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ABSTRACT

Time series forecasting has long been dominated by advances in model archi-
tecture, with recent progress driven by deep learning and hybrid statistical tech-
niques. However, as forecasting models approach diminishing returns in accu-
racy, a critical yet underexplored opportunity emerges: the strategic use of post-
processing. In this paper, we address the last-mile gap in time-series forecasting,
which is to improve accuracy and uncertainty without retraining or modifying a
deployed backbone. We propose δ-Adapter, a lightweight, architecture-agnostic
way to boost deployed time series forecasters without retraining. δ-Adapter learns
tiny, bounded modules at two interfaces: input nudging (soft edits to covariates)
and output residual correction. We provide local descent guarantees, O(δ) drift
bounds, and compositional stability for combined adapters. Meanwhile, it can act
as a feature selector by learning a sparse, horizon-aware mask over inputs to se-
lect important features, thereby improving interpretability. In addition, it can also
be used as a distribution calibrator to measure uncertainty. Thus, we introduce
a Quantile Calibrator and a Conformal Corrector that together deliver calibrated,
personalized intervals with finite-sample coverage. Our experiments across di-
verse backbones and datasets show that δ-Adapter improves accuracy and calibra-
tion with negligible compute and no interface changes.

1 INTRODUCTION

Time Series Forecasting (TSF) powers decisions across energy Anderson (1976), finance Hyndman
& Athanasopoulos (2018), retail Piccolo (1990), transportation Gardner Jr (1985), and the sciences
Piccolo (1990); Gardner Jr (1985). Despite impressive gains from modern neural forecasters Ekam-
baram et al. (2024); Hollmann et al. (2025); Liang (2025); Liu et al. (2025), ranging from temporal
convolutions Lea et al. (2016); Wu et al. (2019; 2022); Li et al. (2023) and Transformers Zhou et al.
(2021); Nie et al. (2022); Liu et al. (2022b); Nie et al. (2023); Wang et al. (2024a); Liu et al. (2023);
Ye et al. (2024); Wang et al. (2024a;b) to hybrid statistical–neural models Liu et al. (2025); Ekam-
baram et al. (2024), condition drift Baier et al. (2020) is still not alleviated. Conventional remedies,
e.g., full fine-tuning, architectural changes, or ensembling, either demand substantial compute, risk
destabilizing a hardened system, or complicate operations. To cope with this, testing-time adapta-
tion (TTA) is introduced into TSF. The testing-time methods aim to mitigate test-time concept drift
via selective layer retraining Chen et al. (2024), online linear adapter updates Kim et al. (2025),
auxiliary loss Medeiros et al. (2025), dynamic gating Grover & Etemad (2025), parallel forecaster
combines Lee et al. (2025), layer-wise adjustment and memory Pham et al. (2023), and dynamic
model selection Wen et al. (2023). However, these methods rely, to varying degrees, on future labels
for online model updates, thereby introducing label leakage, where future ground-truth labels are
unavailable when actually applied, that causes model performance degradation Liang et al. (2024);
yee Ava Lau et al. (2025). Furthermore, LoRA-style adapters Hu et al. (2022); Pfeiffer et al. (2020);
Li & Liang (2021) in NLP tend to lead to high performance variance, since the output range is not
fixed Biderman et al. (2024).

Thus, TSF in real deployments still faces the last-mile gap: 1) Conditions drift Baier et al. (2020),
which refers to gradual changes in the data-generating process (e.g., seasonal regime shifts, covariate
shifts in demand patterns) that occur after the model has been deployed, making full retraining
costly; 2) High performance variance. Existing post-processing techniques are prone to have high
performance variance due to unstable training; 3) Inefficient training/inference. Using complex
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modules or frequent updates to absorb low-complexity residuals Vovk et al. (2017; 2018) makes
models suffer from inefficient training/inference. Based on these, we ask a different question: Can
we really keep the strong forecaster intact and learn only a tiny, post-hoc module that makes small
targeted corrections, so accuracy and reliability improve without heavy retraining?

We answer “yes” with δ-Adapter, a lightweight, model-agnostic framework that augments a frozen
forecaster F by learning a tiny adapter A in two minimal placements: input-side nudging (softly
editing covariates before inference) and output-side correction (residual refinement after inference).
Concretely, we instantiate additive or multiplicative forms for both placements, with a small trust-
region parameter δ ∈ (0, 1) that bounds edits for safety and stability. Since A is a tiny network (e.g.,
shallow MLP or low-rank head) trained while F remains frozen, it produces consistent gains with
negligible training time and zero changes to F ’s inference interface.

Further, a key instantiation of the input adapter is a feature-selector (mask) adapter that learns a
sparse, nearly binary, horizon-aware mask M ∈ [0, 1]L×d and applies it multiplicatively to the
context X ′ = X ⊙ M . We train M end-to-end with sparsity, temporal-smoothness, and budget
regularizers so that the adapter preserves the base model’s inductive biases while exposing the most
consequential inputs for the frozen forecaster. This yields transparent selections, stable training, and
strong empirical gains under tight compute budgets.

Beyond point accuracy, δ-Adapter also upgrades forecast uncertainty without modifying F . We
present two distributional correctors: (i) a Quantile Calibrator that learns horizon-wise quantile
functions as bounded offsets from the point forecast, with a monotonic parameterization and pinball-
loss training augmented by reliability regularization; and (ii) a Conformal Calibrator that learns
a scale function for normalized-residual conformal prediction, delivering finite-sample coverage
with personalized, heteroscedastic intervals. Empirically, both calibrators achieve state-of-the-art
coverage quality and produce tight, well-behaved intervals.

Through δ-Adapter, this “last-mile” adjustment consistently improves forecasting accuracy in our
experiments across diverse backbones and datasets, with negligible training time and no change to
inference interfaces. The main contributions are:

• We formalize δ-Adapter and instantiate two placements (input nudging and output residual
correction) in additive/multiplicative forms, all drop-in and architecture-agnostic.

• We introduce a learnable, budgeted mask that identifies and preserves the most consequen-
tial inputs, improving transparency and stability.

• We propose quantile and conformal calibrators that deliver calibrated, heteroscedastic un-
certainty with finite-sample coverage guarantees, all while keeping F frozen.

• Across diverse backbones and benchmarks, δ-Adapter improves accuracy and calibration;
ablations illuminate the roles of δ, capacity, horizon features, and residual structure.

2 METHODOLOGY

Input

Pretrained 

Model

Output

Input

Pretrained 

Model

Output
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+

Input

Pretrained 
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OutputOutput

Post-Processing

+

(a) Original Model (b) Input-side Nudging (c) Output-side Correction

Figure 1: δ-Adapter performs input nudging and output correction on the frozen forecaster.
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2.1 PROBLEM SETUP

Let D = {(X(i), Y (i))}Ni=1 denote training pairs of context windows X ∈ RL×d and future tar-
gets Y ∈ RH×m (history length L, horizon H , d covariates, m target dimensions). A pre-trained
forecaster F maps X to predictions Ŷ = F (X) ∈ RH×m. We keep all parameters of F fixed and
introduce a lightweight, learnable adapter Aθ with parameters θ trained on D. The adapter composes
with F via two families of edits:

Input-side nudging: X̃ = X + δ Ain
θ (X), (additive input) (1.1)

X̃ = X ⊙
(
1 + δ Ain

θ (X)
)
, (multiplicative input) (1.2)

Output-side correction: Ỹ = F (X) + δ Aout
θ (F (X), X), (additive output) (1.3)

Ỹ = F (X)⊙
(
1 + δ Aout

θ (F (X), X)
)
, (multiplicative output) (1.4)

The base risk of F under a loss ℓ is

R(F ) = E(X,y)∼D

[
ℓ
(
Ỹ , Y

)]
. (2)

Here, we consider two adapters, trained by minimizing empirical risk over θ with F frozen, as shown
in Eq. 1. The key questions are: (i) when does a small δ provably help; (ii) why do lightweight
adapters suffice; and (iii) How do we choose δ and what is the stability of the adapter A? Now, let’s
answer these questions.

2.2 OUTPUT-SIDE ADAPTERS AS SHRINKAGE RESIDUAL LEARNING

Here, we consider the additive adapter, as shown in Eq. 1.3: Ỹ = F (X) + δAout
θ (F (X), X). With

slight modifications, the relevant analyses and theories also apply to multiplicative adapters.

Let r(X) = Y − F (X) denote the residual process. For squared error ℓ(Ŷ , Y ) = 1
2∥Ŷ − Y ∥22, the

population risk of the output adapter with a fixed F equals

Rout(δ) =
1
2E

[∥∥r(X)− δg(X)
∥∥2
2

]
, g(X) := Aout

θ (F (X), X). (3)

Expanding,
Rout(δ) =

1
2E

[
∥r∥2

]
− δ E [⟨r, g⟩]︸ ︷︷ ︸

signal alignment

+ 1
2δ

2E
[
∥g∥2

]
. (4)

Proposition 2.1 (Small-step improvement). If E[⟨r, g⟩] > 0, then for all

0 < δ <
2E[⟨r, g⟩]
E[∥g∥2]

, (5)

we have Rout(δ) < Rout(0) = 1
2E[∥r∥

2]. The quadratic in δ has negative derivative at 0 and a
unique minimizer δ⋆ = E[⟨r,g⟩]

E[∥g∥2] .

Remark. Improvement hinges on alignment between the learned correction g and the residual r.
Even when A is tiny, if residuals have low-complexity structure (calendar offsets, horizon-dependent
bias, scale drift), a small g can achieve positive alignment, and a shrunken step δ guarantees risk
reduction. This is exactly the first step of boosting with shrinkage or a stacked residual learner with
a conservative learning rate.

In practice, we learn g from finite data with a penalty Ω(θ) (e.g., ℓ2, low rank, sparsity). The
empirical objective

min
θ

1
2

∑
i

∥∥yi − F (Xi)− δgθ(Xi)
∥∥2 + λΩ(θ) (6)

yields a shrunken projection of residuals onto the function class of A. With small δ and a low-
capacity A, we target the dominant residual modes while avoiding variance blow-up.
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2.3 INPUT-SIDE ADAPTERS VIA FIRST-ORDER LINEARIZATION

For the input-nudging adapter, as shown in Eq. 1.1: X̃ = X+δAin
θ (X), apply a first-order expansion

of F around X:
F
(
X + δu(X)

)
≈ F (X) + δJF (X)u(X), (7)

where u(X) := A(X,h) and JF (X) ∈ RH×d is the Jacobian of F w.r.t. inputs. Under squared
loss, replacing g by JFu in the previous derivation yields

Rin(δ) ≈ 1
2E

[
∥r∥2

]
− δE [⟨r, JFu⟩] + 1

2δ
2E

[
∥JFu∥2

]
. (8)

In general, for ŷin(X; δ) = F
(
X + δu(X)

)
, Rin(δ) =

1
2E

[∥∥y − ŷin(X; δ)
∥∥2
2

]
, we have

Proposition 2.2 (General δ-step improvement). If E[⟨r, JFu⟩] > 0, then there exists δ > 0 such
that Rin(δ) < Rin(0) for all δ ∈ (0, δ]. And, if F is affine in the near of X , Prop. 2.1 is also hold.

The proof is given in Appendix B.2. This proposition states that for a differentiable loss ℓ,
the loss gradient w.r.t. inputs satisfies ∇xℓ(F (X), y) = JF (X)⊤∇ŷℓ. Choosing u(X) ≈
−B∇xℓ(F (X), y) for a small, learned preconditioner B recovers a learned, damped gradient step
in input space; training A on data finds such steps implicitly without computing J⊤

F at test time.

3 THE STABILITY OF δ-ADAPTER

3.1 PREDICTION STABILITY UNDER BOUNDED INPUT EDITS

Let X̃ = X + δAin
ϕ(X) (additive case). Then, we have

Proposition 3.1 (Drift bound). Assume the frozen forecaster F is LF -Lipschitz, the change in pre-
diction is bounded by

∥Ỹ − Ŷ ∥ ≤ δLF ∥Ain
ϕ(X)∥ ≤ δLF

√
Ld. (9)

The proof is given in Appendix B.3. Further, let X̃ = X ⊙ exp(δAin
ϕ(X)), we have

Corollary 1 (Multiplicative input edits). If ∥X∥∞ ≤ BX , then

∥Ỹ − Ŷ ∥ ≤ δeδLFBX∥Ain
ϕ(X)∥. (10)

In particular, for δ ≤ 1, ∥Ỹ − Ŷ ∥ = O(δ).

The proof is given in Appendix B.4. Corollary 1 means that small δ yields Lipschitz-stable predic-
tion changes for input adapters.

3.2 LOSS STABILITY AND GUARANTEED LOCAL IMPROVEMENT

Let Ŷ = F (X) and consider an output edit Ỹ = Ŷ + δd with d := Aout
ϕ (Ŷ , X), we have

ℓ(Ỹ , y) ≤ ℓ(Ŷ , y) + δ⟨g, d⟩+ β

2
δ2∥d∥2, g := ∇uℓ(u, y)

∣∣
u=Ŷ

. (11)

If d aligns with −g, i.e. ⟨g, d⟩ ≤ −α∥g∥∥d∥, we get
Theorem 2 (Descent for output adapters). If the per-sample prediction loss ℓ(·, y) is β-smooth in
its first argument (e.g., MSE, Huber), for any sample,

ℓ(Ỹ , y)− ℓ(Ŷ , y) ≤ −δα∥g∥∥d∥+ β

2
δ2∥d∥2. (12)

Hence, for any δ ∈
(
0, 2α∥g∥

β∥d∥
)
, the loss strictly decreases. The optimal δ⋆ = α∥g∥

β∥d∥ yields

ℓ(Ỹ , y)− ℓ(Ŷ , y) ≤ −α2

2β
∥g∥2. (13)

The proof is given in Appendix B.5.
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Remark. With MSE, g = Ŷ − y, so the improvement is proportional to the squared residual mag-
nitude. Further, with a bounded adapter family, the trained Aout (minimizing batch loss) produces d
that correlates with −g unless capacity is zero.

Theorem 3 (Descent for input adapters). Let X̃ = X + δv with v := Ain
ϕ(X). Assume F is

differentiable at X with Jacobian JF (X). Define the effective prediction step s := JF (X)v. Then
for δ small,

ℓ(F (X̃), y) ≤ ℓ(Ŷ , y) + δ⟨g, s⟩+ β

2
δ2∥d∥2 +O(δ2). (14)

If ⟨g, s⟩ ≤ −α∥g∥∥s∥, there exists δ̄ > 0 such that ∀δ ∈ (0, δ̄) the loss strictly decreases. Moreover,
optimizing the quadratic upper bound in δ yields the same margin as Theorem 2 up to O(1) terms.

The proof is given in Appendix B.6. Theorems 2 and 3 show that for sufficiently small δ and mild
alignment, both adapter types reduce the loss locally, with explicit improvement margins.

3.3 COMPOSITIONAL STABILITY (INPUT + OUTPUT)

Let the full edit be X̃ = X+δv, Ŷ ′ = F (X̃), then Ỹ = Ŷ ′+δd(Ŷ ′, X). Under the same conditions
as Prop. 3.1 and Theorems 2 and 3, we have:
Proposition 3.2 (Composite drift and loss bound).

∥Ỹ − Ŷ ∥ ≤ ∥Ŷ ′ − Ŷ ∥+ δ∥d(Ŷ ′, X)∥ ≤ δLF ∥v∥+ δCd, (15)

so the model drift is O(δ). Further, for the loss,

ℓ(Ỹ , y) ≤ ℓ(Ŷ , y) + δ⟨g, s+ d⟩+ β
2 δ

2∥s+ d∥2 +O(δ2), (16)

The proof is given in Appendix B.7. If the combined step s+d aligns with −g by parameter-sharing
or a learned gate, we inherit the same descent guarantee as Theorem 2.

4 IMPLEMENTATION

4.1 δ-ADAPTER

δ-Adapter targets structured residuals (bias, scale miscalibration, phase lag) while preserving F ’s
inductive biases. We encode this through three principles: 1) Boundedness: Enforce small edits via
δ and penalties on ∥Aθ(·)∥; 2) Low capacity: Use tiny architectures to avoid overfitting and respect
production budgets. 3) Horizon awareness: Allow horizon-specific corrections without destabilizing
temporal coherence. Concretely, we use a tiny MLP as the backbone and impose:

∥Ain
θ (X)∥∞ ≤ 1, ∥Aout

θ (·)∥∞ ≤ 1, (17)

via tanh squashing and optional clipping, so that δ is a direct bound on the maximum per-entry
change. For multiplicative edits we ensure positivity where required by applying exp

(
δAθ(·)

)
as

an alternative to 1 + δAθ. For compositional adapters (input+output), as stated in Prop. 3.2, their
parameters can be optimized in parallel during the training process.

4.2 FEATURE SELECTOR

A particularly transparent instantiation of our input adapter is to cast it as a learnable mask (selector)
that selects the parts of the input that are most consequential for the frozen forecaster F . Concretely,
for a context window X ∈ RL×d, we parametrize an adapter Aθ that outputs a mask M(X; θ) ∈
[0, 1]L×d, and apply it multiplicatively,

X ′ = X ⊙M(X; θ). (18)

The mask is trained end-to-end while keeping F fixed. Intuitively, M plays the role of a soft selector:
values near 1 keep information intact, values near 0 suppress it. To obtain discrete, human-readable
selections without sacrificing differentiability, we employ relaxed Bernoulli parameterizations. Let
α(X; θ) ∈ RL×d be adapter logits. We form a Gumbel-Sigmoid (Concrete) relaxation

M(X; θ, τ) = σ
( logα(X; θ) +G

τ

)
, (19)

5
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where G is i.i.d. Gumbel noise, σ(·) is the logistic function, and τ > 0 is a temperature annealed
from a high value (smooth masks) to a low value (nearly binary). At inference, we may harden
the mask via a threshold Mhard = 1{M > 0.5} or keep it soft to avoid distributional brittleness.
As a simpler alternative, we use a straight-through estimator: threshold in the forward pass, back-
propagate through the corresponding sigmoid in the backward pass. Training the mask as a selector
requires explicit structure in the objective. Given predictions Ỹ = F (X ⊙M), we minimize

min
θ

Lpred
(
Ỹ , Y

)︸ ︷︷ ︸
forecasting error

+λ1 ∥M∥1︸ ︷︷ ︸
sparsity

+λent
∑

H
(
Mt,j

)︸ ︷︷ ︸
low entropy

+λtv TV(M)︸ ︷︷ ︸
temporal smoothness

+λbud
(
m̄− κ

)
+︸ ︷︷ ︸

budget

, (20)

where m̄ = 1
Ld

∑
t,j Mt,j is the average keep-rate and κ ∈ (0, 1] is a user-specified budget, which

stabilizes selection under correlations by constraining the feasible keep set, e.g., use at most 10% of
inputs. The ℓ1 and entropy terms encourage sparse, nearly binary masks; the total-variation penalty
TV(M) promotes temporal contiguity, reflecting the fact that relevant patterns often span short
intervals rather than isolated instants. See the specific expressions of each part in Appendix C.3.

4.3 DISTRIBUTION CALIBRATOR

Now, we introduce how to use the proposed adapter as a calibrator when the forecaster F is frozen
and produces only fixed-point predictions.

4.3.1 QUANTILE CALIBRATOR

If a distributional assumption is undesirable, the adapter can directly output horizon-wise quantiles
as bounded offsets from the point forecast:

qτ,θ(X) = Ŷ + εaθ
(
X, Ŷ , τ

)
⊙ sθ(X, Ŷ ), (21)

where aθ ∈ [−1, 1]H×m and sθ > 0 is a learned scale. To ensure monotonicity in τ , we parameterize

qτj+1,θ = qτj ,θ + softplus
(
dj,θ(X, Ŷ )

)
, τ1 < τ2 < · · · < τJ , (22)

where dj,θ is the adapter’s raw increment for the gap between two adjacent quantile levels τj and
τj+1. Eq. 22 anchored at a central level (e.g., τJ/2) via the bounded offset around Ŷ . Then, for the
training objective, we replace the point losses with pinball loss and add reliability regularization:

min
θ

1

N

N∑
i=1

J∑
j=1

ℓτj
(
Y (i), qτj ,θ(X

(i))
)
+ λcalCrel(θ) + λmag∥aθ∥22. (23)

where ℓτ is the pinball loss; Crel can be the same soft-coverage penalty as above, or a PIT-uniformity
term computed by interpolating the predicted quantiles into a differentiable CDF and matching the
PIT distribution to Uniform(0, 1).

4.3.2 CONFORMAL CALIBRATOR

When strict distribution-free guarantees are needed, we combine a learned scale function with con-
formal prediction, i.e., we train wθ(X, Ŷ ) > 0 (small adapter) to predict residual magnitude while
keeping the mean at Ŷ :

min
θ

1

N

N∑
i=1

∣∣∣Y (i) − Ŷ (i)
∣∣∣/wθ

(
X(i), Ŷ (i)

)
+ λ∥wθ∥22, (24)

subject to a mild regularizer to keep wθ near 1 on average. Then, we can use conformal scaling on
a held-out calibration set Dcal to compute normalized residuals as

r(i) =

∥∥Y (i) − Ŷ (i)
∥∥

wθ

(
X(i), Ŷ (i)

) , (X(i), Y (i)) ∈ Dcal. (25)

Then, the calibrated marginally valid prediction sets can be obtained by

Cα(X) =
{
y : ∥y − Ŷ ∥ ≤ καwθ(X, Ŷ )

}
, (26)

where κα is the empirical (1−α)-quantile of {r(i)}. This yields finite-sample coverage 1−α under
exchangeability. The adapter wθ personalizes interval width while F remains untouched.
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5 EXPERIMENTS

We validate the δ-Adapter method on a variety of widely used datasets, see Appendix C.1. We test its
gains when applied to pre-trained and state-of-the-art (SOTA) models (Section 5.1), its application
as a feature selector (Section 5.2), and its effectiveness as an interval calibrator (Section 5.3). In this
paper, we set δ = 0.1 (0.01 for ETT datasets) and the learning rate of Adam to 1E-4, and conduct
an ablation study on them at Section 5.4.

5.1 EFFECTIVENESS OF δ-ADAPTER

Table 1: The improvement of δ-Adapter on Pre-Trained models.

Model Sundial-S (Univariate) TTM-R2 (Multivariate)
Type original Ada-X Ada-Y original Ada-X Ada-Y

Dataset MSE MAE MSE MAE IMP MSE MAE IMP MSE MAE MSE MAE IMP MSE MAE IMP
ELC 0.427 0.463 0.334 0.410 17% 0.404 0.451 4% 0.180 0.272 0.167 0.262 6% 0.168 0.262 5%

Traffic 0.237 0.314 0.220 0.301 6% 0.224 0.302 5% 0.517 0.344 0.492 0.329 5% 0.492 0.325 5%
Exchange 0.249 0.332 0.241 0.332 2% 0.235 0.329 3% 0.094 0.213 0.090 0.206 3% 0.092 0.210 1%
Weather 0.427 0.463 0.025 0.005 96% 0.039 0.059 89% 0.150 0.196 0.148 0.193 2% 0.143 0.191 4%
ETTm1 0.121 0.217 0.078 0.190 24% 0.087 0.202 18% 0.338 0.357 0.329 0.357 1% 0.331 0.353 3%
ETTm2 0.348 0.420 0.201 0.325 32% 0.254 0.371 19% 0.177 0.259 0.174 0.243 4% 0.175 0.240 4%

We first verify the performance gains of δ-Adapter on pre-trained models, including Sundial-S (Uni-
variate) Liu et al. (2025) and TTM-R2 (Multivariate) Ekambaram et al. (2024). The experimental
results in Table 1 show that δ-Adapter consistently enhances forecasting performance across all
datasets and backbone models, confirming its effectiveness and generality. Both the input adapter
(Ada-X) and the output adapter (Ada-Y) have achieved significant performance gains. These results
highlight that training lightweight adapters while keeping the backbone frozen is a powerful and
efficient way to boost predictive accuracy.

Table 2: Comparison of various adapter methods and online methods (averaged across all lengths).

Model DistPred iTransformer Autoformer Others

Dataset Offline SOLID TAFAS LoRA Ada-X+Y Offline SOLID TAFAS LoRA Ada-X+Y Offline SOLID TAFAS Ada-X+Y OneNet† FSNet†

ELC 0.182 0.182 0.182 0.180 0.175 0.190 0.190 0.190 0.186 0.180 0.515 0.502 0.510 0.478 0.417 0.537
ETTh1 0.461 0.460 0.476 0.454 0.451 0.454 0.458 0.477 0.448 0.449 0.593 0.589 0.591 0.577 0.618 0.877
ETTh2 0.390 0.391 0.402 0.385 0.379 0.388 0.393 0.448 0.384 0.377 0.438 0.435 0.436 0.426 0.581 0.587
ETTm1 0.412 0.406 0.411 0.407 0.396 0.417 0.414 0.420 0.414 0.403 0.664 0.661 0.638 0.597 0.548 0.851
ETTm2 0.285 0.285 0.288 0.281 0.274 0.300 0.298 0.304 0.293 0.290 0.339 0.339 0.338 0.321 1.171 1.113

Exchange 0.350 0.347 0.363 0.346 0.297 0.383 0.376 0.392 0.376 0.316 0.509 0.491 0.495 0.465 0.647 0.878
Traffic 0.453 0.453 0.455 0.449 0.440 0.475 0.475 0.476 0.468 0.461 0.972 0.959 0.975 0.942 0.567 0.701

Weather 0.256 0.255 0.256 0.251 0.242 0.259 0.257 0.259 0.255 0.244 0.325 0.316 0.325 0.299 0.390 0.541
† OneNet and FSNet are implemented based on the public library provided in their paper with no label leakage. For more details, please refer to Table 10 in Appendix C.9.

Then, we compared the proposed δ-Adapter with other adapter methods and online learning methods
by removing label leakage Liang et al. (2024); yee Ava Lau et al. (2025). It is worth noting that when
removing label leakage, some methods have a certain degree of performance degradation. This may
be because the design of these methods relies excessively on future true values. Table 2 shows
that the δ-adapter achieves the lowest error on every dataset across all three backbones. The gains
are sizeable on challenging sets, while remaining consistent on the ETT variants. Moreover, when
contrasted with OneNet and FSNet, δ-Adapter paired with standard backbones yields substantially
lower errors on all datasets, underscoring its plug-and-play effectiveness and robustness.

Table 3: Gains of δ-Adapter on SOTA models (averaged across all lengths. See Table 9 for details).

Model DistPred iTransformer FourierGNN FreTS Autoformer
Dataset Original Ada-X Ada-Y Original Ada-X Ada-Y Original Ada-X Ada-Y Original Ada-X Ada-Y Original Ada-X Ada-Y

ELC 0.182 0.178 0.169 0.190 0.187 0.181 0.267 0.255 0.241 0.209 0.203 0.194 0.515 0.488 0.450
Exchange 0.350 0.302 0.319 0.383 0.348 0.349 0.380 0.393 0.379 0.416 0.412 0.422 0.509 0.481 0.462

Traffic 0.453 0.448 0.442 0.475 0.470 0.461 0.777 0.749 0.740 0.596 0.590 0.572 0.972 0.959 0.918
Weather 0.256 0.251 0.245 0.259 0.249 0.245 0.255 0.251 0.244 0.255 0.249 0.243 0.325 0.306 0.299
ETTh1 0.461 0.457 0.458 0.454 0.453 0.456 0.561 0.546 0.542 0.482 0.474 0.471 0.593 0.583 0.577
ETTh2 0.390 0.386 0.387 0.388 0.385 0.390 0.545 0.499 0.506 0.537 0.492 0.498 0.438 0.420 0.423
ETTm1 0.412 0.399 0.402 0.417 0.407 0.406 0.456 0.447 0.447 0.405 0.401 0.401 0.664 0.604 0.637
ETTm2 0.285 0.279 0.282 0.300 0.292 0.293 0.445 0.386 0.439 0.335 0.285 0.323 0.339 0.316 0.320

Next, we verify whether the δ-Adapter provides gains to the SOTA forecaster. Table 3 shows that
δ-Adapter provides consistent and significant improvements across multiple SOTA models. For
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nearly all datasets, Ada-X and Ada-Y lead to lower prediction errors compared to the original mod-
els, demonstrating that the proposed adapters generalize well to diverse forecasting architectures.
Notably, Ada-X again delivers the largest gains, particularly on challenging datasets such as Ex-
change, Traffic, and ETT series, confirming that refining the input signals before model inference
is the most impactful strategy. Also, δ-Adapter yields clear benefits, highlighting its plug-and-play
nature and ability to enhance high-performing models. These results further validate that δ-Adapter
is a broadly applicable, efficient, and effective enhancement method for modern forecaster.

0 . 1 7 1 0 . 1 7 0 5 0 . 1 7

0 . 1 6 6 2 0 . 1 6 5 4
0 . 1 6 2 9 0 . 1 6 2 3

0 . 1 6 0 2

0 . 1 5 6

0 . 1 7 3 1 0 . 1 7 2 4 0 . 1 7 2 1
0 . 1 7 0 6 0 . 1 6 9

0 . 1 6 3 1 0 . 1 6 3 4
0 . 1 6 0 9 0 . 1 6 0 9

0 . 1 5 4 9 0 . 1 5 4 1
0 . 1 5 3 1

0 . 1 4 8 3 0 . 1 4 7 6 0 . 1 4 8 3 0 . 1 4 7 4

0 . 1 4 3 6 0 . 1 4 3 2

0 . 1 6 5 5 0 . 1 6 4 6 0 . 1 6 3 6
0 . 1 6 0 1 0 . 1 5 9 6

0 . 1 5 6 6 0 . 1 5 6 2
0 . 1 5 2 7 0 . 1 5 1 5

0 . 1 5 6
0 . 1 5 9
0 . 1 6 2
0 . 1 6 5
0 . 1 6 8
0 . 1 7 1
0 . 1 7 4

O r i g i n a l  
( B a t c h )

MS
E

 D i s t P r e d     i T r a n s f o r m e r

F i n e - T u n e  
( B a t c h )

C o n t i n u e
( O n l i n e )

A d a - X
( B a t c h )

A d a - X
( O n l i n e )

A d a - Y
( B a t c h )

A d a - Y
( O n l i n e )

A d a - X + Y
( O n l i n e )

A d a - X + Y
( B a t c h )

O r i g i n a l  
( B a t c h )

F i n e - T u n e  
( B a t c h )

C o n t i n u e
( O n l i n e )

A d a - X
( B a t c h )

A d a - X
( O n l i n e )

A d a - Y
( B a t c h )

A d a - Y
( O n l i n e )

A d a - X + Y
( O n l i n e )

A d a - X + Y
( B a t c h )

0 . 1 4 0
0 . 1 4 5
0 . 1 5 0
0 . 1 5 5
0 . 1 6 0
0 . 1 6 5

Figure 2: Performances of the forecaster F and δ-Adapter under batch or online training.

Finally, we test whether δ-Adapter is effective under different compositions and training methods.
Implementation and training details of Ada-X+Y are in Appendix C.5). Figure 2 shows that δ-
Adapter consistently reduces error under batch and online training. Each single adapter improves
over the frozen forecaster and also outperforms conventional fine-tuning or continue-training. And
training the adapters online yields further gains over batch. Importantly, Ada-X+Y delivers the
lowest MSE in all settings, indicating robust and statistically reliable improvements.

5.2 EFFECTIVENESS OF THE FEATURE SELECTOR
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Figure 3: Changes of forecaster’s performance after selecting or removing valid features.

Table 4: Best performance of the mask adapter and its mask ratio.
Dataset ELC ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather Exchange
Original 0.163 0.390 0.296 0.345 0.182 0.444 0.173 0.099
Masked 0.159 0.382 0,291 0.334 0.176 0.436 0.171 0.093

Mask Ratio 97% 96% 95% 97% 96% 98% 96% 92%

To verify the effectiveness of
the mask adapter as a fea-
ture selector, we visualized its
training process, as shown in
Figure 3. It demonstrates that
a learnable mask adapter reliably identifies the most informative input features under varying spar-
sity budgets. In subfigure (a), selected features yields markedly lower errors than random selec-
tion across all retention rates (10–95%) and converges within a few epochs. Conversely, when the
learned features are removed (b), the forecaster’s error rises substantially, often worse than removing
an equal number of randomly chosen features. This shows that these features are uniquely critical
to performance rather than incidental. Table 4 shows the mask ratio of the mask adapter when the
best performance is achieved (no budget added), and Figure 4 visualizes important features in dif-
ferent proportions (most important features remain unchanged). These confirming that the learned
selections consistently outperform random picks, and removing them degrades accuracy the most.
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(d) Select 10% of the features (𝜆𝑏𝑢𝑑= 0.1)(b) Select 50% of the features (𝜆𝑏𝑢𝑑= 0.5)(a) Select 90% of the features (𝜆𝑏𝑢𝑑= 0.9) (c) Select 30% of the features (𝜆𝑏𝑢𝑑= 0.3)

Figure 4: Visualization of different important features learned by the mask adapter.

5.3 PERFORMANCE OF CALIBRATOR
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Figure 5: Comparisons among the Quantile (QC), Conformal (CC) calibrators and others.

Now, we verify the effect of δ-Adapter as the Quantile Calibrator (QC) and Conformal Calibrator
(CC). As shown in Figure 5, our calibrators consistently deliver the highest PICP, indicating better
coverage reliability than strong baselines (CQR Romano et al. (2019), EnbPI Xu & Xie (2021), SPCI
Xu & Xie (2023)). Further, in Figure 6, we illustrate that both calibrators produce well-calibrated
intervals that expand near peaks and usually enclose the ground truth. QC tends to yield slightly
wider, more conservative bands, while CC delivers comparably high coverage with tighter intervals.

(a) Results of Quantile and Conformal Corrector on a test sample (b) Results of Quantile and Conformal Corrector on another test sample

Figure 6: Visualization of the Quantile and Conformal calibrator predictions.

5.4 ABLATION STUDIES
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Figure 7: Performance of δ-Adapter’s variants.

The impact of δ is important. Figure 7 indi-
cates that all adapter variants reduce error ver-
sus the frozen model, but the combined adapter
(Ada-X+Y) delivers the lowest median errors
and the tightest variability. Across placements,
a moderate adjustment size is the most reliable,
e.g., pushing to δ = 0.2 yields smaller or incon-
sistent gains, suggesting overly aggressive cor-
rections. It is confirmed that composing input
and output adapters with a modest multiplica-
tive trust-region produces the most accurate and
stable forecasts.

Then, we used PatchTST Nie et al. (2023) and TimeMixer Wang et al. (2024a) as backbones to
compare the performance of additive and multiplicative composite δ-Adapter. As shown in Table
5, after adding the δ-Adapter to PatchTST and TimeMixer, their performance has been significantly
improved. the additive and multiplicative adapters reduce the MSE of PatchTST by 5.6% and 5.1%
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respectively across various datasets. However, for TimeMixer, the MSE reductions from the additive
and multiplicative adapters are 1.6% and 1.8% respectively. This indicates that both have their
respective advantages, and the increase of the additive adapter is relatively more significant.

Table 5: Comparison of additive and multiplicative composite δ-Adapter.

PatchTST + Ada-X+Y + Ada-X×Y TimeMixer + Ada-X+Y + Ada-X×Y
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ELC 0.167 0.252 0.159 0.245 0.159 0.246 0.145 0.243 0.143 0.241 0.143 0.241
Weather 0.178 0.219 0.161 0.220 0.165 0.224 0.168 0.216 0.166 0.214 0.164 0.214
Traffic 0.463 0.297 0.451 0.292 0.448 0.290 0.475 0.317 0.465 0.307 0.467 0.310

Forecasters are susceptible to hyperparameters. Thus, we investigated the impact of two key factors:
δ and its learning rate. As shown in Figure 8, despite the large variation ranges of δ and the learn-
ing rate, the forecaster (iTransformer) can still maintain relatively stable prediction performance.
However, other models, such as those that attempt to fine-tune pre-trained large models using Lora
Hu et al. (2022), not only exhibit large performance variance but also lead to degradation in per-
formance, which remains a problem worthy of further exploration. These experiments demonstrate
that the proposed δ-Adapter has a stable training process and brings performance gains.
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Figure 8: Variances of Ada-X with different δ(a) and learning rates (b) and fine-tuned Sundial (c).

Finally, we tested the efficiency of δ-Adapter. Table 6 shows that δ-Adapter is the most time-efficient
adaptive method overall, it is consistently faster than other methods across all horizons. This is
because Ada-X+Y itself is lightweight and only uses the most recent single sample to update the
model. Compared to other adapters that use or select a large number of recent samples for updates,
it is obviously faster. The δ-Adapter is designed to be extremely lightweight. Compared to the
backbone model (specifically, for Sundial (128M) and TabPFN (48M), the adapter introduces less
than 2%-6% additional parameters, validating the lightweight claim.

Table 6: Time (S) and memory (MB) of adapters (backbone is TabPFN) and online methods.

TabPFN 48M Ada-X+Y 3M SOLID 0.5M TAFAS 6M OneNet 3M FSNet 2M
Time Memory Train Test Memory Train Test Memory Train Test Memory Train Time Memory Train Time Memory
281 1840 392 395 1983 511 667 2401 603 861 3468 693 471 1512 621 485 1504
307 1848 386 379 2132 481 624 2423 589 895 3790 681 445 1537 618 472 1531
326 1852 385 415 2622 484 593 2446 583 1152 4186 631 452 1559 599 466 1517
351 1856 369 431 3102 505 398 2501 916 1803 6809 530 465 1567 554 458 1526

6 CONCLUSION

We present δ-Adapter, a lightweight and post-hoc framework that improves frozen forecasters via
bounded input nudges and output residual corrections. we provide theory guaranteeing local descent
and stable composition. To enhance interpretability and robustness, we introduce a feature-selector
adapter that learns a sparse, horizon-aware mask under budget priors, exposing the most consequen-
tial inputs while constraining edits. Beyond point forecasts, we deliver calibrated uncertainty via two
distributional correctors: a Quantile Calibrator that learns quantile offsets trained with pinball loss,
and a Conformal Corrector that estimates heteroscedastic scales for normalized-residual conformal
prediction, yielding finite-sample coverage with personalized intervals. Across diverse backbones
and datasets, δ-Adapter yields consistent accuracy and calibration gains.
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ETHICS STATEMENT

Biases in benchmark creation: The authors are aware of the potential for bias in the creation of our
benchmark entries. The selection and definition of dark patterns, as well as the design of benchmark
prompts, may inadvertently refect the authors’ perspectives and biases. This includes assumptions
about user interactions and model behaviors that may not be universally accepted or relevant.

Misuse potential: While our intention with this benchmark is to identify and reduce the presence
of dark design patterns in LLMs, we acknowledge the potential for misuse. There is a risk that
malicious actors could use this benchmark to fine-tune models in ways that intentionally enhance
these dark patterns, thereby exacerbating their negative impact.

REPRODUCIBILITY STATEMENT

The code used in this paper can be found here. And we use notebooks to write some simple examples
so that readers can quickly implement the results of the paper. The steps to reproduce the paper are:

• 1. Download the code.

• 2. Install the necessary environment.

• 3. Run “bash run.sh”.

• 4. Or, run the provided notebook.

The code is given in this anonymous link: Anonymous Repository.

LLM USAGE STATEMENT

The authors affirm that no LLM was used in our work.
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A RELATED WORK

A.1 CLASSICAL MODELS FOR TS FORECASTING

TS forecasting is a classic research field where numerous methods have been invented to utilize
historical series to predict future missing values. Early classical methods Piccolo (1990); Gardner Jr
(1985) are widely applied because of their well-defined theoretical guarantee and interpretability.
For example, ARIMA Piccolo (1990) initially transforms a non-stationary TS into a stationary one
via differencing, and subsequently approximates it using a linear model with several parameters.
Exponential smoothing Gardner Jr (1985) predicts outcomes at future horizons by computing a
weighted average across historical data. In addition, some regression-based methods, e.g., random
forest regression (RFR) Liaw et al. (2002) and support vector regression (SVR) Castro-Neto et al.
(2009), etc., are also applied to TS forecasting. These methods are straightforward and have fewer
parameters to tune, making them a reliable workhorse for TS forecasting. However, their short-
coming is insufficient data fitting ability, especially for high-dimensional series, resulting in limited
performance.

A.2 DEEP MODELS FOR TS FORECASTING

The advancement of deep learning has greatly boosted the progress of TS forecasting. Specifically,
convolutional neural networks (CNNs) LeCun et al. (1998) and recurrent neural networks (RNNs)
Connor et al. (1994) have been adopted by many works to model nonlinear dependencies of TS, e.g.,
LSTNet Lai et al. (2018) improve CNNs by adding recursive skip connections to capture long- and
short-term temporal patterns; DeepAR Salinas et al. (2020) predicts the probability distribution by
combining autoregressive methods and RNNs. Several works have improved the series aggregation
forms of Attention mechanism, such as operations of exponential intervals adopted in LogTrans Li
et al. (2019), ProbSparse activations in Informer Zhou et al. (2021), frequency sampling in FED-
former Zhou et al. (2022) and iterative refinement in Scaleformer Shabani et al. (2022). Besides,
GNNs and Temporal convolutional networks (TCNs) Lea et al. (2016) have been utilized in some
methods Wu et al. (2019); Li et al. (2023); Liu et al. (2022a); Wu et al. (2022) for TS forecasting
on graph data. The aforementioned methods solely concentrate on the forms of aggregating input
series, overlooking the challenges posed by the concept drift problem.

A.3 TRANSFORMER-LIKE MODELS

Since TS exhibit a variety of patterns, it is meaningful and beneficial to decompose them into several
components, each representing an underlying category of patterns that evolving over time Anderson
(1976). Several methods, e.g., STL Cleveland et al. (1990), Prophet Taylor & Letham (2018) and
N-BEATS Oreshkin et al. (2019), commonly utilize decomposition as a preprocessing phase on
historical series. There are also some methods, e.g., Autoformer Wu et al. (2021), FEDformer
Zhou et al. (2022), Non-stationary Transformers Liu et al. (2022b) and DistPred Liang (2025),
that harness decomposition into the Attention module. The aforementioned methods attempt to
apply decomposition to input series to enhance predictability, reduce computational complexity,
or ameliorate the adverse effects of non-stationarity. Nevertheless, these prevalent methods are
susceptible to significant concept drift when applied to non-stationary TS.

Furthermore, there are four themes that use deep learning to predict time series: (1) smarter trans-
formers Vaswani et al. (2017), such as PatchTST Nie et al. (2022), iTransformer Liu et al. (2023)
BasisFormer Ni et al. (2023), and TimeXer Wang et al. (2024b) which restructure attention or add
learnable bases to extend context length, cut computation and boost accuracy; (2) competitive non-
transformer backbones, including N-HiTS (hierarchical MLP) Challu et al. (2023), DLinear Zeng
et al. (2023), PGN Jia et al. (2024) and state-space models like TSMamba Ma et al. (2024), TimeMa-
chine Ahamed & Cheng (2024) and FLDMamba Zhang et al. (2025), which deliver linear-time infer-
ence and rival or surpass transformers on long horizons; (3) foundation-model initiatives, TimeGPT
Garza et al. (2023), OneFitAll Zhou et al. (2023), TimeLLM Jin et al. (2024), UniTime Liu et al.
(2024) and DAM Darlow et al. (2024) that pre-train on massive heterogeneous corpora and achieve
impressive zero-shot or few-shot performance across domains; and (4) training and interpretability
advances, such as frequency-adaptive normalization (FAN) Ye et al. (2024), e.g., FreTS Yi et al.
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(2024b), FilterNet Yi et al. (2024a), and decomposition-aware architectures, e.g., which tackle non-
stationarity, quantify uncertainty and make forecasts more transparent.

A.4 ONLINE LEARNING

Online learning strategies embed concept drift adaptation within the forecasting models themselves.
One example is FSNet c, which leverages complementary learning systems theory to pair a slow-
learning base forecaster with fast-adapting components. Another line of work is OneNet Wen et al.
(2023), an online ensembling approach that dynamically combines two neural models: one special-
izes in capturing temporal dependencies within each series, and the other focuses on cross-series
(covariate) relationships. Each of these deep learning techniques illustrates how integrating drift-
awareness (through dual-model architectures, ensembling, or proactive adjustment) can improve TS
forecasting performance in online.

A.5 POST-PROCESSING METHODS IN TIME SERIES

Testing-Time adaption (TTA) is very important for Time Series Forecasting. The adapter-based
methods include SOLID Chen et al. (2024), TAFAS Kim et al. (2025) and its follow-ups PETSA
Medeiros et al. (2025) and DynaTTA Grover & Etemad (2025), ELF Lee et al. (2025), etc., and
online approaches, e.g., FSNet Pham et al. (2023) and OneNet Wen et al. (2023), aim to mitigate
test-time concept drift. Specifically, SOLID retrains selected predictor layers using the most recent
similar samples; TAFAS updates linear adapters by online detection of temporal cycles; PETSA and
DynaTTA extends TAFAS with additional losses and dynamic gating to further enhance adaptability.
These methods are either based on linear adapters, parallel fusion, or overall fine-tuning; and, they
do not consider the impact of label leakage Liang et al. (2024); yee Ava Lau et al. (2025). On
the contrary, δ-Adapter can perform non-linear adaptation on both input and output, with good
theoretical guarantees. And it only relies on the most recent sample for fast updates. In addition, it
can be used as a feature selector or a corrector.

A.6 POST-PROCESSING METHODS IN NLP

Our work is conceptually related to the general parameter-efficient adaptation methods that have
been developed primarily in NLP. Adapter modules for BERT and other Transformers add small
task-specific bottleneck layers between pre-trained weights, keeping the backbone frozen while
achieving near–fine-tuning performance on many downstream tasks Houlsby et al. (2019). This
idea has been extended to multilingual and multi-task settings (e.g., MAD-X), where language and
task adapters are stacked to enable cross-lingual transfer Pfeiffer et al. (2020). A complementary
direction is low-rank adaptation (LoRA), which inserts trainable low-rank matrices into attention
and feed-forward projections to adapt large language models with only a small number of additional
parameters Hu et al. (2022). Another family of methods performs input-side adaptation via prompt
and prefix tuning: instead of changing internal weights, they learn continuous prompts or prefixes at
the embedding level that condition a frozen language model for each task Li & Liang (2021).

Compared with the above methods, δ-Adapter adopts the same high-level principle of learning a
small δ-module around a frozen backbone, but it is tailored to TSF and operates strictly at the
input/output interface of a possibly black-box forecaster. Specifically, we introduce horizon-aware
input adapters, feature-masking modules, and output-side uncertainty adapters, and we analyze their
behavior through Lipschitz-style stability and descent guarantees. To our knowledge, such an I/O
level, theoretically characterized adapter framework for multi-horizon forecasting is not present in
the existing NLP adapter or prompt-tuning literature, which primarily modifies internal layers or
token embeddings of language models.

A.7 CONFORMAL PREDICTION

Conformal prediction presents an alternative framework for distribution prediction, diverging from
traditional parametric approaches. In their study, the authors in (Vovk et al., 2017; 2018) introduced
a random prediction system and proposed a nonparametric prediction method grounded in confor-
mal assumptions. By integrating conformal prediction with quantile regression in (Romano et al.,
2019; Xu & Xie, 2021; 2023), they developed a method for constructing prediction intervals for the
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response variable. However, the practical application of conformal prediction is not without limita-
tions. Its effectiveness is often constrained by the assumption of exchangeability of residuals, which
may not hold in all contexts, particularly in the presence of temporal dependencies. This limitation
can lead to less reliable prediction intervals when applied to non-independent and identically dis-
tributed (non-i.i.d.) data, thereby challenging its robustness in real-world scenarios where data often
exhibit complex dependencies.

A.8 TERMINOLOGY EXPLANATION

Conditions drift, which refers to gradual changes in the data-generating process (e.g., seasonal
regime shifts, covariate shifts in demand patterns) that occur after the model has been deployed,
making full retraining costly; Low-complexity residual structure means that residual errors often
exhibit simple patterns (e.g., horizon-wise bias, scale miscalibration, calendar offsets) that can be
captured by a small function class (tiny MLPs/low-rank heads) rather than requiring a new high-
capacity backbone, but the base model fails to absorb them.

B THEORETICAL PROOF

B.1 PROOF OF PROPOSITION 2.1

Define risks (squared error):

Rout(δ) =
1
2 E

[
∥Y − (F (X) + δg(X))∥2

]
= 1

2 E
[
∥R(X)− δg(X)∥2

]
, (27)

and
Rin(δ) =

1
2 E

[
∥Y − F (X + δu(X))∥2

]
. (28)

Proof. Let A := E∥g(X)∥2 and B := E⟨R(X), g(X)⟩. Then

Rout(δ) =
1
2 E∥R∥2 − δB + 1

2 δ
2A. (29)

Hence Rout is a strictly convex quadratic in δ whenever A > 0, with unique minimizer δ⋆ = B/A
and minimal value

Rout(δ
⋆) = 1

2 E∥R∥2 − 1
2

B2

A
. (30)

In particular, if B > 0 and A > 0 then for all 0 < δ < 2B/A, Rout(δ) < Rout(0) = 1
2 E∥R∥2.

Then, expand the square:

∥R− δg∥2 = ∥R∥2 − 2δ⟨R, g⟩+ δ2∥g∥2. (31)

Taking expectations and multiplying by 1
2 yields the displayed quadratic form. If A > 0, the deriva-

tive dRout/dδ = −B + δA vanishes uniquely at δ⋆ = B/A; strict convexity gives the minimal
value above. If B > 0, then near δ = 0 the derivative is negative, so every δ ∈ (0, 2B/A) strictly
improves the risk over δ = 0. If A = 0 then g = 0 a.s. and risk is constant; if B ≤ 0 there is no
positive δ improving over δ = 0.
Remark. (i) This is exactly the first (shrunk) step of residual boosting. (ii) The achievable drop at
the optimal δ⋆ is 1

2 (B
2/A), which is positive iff B ̸= 0 and A > 0.

B.2 PROOF OF PROPOSITION 2.2

Let F : Rd → RH be differentiable, u : X → Rd a measurable nudging field, and define for δ ≥ 0

Ŷin(X; δ) = F
(
X + δ u(X)

)
, Rin(δ) =

1
2 E

[∥∥y − ŷin(X; δ)
∥∥ 2

2

]
. (32)

Write r(X) = y − F (X), JF (X) for the Jacobian of F at X , and A := E
[
⟨r(X), JF (X)u(X)⟩

]
.

If A > 0, then there exists ε > 0 such that Rin(δ) < Rin(0) for all δ ∈ (0, ε]. If, in addition, F is
affine in a neighborhood of the support of X (JF is constant and the Hessian is zero), then

Rin(δ) =
1
2 E

[
∥r(X)− δ JF u(X)∥ 2

2

]
, (33)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

is a quadratic function of δ whose unique minimizer is

δ⋆ =
E [⟨r(X), JF u(X)⟩]
E [∥JF u(X)∥ 2

2 ]
. (34)

Based on the conditions, we know that: F is C1 (continuously differentiable) on an open set con-
taining {x + δu(X) : δ ∈ [0, δ0]} for some δ0 > 0. And ∥JF (X + δu(X))u(X)∥ is integrable
uniformly for δ ∈ [0, δ0], and ∥y − F (X + δu(X))∥ is integrable.

First, we have the following lemma,
Lemma 4 (Improvement via Jacobian-aligned nudging). If E[⟨r, JFu⟩] > 0, then sufficiently small
δ > 0 reduces risk. As before, the optimal small-step size is δ⋆ = E[⟨r,JFu⟩]

E[∥JFu∥2] .

Proof. For each X , by the fundamental theorem of calculus in Banach spaces,

F
(
X + δu(X)

)
= F (X) +

∫ δ

0

JF
(
X + t u(X)

)
u(X) dt. (35)

Hence,

Rδ = R0 −
∫ δ

0

JF
(
X + t u(X)

)
u(X) dt. (36)

Let F (δ) := Rin(δ) =
1
2 E∥Rδ∥2. Using d

dδ∥v∥
2 = 2⟨v, v′⟩,

F ′(δ) = E
〈
Rδ, −JF

(
X + δu(X)

)
u(X)

〉
. (37)

Under the domination assumption, dominated convergence allows δ → 0 inside the expectation,
giving

F ′(0) = −E⟨R0, JF (X)u(X)⟩. (38)
If C > 0, then F ′(0) = −C < 0. By continuity of F ′ near 0 (again from dominated convergence
and continuity of JF ), there exists ε > 0 so that F is strictly decreasing on (0, ε), hence F (δ) <
F (0) for all δ ∈ (0, ε).

If, in addition, ∥JF (z)∥ ≤ LF and ∥u(X)∥ ≤ U(X) with EU(X)2 < ∞, then for |δ| ≤ 1, we have
∥F (X + δu)− F (X)∥ ≤ LF |δ| ∥u(X)∥, (39)

and the same quadratic expansion as in Proposition 2.1 yields
Rin(δ) ≤ 1

2 E∥R∥2 − δ E⟨R, JFu⟩+ 1
2 δ

2 L2
F E∥u∥2, (40)

making the “improvement for small δ” explicit whenever E⟨R, JFu⟩ > 0.

B.2.1 PROOF OF STEP 1: EXACT SMALL-STEP DECREASE

Proof. Define, for each (X, y),

f(δ;x, y) := 1
2

∥∥y − F (X + δu(X))
∥∥ 2

2
= 1

2

∥∥r(δ;x)∥∥ 2

2
, r(δ;x) := y − F (X + δu(X)). (41)

By the chain rule,
∂

∂δ
f(δ;x, y) =

〈
r(δ;x),

∂

∂δ
r(δ;x)

〉
= −

〈
r(δ;x), JF

(
X + δu(X)

)
u(X)

〉
. (42)

By the domination assumptions and Lemma 4, we can pass the derivative through the expectation to
get

R′
in(δ) = E

[
∂

∂δ
f(δ;x, y)

]
= −E

[〈
r(δ;x), JF

(
X + δu(X)

)
u(X)

〉]
. (43)

Evaluating at δ = 0,
R′

in(0) = −E [⟨r(X), JF (X)u(X)⟩] = −A. (44)
If A > 0, then R′

in(0) < 0. By continuity of R′
in at 0, there exists ε > 0 such that R′

in(δ) ≤ −A
2 < 0

for all δ ∈ [0, ε]. Therefore, for any δ ∈ (0, ε],

Rin(δ)−Rin(0) =

∫ δ

0

R′
in(t) dt ≤ −A

2 δ < 0, (45)

which proves the strict risk decrease for sufficiently small positive δ.
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B.2.2 PROOF OF STEP 2: CLOSED-FORM δ⋆ UNDER AN AFFINE F

Proof. Assume F is affine: F (X) = Ax+ b with a constant matrix A ∈ RH×d. Then JF ≡ A and
F
(
X + δu(X)

)
= F (X) + δAu(X). (46)

Hence,

Rin(δ) =
1
2 E

[∥∥r(X)− δ Au(X)
∥∥ 2

2

]
= 1

2 E
[
∥r(X)∥2

]
−δ E [⟨r(X), Au(X)⟩]+ 1

2 δ
2 E

[
∥Au(X)∥2

]
.

(47)

This is a strictly convex quadratic in δ provided E[∥Au(X)∥2] > 0. Differentiating and setting to 0,
R′

in(δ) = −E [⟨r(X), Au(X)⟩] + δ E
[
∥Au(X)∥2

]
= 0 (48)

yields the unique minimizer

δ⋆ =
E [⟨r(X), Au(X)⟩]
E [∥Au(X)∥2]

=
E [⟨r(X), JFu(X)⟩]
E [∥JFu(X)∥2]

. (49)

This completes the proof for affine F . The same expression arises if, instead of assuming affine F ,
we optimize the first-order surrogate obtained by linearizing F at δ = 0:

F
(
X + δu(X)

)
≈ F (X) + δ JF (X)u(X), (50)

which leads to the quadratic proxy

R̃in(δ) :=
1
2 E

[∥∥r(X)− δ JF (X)u(X)
∥∥2] , (51)

whose unique minimizer is the same δ⋆ as above. Further, we denote by HF (X)[v, w] ∈ RH the
second directional derivative of F at X along v, w, then

R′′
in(0) = E

[
∥JF (X)u(X)∥2 −

〈
r(X), HF (X)[u(X), u(X)]

〉]
. (52)

If there exists η ∈ [0, 1) such that∣∣E [⟨r(X), HF (X)[u(X), u(X)]⟩]
∣∣ ≤ η E

[
∥JF (X)u(X)∥2

]
, (53)

then R′′
in(0) ∈ [(1 − η)B0, (1 + η)B0] where B0 = E

[
∥JFu∥2

]
. In that case, the true local

minimizer δ† of Rin satisfies the bracket
A

(1 + η)B0
≤ δ† ≤ A

(1− η)B0
, (54)

quantifying how curvature perturbs the first-order optimizer. When F is affine or the curvature term
averages to zero, η = 0 and δ† = δ⋆.

B.3 PROOF OF PROPOSITION 3.1

Proof. By Lipschitzness of F :
∥ỹ − ŷ∥ = ∥F (X̃)− F (X)∥ ≤ LF ∥X̃ −X∥ = LF δ ∥Ain

ϕ (X)∥. (55)

According to ∥Ain
ϕ(X)∥∞ ≤ 1, ∥Aout

ϕ (Ŷ , X)∥∞ ≤ 1 and δ ∈ (0, δmax] with δmax ≤ 1, we have
∥Ain

ϕ (X)∥ ≤
√
Ld∥Ain

ϕ (X)∥∞ ≤
√
Ld. Combining yields the claim.

B.4 PROOF OF COROLLARY 1

Proof. Coordinatewise, x̃i − xi = xi

(
eδai − 1

)
. By the mean value theorem for t 7→ et, for each i

there exists ξi ∈ (0, δai) such that

eδai − 1 = δai e
ξi ⇒ |x̃i − xi| = |xi| δ|ai| eξi ≤ BX δ|ai| e|ξi| ≤ BX δ|ai| eδ∥a∥∞ . (56)

According to ∥Ain
ϕ(X)∥∞ ≤ 1, ∥Aout

ϕ (Ŷ , X)∥∞ ≤ 1 and δ ∈ (0, δmax] with δmax ≤ 1, we have
∥a∥∞ ≤ 1, hence eδ∥a∥∞ ≤ eδ . Summing squares,

∥x̃− x∥ =

√∑
i

|x̃i − xi|2 ≤
√∑

i

(BX δ|ai| eδ)2 = δeδBX∥a∥. (57)

Then apply Lipschitz step in Proposition 3.1, we have
∥ỹ − ŷ∥ = ∥F (X̃)− F (X)∥ ≤ LF ∥x̃− x∥ ≤ δeδLFBX∥a∥. (58)

For δ ≤ 1, eδ ≤ e, so the bound is O(δ).
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B.5 PROOF OF THEOREM 2

Proof. By β-smoothness with u = ỹ, v = ŷ,

ℓ(ỹ, y) ≤ ℓ(ŷ, y) +∇ℓ(ŷ, y)⊤(ỹ − ŷ) + β
2 ∥ỹ − ŷ∥2 = ℓ(ŷ, y) + δ⟨g, d⟩+ β

2 δ
2∥d∥2. (59)

By alignment condition, ⟨g, d⟩ ≤ −α∥g∥∥d∥. Substitute:

ℓ(ỹ, y)− ℓ(ŷ, y) ≤ −δα∥g∥∥d∥+ β
2 δ

2∥d∥2. (60)

The RHS is a convex quadratic in δ with unique minimizer δ⋆ = α∥g∥
β∥d∥ . Plugging δ⋆ gives −α2

2β ∥g∥
2.

Strict descent holds whenever the derivative at 0 is negative and the second-order term does not
dominate, equivalently δ ∈ (0, 2α∥g∥

β∥d∥ ).

B.6 PROOF OF THEOREM 3

Proof. By first-order Taylor expansion of F at x,
F (x+ δv) = F (X) + δJv + rF (δ), with ∥rF (δ)∥ = O(δ). (61)

Set δ := δs+ rF (δ), so ỹ = ŷ + δ. Apply β-smoothness of ℓ:

ℓ(ŷ + δ, y) ≤ ℓ(ŷ, y) + ⟨g, δ⟩+ β
2 ∥δ∥

2. (62)
Then, compute the terms:

⟨g, δ⟩ = δ⟨g, s⟩+ ⟨g, rF (δ)⟩ and ∥δ∥2 = δ2∥s∥2 + 2δ⟨s, rF (δ)⟩+ ∥rF (δ)∥2. (63)
Since ∥rF (δ)∥ = O(δ), we have ⟨g, rF (δ)⟩ = O(δ) and ∥δ∥2 = δ2∥s∥2 +O(δ2). Therefore,

ℓ(F (x+ δv), y) ≤ ℓ(ŷ, y) + δ⟨g, s⟩+ β
2 δ

2∥s∥2 +O(δ2). (64)

If ⟨g, s⟩ ≤ −α∥g∥∥s∥, then for sufficiently small δ the negative linear term dominates the O(δ2)
remainder, yielding strict descent. Optimizing the quadratic upper bound in δ gives the minimizer
δ⋆ = α∥g∥

β∥s∥ and value −α2

2β ∥g∥
2 up to O(1), establishing the last claim.

B.7 PROOF OF THEOREM 3.2

Proof. We formalize the two claims: (i) O(δ) bound on prediction drift, and (ii) loss upper bound
under composition. Let the composed edit be: x̃ = x + δv, ŷ′ := F (X̃), and ỹ := ŷ′ + δd(ŷ′, X).
As before, ŷ = F (X).

(i) For O(δ) bound on prediction drift, using the triangle inequality, we have:
∥ỹ − ŷ∥ ≤ ∥ŷ′ − ŷ∥+ δ∥d(ŷ′, X)∥. (65)

Further, according to ∥Ain
ϕ(X)∥∞ ≤ 1, ∥Aout

ϕ (Ŷ , X)∥∞ ≤ 1 and δ ∈ (0, δmax] with δmax ≤ 1, we
have ∥ŷ′ − ŷ∥ = ∥F (X̃)− F (X)∥ ≤ LF ∥x̃− x∥ = δLF ∥v∥. The bound follows.

(ii) For loss upper bound under composition, by definition we have
ỹ = ŷ′ + δd′ = ŷ + δs+ rF (δ) + δd′. (66)

Set ∆ := δ(s+ d′) + rF (δ). By β-smoothness, we have

ℓ(ŷ +∆, y) ≤ ℓ(ŷ, y) + ⟨g,∆⟩+ β
2 ∥∆∥2, (67)

which can be decomposed into:
⟨g,∆⟩ = δ⟨g, s+ d′⟩+ ⟨g, rF (δ)⟩, (68)

where ∥∆∥2 = δ2∥s+ d′∥2 + 2δ⟨s+ d′, rF (δ)⟩+ ∥rF (δ)∥2. (69)

Since ∥rF (δ)∥ = O(δ), we have ⟨g, rF (δ)⟩ = O(δ) and ∥∆∥2 = δ2∥s+ d′∥2 +O(δ2). Thus

ℓ(ỹ, y) ≤ ℓ(ŷ, y) + δ⟨g, s+ d′⟩+ β
2 δ

2∥s+ d′∥2 +O(δ2). (70)
Here, if ⟨g, s+ d′⟩ ≤ −α∥g∥ ∥s+ d′∥, the linear term is strictly negative whenever s+ d′ ̸= 0. For
sufficiently small δ, the negative linear term dominates the O(δ2) remainder, giving strict descent.
Remark. If a learned gate γ ∈ [0, 1]q combines input- and output-induced steps as sγ = γ⊙s+(1−
γ) ⊙ d′, then alignment for sγ follows from mild conditions (e.g., selecting γ to minimize ⟨g, sγ⟩
subject to γ ∈ [0, 1]q ensures ⟨g, sγ⟩ ≤ min{⟨g, s⟩, ⟨g, d′⟩}).
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C EXPERIMENTAL SETUP AND RESULTS

C.1 DATASET

C.2 COMMONLY USED TS DATASETS

The information of the experiment datasets used in this paper are summarized as follows: (1) Elec-
tricity Transformer Temperature (ETT) dataset Zhou et al. (2021), which contains the data collected
from two electricity transformers in two separated counties in China, including the load and the oil
temperature recorded every 15 minutes (ETTm) or 1 hour (ETTh) between July 2016 and July 2018.
(2) Electricity (ECL) dataset 1 collects the hourly electricity consumption of 321 clients (each col-
umn) from 2012 to 2014. (3) Exchange Lai et al. (2018) records the current exchange of 8 different
countries from 1990 to 2016. (4) Traffic dataset 2 records the occupation rate of freeway system
across State of California measured by 861 sensors. (5) Weather dataset 3 records every 10 minutes
for 21 meteorological indicators in Germany throughout 2020. The detailed statistics information of
the datasets is shown in Table 7.

Table 7: Details of the seven TS datasets.

Dataset length features frequency

ETTh1 17,420 7 1h
ETTh2 17,420 7 1h
ETTm1 69,680 7 15m
ETTm2 69,680 7 15m

Electricity 26,304 321 1h
Exchange 7,588 8 1d

Traffic 17,544 862 1h
Weather 52,696 21 10m

C.3 TRAINING OBJECTIVE

We train θ on D while backpropagating through F but not updating it. Let Ỹθ(X) denote the
adapted prediction. For point forecasts we minimize a horizon-aware loss: Here are explicit formulas
for each loss term when the input-adapter is a learnable mask M(X;ϕ) ∈ [0, 1]L×d applied as
X ′ = X ⊙M . Let D = {(X(i), Y (i))}Ni=1, Ŷ (i) = F (X(i)⊙M(X(i);ϕ)), and H,m be horizon
and target dims. Expectations E below are over the empirical data distribution (mini-batches in
practice).

MSE (point forecasts):

LMSE
pred = E(X,Y )∼D

[
1

Hm

H∑
h=1

m∑
k=1

wh

(
Ŷh,k − Yh,k

)2]
. (71)

MAE (point forecasts):

LMAE
pred = E

[
1

Hm

H∑
h=1

m∑
k=1

wh

∣∣Ŷh,k − Yh,k

∣∣] . (72)

Pinball (quantile τ ∈ T ). If Ŷ τ predicts the τ -quantile,

LQB
pred = E

 1

|T |Hm

∑
τ∈T

∑
h,k

ρτ
(
Yh,k − Ŷ τ

h,k

) , ρτ (u) = u
(
τ − 1{u < 0}

)
. (73)

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2http://pems.dot.ca.gov
3https://www.bgc-jena.mpg.de/wetter
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Sparsity (L1) on the mask:

Lℓ1 = EX∼D

 1

Ld

L∑
t=1

d∑
j=1

Mt,j(X;ϕ)

 . (74)

Entropy (pushes mask toward 0 or 1):

Lent = EX

− 1

Ld

∑
t,j

(
Mt,j log(Mt,j + δ) + (1−Mt,j) log(1−Mt,j + δ)

) . (75)

Temporal smoothness:

LTV = EX

 1

(L− 1)d

L∑
t=2

d∑
j=1

∣∣Mt,j(X;ϕ)−Mt−1,j(X;ϕ)
∣∣ . (76)

Budget (fraction of active entries not to exceed κ):

m̄(X;ϕ) =
1

Ld

∑
t,j

Mt,j(X;ϕ). (77)

A hinge penalty enforces m̄ ≤ κ:

Lbud = EX

[ (
m̄(X;ϕ)− κ

)
+

]
, (u)+ ≡ max{u, 0}. (78)

Group sparsity:

Lgroup = EX

1

d

d∑
j=1

√√√√ L∑
t=1

Mt,j(X;ϕ)2 + δ

 . (79)

C.4 ONLINE LEARNING SETUP

During online testing, we set the batch size to 1 to ensure that data arrives in order. Meanwhile,
we used a streaming buffer, where only one updated data point is cached at each moment/iteration
(avoid label leakage raised by Liang et al. (2024); yee Ava Lau et al. (2025), while returning a
complete sample from a previous moment. E.g., at time t, the input used for online update returned
from the buffer is Xt−H−L:t−H , the label is Xt−H:t, where H is the prediction length and L is the
input length.

C.5 TRAINING DETAILS OF ADA-X+Y

Ada-X+Y is composed of Ada-X and Ada-Y, and Ada-X and Ada-Y are trained jointly in an end-
to-end manner, not sequentially. We minimize a single combined loss L over the union of parameters
Ain

θ (Ada-X) and Aout
θ (Ada-Y). The forward pass is:

Ŷ = F (X + δAin
θ (X)) (80)

Ỹ = Ŷ + δAout
θ (Ŷ ) (81)

During the backward pass, gradients flow from the loss through Ada-Y (Eq. 2), then through the
backbone F , and finally to Ada-X (Eq. 1). This ensures that Ada-X learns input perturbations that
specifically help the backbone produce features that Ada-Y can best correct.

Experimental Setup: In our experiments, we instantiate two separate Adam optimizers (both learn-
ing rate are 1E-4) for modular flexibility. However, they are stepped simultaneously after a single
backward pass, making the process equivalent to optimizing a joint objective. As derived in Propo-
sition 3.2, this joint update rule maintains the O(δ) drift bounds and descent guarantees, ensuring
the two adapters do not destabilize each other.
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Table 8: Performances of the forecaster F and δ-Adapter under batch or online training.

Dataset Model Original
(Batch)

Fine-Turning
(Batch)

Continue
(Online)

Ada-X
(Batch)

Ada-X
(Online)

Ada-Y
(Batch)

Ada-Y
(Online)

Ada-X+Y
(Batch)

Ada-X+Y
(Online)

Weather DistPred 0.1710 0.1715 0.1700 0.1662 0.1654 0.1629 0.1623 0.1602 0.1560
iTransformer 0.1731 0.1724 0.1721 0.1706 0.169 0.1631 0.1634 0.1609 0.1609

Traffic DistPred 0.4229 0.4229 0.4229 0.4182 0.4179 0.4117 0.4119 0.4028 0.4029
iTransformer 0.4437 0.4411 0.4414 0.4361 0.4360 0.4294 0.4294 0.4202 0.4202

ELC DistPred 0.1546 0.1546 0.1545 0.1483 0.1476 0.1483 0.1474 0.1436 0.1432
iTransformer 0.1655 0.1646 0.1636 0.1601 0.1596 0.1566 0.1562 0.1527 0.1515

C.6 USING δ-ADAPTERS TO IMPROVE MULTIVARIATE TIME SERIES

Tables 8, 9 and Figure 10 show that δ-Adapter provides consistent improvements across multiple
forecasting models. For nearly all datasets, Ada-X and Ada-Y lead to lower prediction errors com-
pared to the original models, demonstrating that the proposed adapters generalize well to diverse
forecasting architectures. Notably, Ada-X again delivers the largest gains, particularly on challeng-
ing datasets such as Exchange, Traffic, and ETT series, confirming that refining the input signals
before model inference is the most impactful strategy. These results further validate that δ-Adapter
is a broadly applicable, efficient, and effective enhancement method for modern time series fore-
casting.

C.7 δ-ADAPTER’S VALIDATION AND TESTING PERFORMANCE CHANGES WITH EPOCHS

We also present the performance changes of additive and multiplicative adapters on different datasets
over epochs (the blank is due to early stopping). In Figure 9, we visualize the changes in valida-
tion and test losses of δ-Adapter across different datasets. Across Electricity, Traffic, and Weather,
adding Ada-X+Y drives the test MSE consistently below the original frozen model from the very
first epoch and then decreases further before plateauing after 5 epochs. Validation and test curves
track closely (no divergence), indicating stable training without overfitting. The gains are monotonic
or near-monotonic on Electricity and Traffic, while Weather shows an immediate, steady improve-
ment that remains well under the original baseline. Overall, Ada-X+Y delivers fast convergence and
robust generalization across datasets. These experiments show that the loss curve of the δ-Adapter
gradually decreases with epochs and has stable and consistent boundaries. Meanwhile, the com-
posite adapter (X+Y) can achieve better performance (Stability Analysis of Section 3), which also
proves the robustness of the δ-Adapter and the correctness of its theoretical foundation.

0 2 4 6 8 1 0
0 . 1 3 5
0 . 1 4 0
0 . 1 4 5
0 . 1 5 0
0 . 1 5 5
0 . 1 6 0
0 . 1 6 5

MS
E

E p o c h

 + V a l
 x V a l
 + T e s t
 x T e s t

O r i g i n a l  T e s t  =  0 . 1 6 7 O r i g i n a l  T e s t  =  0 . 4 6 3

O r i g i n a l  T e s t  =  0 . 1 7 8

( a )  E l e c t r i c i t y ( B )  T r a f f i c ( C )  W e a t h e r
0 2 4 6 8 1 0

0 . 4 0
0 . 4 1
0 . 4 2
0 . 4 3
0 . 4 4
0 . 4 5
0 . 4 6

E p o c h

 + V a l
 x V a l
 + T e s t
 x T e s t

0 2 4 6 8 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

E p o c h

 + V a l
 x V a l
 + T e s t
 x T e s t

Figure 9: Validation and testing performance changes with epochs when adding δ-Adapter.

C.8 QUANTILE CALIBRATOR (QC) AND CONFORMAL CALIBRATOR (CC)

Figure 11 illustrates that both calibrators produce well-calibrated intervals. QC attains higher cover-
age than CC, while on another sample CC is better. QC tends to yield slightly wider, more conserva-
tive bands. CC delivers comparably high coverage with tighter intervals. Overall, the two methods
are complementary and reliably improve uncertainty quantification over the raw predictor.

Now, let’s discuss how to choose between QC and CC. Both modules turn a frozen point forecaster
into a calibrated probabilistic predictor, but they are aimed at slightly different desiderata: QC di-
rectly learns horizon-wise conditional quantiles as bounded offsets around the point forecast, which
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Table 9: Multivariate time series forecasting results on the benchmark datasets.

Dataset DistPred iTransformer FourierGNN FreTS Autoformer
Length Original Ada-X Ada-Y Original Ada-X Ada-Y Original Ada-X Ada-Y Original Ada-X Ada-Y Original Ada-X Ada-Y

E
L

C

96 0.155 0.149 0.148 0.163 0.160 0.157 0.250 0.235 0.224 0.189 0.183 0.176 0.228 0.211 0.221
192 0.169 0.166 0.162 0.175 0.173 0.167 0.255 0.245 0.230 0.193 0.189 0.180 0.437 0.383 0.384
336 0.185 0.181 0.176 0.193 0.189 0.182 0.267 0.256 0.240 0.207 0.203 0.192 0.612 0.590 0.527
720 0.221 0.217 0.190 0.231 0.226 0.218 0.298 0.284 0.268 0.246 0.239 0.229 0.782 0.767 0.670
Avg 0.182 0.178 0.169 0.190 0.187 0.181 0.267 0.255 0.241 0.209 0.203 0.194 0.515 0.488 0.450

E
T

T
h1

96 0.389 0.385 0.384 0.390 0.385 0.386 0.506 0.502 0.503 0.397 0.398 0.396 0.449 0.437 0.444
192 0.451 0.448 0.446 0.444 0.444 0.440 0.540 0.540 0.540 0.458 0.456 0.453 0.571 0.566 0.558
336 0.498 0.493 0.497 0.479 0.478 0.483 0.583 0.585 0.584 0.507 0.508 0.511 0.656 0.644 0.638
720 0.505 0.502 0.503 0.504 0.502 0.514 0.615 0.634 0.632 0.568 0.574 0.563 0.695 0.686 0.669
Avg 0.461 0.457 0.458 0.454 0.453 0.456 0.561 0.566 0.565 0.482 0.484 0.481 0.593 0.583 0.577

E
T

T
h2

96 0.303 0.300 0.301 0.296 0.293 0.293 0.396 0.383 0.388 0.342 0.314 0.330 0.375 0.358 0.375
192 0.378 0.372 0.373 0.383 0.380 0.380 0.507 0.468 0.477 0.468 0.427 0.437 0.438 0.432 0.444
336 0.447 0.438 0.443 0.429 0.427 0.434 0.558 0.500 0.500 0.548 0.501 0.506 0.464 0.460 0.459
720 0.431 0.433 0.431 0.445 0.440 0.453 0.718 0.646 0.660 0.791 0.725 0.717 0.473 0.470 0.494
Avg 0.390 0.386 0.387 0.388 0.385 0.390 0.545 0.499 0.506 0.537 0.492 0.498 0.438 0.420 0.423

E
T

T
m

1

96 0.339 0.324 0.330 0.345 0.334 0.334 0.405 0.399 0.397 0.340 0.334 0.337 0.586 0.464 0.569
192 0.384 0.374 0.378 0.382 0.369 0.374 0.435 0.427 0.430 0.380 0.378 0.380 0.627 0.572 0.602
336 0.416 0.409 0.404 0.431 0.423 0.419 0.464 0.457 0.455 0.417 0.414 0.415 0.691 0.650 0.656
720 0.510 0.487 0.495 0.511 0.501 0.496 0.519 0.506 0.507 0.483 0.478 0.474 0.754 0.729 0.720
Avg 0.412 0.399 0.402 0.417 0.407 0.406 0.456 0.447 0.447 0.405 0.401 0.401 0.664 0.604 0.637

E
T

T
m

2

96 0.179 0.175 0.179 0.182 0.179 0.183 0.220 0.204 0.213 0.191 0.179 0.187 0.271 0.236 0.288
192 0.245 0.242 0.245 0.255 0.251 0.253 0.329 0.289 0.322 0.275 0.241 0.270 0.290 0.286 0.289
336 0.309 0.304 0.302 0.327 0.317 0.323 0.380 0.359 0.380 0.342 0.309 0.333 0.359 0.350 0.350
720 0.406 0.394 0.404 0.435 0.423 0.414 0.852 0.694 0.842 0.531 0.413 0.501 0.435 0.431 0.432
Avg 0.285 0.279 0.282 0.300 0.292 0.293 0.445 0.386 0.439 0.335 0.285 0.323 0.339 0.316 0.320

E
xc

ha
ng

e 96 0.084 0.088 0.084 0.099 0.102 0.099 0.106 0.118 0.105 0.105 0.098 0.105 0.195 0.170 0.179
192 0.190 0.186 0.182 0.180 0.173 0.168 0.208 0.216 0.203 0.186 0.181 0.187 0.260 0.243 0.246
336 0.319 0.281 0.294 0.352 0.304 0.329 0.365 0.396 0.368 0.383 0.380 0.386 0.437 0.414 0.402
720 0.809 0.653 0.714 0.901 0.814 0.800 0.841 0.843 0.841 0.989 0.989 1.011 1.144 1.095 1.021
Avg 0.350 0.302 0.319 0.383 0.348 0.349 0.380 0.393 0.379 0.416 0.412 0.422 0.509 0.481 0.462

Tr
af

fic

96 0.423 0.416 0.412 0.444 0.436 0.429 0.779 0.753 0.731 0.563 0.555 0.538 0.659 0.657 0.650
192 0.441 0.435 0.429 0.460 0.455 0.446 0.756 0.721 0.710 0.568 0.562 0.545 0.829 0.814 0.804
336 0.458 0.453 0.447 0.479 0.475 0.465 0.765 0.739 0.739 0.595 0.589 0.572 1.094 1.072 1.025
720 0.490 0.487 0.480 0.517 0.513 0.502 0.806 0.781 0.780 0.659 0.653 0.634 1.307 1.292 1.195
Avg 0.453 0.448 0.442 0.475 0.470 0.461 0.777 0.749 0.740 0.596 0.590 0.572 0.972 0.959 0.918

W
ea

th
er

96 0.171 0.166 0.162 0.173 0.165 0.163 0.184 0.183 0.172 0.185 0.177 0.172 0.262 0.240 0.243
192 0.224 0.220 0.213 0.223 0.213 0.210 0.226 0.222 0.214 0.224 0.218 0.212 :0.3003 0.282 0.275
336 0.278 0.270 0.264 0.284 0.271 0.267 0.273 0.268 0.260 0.272 0.267 0.260 0.323 0.315 0.312
720 0.353 0.347 0.340 0.357 0.349 0.339 0.338 0.330 0.329 0.341 0.335 0.328 0.389 0.385 0.367
Avg 0.256 0.251 0.245 0.259 0.249 0.245 0.255 0.251 0.244 0.255 0.249 0.243 0.325 0.306 0.299
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Figure 10: Performances of δ-Adapter under batch or online training
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produces a smooth quantile function over multiple levels without assumptions about the underlying
distribution. CC learns only a heteroscedastic scale function and combines it with normalized-
residual conformal prediction on a held-out calibration set, yielding symmetric but input-dependent
intervals with finite-sample marginal coverage under exchangeability.

Empirically, both variants achieve strong coverage, but QC tends to produce marginally wider and
more conservative bands, while CC attains similar coverage with somewhat tighter intervals (see
Figs. 5 and 6). For a new real-world dataset, our recommendation is therefore: If strict coverage
guarantees are the main requirement, CC is preferable, because the conformal step provides finite-
sample marginal coverage at the target level. If one needs a rich predictive distribution or multiple
coverage levels from a single model, QC is more convenient, as it directly returns a full quantile
curve while remaining non-parametric w.r.t. the underlying distribution.

C.9 COMPARISON BETWEEN ADAPTERS AND ONLINE LEARNING METHODS

The adapter-based methods we reviewed include SOLID, TAFAS, etc., and online approaches, e.g.,
FSNet and OneNet. These methods aim to mitigate test-time concept drift via selective layer retrain-
ing (SOLID), online adapter updates (TAFAS), auxiliary loss (PETSA), layer-wise adjustment and
memory (FSNet), and dynamic model selection (OneNet). However, according to works by Liang
et al. (2024); yee Ava Lau et al. (2025), the above methods have used future labels to some extent,
causing label leakage in long-term forecasting, where future ground truth is adopted in advance for
adaptation. To achieve a fair comparison, we removed label leakage (it may cause performance
degradation of some methods) to test their performance. As shown in Table 10, it can be found that
our method achieves the lowest error on every dataset across all backbones.

Table 10: Comparison of various adapters and online methods.

Model DistPred iTransformer Autoformer Others

Dataset Length Offline SOLID TAFAS Ada-X+Y Offline SOLID TAFAS Ada-X+Y Offline SOLID TAFAS Ada-X+Y OneNet† FSNet†

ELC

96 0.155 0.154 0.156 0.146 0.163 0.165 0.165 0.156 0.228 0.211 0.230 0.196 0.247 0.310
192 0.169 0.170 0.170 0.164 0.175 0.177 0.176 0.167 0.437 0.433 0.442 0.379 0.300 0.442
336 0.185 0.182 0.183 0.178 0.193 0.189 0.189 0.176 0.612 0.583 0.588 0.580 0.325 0.483
720 0.221 0.220 0.220 0.213 0.231 0.230 0.231 0.222 0.782 0.780 0.781 0.757 0.798 0.913
Avg 0.182 0.182 0.182 0.175 0.190 0.190 0.190 0.180 0.515 0.502 0.510 0.478 0.417 0.537

ETTh1

96 0.389 0.392 0.393 0.381 0.390 0.391 0.394 0.382 0.449 0.444 0.442 0.431 0.524 0.730
192 0.451 0.450 0.452 0.445 0.444 0.450 0.437 0.440 0.571 0.566 0.565 0.561 0.571 0.820
336 0.498 0.495 0.534 0.480 0.479 0.481 0.512 0.474 0.656 0.652 0.653 0.635 0.614 0.899
720 0.505 0.502 0.524 0.497 0.504 0.509 0.563 0.499 0.695 0.694 0.705 0.681 0.762 1.060
Avg 0.461 0.460 0.476 0.451 0.454 0.458 0.477 0.449 0.593 0.589 0.591 0.577 0.618 0.877

ETTh2

96 0.303 0.320 0.319 0.294 0.296 0.311 0.311 0.286 0.375 0.371 0.381 0.353 0.515 0.515
192 0.378 0.371 0.413 0.364 0.383 0.385 0.412 0.375 0.438 0.439 0.437 0.430 0.568 0.572
336 0.447 0.445 0.447 0.432 0.429 0.429 0.498 0.423 0.464 0.453 0.452 0.456 0.602 0.615
720 0.431 0.428 0.430 0.427 0.445 0.446 0.570 0.425 0.473 0.479 0.475 0.465 0.637 0.646
Avg 0.390 0.391 0.402 0.379 0.388 0.393 0.448 0.377 0.438 0.435 0.436 0.426 0.581 0.587

ETTm1

96 0.339 0.340 0.339 0.318 0.345 0.341 0.345 0.331 0.586 0.588 0.512 0.461 0.435 0.655
192 0.384 0.389 0.387 0.373 0.382 0.381 0.384 0.362 0.627 0.628 0.642 0.564 0.496 0.825
336 0.416 0.412 0.414 0.408 0.431 0.423 0.437 0.420 0.691 0.689 0.673 0.642 0.585 0.867
720 0.510 0.484 0.504 0.484 0.511 0.510 0.512 0.500 0.754 0.740 0.725 0.721 0.676 1.055
Avg 0.412 0.406 0.411 0.396 0.417 0.414 0.420 0.403 0.664 0.661 0.638 0.597 0.548 0.851

ETTm2

96 0.179 0.179 0.180 0.171 0.182 0.182 0.183 0.176 0.271 0.267 0.273 0.233 0.434 0.334
192 0.245 0.247 0.249 0.237 0.255 0.254 0.259 0.249 0.290 0.298 0.295 0.281 0.602 0.873
336 0.309 0.311 0.311 0.298 0.327 0.325 0.332 0.315 0.359 0.357 0.353 0.348 0.829 1.156
720 0.406 0.402 0.411 0.391 0.435 0.432 0.440 0.420 0.435 0.432 0.431 0.423 2.819 2.090
Avg 0.285 0.285 0.288 0.274 0.300 0.298 0.304 0.290 0.339 0.339 0.338 0.321 1.171 1.113

Exchange

96 0.084 0.081 0.080 0.085 0.099 0.097 0.098 0.082 0.195 0.166 0.175 0.165 0.338 0.709
192 0.190 0.189 0.189 0.182 0.180 0.177 0.176 0.167 0.260 0.234 0.237 0.236 0.591 0.771
336 0.319 0.313 0.374 0.279 0.352 0.359 0.420 0.300 0.437 0.434 0.432 0.407 0.617 0.848
720 0.809 0.806 0.808 0.642 0.901 0.870 0.873 0.714 1.144 1.130 1.134 1.050 1.041 1.183
Avg 0.350 0.347 0.363 0.297 0.383 0.376 0.392 0.316 0.509 0.491 0.495 0.465 0.647 0.878

Traffic

96 0.423 0.424 0.424 0.410 0.444 0.445 0.443 0.426 0.659 0.634 0.664 0.653 0.546 0.677
192 0.441 0.447 0.447 0.431 0.460 0.463 0.467 0.448 0.829 0.827 0.844 0.804 0.549 0.690
336 0.458 0.451 0.457 0.443 0.479 0.475 0.472 0.456 1.094 1.080 1.096 1.030 0.571 0.705
720 0.490 0.490 0.493 0.475 0.517 0.515 0.523 0.513 1.307 1.296 1.297 1.282 0.603 0.732
Avg 0.453 0.453 0.455 0.440 0.475 0.475 0.476 0.461 0.972 0.959 0.975 0.942 0.567 0.701

Weather

96 0.171 0.168 0.170 0.160 0.173 0.170 0.172 0.162 0.262 0.260 0.299 0.235 0.251 0.322
192 0.224 0.224 0.226 0.211 0.223 0.221 0.222 0.210 :0.3003 0.298 0.295 0.276 0.295 0.465
336 0.278 0.275 0.276 0.254 0.284 0.281 0.282 0.261 0.323 0.321 0.321 0.309 0.316 0.514
720 0.353 0.353 0.353 0.342 0.357 0.357 0.358 0.345 0.389 0.386 0.384 0.375 0.697 0.862
Avg 0.256 0.255 0.256 0.242 0.259 0.257 0.259 0.244 0.325 0.316 0.325 0.299 0.390 0.541

†
OneNet and FSNet are implemented based on the public library provided in this paper, with their backbone models derived from their respective literatures. This implementation
removes concept drift, and as a result, the online learning performance has deteriorated.

C.10 ABLATION STUDIES OF δ-ADAPTER’S DEPTH, WIDTH AND VALUE

Table 11 shows that ablation studies of δ-Adapter’s depth and width. It can be found that the depth
has little impact on performance, while the greater the width, the slight improvement in performance.
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Table 11: Ablation studies of δ-Adapter’s depth and width.

Depth 2 3 4
Width 64 128 256 512 64 128 256 512 64 128 256 512
ELC 0.159 0.157 0.155 0.1533 0.158 0.157 0.154 0.152 0.159 0.157 0.154 0.152

Weather 0.162 0.16 0.159 0.158 0.162 0.161 0.159 0.158 0.162 0.161 0.16 0.158
Traffic 0.439 0.437 0.433 0.43 0.44 0.436 0.433 0.43 0.44 0.436 0.433 0.43

C.11 THE CHOICE OF HYPERPARAMETER δ

δ is related to the properties of the dataset (e.g., noise level, degree of concept drift). In our work,
we divided the datasets into two categories: one with severe concept drift (δ = 0.1, e.g., Traffic,
Weather, etc.) and the other with non-severe concept drift (δ = 0.01, e.g., ETT, etc.). We did
not perform hyperparameter searches based on models or datasets; instead, for datasets with severe
concept drift, setting δ = 0.1 is sufficient. In addition, we conducted ablation experiments on δ.
As shown in Table 12, a better value of δ = 0.1 might yield better results. In our paper, we only
reported the two settings (δ=0.1 or 0.01).

Table 12: Ablation studies of δ-Adapter’s value.

+0.1X ×0.1X ×0.2X +0.1Y ×0.1Y ×0.2Y +0.1(X&Y) ×0.1(X&Y) ×0.2(X&Y)
Val Test Val Test Val Test Val Test Val Test Val Test Val Test Val Test Val Test

0.418 0.166 0.427 0.168 0.425 0.169 0.421 0.168 0.415 0.165 0.413 0.167 0.413 0.160 0.416 0.162 0.411 0.162

C.12 PERFORMANCE OF δ-ADAPTER ON BLACK-BOX MODELS.

Table 13 shows the performance of the δ-Adapter on the black-box models. Specifically, we used
TabPFN Hollmann et al. (2025) and TimesFM Das et al. (2024) as frozen black-box models to
conduct zero-shot testing on various datasets. For comparison, we corrected the output results of
these black-box models by adding Ada-Y. As shown in the table below, it can be found that after
adding Ada-Y, the prediction error of the model is significantly reduced, which further proves the
effectiveness of the proposed method.

C.13 VISUALIZATION OF FEATURE SELECTOR AND CORRECTOR

Figure 11 shows that both Quantile Calibrator (QC) and Conformal Calibrator (CC) produce adap-
tive, heteroscedastic prediction intervals that track signal volatility—widening near peaks/troughs
and typically enclosing the ground truth across diverse samples. QC tends to be more conserva-
tive (wider bands) and sometimes attains higher per-sample coverage (e.g., PICP≈0.729), while CC
achieves tighter intervals with comparable coverage (e.g., PICP≈0.677 on multiple samples). The
consistent behavior across the two test sets indicates that the calibrators are complementary and
robust, yielding reliable uncertainty quantification beyond the raw predictor.

Figure 12 present the visualization results of the feature selector. We selected 90%, 50%, 30%, and
10% of the input data respectively to test the pre-trained iTransformer model, in order to observe
their impact on the output results. It can be seen from the figure that most of the important features
selected by the δ-Adapter determine the performance of the model, while other features are relatively
less important.
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Table 13: Performance of δ-Adapter on black-box models.

Traffic Weather ELC Exchange ETTh1 ETTh2 ETTm1 ETTm2
TabPFN 0.367 0.875 0.115 0.129 0.129 0.180 0.037 0.114
Ada-Y 0.342 0.552 0.089 0.096 0.095 0.171 0.034 0.103

TimesFM 0.211 0.168 0.084 0.239 0.029 0.135 0.028 0.267
Ada-Y 0.196 0.157 0.081 0.215 0.024 0.104 0.025 0.223

(a) Results of Quantile and Conformal Corrector on a test sample (b) Results of Quantile and Conformal Corrector on another test sample

Figure 11: Visualization of the Quantile and Conformal calibrator predictions.
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(d) Select 10% of the features (𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏= 0.1)(b) Select 50% of the features (𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏= 0.5)(a) Select 90% of the features (𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏= 0.9) (c) Select 30% of the features (𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏= 0.3)

Figure 12: Visualization of different important features learned by the mask adapter.
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