

000 001 002 003 004 005 006 007 008 009 010 THE FORECAST AFTER THE FORECAST: A POST- PROCESSING SHIFT IN TIME SERIES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Time series forecasting has long been dominated by advances in model archi-
012 tecture, with recent progress driven by deep learning and hybrid statistical tech-
013 niques. However, as forecasting models approach diminishing returns in accu-
014 racy, a critical yet underexplored opportunity emerges: the strategic use of post-
015 processing. In this paper, we address the last-mile gap in time-series forecasting,
016 which is to improve accuracy and uncertainty without retraining or modifying a
017 deployed backbone. We propose δ -Adapter, a lightweight, architecture-agnostic
018 way to boost deployed time series forecasters without retraining. δ -Adapter learns
019 tiny, bounded modules at two interfaces: input nudging (soft edits to covariates)
020 and output residual correction. We provide local descent guarantees, $O(\delta)$ drift
021 bounds, and compositional stability for combined adapters. Meanwhile, it can act
022 as a feature selector by learning a sparse, horizon-aware mask over inputs to se-
023 lect important features, thereby improving interpretability. In addition, it can also
024 be used as a distribution calibrator to measure uncertainty. Thus, we introduce
025 a Quantile Calibrator and a Conformal Corrector that together deliver calibrated,
026 personalized intervals with finite-sample coverage. Our experiments across di-
027 verse backbones and datasets show that δ -Adapter improves accuracy and calibra-
028 tion with negligible compute and no interface changes.

029 1 INTRODUCTION

030 Time Series Forecasting (TSF) powers decisions across energy Anderson (1976), finance Hyndman
031 & Athanasopoulos (2018), retail Piccolo (1990), transportation Gardner Jr (1985), and the sciences
032 Piccolo (1990); Gardner Jr (1985). Despite impressive gains from modern neural forecasters Ekam-
033 baram et al. (2024); Hollmann et al. (2025); Liang (2025); Liu et al. (2025), ranging from temporal
034 convolutions Lea et al. (2016); Wu et al. (2019; 2022); Li et al. (2023) and Transformers Zhou et al.
035 (2021); Nie et al. (2022); Liu et al. (2022b); Nie et al. (2023); Wang et al. (2024a); Liu et al. (2023);
036 Ye et al. (2024); Wang et al. (2024a:b) to hybrid statistical–neural models Liu et al. (2025); Ekam-
037 baram et al. (2024), condition drift Baier et al. (2020) is still not alleviated. Conventional remedies,
038 e.g., full fine-tuning, architectural changes, or ensembling, either demand substantial compute, risk
039 destabilizing a hardened system, or complicate operations. To cope with this, testing-time adap-
040 tation (TTA) is introduced into TSF. The testing-time methods aim to mitigate test-time concept drift
041 via selective layer retraining Chen et al. (2024), online linear adapter updates Kim et al. (2025),
042 auxiliary loss Medeiros et al. (2025), dynamic gating Grover & Etemad (2025), parallel forecaster
043 combines Lee et al. (2025), layer-wise adjustment and memory Pham et al. (2023), and dynamic
044 model selection Wen et al. (2023). However, these methods rely, to varying degrees, on future labels
045 for online model updates, thereby introducing label leakage, where future ground-truth labels are
046 unavailable when actually applied, that causes model performance degradation Liang et al. (2024);
047 yee Ava Lau et al. (2025). Furthermore, LoRA-style adapters Hu et al. (2022); Pfeiffer et al. (2020);
048 Li & Liang (2021) in NLP tend to lead to high performance variance, since the output range is not
049 fixed Biderman et al. (2024).

050 Thus, TSF in real deployments still faces the last-mile gap: 1) Conditions drift Baier et al. (2020),
051 which refers to gradual changes in the data-generating process (e.g., seasonal regime shifts, covariate
052 shifts in demand patterns) that occur after the model has been deployed, making full retraining
053 costly; 2) High performance variance. Existing post-processing techniques are prone to have high
054 performance variance due to unstable training; 3) Inefficient training/inference. Using complex

modules or frequent updates to absorb low-complexity residuals Vovk et al. (2017; 2018) makes models suffer from inefficient training/inference. Based on these, we ask a different question: *Can we really keep the strong forecaster intact and learn only a tiny, post-hoc module that makes small targeted corrections, so accuracy and reliability improve without heavy retraining?*

We answer “yes” with δ -Adapter, a lightweight, model-agnostic framework that augments a frozen forecaster F by learning a tiny adapter A in two minimal placements: input-side nudging (softly editing covariates before inference) and output-side correction (residual refinement after inference). Concretely, we instantiate additive or multiplicative forms for both placements, with a small trust-region parameter $\delta \in (0, 1)$ that bounds edits for safety and stability. Since A is a tiny network (e.g., shallow MLP or low-rank head) trained while F remains frozen, it produces consistent gains with negligible training time and zero changes to F ’s inference interface.

Further, a key instantiation of the input adapter is a feature-selector (mask) adapter that learns a sparse, nearly binary, horizon-aware mask $M \in [0, 1]^{L \times d}$ and applies it multiplicatively to the context $X' = X \odot M$. We train M end-to-end with sparsity, temporal-smoothness, and budget regularizers so that the adapter preserves the base model’s inductive biases while exposing the most consequential inputs for the frozen forecaster. This yields transparent selections, stable training, and strong empirical gains under tight compute budgets.

Beyond point accuracy, δ -Adapter also upgrades forecast uncertainty without modifying F . We present two distributional correctors: (i) a Quantile Calibrator that learns horizon-wise quantile functions as bounded offsets from the point forecast, with a monotonic parameterization and pinball-loss training augmented by reliability regularization; and (ii) a Conformal Calibrator that learns a scale function for normalized-residual conformal prediction, delivering finite-sample coverage with personalized, heteroscedastic intervals. Empirically, both calibrators achieve state-of-the-art coverage quality and produce tight, well-behaved intervals.

Through δ -Adapter, this “last-mile” adjustment consistently improves forecasting accuracy in our experiments across diverse backbones and datasets, with negligible training time and no change to inference interfaces. The main contributions are:

- We formalize δ -Adapter and instantiate two placements (input nudging and output residual correction) in additive/multiplicative forms, all drop-in and architecture-agnostic.
- We introduce a learnable, budgeted mask that identifies and preserves the most consequential inputs, improving transparency and stability.
- We propose quantile and conformal calibrators that deliver calibrated, heteroscedastic uncertainty with finite-sample coverage guarantees, all while keeping F frozen.
- Across diverse backbones and benchmarks, δ -Adapter improves accuracy and calibration; ablations illuminate the roles of δ , capacity, horizon features, and residual structure.

2 METHODOLOGY

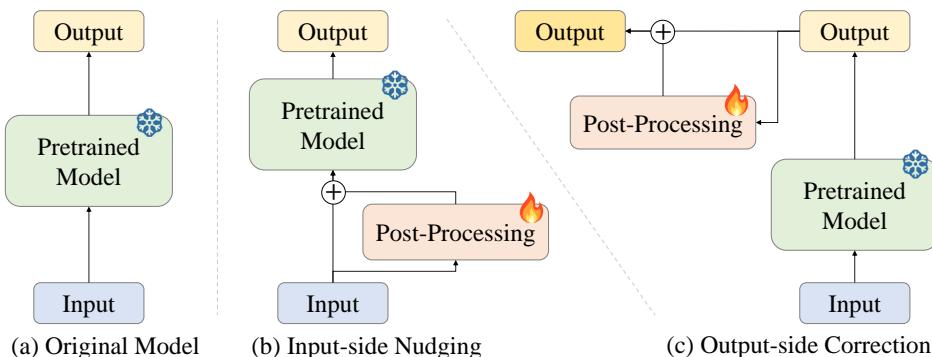


Figure 1: δ -Adapter performs input nudging and output correction on the frozen forecaster.

108
109

2.1 PROBLEM SETUP

110 Let $\mathcal{D} = \{(X^{(i)}, Y^{(i)})\}_{i=1}^N$ denote training pairs of context windows $X \in \mathbb{R}^{L \times d}$ and future targets $Y \in \mathbb{R}^{H \times m}$ (history length L , horizon H , d covariates, m target dimensions). A pre-trained forecaster F maps X to predictions $\hat{Y} = F(X) \in \mathbb{R}^{H \times m}$. We keep all parameters of F fixed and introduce a lightweight, learnable adapter A_θ with parameters θ trained on \mathcal{D} . The adapter composes with F via two families of edits:

115 **Input-side nudging:** $\tilde{X} = X + \delta A_\theta^{\text{in}}(X)$, (additive input) (1.1)

116 $\tilde{X} = X \odot (1 + \delta A_\theta^{\text{in}}(X))$, (multiplicative input) (1.2)

117 **Output-side correction:** $\tilde{Y} = F(X) + \delta A_\theta^{\text{out}}(F(X), X)$, (additive output) (1.3)

118 $\tilde{Y} = F(X) \odot (1 + \delta A_\theta^{\text{out}}(F(X), X))$, (multiplicative output) (1.4)

121 The base risk of F under a loss ℓ is

123
$$\mathcal{R}(F) = \mathbb{E}_{(X, y) \sim \mathcal{D}} [\ell(\hat{Y}, Y)]$$
. (2)

125 Here, we consider two adapters, trained by minimizing empirical risk over θ with F frozen, as shown
126 in Eq. 1. The key questions are: (i) when does a small δ provably help; (ii) why do lightweight
127 adapters suffice; and (iii) How do we choose δ and what is the stability of the adapter A ? Now, let's
128 answer these questions.

129

130 2.2 OUTPUT-SIDE ADAPTERS AS SHRINKAGE RESIDUAL LEARNING

132 Here, we consider the additive adapter, as shown in Eq. 1.3: $\tilde{Y} = F(X) + \delta A_\theta^{\text{out}}(F(X), X)$. With
133 slight modifications, the relevant analyses and theories also apply to multiplicative adapters.

134 Let $r(X) = Y - F(X)$ denote the residual process. For squared error $\ell(\hat{Y}, Y) = \frac{1}{2} \|\hat{Y} - Y\|_2^2$, the
135 population risk of the output adapter with a fixed F equals
136

137
$$\mathcal{R}_{\text{out}}(\delta) = \frac{1}{2} \mathbb{E} [\|r(X) - \delta g(X)\|_2^2], \quad g(X) := A_\theta^{\text{out}}(F(X), X)$$
. (3)

139 Expanding,

140
$$\mathcal{R}_{\text{out}}(\delta) = \frac{1}{2} \mathbb{E} [\|r\|^2] - \delta \underbrace{\mathbb{E} [\langle r, g \rangle]}_{\text{signal alignment}} + \frac{1}{2} \delta^2 \mathbb{E} [\|g\|^2]$$
. (4)

143 **Proposition 2.1** (Small-step improvement). *If $\mathbb{E}[\langle r, g \rangle] > 0$, then for all*

145
$$0 < \delta < \frac{2\mathbb{E}[\langle r, g \rangle]}{\mathbb{E}[\|g\|^2]}$$
, (5)

148 we have $\mathcal{R}_{\text{out}}(\delta) < \mathcal{R}_{\text{out}}(0) = \frac{1}{2} \mathbb{E}[\|r\|^2]$. The quadratic in δ has negative derivative at 0 and a
149 unique minimizer $\delta^* = \frac{\mathbb{E}[\langle r, g \rangle]}{\mathbb{E}[\|g\|^2]}$.

151 *Remark.* Improvement hinges on alignment between the learned correction g and the residual r .
152 Even when A is tiny, if residuals have low-complexity structure (calendar offsets, horizon-dependent
153 bias, scale drift), a small g can achieve positive alignment, and a shrunken step δ guarantees risk
154 reduction. This is exactly the first step of boosting with shrinkage or a stacked residual learner with
155 a conservative learning rate.

156 In practice, we learn g from finite data with a penalty $\Omega(\theta)$ (e.g., ℓ_2 , low rank, sparsity). The
157 empirical objective

158
$$\min_{\theta} \frac{1}{2} \sum_i \|y_i - F(X_i) - \delta g_\theta(X_i)\|^2 + \lambda \Omega(\theta)$$
 (6)

159 161 yields a shrunken projection of residuals onto the function class of A . With small δ and a low-
160 capacity A , we target the dominant residual modes while avoiding variance blow-up.

162 2.3 INPUT-SIDE ADAPTERS VIA FIRST-ORDER LINEARIZATION
163164 For the input-nudging adapter, as shown in Eq. 1.1: $\tilde{X} = X + \delta A_\theta^{\text{in}}(X)$, apply a first-order expansion
165 of F around X :

166
$$F(X + \delta u(X)) \approx F(X) + \delta J_F(X)u(X), \quad (7)$$

167 where $u(X) := A(X, h)$ and $J_F(X) \in \mathbb{R}^{H \times d}$ is the Jacobian of F w.r.t. inputs. Under squared
168 loss, replacing g by $J_F u$ in the previous derivation yields

169 170
$$\mathcal{R}_{\text{in}}(\delta) \approx \frac{1}{2}\mathbb{E}[\|r\|^2] - \delta\mathbb{E}[\langle r, J_F u \rangle] + \frac{1}{2}\delta^2\mathbb{E}[\|J_F u\|^2]. \quad (8)$$

171 In general, for $\hat{y}_{\text{in}}(X; \delta) = F(X + \delta u(X))$, $\mathcal{R}_{\text{in}}(\delta) = \frac{1}{2}\mathbb{E}[\|y - \hat{y}_{\text{in}}(X; \delta)\|_2^2]$, we have
172173 **Proposition 2.2** (General δ -step improvement). *If $\mathbb{E}[\langle r, J_F u \rangle] > 0$, then there exists $\delta > 0$ such
174 that $\mathcal{R}_{\text{in}}(\delta) < \mathcal{R}_{\text{in}}(0)$ for all $\delta \in (0, \delta]$. And, if F is affine in the near of X , Prop. 2.1 is also hold.*175 The proof is given in Appendix B.2. This proposition states that for a differentiable loss ℓ ,
176 the loss gradient w.r.t. inputs satisfies $\nabla_x \ell(F(X), y) = J_F(X)^\top \nabla_{\hat{y}} \ell$. Choosing $u(X) \approx
177 -B \nabla_x \ell(F(X), y)$ for a small, learned preconditioner B recovers a learned, damped gradient step
178 in input space; training A on data finds such steps implicitly without computing J_F^\top at test time.
179180 3 THE STABILITY OF δ -ADAPTER
181182 3.1 PREDICTION STABILITY UNDER BOUNDED INPUT EDITS
183184 Let $\tilde{X} = X + \delta A_\phi^{\text{in}}(X)$ (additive case). Then, we have
185186 **Proposition 3.1** (Drift bound). *Assume the frozen forecaster F is L_F -Lipschitz, the change in pre-
187 diction is bounded by*

188
$$\|\tilde{Y} - \hat{Y}\| \leq \delta L_F \|A_\phi^{\text{in}}(X)\| \leq \delta L_F \sqrt{Ld}. \quad (9)$$

189 The proof is given in Appendix B.3. Further, let $\tilde{X} = X \odot \exp(\delta A_\phi^{\text{in}}(X))$, we have
190191 **Corollary 1** (Multiplicative input edits). *If $\|X\|_\infty \leq B_X$, then*

192 193
$$\|\tilde{Y} - \hat{Y}\| \leq \delta e^\delta L_F B_X \|A_\phi^{\text{in}}(X)\|. \quad (10)$$

194 In particular, for $\delta \leq 1$, $\|\tilde{Y} - \hat{Y}\| = O(\delta)$.
195196 The proof is given in Appendix B.4. Corollary 1 means that small δ yields Lipschitz-stable predic-
197 tion changes for input adapters.
198199 3.2 LOSS STABILITY AND GUARANTEED LOCAL IMPROVEMENT
200201 Let $\hat{Y} = F(X)$ and consider an output edit $\tilde{Y} = \hat{Y} + \delta d$ with $d := A_\phi^{\text{out}}(\hat{Y}, X)$, we have
202

203 204
$$\ell(\tilde{Y}, y) \leq \ell(\hat{Y}, y) + \delta \langle g, d \rangle + \frac{\beta}{2} \delta^2 \|d\|^2, \quad g := \nabla_u \ell(u, y)|_{u=\hat{Y}}. \quad (11)$$

205 If d aligns with $-g$, i.e. $\langle g, d \rangle \leq -\alpha \|g\| \|d\|$, we get
206207 **Theorem 2** (Descent for output adapters). *If the per-sample prediction loss $\ell(\cdot, y)$ is β -smooth in
208 its first argument (e.g., MSE, Huber), for any sample,*

209 210
$$\ell(\tilde{Y}, y) - \ell(\hat{Y}, y) \leq -\delta \alpha \|g\| \|d\| + \frac{\beta}{2} \delta^2 \|d\|^2. \quad (12)$$

211 Hence, for any $\delta \in (0, \frac{2\alpha\|g\|}{\beta\|d\|})$, the loss strictly decreases. The optimal $\delta^* = \frac{\alpha\|g\|}{\beta\|d\|}$ yields
212

213 214
$$\ell(\tilde{Y}, y) - \ell(\hat{Y}, y) \leq -\frac{\alpha^2}{2\beta} \|g\|^2. \quad (13)$$

215 The proof is given in Appendix B.5.

216 *Remark.* With MSE, $g = \hat{Y} - y$, so the improvement is proportional to the squared residual mag-
 217 nitude. Further, with a bounded adapter family, the trained A^out (minimizing batch loss) produces d
 218 that correlates with $-g$ unless capacity is zero.

219 **Theorem 3** (Descent for input adapters). *Let $\tilde{X} = X + \delta v$ with $v := A_\phi^\text{in}(X)$. Assume F is
 220 differentiable at X with Jacobian $J_F(X)$. Define the effective prediction step $s := J_F(X)v$. Then
 221 for δ small,*

$$223 \quad \ell(F(\tilde{X}), y) \leq \ell(\hat{Y}, y) + \delta \langle g, s \rangle + \frac{\beta}{2} \delta^2 \|d\|^2 + O(\delta^2). \quad (14)$$

224 *If $\langle g, s \rangle \leq -\alpha \|g\| \|s\|$, there exists $\bar{\delta} > 0$ such that $\forall \delta \in (0, \bar{\delta})$ the loss strictly decreases. Moreover,
 225 optimizing the quadratic upper bound in δ yields the same margin as Theorem 2 up to $O(1)$ terms.*

226 The proof is given in Appendix B.6. Theorems 2 and 3 show that for sufficiently small δ and mild
 227 alignment, both adapter types reduce the loss locally, with explicit improvement margins.

228 3.3 COMPOSITIONAL STABILITY (INPUT + OUTPUT)

229 Let the full edit be $\tilde{X} = X + \delta v$, $\hat{Y}' = F(\tilde{X})$, then $\tilde{Y} = \hat{Y}' + \delta d(\hat{Y}', X)$. Under the same conditions
 230 as Prop. 3.1 and Theorems 2 and 3, we have:

231 **Proposition 3.2** (Composite drift and loss bound).

$$232 \quad \|\tilde{Y} - \hat{Y}\| \leq \|\hat{Y}' - \hat{Y}\| + \delta \|d(\hat{Y}', X)\| \leq \delta L_F \|v\| + \delta C_d, \quad (15)$$

233 *so the model drift is $O(\delta)$. Further, for the loss,*

$$234 \quad \ell(\tilde{Y}, y) \leq \ell(\hat{Y}, y) + \delta \langle g, s + d \rangle + \frac{\beta}{2} \delta^2 \|s + d\|^2 + O(\delta^2), \quad (16)$$

235 The proof is given in Appendix B.7. If the combined step $s + d$ aligns with $-g$ by parameter-sharing
 236 or a learned gate, we inherit the same descent guarantee as Theorem 2.

237 4 IMPLEMENTATION

238 4.1 δ -ADAPTER

239 δ -Adapter targets structured residuals (bias, scale miscalibration, phase lag) while preserving F 's
 240 inductive biases. We encode this through three principles: 1) Boundedness: Enforce small edits via
 241 δ and penalties on $\|A_\theta(\cdot)\|$; 2) Low capacity: Use tiny architectures to avoid overfitting and respect
 242 production budgets. 3) Horizon awareness: Allow horizon-specific corrections without destabilizing
 243 temporal coherence. Concretely, we use a tiny MLP as the backbone and impose:

$$244 \quad \|A_\theta^\text{in}(X)\|_\infty \leq 1, \quad \|A_\theta^\text{out}(\cdot)\|_\infty \leq 1, \quad (17)$$

245 via tanh squashing and optional clipping, so that δ is a direct bound on the maximum per-entry
 246 change. For multiplicative edits we ensure positivity where required by applying $\exp(\delta A_\theta(\cdot))$ as
 247 an alternative to $1 + \delta A_\theta$. For compositional adapters (input+output), as stated in Prop. 3.2, their
 248 parameters can be optimized in parallel during the training process.

249 4.2 FEATURE SELECTOR

250 A particularly transparent instantiation of our input adapter is to cast it as a learnable mask (selector)
 251 that selects the parts of the input that are most consequential for the frozen forecaster F . Concretely,
 252 for a context window $X \in \mathbb{R}^{L \times d}$, we parametrize an adapter A_θ that outputs a mask $M(X; \theta) \in$
 253 $[0, 1]^{L \times d}$, and apply it multiplicatively,

$$254 \quad X' = X \odot M(X; \theta). \quad (18)$$

255 The mask is trained end-to-end while keeping F fixed. Intuitively, M plays the role of a soft selector:
 256 values near 1 keep information intact, values near 0 suppress it. To obtain discrete, human-readable
 257 selections without sacrificing differentiability, we employ relaxed Bernoulli parameterizations. Let
 258 $\alpha(X; \theta) \in \mathbb{R}^{L \times d}$ be adapter logits. We form a Gumbel-Sigmoid (Concrete) relaxation

$$259 \quad M(X; \theta, \tau) = \sigma\left(\frac{\log \alpha(X; \theta) + G}{\tau}\right), \quad (19)$$

270 where G is i.i.d. Gumbel noise, $\sigma(\cdot)$ is the logistic function, and $\tau > 0$ is a temperature annealed
 271 from a high value (smooth masks) to a low value (nearly binary). At inference, we may harden
 272 the mask via a threshold $M_{\text{hard}} = \mathbf{1}\{M > 0.5\}$ or keep it soft to avoid distributional brittleness.
 273 As a simpler alternative, we use a straight-through estimator: threshold in the forward pass, back-
 274 propagate through the corresponding sigmoid in the backward pass. Training the mask as a selector
 275 requires explicit structure in the objective. Given predictions $\tilde{Y} = F(X \odot M)$, we minimize

$$\min_{\theta} \underbrace{\mathcal{L}_{\text{pred}}(\tilde{Y}, Y)}_{\text{forecasting error}} + \lambda_1 \underbrace{\|M\|_1}_{\text{sparsity}} + \lambda_{\text{ent}} \underbrace{\sum H(M_{t,j})}_{\text{low entropy}} + \lambda_{\text{tv}} \underbrace{\text{TV}(M)}_{\text{temporal smoothness}} + \lambda_{\text{bud}} \underbrace{(\bar{m} - \kappa)_+}_{\text{budget}}, \quad (20)$$

279 where $\bar{m} = \frac{1}{Ld} \sum_{t,j} M_{t,j}$ is the average keep-rate and $\kappa \in (0, 1]$ is a user-specified budget, which
 280 stabilizes selection under correlations by constraining the feasible keep set, e.g., use at most 10% of
 281 inputs. The ℓ_1 and entropy terms encourage sparse, nearly binary masks; the total-variation penalty
 282 $\text{TV}(M)$ promotes temporal contiguity, reflecting the fact that relevant patterns often span short
 283 intervals rather than isolated instants. See the specific expressions of each part in Appendix C.3.

284 4.3 DISTRIBUTION CALIBRATOR

285 Now, we introduce how to use the proposed adapter as a calibrator when the forecaster F is frozen
 286 and produces only fixed-point predictions.

287 4.3.1 QUANTILE CALIBRATOR

288 If a distributional assumption is undesirable, the adapter can directly output horizon-wise quantiles
 289 as bounded offsets from the point forecast:

$$293 \quad q_{\tau, \theta}(X) = \hat{Y} + \varepsilon a_{\theta}(X, \hat{Y}, \tau) \odot s_{\theta}(X, \hat{Y}), \quad (21)$$

294 where $a_{\theta} \in [-1, 1]^{H \times m}$ and $s_{\theta} > 0$ is a learned scale. To ensure monotonicity in τ , we parameterize

$$296 \quad q_{\tau_{j+1}, \theta} = q_{\tau_j, \theta} + \text{softplus}(d_{j, \theta}(X, \hat{Y})), \quad \tau_1 < \tau_2 < \dots < \tau_J, \quad (22)$$

297 where $d_{j, \theta}$ is the adapter's raw increment for the gap between two adjacent quantile levels τ_j and
 298 τ_{j+1} . Eq. 22 anchored at a central level (e.g., $\tau_{J/2}$) via the bounded offset around \hat{Y} . Then, for the
 299 training objective, we replace the point losses with pinball loss and add reliability regularization:

$$300 \quad \min_{\theta} \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^J \ell_{\tau_j}(Y^{(i)}, q_{\tau_j, \theta}(X^{(i)})) + \lambda_{\text{cal}} \mathcal{C}_{\text{rel}}(\theta) + \lambda_{\text{mag}} \|a_{\theta}\|_2^2. \quad (23)$$

303 where ℓ_{τ} is the pinball loss; \mathcal{C}_{rel} can be the same soft-coverage penalty as above, or a PIT-uniformity
 304 term computed by interpolating the predicted quantiles into a differentiable CDF and matching the
 305 PIT distribution to $\text{Uniform}(0, 1)$.

307 4.3.2 CONFORMAL CALIBRATOR

308 When strict distribution-free guarantees are needed, we combine a learned scale function with con-
 309 formal prediction, i.e., we train $w_{\theta}(X, \hat{Y}) > 0$ (small adapter) to predict residual magnitude while
 310 keeping the mean at \hat{Y} :

$$312 \quad \min_{\theta} \frac{1}{N} \sum_{i=1}^N \left| Y^{(i)} - \hat{Y}^{(i)} \right| / w_{\theta}(X^{(i)}, \hat{Y}^{(i)}) + \lambda \|w_{\theta}\|_2^2, \quad (24)$$

315 subject to a mild regularizer to keep w_{θ} near 1 on average. Then, we can use conformal scaling on
 316 a held-out calibration set \mathcal{D}_{cal} to compute normalized residuals as

$$317 \quad r^{(i)} = \frac{\|Y^{(i)} - \hat{Y}^{(i)}\|}{w_{\theta}(X^{(i)}, \hat{Y}^{(i)})}, \quad (X^{(i)}, Y^{(i)}) \in \mathcal{D}_{\text{cal}}. \quad (25)$$

320 Then, the calibrated marginally valid prediction sets can be obtained by

$$321 \quad \mathcal{C}_{\alpha}(X) = \{y : \|y - \hat{Y}\| \leq \kappa_{\alpha} w_{\theta}(X, \hat{Y})\}, \quad (26)$$

323 where κ_{α} is the empirical $(1 - \alpha)$ -quantile of $\{r^{(i)}\}$. This yields finite-sample coverage $1 - \alpha$ under
 exchangeability. The adapter w_{θ} personalizes interval width while F remains untouched.

324 5 EXPERIMENTS

326 We validate the δ -Adapter method on a variety of widely used datasets, see Appendix C.1. We test its
 327 gains when applied to pre-trained and state-of-the-art (SOTA) models (Section 5.1), its application
 328 as a feature selector (Section 5.2), and its effectiveness as an interval calibrator (Section 5.3). In this
 329 paper, we set $\delta = 0.1$ (0.01 for ETT datasets) and the learning rate of Adam to 1E-4, and conduct
 330 an ablation study on them at Section 5.4.

331 5.1 EFFECTIVENESS OF δ -ADAPTER

334 Table 1: The improvement of δ -Adapter on Pre-Trained models.

336 Model	Sundial-S (Univariate)								TTM-R2 (Multivariate)									
	337 Type		original			Ada-X			Ada-Y			original		Ada-X			Ada-Y	
338 Dataset	MSE	MAE	MSE	MAE	IMP	MSE	MAE	IMP	MSE	MAE	IMP	MSE	MAE	IMP	MSE	MAE	IMP	
ELC	0.427	0.463	0.334	0.410	17%	0.404	0.451	4%	0.180	0.272	0.167	0.262	6%	0.168	0.262	5%		
Traffic	0.237	0.314	0.220	0.301	6%	0.224	0.302	5%	0.517	0.344	0.492	0.329	5%	0.492	0.325	5%		
Exchange	0.249	0.332	0.241	0.332	2%	0.235	0.329	3%	0.094	0.213	0.090	0.206	3%	0.092	0.210	1%		
Weather	0.427	0.463	0.025	0.005	96%	0.039	0.059	89%	0.150	0.196	0.148	0.193	2%	0.143	0.191	4%		
ETTm1	0.121	0.217	0.078	0.190	24%	0.087	0.202	18%	0.338	0.357	0.329	0.357	1%	0.331	0.353	3%		
ETTm2	0.348	0.420	0.201	0.325	32%	0.254	0.371	19%	0.177	0.259	0.174	0.243	4%	0.175	0.240	4%		

342 We first verify the performance gains of δ -Adapter on pre-trained models, including Sundial-S (Univariate)
 343 Liu et al. (2025) and TTM-R2 (Multivariate) Ekambaram et al. (2024). The experimental
 344 results in Table 1 show that δ -Adapter consistently enhances forecasting performance across all
 345 datasets and backbone models, confirming its effectiveness and generality. Both the input adapter
 346 (Ada-X) and the output adapter (Ada-Y) have achieved significant performance gains. These results
 347 highlight that training lightweight adapters while keeping the backbone frozen is a powerful and
 348 efficient way to boost predictive accuracy.

350 Table 2: Comparison of various adapter methods and online methods (averaged across all lengths).

352 Model	DistPred					iTransformer					Autoformer					Others		
	Offline	SOLID	TAFAS	LoRA	Ada-X+Y	Offline	SOLID	TAFAS	LoRA	Ada-X+Y	Offline	SOLID	TAFAS	Ada-X+Y	OneNet [†]	FSNet [†]		
ELC	0.182	0.182	0.182	0.180	0.175	0.190	0.190	0.190	0.186	0.180	0.515	0.502	0.510	0.478	0.417	0.537		
ETTh1	0.461	0.460	0.476	0.454	0.451	0.454	0.458	0.477	0.448	0.449	0.593	0.589	0.591	0.577	0.618	0.877		
ETTh2	0.390	0.391	0.402	0.385	0.379	0.388	0.393	0.448	0.384	0.377	0.438	0.435	0.436	0.426	0.581	0.587		
ETTm1	0.412	0.406	0.411	0.407	0.396	0.417	0.414	0.420	0.414	0.403	0.664	0.661	0.638	0.597	0.548	0.851		
ETTm2	0.285	0.285	0.288	0.281	0.274	0.300	0.298	0.304	0.293	0.290	0.339	0.339	0.338	0.321	0.171	1.113		
Exchange	0.350	0.347	0.363	0.346	0.297	0.383	0.376	0.392	0.376	0.316	0.509	0.491	0.495	0.465	0.647	0.878		
Traffic	0.453	0.453	0.455	0.449	0.440	0.475	0.475	0.476	0.468	0.461	0.972	0.959	0.975	0.942	0.567	0.701		
Weather	0.256	0.255	0.256	0.251	0.242	0.259	0.257	0.259	0.255	0.244	0.325	0.316	0.325	0.299	0.390	0.541		

[†] OneNet and FSNet are implemented based on the public library provided in their paper with no label leakage. For more details, please refer to Table 10 in Appendix C.9.

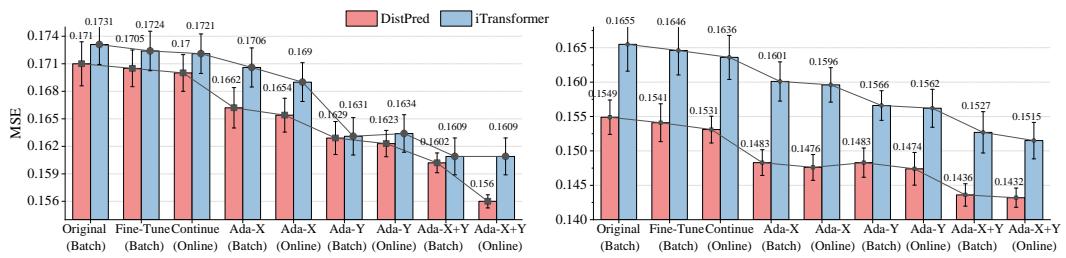
359 Then, we compared the proposed δ -Adapter with other adapter methods and online learning methods
 360 by removing label leakage Liang et al. (2024); yee Ava Lau et al. (2025). It is worth noting that when
 361 removing label leakage, some methods have a certain degree of performance degradation. This may
 362 be because the design of these methods relies excessively on future true values. Table 2 shows
 363 that the δ -adapter achieves the lowest error on every dataset across all three backbones. The gains
 364 are sizeable on challenging sets, while remaining consistent on the ETT variants. Moreover, when
 365 contrasted with OneNet and FSNet, δ -Adapter paired with standard backbones yields substantially
 366 lower errors on all datasets, underscoring its plug-and-play effectiveness and robustness.

368 Table 3: Gains of δ -Adapter on SOTA models (averaged across all lengths. See Table 9 for details).

370 Model	DistPred			iTransformer			FourierGNN			FrTS			Autoformer		
	Dataset	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y	Original	Ada-X
ELC	0.182	0.178	0.169	0.190	0.187	0.181	0.267	0.255	0.241	0.209	0.203	0.194	0.515	0.488	0.450
Exchange	0.350	0.302	0.319	0.383	0.348	0.349	0.380	0.393	0.379	0.416	0.412	0.422	0.509	0.481	0.462
Traffic	0.453	0.448	0.442	0.475	0.470	0.461	0.777	0.749	0.740	0.596	0.590	0.572	0.972	0.959	0.918
Weather	0.256	0.251	0.245	0.259	0.249	0.245	0.255	0.251	0.244	0.255	0.249	0.243	0.325	0.306	0.299
ETTh1	0.461	0.457	0.458	0.454	0.453	0.456	0.561	0.546	0.542	0.482	0.474	0.471	0.593	0.583	0.577
ETTh2	0.390	0.386	0.387	0.388	0.385	0.390	0.545	0.499	0.506	0.537	0.492	0.498	0.438	0.420	0.423
ETTm1	0.412	0.399	0.402	0.417	0.407	0.406	0.456	0.447	0.447	0.405	0.401	0.401	0.664	0.604	0.637
ETTm2	0.285	0.279	0.282	0.300	0.292	0.293	0.445	0.386	0.439	0.335	0.285	0.323	0.339	0.316	0.320

376 Next, we verify whether the δ -Adapter provides gains to the SOTA forecaster. Table 3 shows that
 377 δ -Adapter provides consistent and significant improvements across multiple SOTA models. For

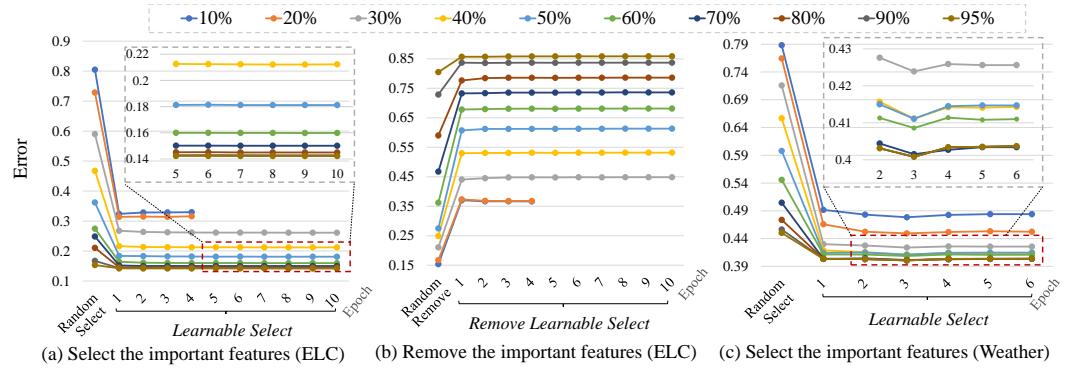
378 nearly all datasets, Ada-X and Ada-Y lead to lower prediction errors compared to the original models.
 379 demonstrating that the proposed adapters generalize well to diverse forecasting architectures.
 380 Notably, Ada-X again delivers the largest gains, particularly on challenging datasets such as Ex-
 381 change, Traffic, and ETT series, confirming that refining the input signals before model inference
 382 is the most impactful strategy. Also, δ -Adapter yields clear benefits, highlighting its plug-and-play
 383 nature and ability to enhance high-performing models. These results further validate that δ -Adapter
 384 is a broadly applicable, efficient, and effective enhancement method for modern forecaster.



394 Figure 2: Performances of the forecaster F and δ -Adapter under batch or online training.
 395

396 Finally, we test whether δ -Adapter is effective under different compositions and training methods.
 397 **Implementation and training details of Ada-X+Y are in Appendix C.5.** Figure 2 shows that δ -
 398 Adapter consistently reduces error under batch and online training. Each single adapter improves
 399 over the frozen forecaster and also outperforms conventional fine-tuning or continue-training. And
 400 training the adapters online yields further gains over batch. Importantly, Ada-X+Y delivers the
 401 lowest MSE in all settings, indicating robust and statistically reliable improvements.

403 5.2 EFFECTIVENESS OF THE FEATURE SELECTOR



417 Figure 3: Changes of forecaster's performance after selecting or removing valid features.
 418

419 To verify the effectiveness of
 420 the mask adapter as a
 421 feature selector, we visualized its
 422 training process, as shown in
 423 Figure 3. It demonstrates that
 424 a learnable mask adapter reliably identifies the most informative input features under varying sparsity
 425 budgets. In subfigure (a), selected features yields markedly lower errors than random selection
 426 across all retention rates (10–95%) and converges within a few epochs. Conversely, when the
 427 learned features are removed (b), the forecaster's error rises substantially, often worse than removing
 428 an equal number of randomly chosen features. This shows that these features are uniquely critical
 429 to performance rather than incidental. Table 4 shows the mask ratio of the mask adapter when the
 430 best performance is achieved (no budget added), and Figure 4 visualizes important features in dif-
 431 ferent proportions (most important features remain unchanged). These confirming that the learned
 432 selections consistently outperform random picks, and removing them degrades accuracy the most.

Table 4: Best performance of the mask adapter and its mask ratio.

Dataset	ELC	ETTh1	ETTh2	ETTm1	ETTm2	Traffic	Weather	Exchange
Original	0.163	0.390	0.296	0.345	0.182	0.444	0.173	0.099
Masked	0.159	0.382	0.291	0.334	0.176	0.436	0.171	0.093
Mask Ratio	97%	96%	95%	97%	96%	98%	96%	92%

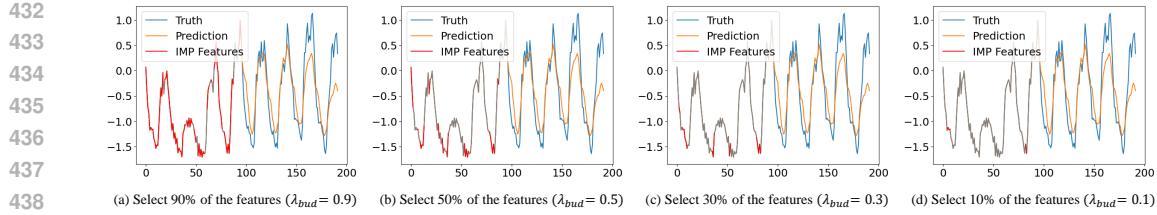


Figure 4: Visualization of different important features learned by the mask adapter.

5.3 PERFORMANCE OF CALIBRATOR

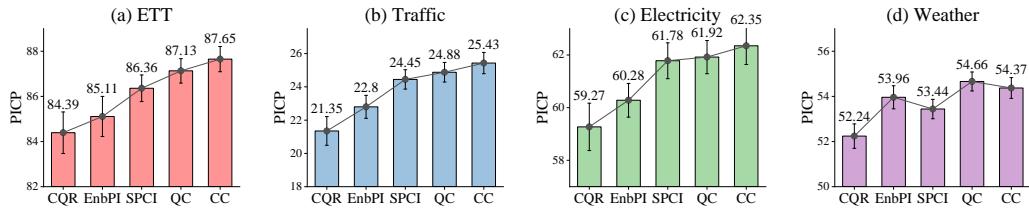


Figure 5: Comparisons among the Quantile (QC), Conformal (CC) calibrators and others.

Now, we verify the effect of δ -Adapter as the Quantile Calibrator (QC) and Conformal Calibrator (CC). As shown in Figure 5, our calibrators consistently deliver the highest PICP, indicating better coverage reliability than strong baselines (CQR Romano et al. (2019), EnbPI Xu & Xie (2021), SPCI Xu & Xie (2023)). Further, in Figure 6, we illustrate that both calibrators produce well-calibrated intervals that expand near peaks and usually enclose the ground truth. QC tends to yield slightly wider, more conservative bands, while CC delivers comparably high coverage with tighter intervals.

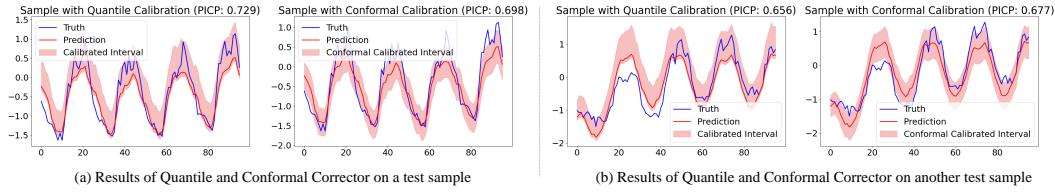
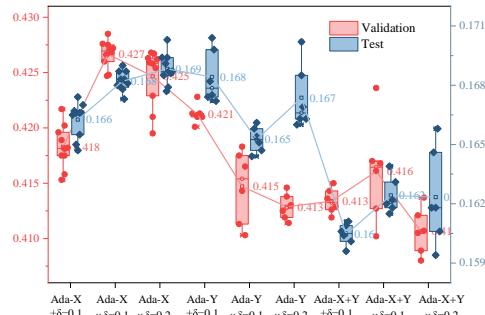


Figure 6: Visualization of the Quantile and Conformal calibrator predictions.

5.4 ABLATION STUDIES

The impact of δ is important. Figure 7 indicates that all adapter variants reduce error versus the frozen model, but the combined adapter (Ada-X+Y) delivers the lowest median errors and the tightest variability. Across placements, a moderate adjustment size is the most reliable, e.g., pushing to $\delta = 0.2$ yields smaller or inconsistent gains, suggesting overly aggressive corrections. It is confirmed that composing input and output adapters with a modest multiplicative trust-region produces the most accurate and stable forecasts.

Then, we used PatchTST Nie et al. (2023) and TimeMixer Wang et al. (2024a) as backbones to compare the performance of additive and multiplicative composite δ -Adapter. As shown in Table 5, after adding the δ -Adapter to PatchTST and TimeMixer, their performance has been significantly improved. the additive and multiplicative adapters reduce the MSE of PatchTST by 5.6% and 5.1%

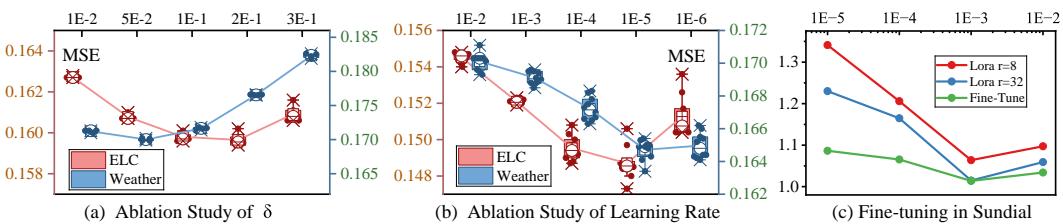
Figure 7: Performance of δ -Adapter's variants.

486 respectively across various datasets. However, for TimeMixer, the MSE reductions from the additive
 487 and multiplicative adapters are 1.6% and 1.8% respectively. This indicates that both have their
 488 respective advantages, and the increase of the additive adapter is relatively more significant.
 489

490 Table 5: Comparison of additive and multiplicative composite δ -Adapter.
 491

	PatchTST		+ Ada-X+Y		+ Ada-X \times Y		TimeMixer		+ Ada-X+Y		+ Ada-X \times Y	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ELC	0.167	0.252	0.159	0.245	0.159	0.246	0.145	0.243	0.143	0.241	0.143	0.241
Weather	0.178	0.219	0.161	0.220	<u>0.165</u>	<u>0.224</u>	0.168	0.216	<u>0.166</u>	<u>0.214</u>	<u>0.164</u>	<u>0.214</u>
Traffic	0.463	0.297	<u>0.451</u>	<u>0.292</u>	0.448	0.290	0.475	0.317	0.465	0.307	0.467	<u>0.310</u>

497 Forecasters are susceptible to hyperparameters. Thus, we investigated the impact of two key factors:
 498 δ and its learning rate. As shown in Figure 8, despite the large variation ranges of δ and the learning
 499 rate, the forecaster (iTransformer) can still maintain relatively stable prediction performance.
 500 However, other models, such as those that attempt to fine-tune pre-trained large models using Lora
 501 Hu et al. (2022), not only exhibit large performance variance but also lead to degradation in per-
 502 formance, which remains a problem worthy of further exploration. These experiments demonstrate
 503 that the proposed δ -Adapter has a stable training process and brings performance gains.
 504

510 Figure 8: Variances of Ada-X with different δ (a) and learning rates (b) and fine-tuned Sundial (c).
 511

514 Finally, we tested the efficiency of δ -Adapter. Table 6 shows that δ -Adapter is the most time-efficient
 515 adaptive method overall, it is consistently faster than other methods across all horizons. This is
 516 because Ada-X+Y itself is lightweight and only uses the most recent single sample to update the
 517 model. Compared to other adapters that use or select a large number of recent samples for updates,
 518 it is obviously faster. The δ -Adapter is designed to be extremely lightweight. Compared to the
 519 backbone model (specifically, for Sundial (128M) and TabPFN (48M), the adapter introduces less
 520 than 2%-6% additional parameters, validating the lightweight claim.
 521

522 Table 6: Time (S) and memory (MB) of adapters (backbone is TabPFN) and online methods.
 523

TabPFN 48M		Ada-X+Y 3M			SOLID 0.5M			TAFAS 6M			OneNet 3M			FSNet 2M		
Time	Memory	Train	Test	Memory	Train	Test	Memory	Train	Test	Memory	Train	Time	Memory	Train	Time	Memory
281	1840	392	395	1983	511	667	2401	603	861	3468	693	471	1512	621	485	1504
307	1848	386	379	2132	481	624	2423	589	895	3790	681	445	1537	618	472	1531
326	1852	385	415	2622	484	593	2446	583	1152	4186	631	452	1559	599	466	1517
351	1856	369	431	3102	505	398	2501	916	1803	6809	530	465	1567	554	458	1526

527
 528
 529

6 CONCLUSION

 530

531 We present δ -Adapter, a lightweight and post-hoc framework that improves frozen forecasters via
 532 bounded input nudges and output residual corrections. we provide theory guaranteeing local descent
 533 and stable composition. To enhance interpretability and robustness, we introduce a feature-selector
 534 adapter that learns a sparse, horizon-aware mask under budget priors, exposing the most consequen-
 535 tial inputs while constraining edits. Beyond point forecasts, we deliver calibrated uncertainty via two
 536 distributional correctors: a Quantile Calibrator that learns quantile offsets trained with pinball loss,
 537 and a Conformal Corrector that estimates heteroscedastic scales for normalized-residual conformal
 538 prediction, yielding finite-sample coverage with personalized intervals. Across diverse backbones
 539 and datasets, δ -Adapter yields consistent accuracy and calibration gains.

540 ETHICS STATEMENT
541542 Biases in benchmark creation: The authors are aware of the potential for bias in the creation of our
543 benchmark entries. The selection and definition of dark patterns, as well as the design of benchmark
544 prompts, may inadvertently reflect the authors' perspectives and biases. This includes assumptions
545 about user interactions and model behaviors that may not be universally accepted or relevant.546 Misuse potential: While our intention with this benchmark is to identify and reduce the presence
547 of dark design patterns in LLMs, we acknowledge the potential for misuse. There is a risk that
548 malicious actors could use this benchmark to fine-tune models in ways that intentionally enhance
549 these dark patterns, thereby exacerbating their negative impact.551 REPRODUCIBILITY STATEMENT
552553 The code used in this paper can be found here. And we use notebooks to write some simple examples
554 so that readers can quickly implement the results of the paper. The steps to reproduce the paper are:
555556 • 1. Download the code.
557 • 2. Install the necessary environment.
558 • 3. Run “bash run.sh”.
559 • 4. Or, run the provided notebook.560 The code is given in this anonymous link: **Anonymous Repository**.
561564 LLM USAGE STATEMENT
565566 The authors affirm that no LLM was used in our work.
567

569 REFERENCES

570 Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term
571 forecasting. *arXiv preprint arXiv:2403.09898*, 2024.573 O. D. Anderson. Time-series. *Journal of the Royal Statistical Society. Series D (The Statistician)*,
574 25(4):308–310, 1976. ISSN 00390526, 14679884.575 Lucas Baier, Marcel Hofmann, Niklas Kühl, Marisa Mohr, and Gerhard Satzger. Handling concept
576 drifts in regression problems—the error intersection approach. *arXiv preprint arXiv:2004.00438*,
577 2020.579 Dan Biderman, Jacob P. Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
580 nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
581 John Patrick Cunningham. Lora learns less and forgets less. *Trans. Mach. Learn. Res.*, 2024,
582 2024.583 Manoel Castro-Neto, Young-Seon Jeong, Myong-Kee Jeong, and Lee D Han. Online-svr for short-
584 term traffic flow prediction under typical and atypical traffic conditions. *Expert Systems with*
585 *Applications*, 36(3):6164–6173, 2009.586 Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
587 Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecast-
588 ing. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 6989–6997,
589 2023.591 Mouxiang Chen, Lefei Shen, Han Fu, Zhuo Li, Jianling Sun, and Chenghao Liu. Calibra-
592 tion of time-series forecasting: Detecting and adapting context-driven distribution shift. *KDD*
593 ’24, pp. 341–352, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704901.

594 Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A seasonal-
 595 trend decomposition. *J. Off. Stat.*, 6(1):3–73, 1990.

596

597 Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent neural networks and robust time
 598 series prediction. *IEEE Transactions on Neural Networks*, 5(2):240–254, 1994.

599

600 Luke Nicholas Darlow, Qiwen Deng, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Artjom
 601 Joosen, Adam Barker, and Amos Storkey. Dam: Towards a foundation model for forecasting.
 602 In *The Twelfth International Conference on Learning Representations*, 2024.

603

604 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
 605 time-series forecasting. In *Forty-first International Conference on Machine Learning*, 2024.

606

607 Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam Nguyen, Wesley M
 608 Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained
 609 models for enhanced zero/few-shot forecasting of multivariate time series. *Advances in Neural
 610 Information Processing Systems*, 37:74147–74181, 2024.

611

612 Everette S Gardner Jr. Exponential smoothing: The state of the art. *Journal of forecasting*, 4(1):
 613 1–28, 1985.

614

615 Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. *arXiv preprint
 616 arXiv:2310.03589*, 2023.

617

618 Shivam Grover and Ali Etemad. Shift-aware test-time adaptation and benchmarking for time-series
 619 forecasting. In *Second Workshop on Test-Time Adaptation: Putting Updates to the Test! at ICML
 620 2025*, 2025.

621

622 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 623 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 624 foundation model. *Nature*, 01 2025. doi: 10.1038/s41586-024-08328-6.

625

626 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
 627 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
 628 2019.

629

630 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 631 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *The Tenth International
 632 Conference on Learning Representations*, 1(2):3, 2022.

633

634 Rob J Hyndman and George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018.

635

636 Yuxin Jia, Youfang Lin, Jing Yu, Shuo Wang, Tianhao Liu, and Huaiyu Wan. Pgn: The rnn’s new
 637 successor is effective for long-range time series forecasting. *Advances in Neural Information
 638 Processing Systems*, 37:84139–84168, 2024.

639

640 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 641 uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-lm: Time series forecasting by reprogramming
 642 large language models. In *The Twelfth International Conference on Learning Representations*,
 643 2024.

644

645 HyunGi Kim, Siwon Kim, Jisoo Mok, and Sungroh Yoon. Battling the non-stationarity in time se-
 646 ries forecasting via test-time adaptation. In *Proceedings of the Thirty-Ninth AAAI Conference
 647 on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of Artifi-
 648 cial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence,
 649 AAAI’25/IAAI’25/EAAI’25*. AAAI Press, 2025. ISBN 978-1-57735-897-8.

650

651 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
 652 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference
 653 on research & development in information retrieval (SIGIR)*, pp. 95–104, Ann Arbor, MI, USA,
 654 2018.

648 Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional networks: A
 649 unified approach to action segmentation. In *European conference on computer vision*, pp. 47–54.
 650 Springer, 2016.

651 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 652 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

653 Thomas L Lee, William Toner, Rajkarn Singh, Artjom Joosen, and Martin Asenov. Lightweight
 654 online adaption for time series foundation model forecasts. In *Forty-second International Con-
 655 ference on Machine Learning*, 2025.

656 Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Fan Yang, Funing Sun, Depeng Jin, and Yong Li.
 657 Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution.
 658 *ACM Transactions on Knowledge Discovery from Data*, 17(1):1–21, 2023.

659 Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhua Chen, Yu-Xiang Wang, and Xifeng
 660 Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
 661 forecasting. In *Advances in 33rd Neural Information Processing Systems (NeurIPS)*, volume 32,
 662 pp. 5243–5253, Vancouver, Canada, 2019.

663 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
 664 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th
 665 Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
 666 Conference on Natural Language Processing*, pp. 4582–4597. Association for Computational
 667 Linguistics, 2021.

668 Daojun Liang. Distpred: A distribution-free probabilistic inference method for regression and fore-
 669 casting. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data
 670 Mining V. 1*, pp. 753–764, 2025.

671 Daojun Liang, Haixia Zhang, Jing Wang, Dongfeng Yuan, and Minggao Zhang. Act now: A novel
 672 online forecasting framework for large-scale streaming data. *arXiv preprint arXiv:2412.00108*,
 673 2024.

674 Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. *R News*, 2(3):
 675 18–22, 2002.

676 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 677 Time series modeling and forecasting with sample convolution and interaction. In *Advances in
 678 Neural Information Processing Systems*, pp. 5816–5828, 2022a.

679 Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
 680 Unitime: A language-empowered unified model for cross-domain time series forecasting. In
 681 *Proceedings of the ACM Web Conference 2024*, pp. 4095–4106, 2024.

682 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 683 the stationarity in time series forecasting. *Advances in Neural Information Processing Systems*,
 684 35:9881–9893, 2022b.

685 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 686 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint
 687 arXiv:2310.06625*, 2023.

688 Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
 689 Mingsheng Long. Sundial: A family of highly capable time series foundation models. *arXiv
 690 preprint arXiv:2502.00816*, 2025.

691 Haoyu Ma, Yushu Chen, Wenlai Zhao, Jinzhe Yang, Yingsheng Ji, Xinghua Xu, Xiaozhu Liu, Hao
 692 Jing, Shengzhuo Liu, and Guangwen Yang. A mamba foundation model for time series forecast-
 693 ing. *arXiv preprint arXiv:2411.02941*, 2024.

694 Heitor R. Medeiros, Hossein Sharifi-Noghabi, Gabriel L. Oliveira, and Saghar Irandoust. Accurate
 695 parameter-efficient test-time adaptation for time series forecasting. In *Second Workshop on Test-
 696 Time Adaptation: Putting Updates to the Test! at ICML 2025*, 2025.

702 Zelin Ni, Hang Yu, Shizhan Liu, Jianguo Li, and Weiyao Lin. Basisformer: Attention-based time
 703 series forecasting with learnable and interpretable basis. *Advances in Neural Information Pro-*
 704 *cessing Systems*, 36:71222–71241, 2023.

705 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 706 words: Long-term forecasting with transformers. In *The Eleventh International Conference on*
 707 *Learning Representations*, 2022.

708 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 709 words: Long-term forecasting with transformers. In *International Conference on Learning*
 710 *Representations*, 2023.

711 Boris N Oreshkin, Dmitri Carpow, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural ba-
 712 sis expansion analysis for interpretable time series forecasting. In *International Conference on*
 713 *Learning Representations*, 2019.

714 Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebastian Ruder. MAD-X: An Adapter-Based
 715 Framework for Multi-Task Cross-Lingual Transfer. In *Proceedings of the 2020 Conference on*
 716 *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7654–7673, Online, Novem-
 717 ber 2020. Association for Computational Linguistics.

718 Quang Pham, Chenghao Liu, Doyen Sahoo, and Steven CH Hoi. Learning fast and slow for online
 719 time series forecasting. In *8th International Conference on Learning Representations (ICLR)*,
 720 2023.

721 Domenico Piccolo. A distance measure for classifying arima models. *Journal of time series analysis*,
 722 11(2):153–164, 1990.

723 Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Ad-*
 724 *vances in neural information processing systems*, 32, 2019.

725 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
 726 casting with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):1181–
 727 1191, 2020.

728 Mohammad Amin Shabani, Amir H Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: Iterative
 729 multi-scale refining transformers for time series forecasting. In *The Eleventh International Con-*
 730 *ference on Learning Representations*, 2022.

731 Sean J Taylor and Benjamin Letham. Forecasting at scale. *The American Statistician*, 72(1):37–45,
 732 2018.

733 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 734 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in 31st Neural*
 735 *Information Processing Systems (NeurIPS)*, volume 30, pp. 6000–6010, Long Beach, USA, 2017.

736 Vladimir Vovk, Jie Shen, Valery Manokhin, and Min-ge Xie. Nonparametric predictive distribu-
 737 tions based on conformal prediction. In *Conformal and probabilistic prediction and applications*,
 738 pp. 82–102. PMLR, 2017.

739 Vladimir Vovk, Ilia Nouretdinov, Valery Manokhin, and Alexander Gammerman. Cross-conformal
 740 predictive distributions. In *conformal and probabilistic prediction and applications*, pp. 37–51.
 741 PMLR, 2018.

742 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 743 JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In *The*
 744 *Twelfth International Conference on Learning Representations*, 2024a.

745 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 746 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 747 with exogenous variables. *Advances in Neural Information Processing Systems*, 37:469–498,
 748 2024b.

756 Qingsong Wen, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan, et al.
 757 Onenet: Enhancing time series forecasting models under concept drift by online ensembling.
 758 *Advances in Neural Information Processing Systems*, 36:69949–69980, 2023.

759
 760 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 761 formers with auto-correlation for long-term series forecasting. In *Advances in Neural Information*
 762 *Processing Systems (NeurIPS)*, volume 34, pp. 22419–22430, Virtual Conference, 2021.

763 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 764 Temporal 2d-variation modeling for general time series analysis. In *The Eleventh International*
 765 *Conference on Learning Representations*, 2022.

766
 767 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
 768 deep spatial-temporal graph modeling. In *Proceedings of the Twenty-Eighth International Joint*
 769 *Conference on Artificial Intelligence*. International Joint Conferences on Artificial Intelligence
 770 Organization, 2019.

771 Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In *International*
 772 *Conference on Machine Learning*, pp. 11559–11569. PMLR, 2021.

773 Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In *International*
 774 *Conference on Machine Learning*, pp. 38707–38727. PMLR, 2023.

775
 776 Weiwei Ye, Songgaojun Deng, Qiaosha Zou, and Ning Gui. Frequency adaptive normalization for
 777 non-stationary time series forecasting. *Advances in Neural Information Processing Systems*, 37:
 778 31350–31379, 2024.

779 Ying yee Ava Lau, Zhiwen Shao, and Dit-Yan Yeung. Fast and slow streams for online time series
 780 forecasting without information leakage. In *The Thirteenth International Conference on Learning*
 781 *Representations*, 2025.

782
 783 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
 784 frequency filters for time series forecasting. *Advances in Neural Information Processing Systems*,
 785 37:55115–55140, 2024a.

786
 787 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
 788 bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
 789 forecasting. *Advances in Neural Information Processing Systems*, 36, 2024b.

790 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 791 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 792 11121–11128, 2023.

793 Qianru Zhang, Chenglei Yu, Haixin Wang, Yudong Yan, Yuansheng Cao, Siu-Ming Yiu, Tailin
 794 Wu, and Hongzhi Yin. Fldmamba: Integrating fourier and laplace transform decomposition with
 795 mamba for enhanced time series prediction. *arXiv preprint arXiv:2507.12803*, 2025.

796
 797 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 798 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 799 *of the 35th AAAI Conference on Artificial Intelligence (AAAI)*, volume 35, pp. 11106–11115,
 800 Virtual Conference, 2021.

801
 802 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Fre-
 803 quency enhanced decomposed transformer for long-term series forecasting. In *Proceedings of*
 804 *the 39th International Conference on Machine Learning (ICML)*, volume 162, pp. 27268–27286,
 Baltimore, Maryland, 2022.

805
 806 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
 807 by pretrained lm. *Advances in neural information processing systems*, 36:43322–43355, 2023.

808
 809

810 A RELATED WORK
811812 A.1 CLASSICAL MODELS FOR TS FORECASTING
813814 TS forecasting is a classic research field where numerous methods have been invented to utilize
815 historical series to predict future missing values. Early classical methods Piccolo (1990); Gardner Jr
816 (1985) are widely applied because of their well-defined theoretical guarantee and interpretability.
817 For example, ARIMA Piccolo (1990) initially transforms a non-stationary TS into a stationary one
818 via differencing, and subsequently approximates it using a linear model with several parameters.
819 Exponential smoothing Gardner Jr (1985) predicts outcomes at future horizons by computing a
820 weighted average across historical data. In addition, some regression-based methods, e.g., random
821 forest regression (RFR) Liaw et al. (2002) and support vector regression (SVR) Castro-Neto et al.
822 (2009), etc., are also applied to TS forecasting. These methods are straightforward and have fewer
823 parameters to tune, making them a reliable workhorse for TS forecasting. However, their short-
824 coming is insufficient data fitting ability, especially for high-dimensional series, resulting in limited
825 performance.
826827 A.2 DEEP MODELS FOR TS FORECASTING
828829 The advancement of deep learning has greatly boosted the progress of TS forecasting. Specifically,
830 convolutional neural networks (CNNs) LeCun et al. (1998) and recurrent neural networks (RNNs)
831 Connor et al. (1994) have been adopted by many works to model nonlinear dependencies of TS, e.g.,
832 LSTNet Lai et al. (2018) improve CNNs by adding recursive skip connections to capture long- and
833 short-term temporal patterns; DeepAR Salinas et al. (2020) predicts the probability distribution by
834 combining autoregressive methods and RNNs. Several works have improved the series aggregation
835 forms of Attention mechanism, such as operations of exponential intervals adopted in LogTrans Li
836 et al. (2019), ProbSparse activations in Informer Zhou et al. (2021), frequency sampling in FED-
837 former Zhou et al. (2022) and iterative refinement in Scaleformer Shabani et al. (2022). Besides,
838 GNNs and Temporal convolutional networks (TCNs) Lea et al. (2016) have been utilized in some
839 methods Wu et al. (2019); Li et al. (2023); Liu et al. (2022a); Wu et al. (2022) for TS forecasting
840 on graph data. The aforementioned methods solely concentrate on the forms of aggregating input
841 series, overlooking the challenges posed by the concept drift problem.
842843 A.3 TRANSFORMER-LIKE MODELS
844845 Since TS exhibit a variety of patterns, it is meaningful and beneficial to decompose them into several
846 components, each representing an underlying category of patterns that evolving over time Anderson
847 (1976). Several methods, e.g., STL Cleveland et al. (1990), Prophet Taylor & Letham (2018) and
848 N-BEATS Oreshkin et al. (2019), commonly utilize decomposition as a preprocessing phase on
849 historical series. There are also some methods, e.g., Autoformer Wu et al. (2021), FEDformer
850 Zhou et al. (2022), Non-stationary Transformers Liu et al. (2022b) and DistPred Liang (2025),
851 that harness decomposition into the Attention module. The aforementioned methods attempt to
852 apply decomposition to input series to enhance predictability, reduce computational complexity,
853 or ameliorate the adverse effects of non-stationarity. Nevertheless, these prevalent methods are
854 susceptible to significant concept drift when applied to non-stationary TS.
855856 Furthermore, there are four themes that use deep learning to predict time series: (1) smarter trans-
857 formers Vaswani et al. (2017), such as PatchTST Nie et al. (2022), iTransformer Liu et al. (2023)
858 BasisFormer Ni et al. (2023), and TimeXer Wang et al. (2024b) which restructure attention or add
859 learnable bases to extend context length, cut computation and boost accuracy; (2) competitive non-
860 transformer backbones, including N-HiTS (hierarchical MLP) Challu et al. (2023), DLinear Zeng
861 et al. (2023), PGN Jia et al. (2024) and state-space models like TSMamba Ma et al. (2024), TimeMa-
862 chine Ahamed & Cheng (2024) and FLDMamba Zhang et al. (2025), which deliver linear-time infer-
863 ence and rival or surpass transformers on long horizons; (3) foundation-model initiatives, TimeGPT
864 Garza et al. (2023), OneFitAll Zhou et al. (2023), TimeLLM Jin et al. (2024), UniTime Liu et al.
865 (2024) and DAM Darlow et al. (2024) that pre-train on massive heterogeneous corpora and achieve
866 impressive zero-shot or few-shot performance across domains; and (4) training and interpretability
867 advances, such as frequency-adaptive normalization (FAN) Ye et al. (2024), e.g., FrTS Yi et al.
868

864 (2024b), FilterNet Yi et al. (2024a), and decomposition-aware architectures, e.g., which tackle non-
 865 stationarity, quantify uncertainty and make forecasts more transparent.
 866

867 A.4 ONLINE LEARNING 868

869 Online learning strategies embed concept drift adaptation within the forecasting models themselves.
 870 One example is FSNet c, which leverages complementary learning systems theory to pair a slow-
 871 learning base forecaster with fast-adapting components. Another line of work is OneNet Wen et al.
 872 (2023), an online ensembling approach that dynamically combines two neural models: one special-
 873 izes in capturing temporal dependencies within each series, and the other focuses on cross-series
 874 (covariate) relationships. Each of these deep learning techniques illustrates how integrating drift-
 875 awareness (through dual-model architectures, ensembling, or proactive adjustment) can improve TS
 876 forecasting performance in online.
 877

878 A.5 POST-PROCESSING METHODS IN TIME SERIES

879 Testing-Time adaption (TTA) is very important for Time Series Forecasting. The adapter-based
 880 methods include SOLID Chen et al. (2024), TAFAS Kim et al. (2025) and its follow-ups PETSA
 881 Medeiros et al. (2025) and DynaTTA Grover & Etemad (2025), ELF Lee et al. (2025), etc., and
 882 online approaches, e.g., FSNet Pham et al. (2023) and OneNet Wen et al. (2023), aim to mitigate
 883 test-time concept drift. Specifically, SOLID retrains selected predictor layers using the most recent
 884 similar samples; TAFAS updates linear adapters by online detection of temporal cycles; PETSA and
 885 DynaTTA extends TAFAS with additional losses and dynamic gating to further enhance adaptability.
 886 These methods are either based on linear adapters, parallel fusion, or overall fine-tuning; and, they
 887 do not consider the impact of label leakage Liang et al. (2024); yee Ava Lau et al. (2025). On
 888 the contrary, δ -Adapter can perform non-linear adaptation on both input and output, with good
 889 theoretical guarantees. And it only relies on the most recent sample for fast updates. In addition, it
 890 can be used as a feature selector or a corrector.
 891

892 A.6 POST-PROCESSING METHODS IN NLP

893 Our work is conceptually related to the general parameter-efficient adaptation methods that have
 894 been developed primarily in NLP. Adapter modules for BERT and other Transformers add small
 895 task-specific bottleneck layers between pre-trained weights, keeping the backbone frozen while
 896 achieving near-fine-tuning performance on many downstream tasks Houlsby et al. (2019). This
 897 idea has been extended to multilingual and multi-task settings (e.g., MAD-X), where language and
 898 task adapters are stacked to enable cross-lingual transfer Pfeiffer et al. (2020). A complementary
 899 direction is low-rank adaptation (LoRA), which inserts trainable low-rank matrices into attention
 900 and feed-forward projections to adapt large language models with only a small number of additional
 901 parameters Hu et al. (2022). Another family of methods performs input-side adaptation via prompt
 902 and prefix tuning: instead of changing internal weights, they learn continuous prompts or prefixes at
 903 the embedding level that condition a frozen language model for each task Li & Liang (2021).
 904

905 Compared with the above methods, δ -Adapter adopts the same high-level principle of learning a
 906 small δ -module around a frozen backbone, but it is tailored to TSF and operates strictly at the
 907 input/output interface of a possibly black-box forecaster. Specifically, we introduce horizon-aware
 908 input adapters, feature-masking modules, and output-side uncertainty adapters, and we analyze their
 909 behavior through Lipschitz-style stability and descent guarantees. To our knowledge, such an I/O
 910 level, theoretically characterized adapter framework for multi-horizon forecasting is not present in
 911 the existing NLP adapter or prompt-tuning literature, which primarily modifies internal layers or
 912 token embeddings of language models.
 913

914 A.7 CONFORMAL PREDICTION 915

916 Conformal prediction presents an alternative framework for distribution prediction, diverging from
 917 traditional parametric approaches. In their study, the authors in (Vovk et al., 2017; 2018) introduced
 918 a random prediction system and proposed a nonparametric prediction method grounded in confor-
 919 mal assumptions. By integrating conformal prediction with quantile regression in (Romano et al.,
 920 2019; Xu & Xie, 2021; 2023), they developed a method for constructing prediction intervals for the
 921

918 response variable. However, the practical application of conformal prediction is not without limitations.
 919 Its effectiveness is often constrained by the assumption of exchangeability of residuals, which
 920 may not hold in all contexts, particularly in the presence of temporal dependencies. This limitation
 921 can lead to less reliable prediction intervals when applied to non-independent and identically dis-
 922 tributed (non-i.i.d.) data, thereby challenging its robustness in real-world scenarios where data often
 923 exhibit complex dependencies.

925 A.8 TERMINOLOGY EXPLANATION

927 **Conditions drift**, which refers to gradual changes in the data-generating process (e.g., seasonal
 928 regime shifts, covariate shifts in demand patterns) that occur after the model has been deployed,
 929 making full retraining costly; **Low-complexity residual structure** means that residual errors often
 930 exhibit simple patterns (e.g., horizon-wise bias, scale miscalibration, calendar offsets) that can be
 931 captured by a small function class (tiny MLPs/low-rank heads) rather than requiring a new high-
 932 capacity backbone, but the base model fails to absorb them.

933 B THEORETICAL PROOF

935 B.1 PROOF OF PROPOSITION 2.1

937 Define risks (squared error):

$$939 \mathcal{R}_{\text{out}}(\delta) = \frac{1}{2} \mathbb{E}[\|Y - (F(X) + \delta g(X))\|^2] = \frac{1}{2} \mathbb{E}[\|R(X) - \delta g(X)\|^2], \quad (27)$$

940 and

$$941 \mathcal{R}_{\text{in}}(\delta) = \frac{1}{2} \mathbb{E}[\|Y - F(X + \delta u(X))\|^2]. \quad (28)$$

943 *Proof.* Let $A := \mathbb{E}\|g(X)\|^2$ and $B := \mathbb{E}\langle R(X), g(X) \rangle$. Then

$$944 \mathcal{R}_{\text{out}}(\delta) = \frac{1}{2} \mathbb{E}\|R\|^2 - \delta B + \frac{1}{2} \delta^2 A. \quad (29)$$

945 Hence \mathcal{R}_{out} is a strictly convex quadratic in δ whenever $A > 0$, with unique minimizer $\delta^* = B/A$
 946 and minimal value

$$948 \mathcal{R}_{\text{out}}(\delta^*) = \frac{1}{2} \mathbb{E}\|R\|^2 - \frac{1}{2} \frac{B^2}{A}. \quad (30)$$

949 In particular, if $B > 0$ and $A > 0$ then for all $0 < \delta < 2B/A$, $\mathcal{R}_{\text{out}}(\delta) < \mathcal{R}_{\text{out}}(0) = \frac{1}{2} \mathbb{E}\|R\|^2$.
 950 Then, expand the square:

$$952 \|R - \delta g\|^2 = \|R\|^2 - 2\delta \langle R, g \rangle + \delta^2 \|g\|^2. \quad (31)$$

953 Taking expectations and multiplying by $\frac{1}{2}$ yields the displayed quadratic form. If $A > 0$, the derivative
 954 $d\mathcal{R}_{\text{out}}/d\delta = -B + \delta A$ vanishes uniquely at $\delta^* = B/A$; strict convexity gives the minimal
 955 value above. If $B > 0$, then near $\delta = 0$ the derivative is negative, so every $\delta \in (0, 2B/A)$ strictly
 956 improves the risk over $\delta = 0$. If $A = 0$ then $g = 0$ a.s. and risk is constant; if $B \leq 0$ there is no
 957 positive δ improving over $\delta = 0$.

958 *Remark.* (i) This is exactly the first (shrunk) step of residual boosting. (ii) The achievable drop at
 959 the optimal δ^* is $\frac{1}{2}(B^2/A)$, which is positive iff $B \neq 0$ and $A > 0$.

960 \square

962 B.2 PROOF OF PROPOSITION 2.2

964 Let $F : \mathbb{R}^d \rightarrow \mathbb{R}^H$ be differentiable, $u : \mathcal{X} \rightarrow \mathbb{R}^d$ a measurable nudging field, and define for $\delta \geq 0$

$$966 \hat{Y}_{\text{in}}(X; \delta) = F(X + \delta u(X)), \quad \mathcal{R}_{\text{in}}(\delta) = \frac{1}{2} \mathbb{E}[\|y - \hat{Y}_{\text{in}}(X; \delta)\|_2^2]. \quad (32)$$

967 Write $r(X) = y - F(X)$, $J_F(X)$ for the Jacobian of F at X , and $A := \mathbb{E}[\langle r(X), J_F(X) u(X) \rangle]$.

969 If $A > 0$, then there exists $\varepsilon > 0$ such that $\mathcal{R}_{\text{in}}(\delta) < \mathcal{R}_{\text{in}}(0)$ for all $\delta \in (0, \varepsilon]$. If, in addition, F is
 970 affine in a neighborhood of the support of X (J_F is constant and the Hessian is zero), then

$$971 \mathcal{R}_{\text{in}}(\delta) = \frac{1}{2} \mathbb{E}[\|r(X) - \delta J_F u(X)\|_2^2], \quad (33)$$

972 is a quadratic function of δ whose unique minimizer is
 973

$$974 \quad \delta^* = \frac{\mathbb{E}[\langle r(X), J_F u(X) \rangle]}{\mathbb{E}[\|J_F u(X)\|_2^2]}. \quad (34)$$

975

976 Based on the conditions, we know that: F is C^1 (continuously differentiable) on an open set con-
 977 taining $\{x + \delta u(X) : \delta \in [0, \delta_0]\}$ for some $\delta_0 > 0$. And $\|J_F(X + \delta u(X)) u(X)\|$ is integrable
 978 uniformly for $\delta \in [0, \delta_0]$, and $\|y - F(X + \delta u(X))\|$ is integrable.
 979

980 First, we have the following lemma,

981 **Lemma 4** (Improvement via Jacobian-aligned nudging). *If $\mathbb{E}[\langle r, J_F u \rangle] > 0$, then sufficiently small
 982 $\delta > 0$ reduces risk. As before, the optimal small-step size is $\delta^* = \frac{\mathbb{E}[\langle r, J_F u \rangle]}{\mathbb{E}[\|J_F u\|^2]}$.*
 983

984 *Proof.* For each X , by the fundamental theorem of calculus in Banach spaces,
 985

$$986 \quad F(X + \delta u(X)) = F(X) + \int_0^\delta J_F(X + t u(X)) u(X) dt. \quad (35)$$

987

988 Hence,

$$989 \quad R_\delta = R_0 - \int_0^\delta J_F(X + t u(X)) u(X) dt. \quad (36)$$

990

991 Let $F(\delta) := \mathcal{R}_{\text{in}}(\delta) = \frac{1}{2} \mathbb{E} \|R_\delta\|^2$. Using $\frac{d}{d\delta} \|v\|^2 = 2\langle v, v' \rangle$,

$$993 \quad F'(\delta) = \mathbb{E} \langle R_\delta, -J_F(X + \delta u(X)) u(X) \rangle. \quad (37)$$

994 Under the domination assumption, dominated convergence allows $\delta \rightarrow 0$ inside the expectation,
 995 giving

$$996 \quad F'(0) = -\mathbb{E} \langle R_0, J_F(X) u(X) \rangle. \quad (38)$$

997 If $C > 0$, then $F'(0) = -C < 0$. By continuity of F' near 0 (again from dominated convergence
 998 and continuity of J_F), there exists $\varepsilon > 0$ so that F is strictly decreasing on $(0, \varepsilon)$, hence $F(\delta) < F(0)$ for all $\delta \in (0, \varepsilon)$.
 999

1000 If, in addition, $\|J_F(z)\| \leq L_F$ and $\|u(X)\| \leq U(X)$ with $\mathbb{E} U(X)^2 < \infty$, then for $|\delta| \leq 1$, we have
 1001

$$1002 \quad \|F(X + \delta u) - F(X)\| \leq L_F |\delta| \|u(X)\|, \quad (39)$$

1003 and the same quadratic expansion as in Proposition 2.1 yields

$$1004 \quad \mathcal{R}_{\text{in}}(\delta) \leq \frac{1}{2} \mathbb{E} \|R\|^2 - \delta \mathbb{E} \langle R, J_F u \rangle + \frac{1}{2} \delta^2 L_F^2 \mathbb{E} \|u\|^2, \quad (40)$$

1005 making the ‘‘improvement for small δ ’’ explicit whenever $\mathbb{E} \langle R, J_F u \rangle > 0$. \square
 1006

1007 B.2.1 PROOF OF STEP 1: EXACT SMALL-STEP DECREASE

1008 *Proof.* Define, for each (X, y) ,

$$1009 \quad f(\delta; x, y) := \frac{1}{2} \|y - F(X + \delta u(X))\|_2^2 = \frac{1}{2} \|r(\delta; x)\|_2^2, \quad r(\delta; x) := y - F(X + \delta u(X)). \quad (41)$$

1010 By the chain rule,

$$1011 \quad \frac{\partial}{\partial \delta} f(\delta; x, y) = \left\langle r(\delta; x), \frac{\partial}{\partial \delta} r(\delta; x) \right\rangle = -\left\langle r(\delta; x), J_F(X + \delta u(X)) u(X) \right\rangle. \quad (42)$$

1012 By the domination assumptions and Lemma 4, we can pass the derivative through the expectation to
 1013 get

$$1014 \quad \mathcal{R}'_{\text{in}}(\delta) = \mathbb{E} \left[\frac{\partial}{\partial \delta} f(\delta; x, y) \right] = -\mathbb{E} \left[\left\langle r(\delta; x), J_F(X + \delta u(X)) u(X) \right\rangle \right]. \quad (43)$$

1015 Evaluating at $\delta = 0$,

$$1016 \quad \mathcal{R}'_{\text{in}}(0) = -\mathbb{E} [\langle r(X), J_F(X) u(X) \rangle] = -A. \quad (44)$$

1017 If $A > 0$, then $\mathcal{R}'_{\text{in}}(0) < 0$. By continuity of \mathcal{R}'_{in} at 0, there exists $\varepsilon > 0$ such that $\mathcal{R}'_{\text{in}}(\delta) \leq -\frac{A}{2} < 0$
 1018 for all $\delta \in [0, \varepsilon]$. Therefore, for any $\delta \in (0, \varepsilon]$,

$$1019 \quad \mathcal{R}_{\text{in}}(\delta) - \mathcal{R}_{\text{in}}(0) = \int_0^\delta \mathcal{R}'_{\text{in}}(t) dt \leq -\frac{A}{2} \delta < 0, \quad (45)$$

1020

1021 which proves the strict risk decrease for sufficiently small positive δ . \square
 1022

1026 B.2.2 PROOF OF STEP 2: CLOSED-FORM δ^* UNDER AN AFFINE F
1027

1028 *Proof.* Assume F is affine: $F(X) = Ax + b$ with a constant matrix $A \in \mathbb{R}^{H \times d}$. Then $J_F \equiv A$ and
1029 $F(X + \delta u(X)) = F(X) + \delta Au(X)$. (46)

1030 Hence,

$$1031 \mathcal{R}_{\text{in}}(\delta) = \frac{1}{2} \mathbb{E} \left[\|r(X) - \delta Au(X)\|_2^2 \right] = \frac{1}{2} \mathbb{E} \left[\|r(X)\|_2^2 \right] - \delta \mathbb{E} [\langle r(X), Au(X) \rangle] + \frac{1}{2} \delta^2 \mathbb{E} [\|Au(X)\|_2^2]. \\ 1032 \quad (47)$$

1034 This is a strictly convex quadratic in δ provided $\mathbb{E}[\|Au(X)\|_2^2] > 0$. Differentiating and setting to 0,
1035

$$1036 \mathcal{R}'_{\text{in}}(\delta) = -\mathbb{E} [\langle r(X), Au(X) \rangle] + \delta \mathbb{E} [\|Au(X)\|_2^2] = 0 \quad (48)$$

1037 yields the unique minimizer

$$1038 \delta^* = \frac{\mathbb{E} [\langle r(X), Au(X) \rangle]}{\mathbb{E} [\|Au(X)\|_2^2]} = \frac{\mathbb{E} [\langle r(X), J_F u(X) \rangle]}{\mathbb{E} [\|J_F u(X)\|_2^2]}. \quad (49)$$

1040 This completes the proof for affine F . The same expression arises if, instead of assuming affine F ,
1041 we optimize the first-order surrogate obtained by linearizing F at $\delta = 0$:

$$1042 F(X + \delta u(X)) \approx F(X) + \delta J_F(X) u(X), \quad (50)$$

1043 which leads to the quadratic proxy

$$1044 \tilde{\mathcal{R}}_{\text{in}}(\delta) := \frac{1}{2} \mathbb{E} \left[\|r(X) - \delta J_F(X) u(X)\|_2^2 \right], \quad (51)$$

1046 whose unique minimizer is the same δ^* as above. Further, we denote by $H_F(X)[v, w] \in \mathbb{R}^H$ the
1047 second directional derivative of F at X along v, w , then

$$1048 \mathcal{R}''_{\text{in}}(0) = \mathbb{E} [\|J_F(X)u(X)\|_2^2 - \langle r(X), H_F(X)[u(X), u(X)] \rangle]. \quad (52)$$

1049 If there exists $\eta \in [0, 1]$ such that

$$1050 |\mathbb{E} [\langle r(X), H_F(X)[u(X), u(X)] \rangle]| \leq \eta \mathbb{E} [\|J_F(X)u(X)\|_2^2], \quad (53)$$

1051 then $\mathcal{R}''_{\text{in}}(0) \in [(1 - \eta)B_0, (1 + \eta)B_0]$ where $B_0 = \mathbb{E} [\|J_F u\|_2^2]$. In that case, the true local
1052 minimizer δ^\dagger of \mathcal{R}_{in} satisfies the bracket

$$1053 \frac{A}{(1 + \eta)B_0} \leq \delta^\dagger \leq \frac{A}{(1 - \eta)B_0}, \quad (54)$$

1054 quantifying how curvature perturbs the first-order optimizer. When F is affine or the curvature term
1055 averages to zero, $\eta = 0$ and $\delta^\dagger = \delta^*$. □
1056

1057 B.3 PROOF OF PROPOSITION 3.1

1058 *Proof.* By Lipschitzness of F :

$$1059 \|\tilde{y} - \hat{y}\| = \|F(\tilde{X}) - F(X)\| \leq L_F \|\tilde{X} - X\| = L_F \delta \|A_\phi^{\text{in}}(X)\|. \quad (55)$$

1060 According to $\|A_\phi^{\text{in}}(X)\|_\infty \leq 1$, $\|A_\phi^{\text{out}}(\hat{Y}, X)\|_\infty \leq 1$ and $\delta \in (0, \delta_{\max}]$ with $\delta_{\max} \leq 1$, we have
1061 $\|A_\phi^{\text{in}}(X)\| \leq \sqrt{Ld} \|A_\phi^{\text{in}}(X)\|_\infty \leq \sqrt{Ld}$. Combining yields the claim. □
1062

1063 B.4 PROOF OF COROLLARY 1

1064 *Proof.* Coordinatewise, $\tilde{x}_i - x_i = x_i(e^{\delta a_i} - 1)$. By the mean value theorem for $t \mapsto e^t$, for each i
1065 there exists $\xi_i \in (0, \delta a_i)$ such that

$$1066 e^{\delta a_i} - 1 = \delta a_i e^{\xi_i} \Rightarrow |\tilde{x}_i - x_i| = |x_i| \delta |a_i| e^{\xi_i} \leq B_X \delta |a_i| e^{|\xi_i|} \leq B_X \delta |a_i| e^{\delta \|a\|_\infty}. \quad (56)$$

1067 According to $\|A_\phi^{\text{in}}(X)\|_\infty \leq 1$, $\|A_\phi^{\text{out}}(\hat{Y}, X)\|_\infty \leq 1$ and $\delta \in (0, \delta_{\max}]$ with $\delta_{\max} \leq 1$, we have
1068 $\|a\|_\infty \leq 1$, hence $e^{\delta \|a\|_\infty} \leq e^\delta$. Summing squares,

$$1069 \|\tilde{x} - x\| = \sqrt{\sum_i |\tilde{x}_i - x_i|^2} \leq \sqrt{\sum_i (B_X \delta |a_i| e^\delta)^2} = \delta e^\delta B_X \|a\|. \quad (57)$$

1070 Then apply Lipschitz step in Proposition 3.1, we have

$$1071 \|\tilde{y} - \hat{y}\| = \|F(\tilde{X}) - F(X)\| \leq L_F \|\tilde{x} - x\| \leq \delta e^\delta L_F B_X \|a\|. \quad (58)$$

1072 For $\delta \leq 1$, $e^\delta \leq e$, so the bound is $O(\delta)$. □
1073

1080 B.5 PROOF OF THEOREM 2
10811082 *Proof.* By β -smoothness with $u = \tilde{y}$, $v = \hat{y}$,

1083
$$\ell(\tilde{y}, y) \leq \ell(\hat{y}, y) + \nabla \ell(\hat{y}, y)^\top (\tilde{y} - \hat{y}) + \frac{\beta}{2} \|\tilde{y} - \hat{y}\|^2 = \ell(\hat{y}, y) + \delta \langle g, d \rangle + \frac{\beta}{2} \delta^2 \|d\|^2. \quad (59)$$

1084 By alignment condition, $\langle g, d \rangle \leq -\alpha \|g\| \|d\|$. Substitute:

1085
$$\ell(\tilde{y}, y) - \ell(\hat{y}, y) \leq -\delta \alpha \|g\| \|d\| + \frac{\beta}{2} \delta^2 \|d\|^2. \quad (60)$$

1086 The RHS is a convex quadratic in δ with unique minimizer $\delta^* = \frac{\alpha \|g\|}{\beta \|d\|}$. Plugging δ^* gives $-\frac{\alpha^2}{2\beta} \|g\|^2$.
1087 Strict descent holds whenever the derivative at 0 is negative and the second-order term does not
1088 dominate, equivalently $\delta \in (0, \frac{2\alpha \|g\|}{\beta \|d\|})$. \square
10891090 B.6 PROOF OF THEOREM 3
10911092 *Proof.* By first-order Taylor expansion of F at x ,

1093
$$F(x + \delta v) = F(x) + \delta Jv + r_F(\delta), \quad \text{with} \quad \|r_F(\delta)\| = O(\delta). \quad (61)$$

1094 Set $\delta := \delta s + r_F(\delta)$, so $\tilde{y} = \hat{y} + \delta$. Apply β -smoothness of ℓ :

1095
$$\ell(\hat{y} + \delta, y) \leq \ell(\hat{y}, y) + \langle g, \delta \rangle + \frac{\beta}{2} \|\delta\|^2. \quad (62)$$

1096 Then, compute the terms:

1097
$$\langle g, \delta \rangle = \delta \langle g, s \rangle + \langle g, r_F(\delta) \rangle \quad \text{and} \quad \|\delta\|^2 = \delta^2 \|s\|^2 + 2\delta \langle s, r_F(\delta) \rangle + \|r_F(\delta)\|^2. \quad (63)$$

1098 Since $\|r_F(\delta)\| = O(\delta)$, we have $\langle g, r_F(\delta) \rangle = O(\delta)$ and $\|\delta\|^2 = \delta^2 \|s\|^2 + O(\delta^2)$. Therefore,

1099
$$\ell(F(x + \delta v), y) \leq \ell(\hat{y}, y) + \delta \langle g, s \rangle + \frac{\beta}{2} \delta^2 \|s\|^2 + O(\delta^2). \quad (64)$$

1100 If $\langle g, s \rangle \leq -\alpha \|g\| \|s\|$, then for sufficiently small δ the negative linear term dominates the $O(\delta^2)$
1101 remainder, yielding strict descent. Optimizing the quadratic upper bound in δ gives the minimizer
1102 $\delta^* = \frac{\alpha \|g\|}{\beta \|s\|}$ and value $-\frac{\alpha^2}{2\beta} \|g\|^2$ up to $O(1)$, establishing the last claim. \square
11031104 B.7 PROOF OF THEOREM 3.2
11051106 *Proof.* We formalize the two claims: (i) $O(\delta)$ bound on prediction drift, and (ii) loss upper bound
1107 under composition. Let the composed edit be: $\tilde{x} = x + \delta v$, $\hat{y}' := F(\tilde{X})$, and $\tilde{y} := \hat{y}' + \delta d(\hat{y}', X)$.
1108 As before, $\hat{y} = F(X)$.1109 (i) For $O(\delta)$ bound on prediction drift, using the triangle inequality, we have:

1110
$$\|\tilde{y} - \hat{y}\| \leq \|\hat{y}' - \hat{y}\| + \delta \|d(\hat{y}', X)\|. \quad (65)$$

1111 Further, according to $\|A_\phi^{\text{in}}(X)\|_\infty \leq 1$, $\|A_\phi^{\text{out}}(\hat{Y}, X)\|_\infty \leq 1$ and $\delta \in (0, \delta_{\max}]$ with $\delta_{\max} \leq 1$, we
1112 have $\|\hat{y}' - \hat{y}\| = \|F(\tilde{X}) - F(X)\| \leq L_F \|\tilde{x} - x\| = \delta L_F \|v\|$. The bound follows.

1113 (ii) For loss upper bound under composition, by definition we have

1114
$$\tilde{y} = \hat{y}' + \delta d' = \hat{y} + \delta s + r_F(\delta) + \delta d'. \quad (66)$$

1115 Set $\Delta := \delta(s + d') + r_F(\delta)$. By β -smoothness, we have

1116
$$\ell(\hat{y} + \Delta, y) \leq \ell(\hat{y}, y) + \langle g, \Delta \rangle + \frac{\beta}{2} \|\Delta\|^2, \quad (67)$$

1117 which can be decomposed into:

1118
$$\langle g, \Delta \rangle = \delta \langle g, s + d' \rangle + \langle g, r_F(\delta) \rangle, \quad (68)$$

1119 where $\|\Delta\|^2 = \delta^2 \|s + d'\|^2 + 2\delta \langle s + d', r_F(\delta) \rangle + \|r_F(\delta)\|^2$. $\quad (69)$

1120 Since $\|r_F(\delta)\| = O(\delta)$, we have $\langle g, r_F(\delta) \rangle = O(\delta)$ and $\|\Delta\|^2 = \delta^2 \|s + d'\|^2 + O(\delta^2)$. Thus

1121
$$\ell(\tilde{y}, y) \leq \ell(\hat{y}, y) + \delta \langle g, s + d' \rangle + \frac{\beta}{2} \delta^2 \|s + d'\|^2 + O(\delta^2). \quad (70)$$

1122 Here, if $\langle g, s + d' \rangle \leq -\alpha \|g\| \|s + d'\|$, the linear term is strictly negative whenever $s + d' \neq 0$. For
1123 sufficiently small δ , the negative linear term dominates the $O(\delta^2)$ remainder, giving strict descent.1124 *Remark.* If a learned gate $\gamma \in [0, 1]^q$ combines input- and output-induced steps as $s_\gamma = \gamma \odot s + (1 - \gamma) \odot d'$, then alignment for s_γ follows from mild conditions (e.g., selecting γ to minimize $\langle g, s_\gamma \rangle$ subject to $\gamma \in [0, 1]^q$ ensures $\langle g, s_\gamma \rangle \leq \min\{\langle g, s \rangle, \langle g, d' \rangle\}$).
1125

1126

 \square

1134 C EXPERIMENTAL SETUP AND RESULTS
11351136 C.1 DATASET
11371138 C.2 COMMONLY USED TS DATASETS
1139

1140 The information of the experiment datasets used in this paper are summarized as follows: (1) Electricity
1141 Transformer Temperature (ETT) dataset Zhou et al. (2021), which contains the data collected
1142 from two electricity transformers in two separated counties in China, including the load and the oil
1143 temperature recorded every 15 minutes (ETTm) or 1 hour (ETTh) between July 2016 and July 2018.
1144 (2) Electricity (ECL) dataset ¹ collects the hourly electricity consumption of 321 clients (each column)
1145 from 2012 to 2014. (3) Exchange Lai et al. (2018) records the current exchange of 8 different
1146 countries from 1990 to 2016. (4) Traffic dataset ² records the occupation rate of freeway system
1147 across State of California measured by 861 sensors. (5) Weather dataset ³ records every 10 minutes
1148 for 21 meteorological indicators in Germany throughout 2020. The detailed statistics information of
1149 the datasets is shown in Table 7.

1150 Table 7: Details of the seven TS datasets.
1151

Dataset	length	features	frequency
ETTh1	17,420	7	1h
ETTh2	17,420	7	1h
ETTm1	69,680	7	15m
ETTm2	69,680	7	15m
Electricity	26,304	321	1h
Exchange	7,588	8	1d
Traffic	17,544	862	1h
Weather	52,696	21	10m

1161 C.3 TRAINING OBJECTIVE
1162

1163 We train θ on \mathcal{D} while backpropagating through F but not updating it. Let $\tilde{Y}_\theta(X)$ denote the
1164 adapted prediction. For point forecasts we minimize a horizon-aware loss: Here are explicit formulas
1165 for each loss term when the input-adaptor is a learnable mask $M(X; \phi) \in [0, 1]^{L \times d}$ applied as
1166 $X' = X \odot M$. Let $\mathcal{D} = \{(X^{(i)}, Y^{(i)})\}_{i=1}^N$, $\hat{Y}^{(i)} = F(X^{(i)} \odot M(X^{(i)}; \phi))$, and H, m be horizon
1167 and target dims. Expectations \mathbb{E} below are over the empirical data distribution (mini-batches in
1168 practice).

1169 MSE (point forecasts):
1170

$$\mathcal{L}_{\text{pred}}^{\text{MSE}} = \mathbb{E}_{(X, Y) \sim \mathcal{D}} \left[\frac{1}{Hm} \sum_{h=1}^H \sum_{k=1}^m w_h (\hat{Y}_{h,k} - Y_{h,k})^2 \right]. \quad (71)$$

1174 MAE (point forecasts):
1175

$$\mathcal{L}_{\text{pred}}^{\text{MAE}} = \mathbb{E} \left[\frac{1}{Hm} \sum_{h=1}^H \sum_{k=1}^m w_h |\hat{Y}_{h,k} - Y_{h,k}| \right]. \quad (72)$$

1180 Pinball (quantile $\tau \in \mathcal{T}$). If \hat{Y}^τ predicts the τ -quantile,
1181

$$\mathcal{L}_{\text{pred}}^{\text{QB}} = \mathbb{E} \left[\frac{1}{|\mathcal{T}|Hm} \sum_{\tau \in \mathcal{T}} \sum_{h,k} \rho_\tau(Y_{h,k} - \hat{Y}_{h,k}^\tau) \right], \quad \rho_\tau(u) = u(\tau - \mathbf{1}\{u < 0\}). \quad (73)$$

1¹<https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014>

2²<http://pems.dot.ca.gov>

3³<https://www.bgc-jena.mpg.de/wetter>

1188 Sparsity (L1) on the mask:
 1189

$$1190 \quad \mathcal{L}_{\ell_1} = \mathbb{E}_{X \sim \mathcal{D}} \left[\frac{1}{Ld} \sum_{t=1}^L \sum_{j=1}^d M_{t,j}(X; \phi) \right]. \quad (74)$$

$$1191$$

$$1192$$

1193 Entropy (pushes mask toward 0 or 1):
 1194

$$1195 \quad \mathcal{L}_{\text{ent}} = \mathbb{E}_X \left[-\frac{1}{Ld} \sum_{t,j} \left(M_{t,j} \log(M_{t,j} + \delta) + (1 - M_{t,j}) \log(1 - M_{t,j} + \delta) \right) \right]. \quad (75)$$

$$1196$$

$$1197$$

1198 Temporal smoothness:
 1199

$$1200 \quad \mathcal{L}_{\text{TV}} = \mathbb{E}_X \left[\frac{1}{(L-1)d} \sum_{t=2}^L \sum_{j=1}^d |M_{t,j}(X; \phi) - M_{t-1,j}(X; \phi)| \right]. \quad (76)$$

$$1201$$

$$1202$$

$$1203$$

1204 Budget (fraction of active entries not to exceed κ):
 1205

$$1206 \quad \bar{m}(X; \phi) = \frac{1}{Ld} \sum_{t,j} M_{t,j}(X; \phi). \quad (77)$$

$$1207$$

1208 A hinge penalty enforces $\bar{m} \leq \kappa$:
 1209

$$1210 \quad \mathcal{L}_{\text{bud}} = \mathbb{E}_X \left[(\bar{m}(X; \phi) - \kappa)_+ \right], \quad (u)_+ \equiv \max\{u, 0\}. \quad (78)$$

$$1211$$

$$1212$$

1213 Group sparsity:
 1214

$$1215 \quad \mathcal{L}_{\text{group}} = \mathbb{E}_X \left[\frac{1}{d} \sum_{j=1}^d \sqrt{\sum_{t=1}^L M_{t,j}(X; \phi)^2 + \delta} \right]. \quad (79)$$

$$1216$$

$$1217$$

1218 C.4 ONLINE LEARNING SETUP

1219 During online testing, we set the batch size to 1 to ensure that data arrives in order. Meanwhile,
 1220 we used a streaming buffer, where only one updated data point is cached at each moment/iteration
 1221 (avoid label leakage raised by Liang et al. (2024); see Ava Lau et al. (2025), while returning a
 1222 complete sample from a previous moment. E.g., at time t , the input used for online update returned
 1223 from the buffer is $X_{t-H-L:t-H}$, the label is $X_{t-H:t}$, where H is the prediction length and L is the
 1224 input length.
 1225

1226 C.5 TRAINING DETAILS OF ADA-X+Y

1227 Ada-X+Y is composed of Ada-X and Ada-Y, and Ada-X and Ada-Y are **trained jointly** in an end-
 1228 to-end manner, not sequentially. We minimize a single combined loss \mathcal{L} over the union of parameters
 1229 A_{θ}^{in} (Ada-X) and A_{θ}^{out} (Ada-Y). The forward pass is:
 1230

$$1231 \quad \hat{Y} = F(X + \delta A_{\theta}^{in}(X)) \quad (80)$$

$$1232 \quad \tilde{Y} = \hat{Y} + \delta A_{\theta}^{out}(\hat{Y}) \quad (81)$$

1233 During the backward pass, gradients flow from the loss through Ada-Y (Eq. 2), then through the
 1234 backbone F , and finally to Ada-X (Eq. 1). This ensures that Ada-X learns input perturbations that
 1235 specifically help the backbone produce features that Ada-Y can best correct.
 1236

1237 Experimental Setup: In our experiments, we instantiate two separate Adam optimizers (both learning
 1238 rate are 1E-4) for modular flexibility. However, they are stepped simultaneously after a single
 1239 backward pass, making the process equivalent to optimizing a joint objective. As derived in Propo-
 1240 sition 3.2, this joint update rule maintains the $O(\delta)$ drift bounds and descent guarantees, ensuring
 1241 the two adapters do not destabilize each other.

1242 **Table 8: Performances of the forecaster F and δ -Adapter under batch or online training.**
1243

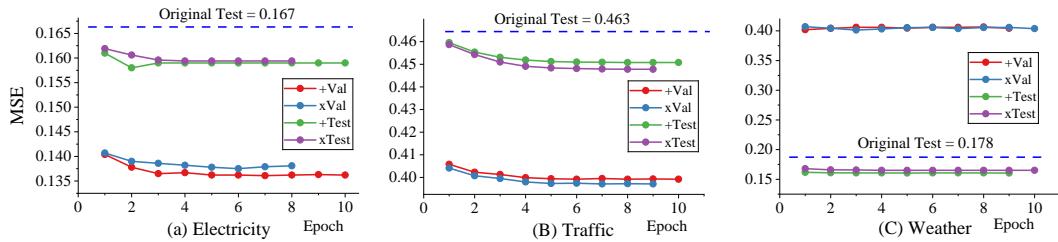
Dataset	Model	Original (Batch)	Fine-Tuning (Batch)	Continue (Online)	Ada-X (Batch)	Ada-X (Online)	Ada-Y (Batch)	Ada-Y (Online)	Ada-X+Y (Batch)	Ada-X+Y (Online)
Weather	DistPred	0.1710	0.1715	0.1700	0.1662	0.1654	0.1629	0.1623	0.1602	0.1560
	iTransformer	0.1731	0.1724	0.1721	0.1706	0.169	0.1631	0.1634	0.1609	0.1609
Traffic	DistPred	0.4229	0.4229	0.4229	0.4182	0.4179	0.4117	0.4119	0.4028	0.4029
	iTransformer	0.4437	0.4411	0.4414	0.4361	0.4360	0.4294	0.4294	0.4202	0.4202
ELC	DistPred	0.1546	0.1546	0.1545	0.1483	0.1476	0.1483	0.1474	0.1436	0.1432
	iTransformer	0.1655	0.1646	0.1636	0.1601	0.1596	0.1566	0.1562	0.1527	0.1515

1251
1252 **C.6 USING δ -ADAPTERS TO IMPROVE MULTIVARIATE TIME SERIES**
1253

1254 Tables 8, 9 and Figure 10 show that δ -Adapter provides consistent improvements across multiple
1255 forecasting models. For nearly all datasets, Ada-X and Ada-Y lead to lower prediction errors com-
1256 pared to the original models, demonstrating that the proposed adapters generalize well to diverse
1257 forecasting architectures. Notably, Ada-X again delivers the largest gains, particularly on challeng-
1258 ing datasets such as Exchange, Traffic, and ETT series, confirming that refining the input signals
1259 before model inference is the most impactful strategy. These results further validate that δ -Adapter
1260 is a broadly applicable, efficient, and effective enhancement method for modern time series fore-
1261 casting.

1262
1263 **C.7 δ -ADAPTER’S VALIDATION AND TESTING PERFORMANCE CHANGES WITH EPOCHS**
1264

1265 We also present the performance changes of additive and multiplicative adapters on different datasets
1266 over epochs (the blank is due to early stopping). In Figure 9, we visualize the changes in vali-
1267 dation and test losses of δ -Adapter across different datasets. Across Electricity, Traffic, and Weather,
1268 adding Ada-X+Y drives the test MSE consistently below the original frozen model from the very
1269 first epoch and then decreases further before plateauing after 5 epochs. Validation and test curves
1270 track closely (no divergence), indicating stable training without overfitting. The gains are monotonic
1271 or near-monotonic on Electricity and Traffic, while Weather shows an immediate, steady improve-
1272 ment that remains well under the original baseline. Overall, Ada-X+Y delivers fast convergence and
1273 robust generalization across datasets. These experiments show that the loss curve of the δ -Adapter
1274 gradually decreases with epochs and has stable and consistent boundaries. Meanwhile, the com-
1275 posite adapter (X+Y) can achieve better performance (Stability Analysis of Section 3), which also
1276 proves the robustness of the δ -Adapter and the correctness of its theoretical foundation.

1277 **Figure 9: Validation and testing performance changes with epochs when adding δ -Adapter.**
12781279 **C.8 QUANTILE CALIBRATOR (QC) AND CONFORMAL CALIBRATOR (CC)**
1280

1281 Figure 11 illustrates that both calibrators produce well-calibrated intervals. QC attains higher cov-
1282 erage than CC, while on another sample CC is better. QC tends to yield slightly wider, more conser-
1283 vative bands. CC delivers comparably high coverage with tighter intervals. Overall, the two methods
1284 are complementary and reliably improve uncertainty quantification over the raw predictor.

1285 Now, let’s discuss how to choose between QC and CC. Both modules turn a frozen point forecaster
1286 into a calibrated probabilistic predictor, but they are aimed at slightly different desiderata: QC di-
1287 rectly learns horizon-wise conditional quantiles as bounded offsets around the point forecast, which

1296

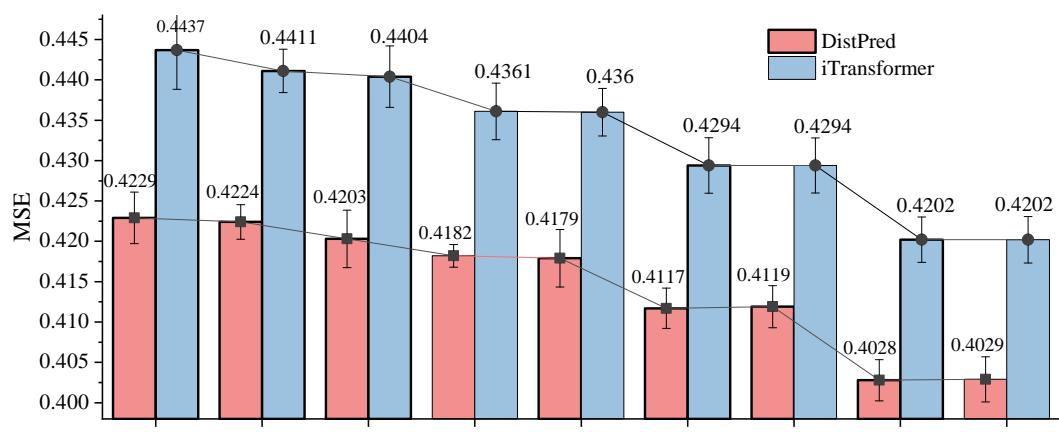
1297

1298

1299 Table 9: Multivariate time series forecasting results on the benchmark datasets.

1300

Dataset	DistPred			iTransformer			FourierGNN			FreTS			Autoformer			
	Length	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y	Original	Ada-X	Ada-Y
ELC	96	0.155	0.149	0.148	0.163	0.160	0.157	0.250	0.235	0.224	0.189	0.183	0.176	0.228	0.211	0.221
	192	0.169	0.166	0.162	0.175	0.173	0.167	0.255	0.245	0.230	0.193	0.189	0.180	0.437	0.383	0.384
	336	0.185	0.181	0.176	0.193	0.189	0.182	0.267	0.256	0.240	0.207	0.203	0.192	0.612	0.590	0.527
	720	0.221	0.217	0.190	0.231	0.226	0.218	0.298	0.284	0.268	0.246	0.239	0.229	0.782	0.767	0.670
Avg		0.182	0.178	0.169	0.190	0.187	0.181	0.267	0.255	0.241	0.209	0.203	0.194	0.515	0.488	0.450
ETTh1	96	0.389	0.385	0.384	0.390	0.385	0.386	0.506	0.502	0.503	0.397	0.398	0.396	0.449	0.437	0.444
	192	0.451	0.448	0.446	0.444	0.444	0.440	0.540	0.540	0.540	0.458	0.456	0.453	0.571	0.566	0.558
	336	0.498	0.493	0.497	0.479	0.478	0.483	0.583	0.585	0.584	0.507	0.508	0.511	0.656	0.644	0.638
	720	0.505	0.502	0.503	0.504	0.502	0.514	0.615	0.634	0.632	0.568	0.574	0.563	0.695	0.686	0.669
Avg		0.461	0.457	0.458	0.454	0.453	0.456	0.561	0.566	0.565	0.482	0.484	0.481	0.593	0.583	0.577
ETTh2	96	0.303	0.300	0.301	0.296	0.293	0.293	0.396	0.383	0.388	0.342	0.314	0.330	0.375	0.358	0.375
	192	0.378	0.372	0.373	0.383	0.380	0.380	0.507	0.468	0.477	0.468	0.427	0.437	0.438	0.432	0.444
	336	0.447	0.438	0.443	0.429	0.427	0.434	0.558	0.500	0.500	0.548	0.501	0.506	0.464	0.460	0.459
	720	0.431	0.433	0.431	0.445	0.440	0.453	0.718	0.646	0.660	0.791	0.725	0.717	0.473	0.470	0.494
Avg		0.390	0.386	0.387	0.388	0.385	0.390	0.545	0.499	0.506	0.537	0.492	0.498	0.438	0.420	0.423
ETTm1	96	0.339	0.324	0.330	0.345	0.334	0.334	0.405	0.399	0.397	0.340	0.334	0.337	0.586	0.464	0.569
	192	0.384	0.374	0.378	0.382	0.369	0.374	0.435	0.427	0.430	0.380	0.378	0.380	0.627	0.572	0.602
	336	0.416	0.409	0.404	0.431	0.423	0.419	0.464	0.457	0.455	0.417	0.414	0.415	0.691	0.650	0.656
	720	0.510	0.487	0.495	0.511	0.501	0.496	0.519	0.506	0.507	0.483	0.478	0.474	0.754	0.729	0.720
Avg		0.412	0.399	0.402	0.417	0.407	0.406	0.456	0.447	0.447	0.405	0.401	0.401	0.664	0.604	0.637
ETTm2	96	0.179	0.175	0.179	0.182	0.179	0.183	0.220	0.204	0.213	0.191	0.179	0.187	0.271	0.236	0.288
	192	0.245	0.242	0.245	0.255	0.251	0.253	0.329	0.289	0.322	0.275	0.241	0.270	0.290	0.286	0.289
	336	0.309	0.304	0.302	0.327	0.317	0.323	0.380	0.359	0.380	0.342	0.309	0.333	0.359	0.350	0.350
	720	0.406	0.394	0.404	0.435	0.423	0.414	0.852	0.694	0.842	0.531	0.413	0.501	0.435	0.431	0.432
Avg		0.285	0.279	0.282	0.300	0.292	0.293	0.445	0.386	0.439	0.335	0.285	0.323	0.339	0.316	0.320
Exchange	96	0.084	0.088	0.084	0.099	0.102	0.099	0.106	0.118	0.105	0.098	0.105	0.195	0.170	0.179	
	192	0.190	0.186	0.182	0.180	0.173	0.168	0.208	0.216	0.203	0.186	0.181	0.187	0.260	0.243	0.246
	336	0.319	0.281	0.294	0.352	0.304	0.329	0.365	0.396	0.368	0.383	0.380	0.386	0.437	0.414	0.402
	720	0.809	0.653	0.714	0.901	0.814	0.800	0.841	0.843	0.841	0.989	0.989	0.1011	1.144	1.095	1.021
Avg		0.350	0.302	0.319	0.383	0.348	0.349	0.380	0.393	0.379	0.416	0.412	0.422	0.509	0.481	0.462
Traffic	96	0.423	0.416	0.412	0.444	0.436	0.429	0.779	0.753	0.731	0.563	0.555	0.538	0.659	0.657	0.650
	192	0.441	0.435	0.429	0.460	0.455	0.446	0.756	0.721	0.710	0.568	0.562	0.545	0.829	0.814	0.804
	336	0.458	0.453	0.447	0.479	0.475	0.465	0.765	0.739	0.739	0.595	0.589	0.572	1.094	1.072	1.025
	720	0.490	0.487	0.480	0.517	0.513	0.502	0.806	0.781	0.780	0.659	0.653	0.634	1.307	1.292	1.195
Avg		0.453	0.448	0.442	0.475	0.470	0.461	0.777	0.749	0.740	0.596	0.590	0.572	0.972	0.959	0.918
Weather	96	0.171	0.166	0.162	0.173	0.165	0.163	0.184	0.183	0.172	0.185	0.177	0.172	0.262	0.240	0.243
	192	0.224	0.220	0.213	0.223	0.213	0.210	0.226	0.222	0.214	0.224	0.218	0.212	0.3003	0.282	0.275
	336	0.278	0.270	0.264	0.284	0.271	0.267	0.273	0.268	0.260	0.272	0.267	0.260	0.323	0.315	0.312
	720	0.353	0.347	0.340	0.357	0.349	0.339	0.338	0.330	0.329	0.341	0.335	0.328	0.389	0.385	0.367
Avg		0.256	0.251	0.245	0.259	0.249	0.245	0.255	0.251	0.244	0.255	0.249	0.243	0.325	0.306	0.299

Figure 10: Performances of δ -Adapter under batch or online training

1346

1347

1348

1349

1350 produces a smooth quantile function over multiple levels without assumptions about the underlying
 1351 distribution. CC learns only a heteroscedastic scale function and combines it with normalized-
 1352 residual conformal prediction on a held-out calibration set, yielding symmetric but input-dependent
 1353 intervals with finite-sample marginal coverage under exchangeability.

1354 Empirically, both variants achieve strong coverage, but QC tends to produce marginally wider and
 1355 more conservative bands, while CC attains similar coverage with somewhat tighter intervals (see
 1356 Figs. 5 and 6). For a new real-world dataset, our recommendation is therefore: If strict coverage
 1357 guarantees are the main requirement, CC is preferable, because the conformal step provides finite-
 1358 sample marginal coverage at the target level. If one needs a rich predictive distribution or multiple
 1359 coverage levels from a single model, QC is more convenient, as it directly returns a full quantile
 1360 curve while remaining non-parametric w.r.t. the underlying distribution.

1361

1362 C.9 COMPARISON BETWEEN ADAPTERS AND ONLINE LEARNING METHODS

1363

1364 The adapter-based methods we reviewed include SOLID, TAFAS, etc., and online approaches, e.g.,
 1365 FSNet and OneNet. These methods aim to mitigate test-time concept drift via selective layer retrain-
 1366 ing (SOLID), online adapter updates (TAFAS), auxiliary loss (PETSA), layer-wise adjustment and
 1367 memory (FSNet), and dynamic model selection (OneNet). However, according to works by Liang
 1368 et al. (2024); yee Ava Lau et al. (2025), the above methods have used future labels to some extent,
 1369 causing label leakage in long-term forecasting, where future ground truth is adopted in advance for
 1370 adaptation. To achieve a fair comparison, we removed label leakage (it may cause performance
 1371 degradation of some methods) to test their performance. As shown in Table 10, it can be found that
 1372 our method achieves the lowest error on every dataset across all backbones.

1372

1373 Table 10: Comparison of various adapters and online methods.

1374

Model		DistPred				iTransformer				Autoformer				Others	
Dataset	Length	Offline	SOLID	TAFAS	Ada-X+Y	Offline	SOLID	TAFAS	Ada-X+Y	Offline	SOLID	TAFAS	Ada-X+Y	OneNet [†]	FSNet [†]
ELC	96	0.155	0.154	0.156	0.146	0.163	0.165	0.165	0.156	0.228	0.211	0.230	0.196	0.247	0.310
	192	0.169	0.170	0.170	0.164	0.175	0.177	0.176	0.167	0.437	0.433	0.442	0.379	0.300	0.442
	336	0.185	0.182	0.183	0.178	0.193	0.189	0.189	0.176	0.612	0.583	0.588	0.580	0.325	0.483
	720	0.221	0.220	0.220	0.213	0.231	0.230	0.231	0.222	0.782	0.780	0.781	0.757	0.798	0.913
	Avg	0.182	0.182	0.182	0.175	0.190	0.190	0.180	0.515	0.502	0.510	0.478	0.417	0.537	
ETTh1	96	0.389	0.392	0.393	0.381	0.390	0.391	0.394	0.382	0.449	0.444	0.442	0.431	0.524	0.730
	192	0.451	0.450	0.452	0.445	0.444	0.450	0.437	0.440	0.571	0.566	0.565	0.561	0.571	0.820
	336	0.498	0.495	0.534	0.480	0.479	0.481	0.512	0.474	0.656	0.652	0.653	0.635	0.614	0.899
	720	0.505	0.502	0.524	0.497	0.504	0.509	0.563	0.499	0.695	0.694	0.705	0.681	0.762	1.060
	Avg	0.461	0.460	0.476	0.451	0.454	0.458	0.477	0.449	0.593	0.589	0.591	0.577	0.618	0.877
ETTh2	96	0.303	0.320	0.319	0.294	0.296	0.311	0.311	0.286	0.375	0.371	0.381	0.353	0.515	0.515
	192	0.378	0.371	0.413	0.364	0.383	0.385	0.412	0.375	0.438	0.439	0.437	0.430	0.568	0.572
	336	0.447	0.445	0.447	0.432	0.429	0.429	0.429	0.428	0.464	0.453	0.452	0.456	0.602	0.615
	720	0.431	0.428	0.430	0.427	0.445	0.446	0.570	0.425	0.473	0.479	0.475	0.465	0.637	0.646
	Avg	0.390	0.391	0.402	0.379	0.388	0.393	0.448	0.377	0.438	0.435	0.436	0.426	0.581	0.587
ETTh1	96	0.339	0.340	0.339	0.318	0.345	0.341	0.345	0.331	0.586	0.588	0.512	0.461	0.435	0.655
	192	0.384	0.389	0.387	0.373	0.382	0.381	0.384	0.362	0.627	0.628	0.642	0.564	0.496	0.825
	336	0.416	0.412	0.414	0.408	0.431	0.423	0.437	0.420	0.691	0.689	0.673	0.642	0.585	0.867
	720	0.510	0.484	0.504	0.484	0.511	0.510	0.512	0.500	0.754	0.740	0.725	0.721	0.676	1.055
	Avg	0.412	0.406	0.411	0.396	0.417	0.414	0.420	0.403	0.664	0.661	0.638	0.597	0.548	0.851
ETTh2	96	0.179	0.179	0.180	0.171	0.182	0.182	0.183	0.176	0.271	0.267	0.273	0.233	0.434	0.334
	192	0.245	0.247	0.249	0.237	0.255	0.254	0.259	0.250	0.290	0.298	0.295	0.281	0.602	0.873
	336	0.309	0.311	0.311	0.298	0.327	0.325	0.332	0.315	0.359	0.357	0.353	0.348	0.829	1.156
	720	0.406	0.402	0.411	0.391	0.435	0.432	0.440	0.420	0.435	0.432	0.431	0.423	2.819	2.090
	Avg	0.285	0.285	0.288	0.274	0.300	0.298	0.304	0.290	0.339	0.339	0.338	0.321	1.171	1.113
ETTm1	96	0.084	0.081	0.080	0.085	0.099	0.097	0.098	0.082	0.195	0.166	0.175	0.165	0.338	0.709
	192	0.190	0.189	0.189	0.182	0.180	0.177	0.176	0.167	0.260	0.234	0.237	0.236	0.591	0.771
	336	0.319	0.313	0.374	0.279	0.352	0.359	0.420	0.300	0.437	0.434	0.432	0.407	0.617	0.848
	720	0.809	0.806	0.808	0.642	0.901	0.870	0.873	0.714	1.144	1.130	1.134	1.050	1.041	1.183
	Avg	0.350	0.347	0.363	0.297	0.383	0.376	0.392	0.316	0.509	0.491	0.495	0.465	0.647	0.878
Traffic	96	0.423	0.424	0.424	0.410	0.444	0.445	0.443	0.426	0.659	0.634	0.664	0.653	0.546	0.677
	192	0.441	0.447	0.447	0.431	0.460	0.463	0.467	0.448	0.829	0.827	0.844	0.804	0.549	0.690
	336	0.458	0.451	0.457	0.443	0.479	0.475	0.472	0.456	1.094	1.080	1.096	1.030	0.571	0.705
	720	0.490	0.490	0.493	0.475	0.517	0.515	0.523	0.513	1.307	1.296	1.297	1.282	0.603	0.732
	Avg	0.453	0.453	0.455	0.440	0.475	0.475	0.476	0.461	0.972	0.959	0.975	0.942	0.567	0.701
Weather	96	0.171	0.168	0.170	0.160	0.173	0.170	0.172	0.162	0.262	0.260	0.299	0.235	0.251	0.322
	192	0.224	0.224	0.226	0.211	0.223	0.221	0.222	0.210	:0.3003	0.298	0.295	0.276	0.295	0.465
	336	0.278	0.275	0.276	0.254	0.284	0.281	0.282	0.261	0.323	0.321	0.321	0.309	0.316	0.514
	720	0.353	0.353	0.353	0.342	0.357	0.357	0.358	0.345	0.389	0.386	0.384	0.375	0.697	0.862
	Avg	0.256	0.255	0.256	0.242	0.259	0.257	0.259	0.244	0.325	0.316	0.325	0.299	0.390	0.541

[†] OneNet and FSNet are implemented based on the public library provided in this paper, with their backbone models derived from their respective literatures. This implementation removes concept drift, and as a result, the online learning performance has deteriorated.

1400

1401 C.10 ABLATION STUDIES OF δ -ADAPTER'S DEPTH, WIDTH AND VALUE

1402

1403 Table 11 shows that ablation studies of δ -Adapter's depth and width. It can be found that the depth
 has little impact on performance, while the greater the width, the slight improvement in performance.

1404
1405
1406 Table 11: Ablation studies of δ -Adapter’s depth and width.
1407
1408
1409
1410

Depth	2				3				4			
Width	64	128	256	512	64	128	256	512	64	128	256	512
ELC	0.159	0.157	0.155	0.1533	0.158	0.157	0.154	0.152	0.159	0.157	0.154	0.152
Weather	0.162	0.16	0.159	0.158	0.162	0.161	0.159	0.158	0.162	0.161	0.16	0.158
Traffic	0.439	0.437	0.433	0.43	0.44	0.436	0.433	0.43	0.44	0.436	0.433	0.43

1411
1412 C.11 THE CHOICE OF HYPERPARAMETER δ
14131414 δ is related to the properties of the dataset (e.g., noise level, degree of concept drift). In our work,
1415 we divided the datasets into two categories: one with severe concept drift ($\delta = 0.1$, e.g., Traffic,
1416 Weather, etc.) and the other with non-severe concept drift ($\delta = 0.01$, e.g., ETT, etc.). We did
1417 not perform hyperparameter searches based on models or datasets; instead, for datasets with severe
1418 concept drift, setting $\delta = 0.1$ is sufficient. In addition, we conducted ablation experiments on δ .
1419 As shown in Table 12, a better value of $\delta = 0.1$ might yield better results. In our paper, we only
1420 reported the two settings ($\delta=0.1$ or 0.01).
14211422 Table 12: Ablation studies of δ -Adapter’s value.
1423

+0.1X		$\times 0.1X$		$\times 0.2X$		$+0.1Y$		$\times 0.1Y$		$\times 0.2Y$		$+0.1(X\&Y)$		$\times 0.1(X\&Y)$		$\times 0.2(X\&Y)$	
Val	Test	Val	Test	Val	Test	Val	Test	Val	Test	Val	Test	Val	Test	Val	Test	Val	Test
0.418	0.166	0.427	0.168	0.425	0.169	0.421	0.168	0.415	0.165	0.413	0.167	0.413	0.160	0.416	0.162	0.411	0.162

1426
1427 C.12 PERFORMANCE OF δ -ADAPTER ON BLACK-BOX MODELS.
14281429 Table 13 shows the performance of the δ -Adapter on the black-box models. Specifically, we used
1430 TabPFN Hollmann et al. (2025) and TimesFM Das et al. (2024) as frozen black-box models to
1431 conduct zero-shot testing on various datasets. For comparison, we corrected the output results of
1432 these black-box models by adding Ada-Y. As shown in the table below, it can be found that after
1433 adding Ada-Y, the prediction error of the model is significantly reduced, which further proves the
1434 effectiveness of the proposed method.
14351436 C.13 VISUALIZATION OF FEATURE SELECTOR AND CORRECTOR
14371438 Figure 11 shows that both Quantile Calibrator (QC) and Conformal Calibrator (CC) produce adaptive,
1439 heteroscedastic prediction intervals that track signal volatility—widening near peaks/troughs
1440 and typically enclosing the ground truth across diverse samples. QC tends to be more conservative
1441 (wider bands) and sometimes attains higher per-sample coverage (e.g., PICP ≈ 0.729), while CC
1442 achieves tighter intervals with comparable coverage (e.g., PICP ≈ 0.677 on multiple samples). The
1443 consistent behavior across the two test sets indicates that the calibrators are complementary and
1444 robust, yielding reliable uncertainty quantification beyond the raw predictor.
14451446 Figure 12 present the visualization results of the feature selector. We selected 90%, 50%, 30%, and
1447 10% of the input data respectively to test the pre-trained iTransformer model, in order to observe
1448 their impact on the output results. It can be seen from the figure that most of the important features
1449 selected by the δ -Adapter determine the performance of the model, while other features are relatively
1450 less important.
1451
1452
1453
1454
1455
1456
1457

1458

1459

1460

1461

1462

1463

1464

Table 13: Performance of δ -Adapter on black-box models.

1465

1466

1467

1468

1469

1470

	Traffic	Weather	ELC	Exchange	ETTh1	ETTh2	ETTm1	ETTm2
TabPFN	0.367	0.875	0.115	0.129	0.129	0.180	0.037	0.114
Ada-Y	0.342	0.552	0.089	0.096	0.095	0.171	0.034	0.103
TimesFM	0.211	0.168	0.084	0.239	0.029	0.135	0.028	0.267
Ada-Y	0.196	0.157	0.081	0.215	0.024	0.104	0.025	0.223

1471

1472

1473

1474

1475

1476

1477

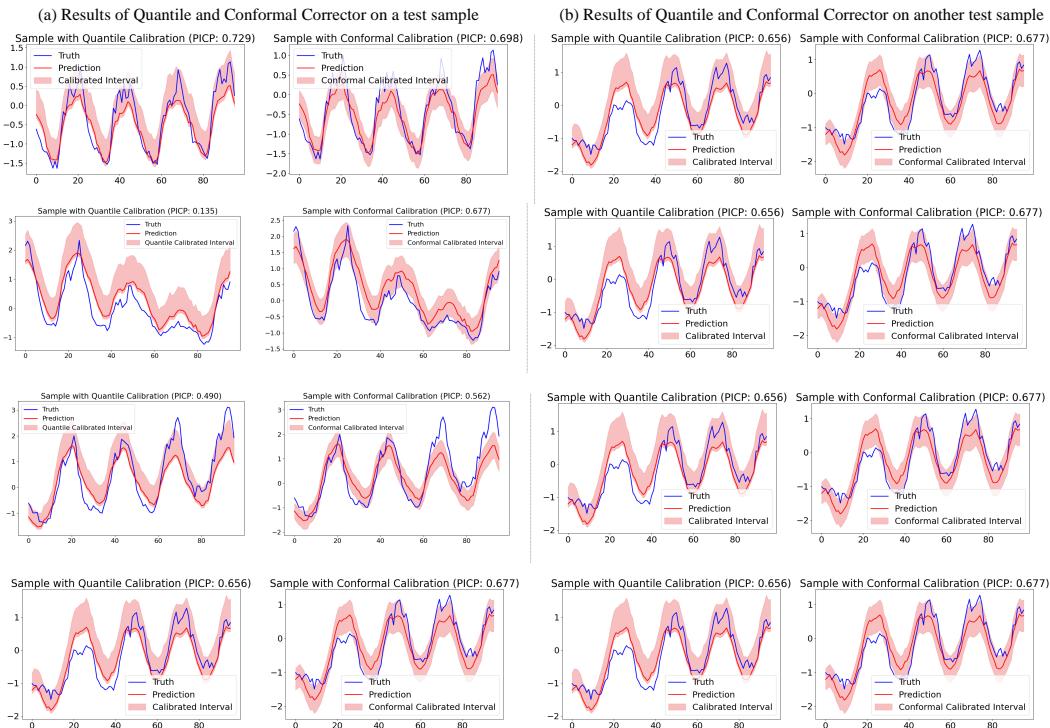
1478

1479

1480

1481

1482



1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Figure 11: Visualization of the Quantile and Conformal calibrator predictions.

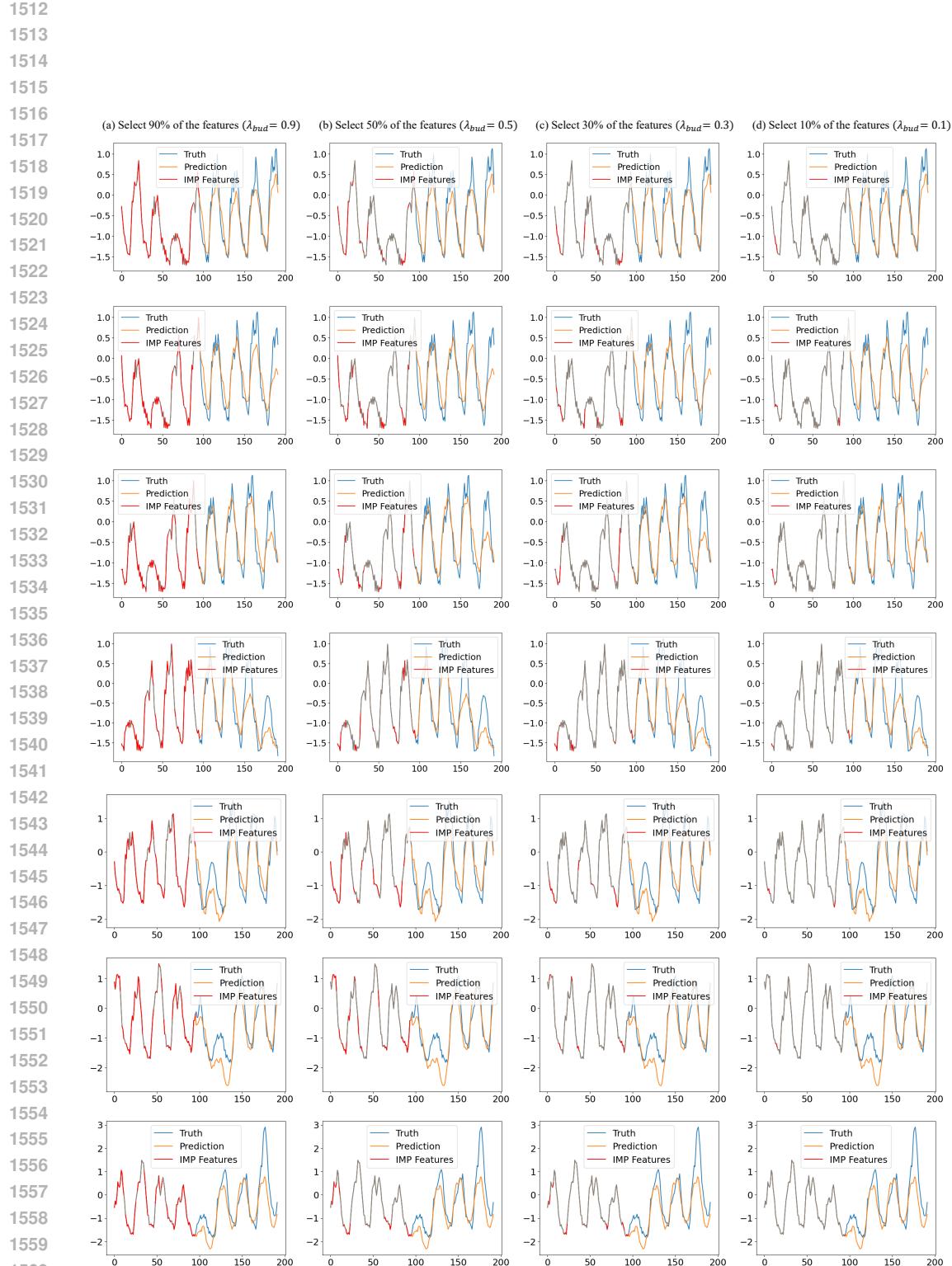


Figure 12: Visualization of different important features learned by the mask adapter.