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ABSTRACT

Hyperparameter optimization (HPO) and neural architecture search (NAS) are
methods of choice to obtain the best-in-class machine learning models, but in
practice they can be costly to run. When models are trained on large datasets, tuning
them with HPO or NAS rapidly becomes prohibitively expensive for practitioners,
even when efficient multi-fidelity methods are employed. We propose an approach
to tackle the challenge of tuning machine learning models trained on large datasets
with limited computational resources. Our approach, named PASHA, extends
ASHA and is able to dynamically allocate maximum resources for the tuning
procedure depending on the need. The experimental comparison shows that PASHA
identifies well-performing hyperparameter configurations and architectures while
consuming significantly fewer computational resources than ASHA.

1 INTRODUCTION

Hyperparameter optimization (HPO) and neural architecture search (NAS) yield state-of-the-art
models, but often are a very costly endeavor, especially when working with large datasets and models.
For example, using the results of (Sharir et al., 2020) we can estimate that evaluating 50 configurations
for a 340-million-parameter BERT model (Devlin et al., 2019) on the 15GB Wikipedia and Book
corpora would cost around $500,000. To make HPO and NAS more efficient, researchers explored
how we can learn from cheaper evaluations (e.g. on a subset of the data) to later allocate more
resources only to promising configurations. This created a family of methods often described as multi-
fidelity methods. Two well-known algorithms in this family are Successive Halving (SH) (Jamieson
& Talwalkar, 2016; Karnin et al., 2013) and Hyperband (HB) (Li et al., 2018).

Multi-fidelity methods significantly lower the cost of the tuning. Li et al. (2018) reported speedups up
to 30x compared to standard Bayesian Optimization (BO) and up to 70x compared to random search.
Unfortunately, the cost of current multi-fidelity methods is still too high for many practitioners, also
because of the large datasets used for training the models. As a workaround, they need to design
heuristics which can select a set of hyperparameters or an architecture with a cost comparable to
training a single configuration, for example, by training the model with multiple configurations for a
single epoch and then selecting the best-performing candidate.

On one hand, such heuristics lack robustness and need to be adapted to the specific use-cases in
order to provide good results. On the other hand, they build on an extensive amount of practical
experience suggesting that multi-fidelity methods are often not sufficiently aggressive in leveraging
early performance measurements and that identifying the best performing set of hyperparameters (or
the best architecture) does not require training a model until convergence. For example, Bornschein
et al. (2020) show that it is possible to find the best hyperparameter – number of channels in ResNet-
101 architecture (He et al., 2015) for ImageNet (Deng et al., 2009) – using only one tenth of the data.
However, it is not known beforehand that one tenth of data is sufficient for the task.

Our aim is to design a method that consumes fewer resources than standard multi-fidelity algorithms
such as Hyperband (Li et al., 2018) or ASHA (Li et al., 2020), and yet is able to identify configurations
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that produce models with a similar predictive performance after full retraining from scratch. Models
are commonly retrained on a combination of training and validation sets to obtain the best performance
after optimizing the hyperparameters. To achieve the speedup, we propose a variant of ASHA, called
Progressive ASHA (PASHA), that starts with a small amount of initial maximum resources and
gradually increases them as needed. ASHA in contrast has a fixed amount of maximum resources,
which is a hyperparameter defined by the user and is difficult to select. Our empirical evaluation
shows PASHA can save a significant amount of resources while finding similarly well-performing
configurations as conventional ASHA, reducing the entry barrier to do HPO and NAS.

To summarize, our contributions are as follows: 1) We introduce a new approach called PASHA that
dynamically selects the amount of maximum resources to allocate for HPO or NAS (up to a certain
budget), 2) Our empirical evaluation shows the approach significantly speeds up HPO and NAS
without sacrificing the performance, and 3) We show the approach can be successfully combined
with sample-efficient strategies based on Bayesian Optimization, highlighting the generality of our
approach. Our implementation is based on the Syne Tune library (Salinas et al., 2022).

2 RELATED WORK

Real-world machine learning systems often rely on a large number of hyperparameters and require
testing many combinations to identify suitable values. This makes data-inefficient techniques such
as Grid Search or Random Search (Bergstra & Bengio, 2012) very expensive in most practical
scenarios. Various approaches have been proposed to find good parameters more quickly, and they
can be classified into two main families: 1) Bayesian Optimization: evaluates the most promising
configurations by modelling their performance. The methods are sample-efficient but often designed
for environments with limited amount of parallelism; 2) Multi-fidelity: sequentially allocates more
resources to configurations with better performance and allows high level of parallelism during the
tuning. Multi-fidelity methods have typically been faster when run at scale and will be the focus
of this work. Ideas from these two families can also be combined together, for example as done in
BOHB by Falkner et al. (2018), and we will test a similar method in our experiments.

Successive Halving (SH) (Karnin et al., 2013; Jamieson & Talwalkar, 2016) is conceptually the
simplest multi-fidelity method. Its key idea is to run all configurations using a small amount of
resources and then successively promote only a fraction of the most promising configurations to be
trained using more resources. Another popular multi-fidelity method, called Hyperband (Li et al.,
2018), performs SH with different early schedules and number of candidate configurations. ASHA
(Li et al., 2020) extends the simple and very efficient idea of successive halving by introducing
asynchronous evaluation of different configurations, which leads to further practical speedups thanks
to better utilisation of workers in a parallel setting.

Related to the problem of efficiency in HPO, cost-aware HPO explicitly accounts for the cost of
the evaluations of different configurations. Previous work on cost-aware HPO for multi-fidelity
algorithms such as CAHB (Ivkin et al., 2021) keeps a tight control on the budget spent during the
HPO process. This is different from our work, as we reduce the budget spent by terminating the HPO
procedure early instead of allocating the compute budget in its entirety. Moreover, PASHA could be
combined with CAHB to leverage the cost-based resources allocation.

Recently, researchers considered dataset subsampling to speedup HPO and NAS. Shim et al. (2021)
have combined coresets with PC-DARTS (Xu et al., 2020) and showed that they can find well-
performing architectures using only 10% of the data and 8.8x less search time. Similarly, Visalpara
et al. (2021) have combined subset selection methods with the Tree-structured Parzen Estimator
(TPE) for HPO (Bergstra et al., 2011). With a 5% subset they obtained between an 8x to 10x speedup
compared to standard TPE. However, in both cases it is difficult to say in advance what subsampling
ratio to use. For example, the 10% ratio in (Shim et al., 2021) incurs no decrease in accuracy, while
reducing further to 2% leads to a substantial (2.6%) drop in accuracy. In practice, it is difficult to
find a trade-off between the time required for tuning (proportional to the subset size) and the loss of
performance for the final model because these change, sometimes wildly, between datasets. Further,
Zhou et al. (2020) have observed that for a fixed number of iterations, rank consistency is better if we
use more training samples and fewer epochs rather than fewer training samples and more epochs.
This observation gives further motivation for using the whole dataset for HPO/NAS and design new
approaches, like PASHA, to save computational resources.
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3 PROBLEM SETUP

The problem of selecting the best configuration of a machine learning algorithm to be trained is
formalized in (Jamieson & Talwalkar, 2016) as a non-stochastic bandit problem. In this setting
the learner (the hyperparameter optimizer) receives N hyperparameter configurations and it has
to identify the best performing one with the constraint of not spending more than a fixed amount
of resources R (e.g. total number of training epochs) on a specific configuration. R is considered
given, but in practice users do not have a good way for selecting it, which can have undesirable
consequences: if the value is too small, the model performance will be sub-optimal, while if the
budget is too large, the user will incur a significant cost without any practical return. This leads users
to overestimate R, setting it to a large amount of resources in order to guarantee the convergence of
the model. We maintain the concept of maximum amount of resources in our algorithm but we prefer
to interpret R as a “safety net”, a cost not to be surpassed (e.g. in case an error prevents a normal
behaviour of the algorithm), instead of the exact amount of resources spent for the optimization.

This setting could be extended with additional assumptions, based on empirical observation, removing
some extreme cases and leading to a more practical setup. In particular, when working with large
datasets we observe that the curve of the loss for configurations (called arms in the bandit literature)
continuously decreases (in expectation). Moreover, “crossing points” between the curves are rare
(excluding noise), and they are almost always in the very initial part of the training procedure. Viering
& Loog (2021); Mohr & van Rijn (2022) provide an analysis of learning curves and note that in
practice most learning curves are well-behaved, with Bornschein et al. (2020); Domhan et al. (2015)
reporting similar findings.

More formally, let us define R as the maximum number of resources needed to train an ML algorithm
to convergence. Given πm(i) the ranking of configuration i after using m resources for training,
there exists minimum R∗ much smaller than R such that for all amounts of resources r larger than
R∗ the rankings of configurations trained with r resources remain the same: ∃R∗ ≪ R : ∀i ∈
{configurations},∀r > R∗, πR∗(i) = πr(i). The existence of such a quantity, limited to the best
performing configuration, is also assumed by Jamieson & Talwalkar (2016), and it is leveraged to
quantify the budget required to identify the best performing configuration. If we knew R∗, it would
be sufficient to run all configurations with exactly that amount of resources to identify the best one
and then just train the model from scratch with all the data using that configuration. Unfortunately
that quantity is unknown and can only be estimated during the optimization procedure. Note that in
practice there is noise involved in training of neural networks, so similarly performing configurations
will repeatedly swap their ranks.

4 METHOD

PASHA is an extension of ASHA (Li et al., 2020) inspired by the “doubling trick” (Auer et al.,
1995). PASHA targets improvements for hyperparameter tuning on large datasets by hinging on
the assumptions made about the crossing points of the learning curves in Section 3. The algorithm
starts with a small initial amount of resources and progressively increases them if the ranking of
the configurations in the top two rungs (rounds of promotion) has not stabilized. The ability of
our approach to stop early automatically is the key benefit. We illustrate the approach in Figure 1,
showing how we stop evaluating configurations for additional rungs if rankings are stable.

We describe the details of our proposed approach in Algorithm 1. Given η, a hyperparameter used
both in ASHA and PASHA to control the fraction of configurations to prune, PASHA sets the current
maximum resources Rt to be used for evaluating a configuration using the reduction factor η and
the minimum amount of resources r to be used (Kt is the current maximum rung). The approach
increases the maximum number of resources allocated to promising configurations each time the
ranking of configurations in the top two rungs becomes inconsistent. For example, if we can currently
train configurations up to rung 2 and the ranking of configurations in rung 1 and rung 2 is not
consistent, then we allow training part of the configurations up to rung 3, i.e. one additional rung.

The minimum amount of resources r is a hyperparameter to be set by the user. It is significantly
easier to set compared to R as r is the minimum amount of resources required to see a meaningful
difference in the performance of the models, and it can be easily estimated empirically by running a
few small-scale experiments.
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Figure 1: Illustration of how PASHA stops early if the ranking of configurations has stabilized. Left:
the ranking of the configurations (displayed inside the circles) has stabilized, so we can select the
best configuration and stop the search. Right: the ranking has not stabilized, so we continue.

Algorithm 1 Progressive Asynchronous Successive Halving (PASHA)
1: input minimum resource r, reduction factor η
2: function PASHA()
3: t = 0, R0 = ηr, K0 = ⌊logη(R0/r)⌋
4: while desired do
5: for each free worker do
6: (θ, k) = get job()
7: run then return val loss(θ, rηk)
8: end for
9: for completed job (θ, k) with loss l do

10: Update configuration θ in rung k with loss l
11: if k ≥ Kt − 1 then
12: πk = configuration ranking(k)
13: end if
14: if k = Kt and πk ̸≡ πk−1 then
15: t = t+ 1
16: Rt = ηtR0

17: Kt = ⌊logη(Rt/r)⌋
18: end if
19: end for
20: end while
21: end function
22: function get job()
23: // Check if there is a promotable config
24: for k = Kt − 1, . . . , 1, 0 do
25: candidates = top k(rung k, |rung k|/η)
26: promotable = {c ∈ candidates : c not promoted}
27: if |promotable| > 0 then
28: return promotable[0], k + 1
29: end if
30: // If not, grow bottom rung
31: Draw random configuration θ
32: return θ, 0
33: end for
34: end function

We also set a maximum amount of resources R so that PASHA can default to ASHA if needed and
avoid increasing the resources indefinitely. While it is not generally reached, it provides a safety net.

4.1 SOFT RANKING

Due to the noise present in the training process, negligible differences in the measured predictive
performance of different configurations can lead to significantly different rankings. For these
reasons we adopt what we call “soft ranking”. In soft ranking, configurations are still sorted
by predictive performance but are considered equivalent if the performance difference is smaller
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than a value ϵ (or equal to it). Instead of producing a sorted list of configuration, this provides
a list of lists where for every position of the ranking there is a list of equivalent configurations.
The concept is explained graphically in Figure 2, and we also provide a formal definition. For
a set of n configurations c1, c2, · · · , ci, · · · , cn and performance metric f (e.g. accuracy) with
f(c1) ≤ f(c2) ≤ · · · ≤ f(ci) ≤ · · · ≤ f(cn), soft rank at position i is defined as

soft ranki = {cj ∈ configurations : |f(ci)− f(cj)| ≤ ϵ} .

When deciding on if to increase the resources, we go through the ranked list of configurations in the
top rung and check if the current configuration at the given rank was in the list of configurations for
that rank in the previous rung. If there is a configuration which does not satisfy the condition, we
increase resources.

Figure 2: Illustration of soft ranking. There are three lists with the first two containing two items
because the scores of the two configurations are closer to each other than ϵ.

4.2 AUTOMATIC ESTIMATION OF ϵ BY MEASURING NOISE IN RANKINGS

Every operation involving randomization gives slightly different results when repeated, the training
process and the measurement of performance on the validation set are no exception. In an ideal world,
we could repeat the process multiple times to compute empirical mean and variance to make a better
decision. Unfortunately this is not possible in our case since the repeating portions of the training
process will defeat the purpose of our work: speeding up the tuning process. Understanding when the
differences between the performance measured for different configurations are “significant” is crucial
for ranking them correctly. We devise a method to estimate a threshold below which differences are
meaningless. Our intuition is that configurations with different performance maintain their relative
ranking over time. On the other hand, configurations that repeatedly swap their rankings perform
similarly well and the performance difference in the current epoch or rung is simply due to noise. We
want to measure this noise and use it to automatically estimate the threshold value ϵ to be used in the
soft-ranking described above.

Formally we can define a set of pairs of configurations that perform similarly well by the following:

S : {(c, c′) :
(
πrj (c) > πrj (c

′) ∧ πrk(c) < πrk(c
′) ∧ πrl(c) > πrl(c

′)
)

∨
(
πrj (c) < πrj (c

′) ∧ πrk(c) > πrk(c
′) ∧ πrl(c) < πrl(c

′)
)
},

(1)

for resource levels (e.g. epochs – not rungs) rj > rk > rl, using the same notation as earlier to
refer to resources. In practice we have per-epoch validation performance statistics and use these
to find resource levels rj , rk, rl that have configurations with the criss-crossing behaviour (there
can be several epochs between such resource levels). We only consider configurations (c, c′) that
made it to the latest rung, so rηKt−1 ≥ rj > rηKt−2. However, we allow for the criss-crossing to
happen across epochs from any rungs. The value of ϵ can then be calculated as the N -th percentile of
distances between the performances of configurations in S:

ϵ = PN,(c,c′)∈S |frj (c)− frj (c
′)|.

The exact value of rj depends on the considered pair of configurations (c, c′). To uniquely define
frj , we take the maximum resources rj currently available for both configurations in the consid-
ered pair (c, c′). Let us consider the following example setup: the top rung has 8 epochs and
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the next one has 4 epochs, there are three configurations ca, cb, cc that made it to the top rung
and were trained for 8, 8 and 6 epochs so far respectively. Assuming there was criss-crossing
within each pair (ca, cb), (ca, cc) and (cb, cc), the set of distances between configurations in S is
{|f8(ca)− f8(cb)|, |f6(ca)− f6(cc)|, |f6(cb)− f6(cc)|}. The value of ϵ is recalculated every time
we receive new information about the performances of configurations. Initially the value of ϵ is set to
0, which means that we check for exact ranking if we cannot yet calculate the value of ϵ.

5 EXPERIMENTS

In this section we empirically evaluate the performance of PASHA. Its goal is not to provide a model
with a higher accuracy, but to identify the best configuration in a shorter amount of time so that
we can then re-train the model from scratch. Overall, we target a significantly faster tuning time
and on-par predictive performance when comparing with the models identified by state-of-the-art
optimizers like ASHA. Re-training after HPO or NAS is important because HPO and NAS in general
require to reserve a significant part of the data (often around 20 or 30%) to be used as a validation set.
Training with fewer data is not desirable because in practice it is observed that training a model on
the union of training and validation sets provides better results.

We tested our method on two different sets of experiments. The first set evaluates the algorithm on
NAS problems and uses NASBench201 (Dong & Yang, 2020), while the second set focuses on HPO
and was run on two large-scale tasks from PD1 benchmark (Wang et al., 2021).

5.1 SETUP

Our experimental setup consists of two phases: 1) run the hyperparameter optimizer until N = 256
candidate configurations are evaluated; and 2) use the best configuration identified in the first phase
to re-train the model from scratch. For the purpose of these experiments we re-train all the models
using only the training set. This avoids introducing an arbitrary choice on the validation set size and
allows us to leverage standard benchmarks such as NASBench201. In real-world applications the
model can be trained on both training and validation sets. All our results report only the time invested
in identifying the best configuration since the re-training time is comparable for all optimizers. All
results are averaged over multiple repetitions, with the details specified for each set of experiments
separately. We use N = 90-th percentile when calculating the value of ϵ.

We use 4 workers to perform parallel and asynchronous evaluations. The choice of R is sensitive
for ASHA as it can make the optimizer consume too many resources and penalize the performance.
For a fair comparison, we make R dataset-dependent taking the maximum amount of resources in
the considered benchmarks. r is also dataset-dependent and η, the halving factor, is set to 3 unless
otherwise specified. The same values are used for both ASHA and PASHA. Runtime reported is the
time spent on HPO (without retraining), including the time for computing validation set performance.

We compare PASHA with ASHA (Li et al., 2020), a widely-adopted approach for multi-fidelity
HPO, and other relevant baselines. In particular, we consider “one-epoch baseline” that trains all
configurations for one epoch (the minimum available resources) and then selects the most promising
configuration, and “random baseline” that randomly selects the configuration without any training. For
both one-epoch and random baselines we sample N = 256 configurations, using the same scheduler
and seeds as for PASHA and ASHA. All reported accuracies are after retraining for R = 200 epochs.
In addition, two, three and five-epoch baselines are evaluated in Appendix A.

5.2 NAS EXPERIMENTS

For our NAS experiments we leverage the well-known NASBench201 (Dong & Yang, 2020) bench-
mark. The task is to identify the network structure providing the best accuracy on three different
datasets (CIFAR-10, CIFAR-100 and ImageNet16-120) independently. We use r = 1 epoch and
R = 200 epochs. We repeat the experiments using 5 random seeds for the scheduler and 3 random
seeds for NASBench201 (all that are available), resulting in 15 repetitions. Some configurations in
NASBench201 do not have all seeds available, so we impute them by averaging over the available
seeds. To measure the predictive performance we report the best accuracy on the combined validation
and test set provided by the creators of the benchmark.
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Table 1: NASBench201 results. PASHA leads to large improvements in runtime, while achieving
similar accuracy as ASHA.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0
PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0
One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0
Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0
PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3
One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0
Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0
PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1
One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0
Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0

The results in Table 1 suggest PASHA consistently leads to strong improvements in runtime, while
achieving similar accuracy values as ASHA. The one-epoch baseline has noticeably worse accuracies
than ASHA or PASHA, suggesting that PASHA does a good job of deciding when to continue
increasing the resources – it does not stop too early. Random baseline is a lot worse than the one-
epoch baseline, so there is value in performing NAS. We also report the maximum resources used to
find how early the ranking becomes stable in PASHA. The large variances are caused by stopping
HPO at different rung levels for different seeds (e.g. 27 and 81 epochs). Note that the time required
to train a model is about 1.3h for CIFAR-10 and CIFAR-100, and about 4.1h for ImageNet16-120,
making the total tuning time of PASHA comparable or faster than the training time.

We also ran additional experiments testing PASHA with a reduction factor of η = 2 and η = 4 instead
of η = 3, the usage of PASHA as a scheduler in MOBSTER (Klein et al., 2020) and alternative
ranking functions. These experiments provided similar findings as the above and are described next.

5.2.1 REDUCTION FACTOR

An important parameter for the performance of multi-fidelity algorithms like ASHA is the reduction
factor. This hyperparameter controls the fraction of pruned candidates at every rung. The optimal
theoretical value is e and it is typically set to 2 or 3. In Table 2 we report the results of the different
algorithms ran with η = 2 and η = 4 on CIFAR-100 (the full set of results is in Appendix B). The
gains are consistent also for η = 2 and η = 4, with a larger speedup when using η = 2 as that allows
PASHA to make more decisions and identify earlier that it can stop the search.

Table 2: NASBench201 – CIFAR-100 results with various reduction factors η. The speedup is large
for both η = 2 and η = 4, and accuracy similar to ASHA is retained.

Dataset Reduction factor Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-100
η = 2

ASHA 71.67 ± 0.84 3.8h ± 1.0h 1.0x 200.0 ± 0.0
PASHA 71.65 ± 1.42 0.9h ± 0.1h 4.2x 5.9 ± 2.0

η = 4
ASHA 71.43 ± 1.13 2.7h ± 0.9h 1.0x 200.0 ± 0.0
PASHA 72.09 ± 1.22 1.0h ± 0.4h 2.8x 25.1 ± 49.0

5.2.2 BAYESIAN OPTIMIZATION

Bayesian Optimization combined with multi-fidelity methods such as Successive Halving can improve
the predictive performance of the final model (Klein et al., 2020). In this set of experiments, we
verify PASHA can speedup also these kinds of methods. Our results are reported in Table 3, where
we can clearly see PASHA obtains a similar accuracy result as ASHA with significant speedup.
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Table 3: NASBench201 results for ASHA with Bayesian Optimization searcher – MOBSTER (Klein
et al., 2020) and similarly extended version of PASHA. The results show PASHA can be successfully
combined with a smarter configuration selection strategy.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10 MOBSTER 94.21 ± 0.28 5.0h ± 1.1h 1.0x 200.0 ± 0.0
PASHA BO 94.00 ± 0.20 2.6h ± 1.8h 2.0x 70.7 ± 81.6

CIFAR-100 MOBSTER 72.79 ± 0.68 5.7h ± 1.4h 1.0x 200.0 ± 0.0
PASHA BO 72.16 ± 1.07 1.6h ± 0.5h 3.7x 13.0 ± 8.7

ImageNet16-120 MOBSTER 46.21 ± 0.70 15.1h ± 4.0h 1.0x 200.0 ± 0.0
PASHA BO 45.36 ± 1.06 3.9h ± 1.2h 3.9x 11.8 ± 7.9

5.2.3 ALTERNATIVE RANKING FUNCTIONS

We have considered a variety of alternative ranking functions in addition to the soft ranking function
that automatically estimates the value of ϵ by measuring noise in rankings. These include simple
ranking (equivalent to soft ranking with ϵ = 0.0), soft ranking with fixed values of ϵ or obtained using
various heuristics (for example based on the standard deviation of objective values in the previous
rung), Rank Biased Overlap (RBO) (Webber et al., 2010), and our own reciprocal rank regret metric
(RRR) that considers the objective values of configurations. Details of the ranking functions and
additional results are in Appendix C.

Table 4 shows a selection of the results on CIFAR-100 with full results in the appendix. We can
see there are also other ranking functions that work well and that simple ranking is not sufficiently
robust – some benevolence is needed. However, the ranking function that estimates the value of ϵ
by measuring noise in rankings (to which we refer simply as PASHA) remains the easiest to use, is
well-motivated and offers both excellent performance and large speedup.

Table 4: NASBench201 – CIFAR-100 results for a variety of ranking functions, showing there are
also other well-performing options, even though those are harder to use and are less interpretable.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0
PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

PASHA direct ranking 71.69 ± 1.05 2.8h ± 0.7h 1.1x 200.0 ± 0.0

PASHA soft ranking ϵ = 2.5% 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4
PASHA soft ranking ϵ = 2σ 71.14 ± 0.97 1.9h ± 0.7h 1.7x 136.4 ± 75.8

PASHA RBO 71.51 ± 0.93 2.4h ± 0.7h 1.3x 180.5 ± 50.6
PASHA RRR 71.42 ± 1.51 1.2h ± 0.5h 2.6x 39.3 ± 51.4

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0
Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

5.3 HPO EXPERIMENTS

We further utilize the PD1 HPO benchmark (Wang et al., 2021) to show the usefulness of PASHA in
large-scale settings. In particular, we take WMT15 German-English (Bojar et al., 2015) and ImageNet
(Deng et al., 2009) datasets that use xformer (Lefaudeux et al., 2021) and ResNet50 (He et al., 2015)
models. Both of them are datasets with a large amount of training examples, in particular WMT15
German-English has about 4.5M examples, while ImageNet has about 1.3M examples.

In PD1 we optimize four hyperparameters: base learning rate η ∈
[
10−5, 10.0

]
(log scale), momen-

tum 1− β ∈
[
10−3, 1.0

]
(log scale), polynomial learning rate decay schedule power p ∈ [0.1, 2.0]

(linear scale) and decay steps fraction λ ∈ [0.01, 0.99] (linear scale). The minibatch size used for
WMT experiments is 64, while the minibatch size for ImageNet experiments is 512. There are 1414
epochs available for WMT and 251 for ImageNet. There are also other datasets in PD1, but these
only have a small number of epochs with 1 epoch being the minimum amount of resources. As a
result there would not be enough rungs to see benefits of the early stopping provided by PASHA.
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If resources could be defined in terms of fractions of epochs, PASHA could be beneficial there too.
Most public benchmarks have resources defined in terms of epochs, but in practice it is possible to
define resources also in alternative ways. We use 1-NN as a surrogate model for the PD1 benchmark.
We repeat our experiments using 5 random seeds and there is only one dataset seed available.

The results in Table 5 show that PASHA leads to large speedups on both WMT and ImageNet datasets.
The speedup is particularly impressive for the significantly larger WMT dataset where it is about
15.5x, highlighting how PASHA can significantly accelerate the HPO search on datasets with millions
of training examples (WMT has about 4.5M training examples). The one-epoch baseline obtains
similar accuracy as ASHA and PASHA for WMT, but performs significantly worse on ImageNet
dataset. This result suggests that simple approaches such as the one-epoch baseline are not robust
and solutions such as PASHA are needed (which we also saw on NASBench201). Selecting the
hyperparameters randomly leads to significantly worse performance than any of the other approaches.

Table 5: Results of the HPO experiments on WMT and ImageNet tasks from the PD1 benchmark.
Mean and std of the best validation accuracy (or its equivalent as given in the PD1 benchmark).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

WMT

ASHA 62.72 ± 1.41 43.7h ± 37.2h 1.0x 1357.4 ± 80.4
PASHA 62.04 ± 2.05 2.8h ± 0.6h 15.5x 37.8 ± 21.6
One-epoch baseline 62.36 ± 1.40 0.6h ± 0.0h 67.3x 1.0 ± 0.0
Random baseline 33.93 ± 21.96 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet

ASHA 75.10 ± 2.03 7.3h ± 1.2h 1.0x 251.0 ± 0.0
PASHA 73.37 ± 2.71 3.8h ± 1.0h 1.9x 45.0 ± 30.1
One-epoch baseline 63.40 ± 9.91 1.1h ± 0.0h 6.7x 1.0 ± 0.0
Random baseline 36.94 ± 31.05 0.0h ± 0.0h N/A 0.0 ± 0.0

6 LIMITATIONS

PASHA is designed to speed up finding the best configuration, making HPO and NAS more accessible.
To do so, PASHA interrupts the tuning process when it considers the ranking of configurations to be
sufficiently stable, not spending resources on evaluating configurations in later rungs. However, the
benefits of such mechanism will be small in some circumstances. When the number of rungs is small,
there will be few opportunities for PASHA to interrupt the tuning and provide large speedups. This
phenomenon is demonstrated in Appendix D on the LCBench benchmark (Zimmer et al., 2021).

Public benchmarks usually fix the minimum resources to one epoch, while the maximum is
benchmark-dependent (e.g. 200 epochs for NASBench201 and 50 for LCBench), leaving little
control for algorithms like PASHA in some cases. Appendix E analyses the impact of these choices.

For practical usage, we recommend having a maximum amount of resources at least 100 times
larger than the minimum amount of resources when using η = 3 (default). This can be achieved by
measuring resources with higher granularity (e.g. in terms of gradient updates) if needed.

7 CONCLUSIONS

In this work we have introduced a new variant of Successive Halving called PASHA. Despite its
simplicity, PASHA leads to strong improvements in the tuning time. For example, in many cases
it reduces the time needed to about one third compared to ASHA without a noticeable impact on
the quality of the found configuration. For benchmarks with a small number of rungs (LCBench),
PASHA provides more modest speedups but this limitation can be mitigated in practice by adopting a
more granular unit of measure for resources. Further work could investigate the definition of rungs
and resource levels, with the aim of understanding how they impact the decisions of the algorithm.
More broadly this applies not only to PASHA but also to multi-fidelity algorithms in general.

PASHA can also be successfully combined with more advanced search strategies based on Bayesian
Optimization to obtain improvements in accuracy at a fraction of the time. In the future, we would
like to test combinations of PASHA with transfer-learning techniques for multi-fidelity such as
RUSH (Zappella et al., 2021) to further decrease the tuning time.
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REPRODUCIBILITY STATEMENT

We include the code for our approach as part of the supplementary material, including details for how
to run the experiments. We use pre-computed benchmarks that make it possible to run the NAS and
HPO experiments even without large computational resources. In addition, PASHA is available as
part of the Syne Tune library (Salinas et al., 2022).
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A ADDITIONAL BASELINES

We consider additional baselines that evaluate how good two, three and five-epoch baselines are
compared to PASHA. From Table 6 and 7 we see that while these usually get closer to the performance
of ASHA and PASHA than the one-epoch baseline, they are still relatively far compared to PASHA.
Moreover, it is crucial to observe that such baselines cannot dynamically allocate resources and
decide when to stop, and as a result PASHA can outperform them both in terms of speedup and the
quality of the found configuration.

Table 6: NASBench201 results. PASHA leads to large improvements in runtime, while achieving
similar accuracy as ASHA.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0
PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0
One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0
Two epoch baseline 92.75 ± 0.91 0.7h ± 0.0h 4.2x 2.0 ± 0.0
Three epoch baseline 93.47 ± 0.71 1.0h ± 0.0h 2.8x 3.0 ± 0.0
Five epoch baseline 93.38 ± 0.90 1.7h ± 0.0h 1.7x 5.0 ± 0.0
Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0
PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3
One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0
Two-epoch baseline 68.28 ± 4.25 0.7h ± 0.0h 4.6x 2.0 ± 0.0
Three-epoch baseline 70.47 ± 1.60 1.0h ± 0.0h 3.1x 3.0 ± 0.0
Five-epoch baseline 70.95 ± 0.95 1.7h ± 0.0h 1.8x 5.0 ± 0.0
Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0
PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1
One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0
Two-epoch baseline 42.99 ± 1.89 2.0h ± 0.0h 4.4x 2.0 ± 0.0
Three-epoch baseline 44.65 ± 0.95 3.0h ± 0.0h 2.9x 3.0 ± 0.0
Five-epoch baseline 44.75 ± 1.03 5.0h ± 0.1h 1.8x 5.0 ± 0.0
Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0

Table 7: Results of the HPO experiments on WMT and ImageNet tasks from the PD1 benchmark.
Mean and std of the best validation accuracy (or its equivalent as given in the PD1 benchmark).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

WMT

ASHA 62.72 ± 1.41 43.7h ± 37.2h 1.0x 1357.4 ± 80.4
PASHA 62.04 ± 2.05 2.8h ± 0.6h 15.5x 37.8 ± 21.6
One-epoch baseline 62.36 ± 1.40 0.6h ± 0.0h 67.3x 1.0 ± 0.0
Two-epoch baseline 60.16 ± 3.58 1.1h ± 0.0h 39.1x 2.0 ± 0.0
Three-epoch baseline 61.12 ± 3.47 1.6h ± 0.0h 27.6x 3.0 ± 0.0
Five-epoch baseline 57.89 ± 5.33 2.5h ± 0.0h 17.3x 5.0 ± 0.0
Random baseline 33.93 ± 21.96 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet

ASHA 75.10 ± 2.03 7.3h ± 1.2h 1.0x 251.0 ± 0.0
PASHA 73.37 ± 2.71 3.8h ± 1.0h 1.9x 45.0 ± 30.1
One-epoch baseline 63.40 ± 9.91 1.1h ± 0.0h 6.7x 1.0 ± 0.0
Two-epoch baseline 64.61 ± 10.81 1.7h ± 0.0h 4.2x 2.0 ± 0.0
Three-epoch baseline 68.74 ± 3.79 2.3h ± 0.1h 3.2x 3.0 ± 0.0
Five-epoch baseline 65.91 ± 3.99 3.7h ± 0.1h 2.0x 5.0 ± 0.0
Random baseline 36.94 ± 31.05 0.0h ± 0.0h N/A 0.0 ± 0.0

B REDUCTION FACTOR

Table 8 shows the full set of results for our experiments with different reduction factors. The behaviour
is the same across all cases.
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Table 8: NASBench201 results with various reduction factors η.

Dataset Reduction factor Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10
η = 2

ASHA 93.88 ± 0.27 3.6h ± 1.1h 1.0x 200.0 ± 0.0
PASHA 93.53 ± 0.76 1.0h ± 0.3h 3.5x 9.1 ± 8.1

η = 4
ASHA 93.75 ± 0.28 2.4h ± 0.6h 1.0x 200.0 ± 0.0
PASHA 93.65 ± 0.65 1.1h ± 0.5h 2.3x 32.3 ± 50.2

CIFAR-100
η = 2

ASHA 71.67 ± 0.84 3.8h ± 1.0h 1.0x 200.0 ± 0.0
PASHA 71.65 ± 1.42 0.9h ± 0.1h 4.2x 5.9 ± 2.0

η = 4
ASHA 71.43 ± 1.13 2.7h ± 0.9h 1.0x 200.0 ± 0.0
PASHA 72.09 ± 1.22 1.0h ± 0.4h 2.8x 25.1 ± 49.0

ImageNet16-120
η = 2

ASHA 46.09 ± 0.68 11.9h ± 4.0h 1.0x 200.0 ± 0.0
PASHA 45.35 ± 1.52 2.8h ± 0.6h 4.2x 9.3 ± 7.1

η = 4
ASHA 45.43 ± 0.98 7.9h ± 3.0h 1.0x 200.0 ± 0.0
PASHA 45.52 ± 1.30 2.9h ± 1.1h 2.8x 18.4 ± 18.7

C EXPERIMENTS WITH ALTERNATIVE RANKING FUNCTIONS

C.1 DESCRIPTION

PASHA employs a ranking function whose choice is completely arbitrary. In our main set of
experiments we used soft ranking that automatically estimates the value of ϵ by measuring noise in
rankings. In this set of experiments we would like to evaluate different criteria to define the ranking
of the candidates. We describe the functions considered next.

C.1.1 DIRECT RANKING

As a baseline, we study if we can use the simple ranking of configurations by predictive performance
(e.g., sorting from the ones with the highest accuracy to the ones with the lowest). If any of the
configurations change their order, we consider the ranking unstable and increase the resources.

C.1.2 SOFT RANKING VARIATIONS

We consider several variations of soft ranking. The first variation is to fix the value of the ϵ parameter.
We have considered values 0.01, 0.02, 0.025, 0.03, 0.05. The second set of variations aim to estimate
the value of ϵ automatically, using various heuristics. The heuristics we have evaluated include:

• Standard deviation: calculate the standard deviation of the considered performance measure
(e.g. accuracy) of the configurations in the previous rung and set a multiple of it as the value
of ϵ – we tried multiples of 1, 2 and 3.

• Mean distance: value of ϵ is set as the mean distance between the score of the configurations
in the previous rung.

• Median distance: similar to the mean distance, but using the median distance.

There are various benefits for estimating the value of ϵ by measuring noise in rankings, as presented
in our paper:

• There is no need to set the value of ϵ manually.

• Estimation of ϵ has an intuitive motivation that makes sense.

• The value of ϵ can dynamically adapt to the different stages of hyperparameter optimization.

• The approach works well in practice.

C.1.3 RANK BIASED OVERLAP (RBO) (WEBBER ET AL., 2010)

A score that can be broadly interpreted as a weighted correlation between rankings. We can specify
how much we want to prioritize the top of the ranking using parameter p that is between 0.0 and 1.0,
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with a smaller value giving more priority to the top of the ranking. The best value is 1.0, while it
gives value of 0.0 for rankings that are completely the opposite. We compute the RBO value and then
compare it to the selected threshold t, increasing the resources if the value is less than the threshold.

C.1.4 RECIPROCAL RANK REGRET (RRR)

A key insight is that configurations can be very similar to each other and differences in their rankings
will not affect the quality of the found solution significantly. To account for this we look at the
objective values of the configurations (e.g. accuracy) and compute the relative regret that we would
pay at the current rung if we would have assumed the ranking at the previous rung correct.

We define reciprocal rank regret (RRR) as:

RRR =

n−1∑
i=0

(fi − f ′
i)

fi
wi,

where f represents the ordered scores in the top rung, f ′ represents the reordered scores from the
top rung according to the second rung, n is the number of configurations in the top rung and p is the
parameter that says how much attention to give to the top of the ranking. The weights wi sum to 1
and can be selected in different ways to e.g. give more priority to the top of the ranking. For example,
we could use the following weights:

wi =
pi∑n−1
i=0 pi

The metric has an intuitive interpretation: it is the average relative regret with priority on top of the
ranking. The best value of RRR is 0.0, while the worst possible value is 1.0.

We also consider a version of RRR which considers the absolute values of the differences in the
objectives - Absolute RRR (ARRR).

We have evaluated these additional ranking functions using NASBench201 benchmark.

C.2 RESULTS

We report the results in Table 9, 10 and 11. We see there are also several other variations that achieve
strong results across a variety of datasets within NASBench201, most notably soft ranking 2σ and
variations based on RRR. In these cases we obtain similar performance as ASHA, but at a significantly
shorter time. We additionally also give a similar analysis in Table 12 (analogous to Table 4), where
we analyse a selection of the most interesting ranking functions for the PD1 benchmark.
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Table 9: NASBench201 – CIFAR-10 results for a variety of ranking functions.

Approach Accuracy (%) Runtime Speedup factor Max resources

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0
PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

PASHA direct ranking 93.79 ± 0.26 2.7h ± 0.6h 1.1x 198.4 ± 6.0

PASHA soft ranking ϵ = 0.01 93.79 ± 0.26 2.6h ± 0.5h 1.1x 194.3 ± 21.2
PASHA soft ranking ϵ = 0.02 93.78 ± 0.31 2.4h ± 0.5h 1.2x 152.4 ± 58.3
PASHA soft ranking ϵ = 0.025 93.78 ± 0.31 2.3h ± 0.5h 1.3x 144.5 ± 59.4
PASHA soft ranking ϵ = 0.03 93.78 ± 0.32 2.2h ± 0.6h 1.3x 128.6 ± 58.3
PASHA soft ranking ϵ = 0.05 93.79 ± 0.49 1.8h ± 0.7h 1.6x 76.0 ± 66.0

PASHA soft ranking 1σ 93.75 ± 0.32 2.4h ± 0.5h 1.2x 186.4 ± 35.2
PASHA soft ranking 2σ 93.88 ± 0.28 1.9h ± 0.5h 1.5x 132.7 ± 68.7
PASHA soft ranking 3σ 93.56 ± 0.69 0.9h ± 0.3h 3.1x 16.2 ± 19.9
PASHA soft ranking mean distance 93.73 ± 0.52 2.3h ± 0.4h 1.3x 184.1 ± 40.5
PASHA soft ranking median distance 93.82 ± 0.26 2.3h ± 0.5h 1.3x 169.2 ± 51.2

PASHA RBO p=1.0, t=0.5 93.49 ± 0.78 0.7h ± 0.1h 4.2x 4.6 ± 6.0
PASHA RBO p=0.5, t=0.5 93.77 ± 0.35 2.2h ± 0.6h 1.3x 144.0 ± 71.2

PASHA RRR p=1.0, t=0.05 93.49 ± 0.78 0.7h ± 0.0h 4.4x 3.0 ± 0.0
PASHA RRR p=0.5, t=0.05 93.76 ± 0.31 2.1h ± 0.6h 1.4x 140.9 ± 69.7
PASHA ARRR p=1.0, t=0.05 93.71 ± 0.35 2.4h ± 0.4h 1.2x 179.0 ± 42.9
PASHA ARRR p=0.5, t=0.05 93.81 ± 0.30 2.5h ± 0.4h 1.2x 181.0 ± 40.9

One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0
Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

Table 10: NASBench201 – CIFAR-100 results for a variety of ranking functions.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0
PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

PASHA direct ranking 71.69 ± 1.05 2.8h ± 0.7h 1.1x 200.0 ± 0.0

PASHA soft ranking ϵ = 0.01 71.55 ± 1.04 2.5h ± 0.7h 1.3x 198.3 ± 6.5
PASHA soft ranking ϵ = 0.02 70.94 ± 0.85 2.0h ± 0.5h 1.6x 160.5 ± 62.9
PASHA soft ranking ϵ = 0.025 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4
PASHA soft ranking ϵ = 0.03 71.00 ± 1.38 1.0h ± 0.5h 3.2x 39.4 ± 63.4
PASHA soft ranking ϵ = 0.05 70.71 ± 1.66 0.7h ± 0.0h 4.9x 3.0 ± 0.0

PASHA soft ranking 1σ 71.56 ± 1.03 2.5h ± 0.6h 1.3x 184.1 ± 40.5
PASHA soft ranking 2σ 71.14 ± 0.97 1.9h ± 0.7h 1.7x 136.4 ± 75.8
PASHA soft ranking 3σ 71.63 ± 1.60 1.0h ± 0.3h 3.3x 20.2 ± 25.3
PASHA soft ranking mean distance 71.51 ± 0.99 2.4h ± 0.5h 1.4x 189.8 ± 30.3
PASHA soft ranking median distance 71.52 ± 0.98 2.4h ± 0.6h 1.3x 189.5 ± 30.6

PASHA RBO p=1.0, t=0.5 70.69 ± 1.67 0.7h ± 0.1h 4.6x 3.8 ± 2.0
PASHA RBO p=0.5, t=0.5 71.51 ± 0.93 2.4h ± 0.7h 1.3x 180.5 ± 50.6

PASHA RRR p=1.0, t=0.05 70.71 ± 1.66 0.7h ± 0.0h 4.9x 3.0 ± 0.0
PASHA RRR p=0.5, t=0.05 71.42 ± 1.51 1.2h ± 0.5h 2.6x 39.3 ± 51.4
PASHA ARRR p=1.0, t=0.05 70.80 ± 1.70 0.8h ± 0.4h 3.8x 22.9 ± 51.3
PASHA ARRR p=0.5, t=0.05 71.41 ± 1.05 1.8h ± 0.6h 1.7x 110.0 ± 68.7

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0
Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0
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Table 11: NASBench201 – ImageNet16-120 results for a variety of ranking functions.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0
PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

PASHA direct ranking 45.63 ± 0.81 8.3h ± 2.5h 1.1x 200.0 ± 0.0
PASHA soft ranking ϵ = 0.01 45.52 ± 0.89 7.0h ± 1.5h 1.3x 185.7 ± 36.1
PASHA soft ranking ϵ = 0.02 45.79 ± 1.16 4.4h ± 1.4h 2.0x 71.4 ± 50.8
PASHA soft ranking ϵ = 0.025 46.01 ± 1.00 3.2h ± 1.0h 2.8x 28.6 ± 27.7
PASHA soft ranking ϵ = 0.03 45.62 ± 1.48 2.4h ± 0.7h 3.6x 11.0 ± 10.0
PASHA soft ranking ϵ = 0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA soft ranking 1σ 45.63 ± 0.89 6.5h ± 1.3h 1.4x 177.1 ± 44.2
PASHA soft ranking 2σ 45.39 ± 1.22 4.5h ± 1.4h 1.9x 91.2 ± 58.0
PASHA soft ranking 3σ 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0
PASHA soft ranking mean distance 45.50 ± 1.12 6.2h ± 1.5h 1.4x 157.7 ± 54.7
PASHA soft ranking median distance 45.67 ± 0.95 6.3h ± 1.6h 1.4x 156.3 ± 52.2

PASHA RBO p=1.0, t=0.5 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0
PASHA RBO p=0.5, t=0.5 45.24 ± 1.13 6.4h ± 1.3h 1.4x 148.3 ± 56.9

PASHA RRR p=1.0, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0
PASHA RRR p=0.5, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0
PASHA ARRR p=1.0, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0
PASHA ARRR p=0.5, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0
Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0

Table 12: Results of the HPO experiments on WMT and ImageNet tasks from the PD1 benchmark,
using a selection of the most interesting candidates for ranking functions. Mean and std of the best
validation accuracy (or its equivalent as given in the PD1 benchmark).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

WMT

ASHA 62.72 ± 1.41 43.7h ± 37.2h 1.0x 1357.4 ± 80.4
PASHA 62.04 ± 2.05 2.8h ± 0.6h 15.5x 37.8 ± 21.6
PASHA direct ranking 62.16 ± 1.75 39.3h ± 38.3h 1.1x 1024.0 ± 466.6
PASHA soft ranking ϵ = 2.5% 62.09 ± 2.04 1.3h ± 0.4h 33.4x 4.2 ± 2.4
PASHA soft ranking 2σ 62.52 ± 2.18 1.1h ± 0.1h 38.8x 3.0 ± 0.0
PASHA RBO p=0.5, t=0.5 61.44 ± 1.23 6.7h ± 7.8h 6.5x 147.6 ± 113.2
PASHA RRR p=0.5, t=0.05 62.52 ± 2.18 1.1h ± 0.1h 38.8x 3.0 ± 0.0
One-epoch baseline 62.36 ± 1.40 0.6h ± 0.0h 67.3x 1.0 ± 0.0
Random baseline 33.93 ± 21.96 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet

ASHA 75.10 ± 2.03 7.3h ± 1.2h 1.0x 251.0 ± 0.0
PASHA 73.37 ± 2.71 3.8h ± 1.0h 1.9x 45.0 ± 30.1
PASHA direct ranking 75.10 ± 2.03 6.8h ± 0.7h 1.1x 247.8 ± 3.9
PASHA soft ranking ϵ = 2.5% 74.73 ± 1.99 4.3h ± 2.5h 1.7x 140.4 ± 112.8
PASHA soft ranking 2σ 75.82 ± 0.82 5.0h ± 1.6h 1.5x 133.0 ± 96.8
PASHA RBO p=0.5, t=0.5 74.80 ± 2.19 4.4h ± 2.1h 1.6x 117.4 ± 109.4
PASHA RRR p=0.5, t=0.05 74.98 ± 2.12 1.6h ± 0.0h 4.7x 3.0 ± 0.0
One-epoch baseline 63.40 ± 9.91 1.1h ± 0.0h 6.7x 1.0 ± 0.0
Random baseline 36.94 ± 31.05 0.0h ± 0.0h N/A 0.0 ± 0.0
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D ADDITIONAL RESULTS ON LCBENCH

We additionally evaluate PASHA on the LCBench benchmark (Zimmer et al., 2021) where only
modest speedups can be expected due to a small number of epochs (and hence rungs) available.
LCBench limits the maximum amount of resources per configuration to 50 epochs, so when using
and setting the minimum resource level to 1 epoch, it is a challenging testbed for an algorithm like
PASHA. The hyperparameters optimized include number of layers ∈ [1, 5], max. number of units
∈ [64, 1024] (log scale), batch size ∈ [16, 512] (log scale), learning rate ∈

[
10−4, 10−1

]
(log scale),

weight decay ∈
[
10−5, 10−1

]
, momentum ∈ [0.1, 0.99] and max. value of dropout ∈ [0.0, 1.0].

Similarly as in our other experiments, we use η = 3 and stop after sampling 256 candidates.

Overall, the results in Table 13 confirm an accuracy level on-par with ASHA. While, as expected, the
speedup is reduced compared to the experiments on NASBench, in several cases PASHA achieves a
20+% speedup with peaks around 40%.

If only a small number of epochs is sufficient for training the model on the given dataset, then HPO
can be performed on a sub-epoch basis, e.g. defining the rung levels in terms of iterations instead of
epochs. PASHA would then be able to give a large speedup even in cases with smaller numbers of
epochs – an example of which is LCBench.

Table 13: Results of the HPO experiments on the LCBench benchmark. Mean and std of the test
accuracy across five random seeds. PASHA achieves similar accuracies as ASHA, but gives only
modest speedups because of the limited number of rung levels and opportunities to stop the HPO
early. To enable large speedup from PASHA, we could redefine the rung levels in terms of neural
network weights updates rather than epochs.

Dataset ASHA accuracy (%) PASHA accuracy (%) PASHA speedup

APSFailure 97.52 ± 0.92 97.01 ± 0.75 1.3x
Amazon employee access 94.01 ± 0.40 94.21 ± 0.00 1.1x
Australian 83.35 ± 0.33 83.35 ± 0.51 1.1x
Fashion-MNIST 86.70 ± 1.87 86.34 ± 1.32 1.1x
KDDCup09 appetency 98.22 ± 0.00 98.22 ± 0.00 1.1x
MiniBooNE 86.13 ± 1.57 86.24 ± 1.62 1.4x
Adult 79.14 ± 0.85 79.14 ± 0.85 1.2x
Airlines 59.57 ± 1.32 59.22 ± 0.76 1.4x
Albert 64.31 ± 0.99 64.23 ± 0.61 1.2x
Bank-marketing 88.34 ± 0.07 88.38 ± 0.00 1.2x
Blood-transfusion-service-center 79.92 ± 0.20 76.99 ± 6.00 1.1x
Car 86.60 ± 6.41 86.60 ± 6.41 1.1x
Christine 71.05 ± 1.17 70.15 ± 1.85 1.2x
Cnae-9 94.10 ± 0.31 94.44 ± 0.11 1.0x
Connect-4 62.28 ± 6.87 65.69 ± 0.04 1.2x
Covertype 59.76 ± 3.24 61.64 ± 1.64 1.2x
Credit-g 70.30 ± 0.84 70.79 ± 0.68 1.1x
Dionis 64.58 ± 9.89 64.58 ± 9.89 1.1x
Fabert 56.11 ± 10.89 53.47 ± 9.75 1.1x
Helena 19.16 ± 3.20 19.16 ± 3.20 1.1x
Higgs 66.48 ± 3.16 66.48 ± 3.16 1.1x
Jannis 58.92 ± 2.38 59.63 ± 2.81 1.4x
Jasmine 75.85 ± 0.36 75.55 ± 0.68 1.0x
Jungle chess 2pcs raw endgame complete 72.86 ± 4.69 74.94 ± 7.84 1.3x
Kc1 80.32 ± 4.37 80.86 ± 3.37 1.2x
Kr-vs-kp 92.50 ± 3.93 90.95 ± 4.70 1.0x
Mfeat-factors 98.21 ± 0.15 98.15 ± 0.15 1.1x
Nomao 94.12 ± 0.60 94.25 ± 0.64 1.1x
Numerai28.6 52.03 ± 0.55 52.30 ± 0.24 1.3x
Phoneme 76.65 ± 2.65 75.42 ± 2.87 1.1x
Segment 83.15 ± 2.54 83.15 ± 2.54 1.0x
Sylvine 90.57 ± 1.87 90.89 ± 2.04 1.0x
Vehicle 71.76 ± 2.57 71.76 ± 2.57 1.1x
Volkert 50.72 ± 1.91 50.72 ± 1.91 1.1x
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E INVESTIGATION WITH VARIABLE MAXIMUM RESOURCES

We analyse the impact of variable maximum resources (number of epochs) on how large speedup
PASHA provides over ASHA. More specifically, we change the maximum resources available for
ASHA and also the upper boundary on maximum resources for PASHA. We utilize NASBench201
benchmark for these experiments and set the number of epochs to 200 (default) or 50 (other details
are the same as earlier). The results in Table 14 confirm that PASHA leads to larger speedups when
there are more epochs (and rung levels) available. This analysis also explains the modest speedups on
LCBench analysed earlier.

If the model is trained for a small number of epochs, it is worth redesigning the HPO so that there are
more rung levels available, enabling PASHA to give larger speedups. This can be achieved by using
sub-epoch resource levels – specifying the rung levels and the minimum resources in terms of the
number of iterations (neural network weights updates). Based on the results observed across various
benchmarks, we would recommend having at least 5 rung levels in ASHA, with more rung levels
leading to larger speedups from PASHA over ASHA.

Table 14: NASBench201 results. PASHA leads to larger speedups if the models are trained with
more epochs.

Dataset Number of epochs Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10
200 ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

50 ASHA 93.78 ± 0.39 1.8h ± 0.2h 1.0x 50.0 ± 0.0
PASHA 93.58 ± 0.75 1.2h ± 0.4h 1.5x 22.0 ± 16.8

CIFAR-100
200 ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

50 ASHA 72.24 ± 0.87 1.8h ± 0.3h 1.0x 50.0 ± 0.0
PASHA 71.91 ± 1.32 0.9h ± 0.3h 2.0x 10.5 ± 12.1

ImageNet16-120
200 ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

50 ASHA 45.97 ± 0.99 5.2h ± 0.7h 1.0x 50.0 ± 0.0
PASHA 45.09 ± 1.52 2.7h ± 1.0h 1.9x 11.3 ± 11.7

F ANALYSIS OF LEARNING CURVES

We analyse the NASBench201 learning curves in Figure 3 and 4. To make the analysis realistic and
easier to grasp, we first sample a random subset of 256 configurations, similarly as we do for our
NAS experiments. Figure 3 shows the learning curves of the top three configurations (selected in
terms of their final performance). We see that these learning curves are very close to each other
and frequently cross due to noise in the training, allowing us to estimate a meaningful value of ϵ
parameter (configurations that repeatedly swap their order are very likely to be similarly good, so we
can select any of them because the goal is to find a strong configuration quickly rather than the very
best one). Figure 4 shows all learning curves from the same random sample of 256 configurations. In
this case we can see that the learning curves are relatively well-behaved (especially the ones at the
top), and any exceptions are rare.
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Figure 3: Analysis of how the learning curves of the top three configurations (in terms of final
validation accuracy; from a random sample of 256 configurations) evolve across epochs. We see that
such similar configurations frequently change their ranks, enabling us to calculate a meaningful value
of ϵ parameter.
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Figure 4: Analysis of what the learning curves look like for a random sample of 256 configurations.
We see that the learning curves are relatively well-behaved (especially the ones at the top), and any
exceptions are rare.

G INVESTIGATION OF HOW VALUE ϵ EVOLVES

We analyse how the value of ϵ that is used for calculating soft ranking develops during the HPO
process. We show the results in Figure 5 for the three different datasets available in NASBench201
(taking one seed). The results show the obtained values of ϵ are relatively small.
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Figure 5: Analysis of how the value of ϵ evolves as we receive additional updates about the perfor-
mances of candidate configurations. Note that most of the updates are obtained in the top rung due to
how multi-fidelity methods work.
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H INVESTIGATION OF PERCENTILE VALUE N

We investigate the impact of using various percentile values N used for estimating the value of ϵ in
Table 15. The intuition is that we want to take some value on the top end rather than the maximum
distance in case there are some outliers. We see that the results are relatively stable, even though
larger value of N can lead to further speedups. However, from the point of view of a practitioner we
would still take N = 90 in case there are any outliers in the specific new use-case.

Table 15: NASBench201 results. PASHA leads to large improvements in runtime, while achieving
similar accuracy as ASHA. Investigation of various percentile values (N ) to use for calculating
parameter ϵ.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0
PASHA N = 100% 93.70 ± 0.61 1.0h ± 0.4h 3.0x 13.8 ± 19.5
PASHA N = 95% 93.64 ± 0.59 1.0h ± 0.4h 2.8x 15.4 ± 19.5
PASHA N = 90% 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0
PASHA N = 80% 93.86 ± 0.53 1.5h ± 0.6h 1.9x 60.9 ± 60.7
One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0
Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0
PASHA N = 100% 71.84 ± 1.41 0.8h ± 0.1h 3.9x 6.6 ± 2.9
PASHA N = 95% 71.84 ± 1.41 0.8h ± 0.1h 3.9x 6.6 ± 2.9
PASHA N = 90% 71.91 ± 1.32 0.9h ± 0.3h 3.5x 12.6 ± 19.2
PASHA N = 80% 71.78 ± 1.31 1.2h ± 0.6h 2.6x 56.0 ± 76.2
One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0
Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0
PASHA N = 100% 45.09 ± 1.61 2.3h ± 0.4h 3.7x 7.0 ± 2.8
PASHA N = 95% 45.26 ± 1.58 2.4h ± 0.4h 3.7x 7.4 ± 2.7
PASHA N = 90% 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1
PASHA N = 80% 45.36 ± 1.38 3.6h ± 1.2h 2.5x 40.5 ± 47.7
One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0
Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0
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