar and SBM datasets. Higher is better.
Planar SBM

Method Val. Uniq. Nov. Val. Uniq. Nov.

GDSS 33.3 100 100 33.7 100 99.0
DiGress 38.8 100 93.6 23.1 100 100
SPECTRE 47.5∗ 100∗ 100∗ 60.0∗ 100∗ 100∗

TAGG 62.5 100 100 63.6 100 100

Additionally, to further demonstrate our model’s capabilities, we evaluated the diversity of TAGG-
generated ADNI graphs using averaged Graph Edit Distance (GED) and Average Pairwise Distance
(APD). GED quantifies structural diversity by measuring the number of operations (node/edge
additions or deletions) required to transform one graph into another [1]. APD measures pairwise
distances based on graph properties, such as degree distributions, where higher values indicate greater
diversity. The results are as follows: TAGG-generated graphs show (GED: 1.55 / APD: 0.23), while
test graphs show (GED: 1.12 / APD: 0.15). The increased GED and APD of TAGG-generated graphs
(∼ 40%) compared to test graphs suggests that the generated graphs exhibit sufficient diversity while
remaining within a valid distribution.
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B Analysis of computational and practical feasibility

We provide a detailed feasibility analysis including the graph generation process and persistent
homology component. We report the measured time (sec/epoch) and memory usage (in MB) for
TAGG and baseline diffusion models, i.e., ConGress (continuous) and DiGress (discrete) [43] on four
datasets of varying scale. All experiments were conducted on a single GeForce RTX 3090 with 24GB
of GPU memory, with batch size 4.

Table 10: Averaged sec/epoch of 10 epochs.

sec/epoch ADNI ENZYMES Community-small Ego-small

ConGress [43] 11.2 9.4 1.4 2.7
DiGress [43] 7.7 7.6 1.1 1.9

TAGG 77.1 65.0 2.4 3.0

The primary sources of computational burden in TAGG can be decomposed into three aspects: 1) the
computation of the homological feature µ, 2) persistent homology, and 3) the Wasserstein distance
in the PDM loss. While µ can be pre-computed, requiring minimum additional computation during
training, the computational cost of persistent homology and the Wasserstein distance is comparatively
high, accounting for most of the time differences shown in the table above. This limitation is primarily
due to the CPU-based implementation of both methods, a significant challenge faced by researchers
in the TDA community, as none of the existing Python libraries currently support GPU computation.
Despite the well-known high computational complexity of persistent homology, we believe this is still
one of the highly attractive research topics to investigate in the graph machine learning community.

In the case for large graph datasets (e.g., ENZYMES with up to 125 nodes, and ADNI with 160
nodes), the number of simplices increases leading to the additional costs for computing the persistent
homology, e.g., the graph filtration. Despite this, the training times on ENZYMES and ADNI dataset
are 64.8 and 78.1 seconds per epoch, respectively, and fully training the TAGG (1000 epochs) can be
done within a day (< 22h) on both datasets.

Table 11: Averaged inference time (in sec) for generating 4 samples on 5 individual runs

sec ADNI ENZYMES Community-small Ego-small

DiGress [43] 63.18 14.48 14.27 13.92
TAGG 64.19 15.04 14.44 14.99

To verify the practicality of our model, we also report the average inference time (sec) for generating
4 graph samples over 5 independent runs across all datasets, using a single GPU. As shown in Tab.
11, the inference time of TAGG is comparable to that of the baseline model, i.e., Digress, across
all datasets. This demonstrates that TAGG achieves superior performance and fidelity in graph
generation, as reported in Sec.5, without incurring any significant additional computational cost.

In addition, as shown in Tab. 12, the memory requirements for TAGG are not substantial. Considering
that these results were achieved using a single GPU, we think that the computational demand is
practically feasible for real-world applications especially when multiple GPUs are employed.

Table 12: Required memory for training (MB), batch size 4

MB ADNI ENZYMES Community-small Ego-small

DiGress [43] 5680 5988 1570 1532
TAGG 6186 6352 1580 1542
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C Topological design choices

In TAGG, we utilized node degree as the 0-simplex filter function as in Eq. 2 and persistent landscape
as the vectorization method of persistence diagrams. However, we do not claim in any way that
such design choice is the optimal or state-of-the-art framework for topology-aware graph generation.
While the choices can vary, the change in generation performance is minor, which we will cover in
the following subsections.

C.1 Choice of filter functions

Below, we report the generation performance using different filtration functions: degree, clustering
coefficient, and betweenness centrality.

Table 13: Comparison of different filter functions.
ADNI Community-small Ego-small

Function Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg.

degree 0.160 0.886 0.237 0.427 0.048 0.068 0.004 0.040 0.012 0.024 0.010 0.015
clust coef 0.242 0.802 0.198 0.414 0.061 0.057 0.008 0.042 0.016 0.030 0.015 0.020
btw_cent 0.252 0.847 0.236 0.445 0.051 0.059 0.017 0.042 0.015 0.036 0.010 0.020

As can be seen, the choice of filtration function does not have a crucial impact on the overall
performance.

C.2 Choice of vectorization methods

We also evaluated both persistence landscapes (PL) and persistence images (PI) on Community-small
and Ego-small datasets.

Table 14: Comparison of different vectorization methods.
Community-small Ego-small

Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg.

PL 0.048 0.068 0.004 0.040 0.012 0.024 0.010 0.015
PI 0.050 0.079 0.004 0.044 0.011 0.025 0.016 0.017

Results indicate minimal performance differences, suggesting our method is robust to different
vectorization choices.
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D Additional visualization

In this section, we provide additional visualizations that have not been included in the main paper
due to space limit.

D.1 Generated graph samples via GraphRNN

For example, Fig. 5 includes the (a) brain network and (b) ENZYMES graphs generated via
GraphRNN [47], a baseline method of our paper. Align with the qualitative comparison results shown
in Sec. 5 of the main paper, TAGG better represents critical characteristics compared to GraphRNN.

(a) ADNI (b) ENZYMES

Figure 5: Visualization of the generated graphs using GraphRNN; (a) Brain network from ADNI
dataset and (b) ENZYMES graphs.

D.2 Generated graph samples via TAGG

Also, Fig. 6,7,8 shows additional graphs generated using TAGG to validate the consistency of the
generation performance.

Figure 6: Visualization of the brain network generated using TAGG. TAGG successfully generates
homologically reliable brain network, preserving the symmetry of brain network and the edges
interconnecting left and right hemisphere.
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(a) EDP-GNN (b) GDSS

(c) DiGress (d) LocalPPGN

(e) TAGG (Ours) (f) Test Dataset

Figure 7: Visualization of the generated Ego-small graphs from (a) EDP-GNN, (b) GDSS, (c) DiGress,
(d) LocalPPGN, (e) TAGG, and (f) test dataset.
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(a) EDP-GNN (b) GDSS

(c) DiGress (d) LocalPPGN

(e) TAGG (Ours) (f) Test Dataset

Figure 8: Visualization of the generated Community-small graphs from (a) EDP-GNN, (b) GDSS, (c)
DiGress, (d) LocalPPGN, (e) TAGG, and (f) test dataset. Compared to the baselines, TAGG generates
the most topologically equivalent graphs. TAGG successfully generates an edge that connects two
communities.
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(a) EDP-GNN (b) GDSS

(c) DiGress (d) LocalPPGN

(e) TAGG (Ours) (f) Test Dataset

Figure 9: Visualization of the generated ENZYMES graphs from (a) EDP-GNN, (b) GDSS, (c)
DiGress, (d) LocalPPGN, (e) TAGG, and (f) test dataset. TAGG can generate topologically equivalent
graphs.
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D.3 ATOL result of all baseline methods and TAGG

(a) EDP-GNN (b) GDSS (c) DiGress (d) LocalPPGN (e) TAGG (Ours)

Figure 10: ATOL visualization of homological features derived from the test (Pink) and generated graphs
(Blue). Top: ADNI dataset, Bottom: ENZYMES dataset. The distribution of features from a sample from TAGG
exhibit the best similarity with the ground truth.
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E Visualization of hidden representations

(a) Ego small (b) ADNI

Figure 11: t-SNE visualization of the trained features from the topology-aware attention module on
(a) Ego-small and (b) ADNI dataset. Colors denote the t-SNE results from trained features under
different model settings; Blue: baseline, Orange: TAGG without µG0

, Green: TAGG without LPDM ,
and Red: TAGG.

In order to investigate the effect of the topology-aware learning framework, Fig. 11 demonstrates the
t-SNE visualization of the trained features from the topology-aware attention module on different
datasets. Specifically, the hidden features from the final layer of the attention module were extracted
and projected onto a 2-dimensional plane using t-SNE, providing a visual representation of the trained
hidden features in the latent space. To evaluate the individual contributions of the topology-aware
attention module and the PDM loss of TAGG, t-SNE results were obtained using the same models
from the ablation study, along with a baseline model that excludes both µG0 and LPDM . Notably,
incorporating either the homological feature µG0 , the PDM loss, or both consistently improved
performance across all datasets. In line with the enhanced quantitative results, the visualization
reveals differences in the latent space between the cases where neither method was applied and where
both were utilized, indicating that the graph features were optimized into a more desirable latent
space.

F Additional quantified homological assessment

Table 15: Quantified homological assessment.

Methods ADNI ENZYMES

ATOL (KL-div)↓ PI (MSE)↓ CF ↓ ATOL (KL-div)↓ PI (MSE)↓ CF ↓
EDP-GNN 16.25 15.39 1115.00 2.98 21.35 87.66
GDSS 1.43 3.18 154.62 1.12 0.13 72.76
DiGress 0.33 0.67 31.68 0.55 0.06 32.76
LocalPPGN 0.60 0.91 45.75 0.61 0.04 55.74

TAGG 0.23 0.59 27.96 0.29 0.01 21.29

To further validate the homological assessment of TAGG, we provide additional quantified result
on the ADNI and ENZYMES datasets. As shown in Tab. 15, TAGG consistently exhibited the
lowest dissimilarity values across all three metrics on both datasets, showcasing superior topological
alignment with the reference graphs compared to all baseline methods. Specifically, on the ADNI
dataset, TAGG showed about 30.3%, 11.9% and 11.7% reduction on ATOL KL-divergence, PI
MSE, and CF, respectively, compared to the second best scores. Similarly, on the ENZYMES
dataset, TAGG yielded improvements of around 52.7%, 25.0%, and 64.9% on the same metrics,
demonstrating consistent topological performance.
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