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Abstract
Multi-view clustering (MVC) leverages comple-
mentary information from diverse data sources
to enhance clustering performance. However, its
practical deployment in distributed and privacy-
sensitive scenarios remains challenging. Feder-
ated multi-view clustering (FMVC) has emerged
as a potential solution, but existing approaches
suffer from substantial limitations, including ex-
cessive communication overhead, insufficient
privacy protection, and inadequate handling of
missing views. To address these issues, we
propose Efficient Federated Incomplete Multi-
View Clustering (EFIMVC), a novel framework
that introduces a localized optimization strat-
egy to significantly reduce communication costs
while ensuring theoretical convergence. EFIMVC
employs both view-specific and shared anchor
graphs as communication variables, thereby en-
hancing privacy by avoiding the transmission
of sensitive embeddings. Moreover, EFIMVC
seamlessly extends to scenarios with missing
views, making it a practical and scalable solu-
tion for real-world applications. Extensive ex-
periments on benchmark datasets demonstrate
the superiority of EFIMVC in clustering ac-
curacy, communication efficiency, and privacy
preservation. Our code is publicly available at
https://github.com/Tracesource/EFIMVC.

1. Introduction
Multi-view clustering (MVC) has garnered significant at-
tention in the field of unsupervised learning, primarily due
to the increasing availability of diverse data from various
sources or perspectives (Cui et al., 2024a; Liang et al., 2023;
Liu et al., 2021). Unlike traditional clustering methods,

1College of Computer Science and Technology, National Uni-
versity of Defence Technology, Changsha, China 2Academy of
Military Sciences, Beijing, China. Correspondence to: Xinwang
Liu <xinwangliu@nudt.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

which typically operate on a single data representation,
MVC integrates complementary and consensus informa-
tion from multiple views, thereby significantly enhancing
clustering robustness and accuracy (Yang et al., 2022; Wang
et al., 2013; Pan & Kang, 2021; Wan et al., 2024a). Over
the past decade, numerous MVC approaches have been de-
veloped, refining performance from different perspectives
(Sun et al., 2024; Cui et al., 2024b; Wan et al., 2024b).

Despite these advancements, most existing MVC methods
assume a centralized data storage paradigm. In practical
applications, however, multi-view data are often distributed
across multiple clients due to privacy concerns, regulatory
constraints, or logistical limitations (Che et al., 2022; Huang
et al., 2022). Direct data sharing among clients is typically
infeasible, making traditional MVC approaches unsuitable
for such scenarios. To bridge this gap, Federated Multi-View
Clustering (FMVC) has been introduced, combining i (FL)
with MVC to enable privacy-preserving, distributed clus-
tering (Feng et al., 2024b; Chen et al., 2024). For instance,
Feng et al. (Feng et al., 2024a) integrated matrix factor-
ization and K-Means clustering within a federated learning
framework, while Jiang et al. (Jiang et al., 2024) proposed
contrastive learning-based local-global model alignment to
handle data heterogeneity in FMVC.

However, existing FMVC methods still face several criti-
cal challenges: 1) High Communication Overhead. All
existing FMVC frameworks rely on iterative exchanges of
client- and server-side variables within tightly coupled op-
timization processes. Each update step necessitates a com-
munication round, making the communication cost propor-
tional to the number of optimization iterations. Furthermore,
some methods transmit large n× n similarity matrices, ex-
acerbating bandwidth consumption. 2) Limited Privacy
Protection. Most FMVC approaches employ either embed-
ded representations or sample-level similarity matrices as
communication variables. While embeddings encapsulate
feature information, similarity matrices reveal the intrinsic
relationships between samples. Both contain substantial
view-specific private information, posing privacy risks. 3)
Ineffective Handling of Missing Views. Real-world multi-
view data often suffer from missing modalities due to sensor
failures, transmission errors, or incomplete data collection.
Many existing FMVC methods assume complete multi-view
data, rendering them ineffective in handling missing views.
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Figure 1. Overview of the proposed EFIMVC framework. EFIMVC follows an alternating local optimization strategy between clients and
the server. Clients perform single-view anchor learning and anchor graph construction, guided by the global anchor graph from the server.
The optimized anchor graph and anchor relationship matrix are then sent to the server, which aligns and fuses the received anchor graphs
through local optimization. The updated global anchor graph and alignment matrices are transmitted back to clients, and this process
continues until global convergence.

To tackle these challenges, we propose Efficient Feder-
ated Incomplete Multi-View Clustering (EFIMVC), a novel
FMVC framework designed to enhance communication effi-
ciency, privacy protection, and robustness to missing views.
As illustrated in Figure 1, EFIMVC introduces a federated
optimization strategy that confines variable updates to local
environments, thereby reducing communication overhead
while ensuring theoretical convergence. By leveraging view-
specific and shared anchor graphs as communication vari-
ables, EFIMVC mitigates bandwidth demands and avoids
the direct transmission of sensitive embeddings, enhancing
privacy protection. Furthermore, we introduce a dual-anchor
alignment mechanism based on structural and feature consis-
tency to mitigate anchor misalignment during graph fusion.
Finally, EFIMVC seamlessly extends to incomplete multi-
view scenarios, offering a practical solution for real-world
federated clustering tasks.

The key contributions of EFIMVC are summarized as fol-
lows:

• We propose a novel federated optimization framework
that minimizes communication overhead by confining
variable updates to local environments, significantly
improving communication efficiency without sacrific-
ing clustering performance.

• To enhance privacy, EFIMVC employs anchor graphs
as communication variables, avoiding the transmission
of sensitive embeddings or sample-level similarity ma-
trices, thereby reducing privacy risks.

• We introduce a dual-anchor alignment mechanism to

address anchor misalignment during graph fusion, im-
proving the robustness and reliability of clustering re-
sults.

• EFIMVC effectively handles missing views, ensuring
robust clustering performance even in the presence of
incomplete multi-view data.

2. Related Work
2.1. Federated Multi-view Clustering

Federated Multi-View Clustering has emerged as a promis-
ing approach for exploring the cluster structure of multi-
view data distributed across multiple clients while preserv-
ing data privacy (Yan et al., 2024; Chen et al., 2023). Exist-
ing FMVC methods can be categorized based on the type
of communication variables exchanged between clients and
the server.

One common approach is to transmit embedded representa-
tions, where each client sends view-specific embeddings of
size n × d (with n as the sample size and d as the feature
dimension). Chen et al. (Chen et al., 2024) proposed a
framework integrating local collaborative contrastive learn-
ing and global weighted aggregation to address challenges
posed by heterogeneous hybrid-view scenarios. Similarly,
Yan et al. (Yan et al., 2024) introduced a heterogeneous
graph neural network and global pseudo-labeling strategy
to mitigate view incompleteness and feature heterogeneity,
demonstrating the effectiveness of embedding-based com-
munication. However, this approach risks privacy leakage
since embeddings may retain sensitive feature information.
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Another strategy involves transmitting similarity matrices
of size n× n, encoding the structural relationships between
samples. For instance, Wang et al. (Wang et al., 2020) pro-
posed a federated multi-view spectral clustering method that
leverages similarity matrices to enable distributed spectral
clustering. While this approach helps retain local struc-
ture information, the transmission of full similarity matrices
can lead to excessive communication costs, especially for
large-scale datasets.

A third category of FMVC methods exchanges partition
matrices, where each client transmits a clustering partition
matrix of size n×k (with k as the number of clusters). Feng
et al. (Feng et al., 2024a) integrated matrix factorization
and multi-view k-means to address the separation between
feature extraction and clustering. Feng et al. (Feng et al.,
2024b) further proposed a tensor factorization-based FMVC
framework to enhance multi-view data integration and im-
prove clustering stability. Partition matrix-based methods
often strike a balance between privacy and communication
efficiency, but they may still struggle with view inconsisten-
cies and incomplete data.

Despite these advancements, existing FMVC methods suffer
from high communication overhead, privacy risks due to the
transmission of sensitive information, and poor handling of
missing views. Addressing these challenges remains a key
focus of federated multi-view clustering research.

2.2. Anchor-based Multi-view Clustering

To mitigate the computational complexity associated with
large-scale multi-view clustering, anchor-based MVC meth-
ods have been proposed (Wang et al., 2023; Yan et al., 2022;
Zhang et al., 2023b). These methods construct a compact set
of representative anchors to approximate the data structure,
significantly reducing the cost of similarity computations
(Liu et al., 2022; Zhang et al., 2023a).

Traditional anchor-based MVC methods rely on sampling-
based anchor selection strategies (Qiang et al., 2021; Shi
et al., 2021; Yang et al., 2020). More recent approaches fo-
cus on learning anchor representations to improve clustering
quality (Liu et al., 2024; Ma et al., 2024; Wu et al., 2023;
Qin et al., 2024). By replacing pairwise sample similari-
ties with anchor-sample relationships, these methods reduce
both storage and computational overhead, making them
particularly well-suited for scalable clustering applications.

Unlike traditional MVC approaches that establish relation-
ships among all samples, anchor-based methods optimize
clustering by focusing only on anchor relationships. This
facilitates efficient multi-view fusion and clustering while
maintaining high accuracy and robustness. In the context
of federated learning, integrating anchor-based clustering
with FMVC can further reduce communication overhead

and enhance privacy protection.

3. Methodology
3.1. Motivation

Federated Multi-View Clustering aims to alleviate the com-
putational burden on individual clients by distributing the
learning process across multiple nodes while preserving
data privacy. Unlike traditional multi-view clustering ap-
proaches, FMVC introduces significant communication
overhead, which becomes a critical bottleneck affecting
its efficiency. The communication overhead is determined
by two key factors: communication frequency, i.e., the num-
ber of communication rounds, and communication band-
width, i.e., the amount of data transmitted per round. Ex-
isting FMVC methods generally transmit local variables
immediately after each update, leading to a communication
frequency proportional to the number of optimization iter-
ations. Regarding communication bandwidth, most meth-
ods fall into three categories: transmission of embedded
representations, similarity matrices, or clustering partition
matrices. While embedded representations are more space-
efficient than similarity matrices, they can directly expose
local client data, posing a risk of privacy leakage. Fur-
thermore, existing FMVC methods are primarily designed
for complete multi-view data and struggle to handle sce-
narios with missing views. To address these limitations,
we propose an Efficient Federated Incomplete Multi-View
Clustering (EFIMVC) framework that effectively balances
communication efficiency, privacy preservation, and robust-
ness to missing views

3.2. Local Learning in Clients

To mitigate the high communication frequency in existing
FMVC methods, we introduce a novel framework that de-
couples local optimization from global optimization. In our
approach, both clients and the server maintain their respec-
tive optimization objectives. Instead of transmitting updates
at every iteration, communication occurs only after local
optimization converges to a stable state, reducing unneces-
sary transmissions. Additionally, to lower communication
bandwidth, we design the transmitted variables as anchor
graphs, where the view-specific encoding of these graphs
safeguards client data privacy.

Specifically, given the data X(v) ∈ Rdv×n for the v-th view,
the local objective function on the corresponding client is
formulated as follows.

min
A(v),Z(v)

∥∥X(v)G(v) −A(v)Z(v)G(v)
∥∥2
F
,

s.t. (Z(v))⊤1 = 1,Z(v) ≥ 0,
(1)

where A(v) ∈ Rdv×m represents the anchor matrix, and

3



Efficient Federated Incomplete Multi-View Clustering

Z(v) ∈ Rm×n is the incomplete anchor graph that encodes
the relationships between anchors and the available sam-
ple points. The column-sum constraint ensures that each
sample can be expressed as a linear combination of all an-
chors. Additionally, an index matrix G(v) ∈ {0, 1}n×nv

is introduced to indicate the positions of available samples
in missing views (Wang et al., 2022). Importantly, Eq. (1)
leverages only local single-view information.

To further guide the learning process with global informa-
tion, we incorporate a federated alignment term that en-
forces consistency between local and global anchor graphs
as follows,

min
A(v),Z(v)

∥∥X(v)G(v) −A(v)Z(v)G(v)
∥∥2
F

+λ
∥∥P(v)ZG(v) − Z(v)G(v)

∥∥2
F
,

s.t. (Z(v))⊤1 = 1,Z(v) ≥ 0,

(2)

where Z ∈ Rm×n denotes the global anchor graph, and
P(v) ∈ Rm×m is an alignment matrix ensuring structural
consistency across views. By enforcing dual alignment at
both the anchor and sample levels with the global anchor
graph Z, the learning of the local anchor graph Z(v) is
effectively guided.

Once the local learning process is completed, each client
computes an anchor similarity matrix S(v) ∈ Rm×m based
on the pairwise distances between anchor features. The
element of S(v)

i,j at the i-th row and j-th column is calculated
as follows:

S
(v)
i,j = exp

(
−

∥∥∥A(v)
:,i −A

(v)
:,j

∥∥∥2

2

2σ2

)
. (3)

Finally, the learned anchor graph Z(v) and similarity matrix
S(v) are transmitted to the server for global fusion.

3.3. Global Fusion in Server

Upon receiving the anchor graphs from all clients, the server
aggregates them to construct a unified global anchor graph.
However, due to independent learning processes across dif-
ferent views, anchor misalignment naturally arises, neces-
sitating an additional alignment mechanism. To address
this issue, we introduce an alignment matrix P(v) to ensure
structural consistency between the global anchor graph and
view-specific anchor graphs:

min
Z,P(v)

V∑
v=1

∥∥P(v)ZG(v) − Z(v)G(v)
∥∥2
F
,

s.t. Z⊤1 = 1,Z ≥ 0, (P(v))⊤P(v) = I,

(4)

where G(v) extracts the columns corresponding to existing
points in each view to participate in the anchor graph fusion.

By ensuring both row and column alignment, the accuracy
of the fused information is guaranteed.

Additionally, inspired by manifold learning principles, we
enforce structural consistency by incorporating anchor sim-
ilarity constraints. Specifically, the similarity between an-
chors in each view should be preserved when aligning them
with the global anchor graph. This ensures that similar an-
chors maintain consistent clustering structures across views.
The local objective function in server is as follows,

min
Z,P(v)

V∑
v=1

∥∥P(v)ZG(v) − Z(v)G(v)
∥∥2
F

+β
∥∥(P(v)Z)i,: − (P(v)Z)j,:

∥∥2
2
S
(v)
i,j ,

s.t. Z⊤1 = 1,Z ≥ 0, (P(v))⊤P(v) = I.

(5)

From the perspective of anchor alignment, the first term
ensures row-level alignment by matching the structural sim-
ilarity between the unified and view-specific anchor graphs,
while the second term enforces structure-level alignment
using anchor similarity.

3.4. Optimization

Unlike previous approaches that alternately optimize all vari-
ables on both the client and server within the same frame-
work, our method ensures that variables at one end are trans-
mitted only after being optimized to their local optimum.
To achieve this, we propose two alternating optimization
algorithms to solve Eq. (2) and Eq. (5). In each iteration,
we optimize one variable while keeping the others fixed at
their values from the previous iteration.

3.4.1. OPTIMIZATION IN THE v-TH CLIENTS

Update A(v): Fixing Z(v), Eq. (2) is transferred to the
optimization problem related to A(v):

max
A(v)

Tr
(
A(v)C(v)(A(v))⊤ − 2(A(v))⊤D(v)

)
, (6)

where C(v) = Z(v)B(v)(Z(v))⊤, D(v) =
X(v)B(v)(Z(v))⊤,B(v) = G(v)(G(v))⊤. By taking
the derivative of Eq. (6) with respect to A(v) and setting it
to zero, we get the closed-form solution for A(v) as follows:

A(v) = D(v)C(v)−1
. (7)

Update Z(v): Fixing A(v), We get the optimization problem
related to Z(v) as follows:

min
Z(v)

Tr
(
(Z(v))⊤(A(v))⊤A(v)Z(v)B(v) + λ(Z(v))⊤Z(v)B(v)

−2((X(v))⊤A(v) + λ(P(v)Z)⊤)Z(v)B(v))⊤
)
,

s.t. (Z(v))⊤1 = 1,Z(v) ≥ 0.
(8)
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Algorithm 1 The proposed EFIMVC

Input: Incomplete multi-view datasets {X(v)}Vv=1 and the
corresponding index matrix {G(v)}Vv=1 on V local
clients, the number of anchors m, the parameter λ,
β, and the number of clusters k.

Output: Clustering results.

// Initialization

Initialize A(v), Z(v), P(v) and Z;
while not converged do

// Clients Optimization
for v = 1 → V do

while not converged do
Update A(v) with Eq. (7);
Update Z(v) with Eq. (10);

Calculate S(v) according Eq. (3);
Send Z(v) and S(v) to server;

// Server Optimization
while not converged do

for v = 1 → V do
Update P(v) with Eq. (12);

Update Z with Eq. (14);
for v = 1 → V do

Send P(v) and Z to the v-th client.

// Final Results Generation
Perform k-means on the left singular vector of Z.

To facilitate the identification of missing samples, we define
an indicator vector θ(v) as follows,

θ
(v)
j =

{
1, j-th sample exists in the v-th view,
0, else. (9)

Note that in Eq. (8), each column of Z(v) is independent,
and only the columns corresponding to existing samples
need to be optimized. For all θ(v)j = 1, we optimize Z(v)

:,j as
follows:

min
Z

(v)
:,j

(Z
(v)
:,j )

⊤W(v)Z
(v)
:,j − 2tvjZ

(v)
:,j ,

s.t. (Z(v)
:,j )

⊤1 = 1,Z
(v)
:,j ≥ 0,

(10)

where W(v) = (A(v))⊤A(v) + λI, tvj = (X
(v)
:,j )

⊤A(v) +

λ(P(v)Z)⊤:.j . Eq. (10) is a standard quadratic programming
problem, which we solve using existing software packages.

3.4.2. OPTIMIZATION IN SERVER

Update P(v): Fixing Z, P(v) in each view is independent,
we optimize it as follows:

min
P(v)

Tr
(
β(P(v))⊤L(v)P(v)ZZ⊤ − (P(v))⊤Z(v)B(v)Z⊤) ,

s.t. (P(v))⊤P(v) = I.
(11)

Table 1. Datasets description.

Dataset n V k dv(v = 1, . . . , V )

ProteinFold 694 12 27 27/. . . /27
WebKB 1051 2 2 334/2949

100Leaves 1600 3 100 64/64/64
CCV 6773 3 20 20/20/20

YTF10 38654 4 10 512/576/640/944
CIFAR10 50000 3 10 512/1024/2048
MNIST 60000 3 10 64/342/1024

To solve the optimization problem in Eq. (11), we reformu-
late it into the following equivalent form:

max
P(v)

Tr
(
β(P(v))⊤(γmaxI− L(v))P(v)ZZ⊤

+(P(v))⊤Z(v)B(v)Z⊤),
s.t. (P(v))⊤P(v) = I,

(12)

where γmax is the largest eigenvalue of L(v). In the ap-
pendix, we will provide details on how to solve Eq. (12)
based on the approach outlined in (Zhang et al., 2020).

Update Z: Fixing P(v), we have the following optimization
problem:

min
Z

V∑
v=1

Tr
(
Z⊤ZB(v) + 2βZ⊤(P(v))⊤L(v)P(v)Z

−2(Z(v))⊤P(v)ZB(v)
)
,

s.t. Z⊤1 = 1,Z ≥ 0.
(13)

Next, we derive the optimization problem for the j-th col-
umn of Z as follows:

min
Z:,j

Z⊤
:,jHZ:,j − 2rjZ:,j ,

s.t. Z⊤
:,j1 = 1,Z:,j ≥ 0,

(14)

where H =
∑V

v=1 θ
(v)
j I + 2β(P(v))⊤L(v)P(v), rj =∑V

v=1 θ
(v)
j ((Z(v))⊤P(v))j,:. Similarly, we solve Eq. (14)

with the quadratic programming package.

The optimization process of EFIMVC is presented in Al-
gorithm 1. In the appendix, we will sequentially prove the
convergence of the objective function on both the client
and server. Additionally, we will demonstrate that, despite
independent optimization at each end, the overall objective
function is still convergent.

4. Experiment
4.1. Experimental Setup

Employed Datasets. We conduct experiments on seven
multi-view datasets: ProteinFold, WebKB, 100Leaves, CCV,
YTF10, CIFAR10, and MNIST, with detailed descriptions
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Table 2. Clustering performance comparison of four incomplete MVC methods and four FIMVC methods on seven datasets. The best is
marked in bold and underlined, the second best is marked in bold.

Datasets FIMVC SCBGL DVSAI DAQINT FMVC HFMVC FMCSC FedMVFPC Proposed
ACC (%)

ProteinFold 28.15 28.33 32.36 29.62 16.73 23.02 23.85 19.39 31.71
WebKB 91.51 75.21 68.64 78.09 81.78 57.64 58.27 75.70 90.64

100Leaves 47.12 47.00 53.73 52.15 10.24 35.09 47.97 15.94 72.88
CCV 19.23 19.33 20.98 19.14 - 16.24 20.27 17.62 20.04

YTF10 77.80 80.55 78.38 80.27 - 42.19 17.69 47.26 84.95
Cifar10 96.56 96.50 95.83 95.22 - 57.65 18.73 69.80 96.62
MNIST 98.70 98.28 98.64 98.59 - 56.18 60.30 63.68 98.66

NMI (%)
ProteinFold 36.22 36.15 39.95 36.75 19.05 32.05 32.96 21.59 40.33

WebKB 48.89 16.60 16.44 26.03 15.16 3.36 2.73 9.15 50.62
100Leaves 70.37 70.36 74.24 73.93 30.14 63.77 70.42 41.33 84.76

CCV 14.93 14.89 15.95 15.14 - 12.74 15.72 12.40 15.66
YTF10 80.22 81.58 83.79 82.70 - 39.76 6.09 47.02 83.86
Cifar10 91.38 91.23 89.98 88.75 - 55.47 7.60 65.82 91.52
MNIST 96.17 95.26 95.95 95.79 - 53.21 58.90 60.89 96.04

Purity (%)
ProteinFold 33.67 33.85 37.01 34.87 19.07 27.63 33.14 22.44 37.95

WebKB 91.51 78.12 79.03 81.92 81.78 57.04 61.28 78.12 90.64
100Leaves 49.41 49.39 55.97 54.49 11.90 43.72 54.41 16.08 74.79

CCV 22.48 22.77 23.73 22.08 - 18.93 22.16 19.57 23.45
YTF10 81.19 83.72 82.83 85.01 - 47.63 19.84 50.97 87.14
Cifar10 96.56 96.46 95.83 95.22 - 58.44 19.91 69.89 96.62
MNIST 98.70 98.28 98.64 98.59 - 60.09 68.81 64.22 98.66

Fscore (%)
ProteinFold 15.53 15.34 18.98 16.21 9.19 12.16 13.52 10.48 18.71

WebKB 88.66 69.02 64.38 74.34 79.99 58.62 59.11 71.44 86.80
100Leaves 31.77 31.68 38.48 37.60 2.56 19.21 33.74 6.68 61.84

CCV 11.27 11.21 12.08 11.01 - 10.26 11.45 11.46 11.79
YTF10 74.23 77.02 77.27 77.54 - 32.41 13.09 36.34 79.57
Cifar10 93.35 93.18 91.99 90.85 - 46.00 13.33 59.03 93.46
MNIST 97.44 96.63 97.30 97.19 - 45.88 50.73 48.67 97.36

provided in Table 1. Following the definition in (Wang
et al., 2022), we generate nine versions of each dataset with
missing rates increasing in 10% increments, ensuring that
no sample is entirely missing from all views.

Compared methods. Since no existing federated multi-
view clustering methods specifically address the incomplete
multi-view scenario, we compare EFIMVC with two cate-
gories of baseline methods. The first includes incomplete
multi-view clustering algorithms: FIMVC (Liu et al., 2022),
SCBGL (Zhao et al., 2023), DSVAI (Yu et al., 2024a), and
DAQINT (Yu et al., 2024b). The second comprises feder-
ated multi-view clustering methods: FMVC (Feng et al.,
2024a), HFMVC (Jiang et al., 2024), FMCSC (Chen et al.,
2024), and FedMVFPC (Hu et al., 2023).

Implementation details. For all baselines, we follow the

parameter settings from their corresponding literature and
evaluate them on datasets with different missing rates, re-
porting the final averaged results. Specifically, for federated
multi-view clustering algorithms that cannot handle missing
views, we fill the missing entries with zeros before inputting
the data. Additionally, for methods that obtain final results
through k-means, we repeat the clustering process 20 times
and report the average performance to mitigate the impact
of initialization randomness.

4.2. Performance Evaluation

We evaluate EFIMVC against eight state-of-the-art algo-
rithms across seven datasets, as summarized in Table 2. The
first four baselines are designed for incomplete multi-view
clustering, while the latter four are tailored for federated
learning. EFIMVC achieves competitive or superior results
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Figure 2. The clustering performance curves of different methods across six datasets under varying missing rates (ACC).
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Figure 3. The objective function value curves of the client, server,
and overall optimization process with respect to the number of
iterations.

compared to both sets of methods, especially in handling
incomplete multi-view data.

• Compared to state-of-the-art incomplete MVC meth-
ods designed for centralized storage of multi-view data,
EFIMVC achieves comparable or even superior clus-
tering performance. Specifically, on the 100Leaves
and YTF10 datasets, EFIMVC outperforms the best
incomplete MVC method by 35.6% and 5.5% in terms
of ACC, respectively.

• Compared to four federated multi-view clustering

(a) ProteinFold (b) WebKB

Figure 4. Sensitivity analysis of λ and β on ProteinFold and We-
bKB. Others are displayed in appendix.

methods, which struggle to handle missing multi-
view data (requiring zero-padding for missing val-
ues during experiments), EFIMVC demonstrates su-
perior clustering accuracy. On the ProteinFold and
WebKB datasets, EFIMVC outperforms the second-
best method by 32.9% and 19.7% in terms of ACC,
respectively.

• In Figure 2, we compare the ACC curves of EFIMVC
with other methods under varying missing view rates.
EFIMVC consistently achieves superior results across
all missing rates, maintaining stable accuracy even as
the missing view rate increases. This highlights the
robustness of EFIMVC in both incomplete data and
federated learning scenarios.

4.3. Ablation Study

To assess the effectiveness of key components in EFIMVC,
we conduct an ablation study by removing (1) the regular-
ization term by setting λ = 0, (2) the feature alignment term
by setting β = 0, and (3) anchor alignment by setting P(v)

7
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Table 3. Ablation study on different modules.
Datasets ProteinFold WebKB 100Leaves CCV YTF10 Cifar10 MNIST

ACC (%)
lambda=0 30.80 78.68 64.09 17.96 79.44 96.01 98.51

beta=0 30.85 90.36 68.12 14.85 78.42 96.54 98.64
P=I 20.18 73.61 54.46 14.82 77.04 82.70 91.25

Proposed 31.71 90.64 72.88 20.04 84.95 96.62 98.66
NMI (%)

lambda=0 39.87 29.43 79.91 12.90 81.70 90.30 95.73
beta=0 40.17 49.78 82.10 10.77 79.71 91.39 95.99

P=I 26.96 22.66 74.86 10.96 77.88 73.91 88.10
Proposed 40.33 50.62 84.76 15.66 83.86 91.52 96.04

Purity (%)
lambda=0 37.79 82.34 66.66 21.48 84.50 96.01 98.51

beta=0 37.83 90.36 70.44 18.54 81.47 96.54 98.64
P=I 25.21 81.60 56.83 18.70 80.21 83.19 91.92

Proposed 37.95 90.64 74.79 23.45 87.14 96.62 98.66
Fscore (%)

lambda=0 17.81 73.21 50.67 10.34 74.94 92.28 97.07
beta=0 17.79 86.42 55.60 9.06 73.51 93.32 97.32

P=I 9.01 69.83 39.62 9.05 72.42 73.50 87.56
Proposed 18.71 86.80 61.84 11.79 79.57 93.46 97.36

as the identity matrix. As shown in Table 3, removing any
module degrades clustering performance. Specifically, re-
moving the regularization term results in suboptimal anchor
graph learning, highlighting the importance of guidance
by global anchor graph. Completely removing the anchor
alignment mechanism results in a significant performance
drop due to misaligned anchor graph fusion on the server.
In contrast, omitting the feature alignment term leads to a
more gradual decline in performance.

4.4. Convergence Analysis

In Figure 3, we present the curves showing the objective
function values on the client, on the server, and the overall
objective function values as a function of the number of
iterations. All three objective function values monotonically
decrease and converge to stable values within 30 iterations.
Notably, we observe that the overall objective function con-
verges more quickly than the ones on the client and server,
indicating reduced communication overhead.

4.5. Sensitivity Analysis

EFIMVC has two hyperparameters, λ and β, with search
ranges of [0.001, 0.1, 1, 100]. The performance of EFIMVC
under different combinations of these hyperparameters are
shown in Figure 4. Specifically, on ProteinFold, setting λ =
0.001 yields the best clustering performance, while on the

WebKB dataset, λ = 0.1 provides the optimal results. When
λ is fixed, the algorithm’s performance is not significantly
affected by changes in β.

5. Conclusion
In conclusion, we propose EFIMVC, a novel federated
multi-view clustering method that effectively addresses com-
munication overhead, privacy preservation, and incomplete
multi-view data in federated learning. By leveraging a feder-
ated optimization framework and anchor graphs for privacy,
EFIMVC achieves strong clustering performance while min-
imizing communication costs. It also demonstrates robust
performance in handling incomplete data, making it suitable
for real-world applications. Experimental results validate
the superiority of EFIMVC over existing methods, offering
a practical solution for federated multi-view clustering.
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A. Appendix
A.1. Algorithm for Solving Eq. (12)

Define C = γmaxI− L(v), D = ZZ⊤ and H = Z(v)B(v)Z⊤, Eq. (12) can be rewrite as follows,

max
P(v)

Tr
(
(P(v))⊤CP(v)D+ (P(v))⊤H

)
,

s.t. (P(v))⊤P(v) = I.
(15)

Theorem A.1. Given Z ∈ Rm×n, ZZ⊤ is a positive semidefinite matrix.

Proof. For any vector x ∈ Rm, we have

x⊤ (ZZ⊤)x = x⊤

 n∑
j=1

Z:,jZ
⊤
:,j

x =

n∑
j=1

x⊤Z:,jZ
⊤
:,jx. (16)

Since squares of real numbers are always non-negative, we have

x⊤ (ZZ⊤)x =

n∑
j=1

(x⊤Z:,j)
2 ≥ 0. (17)

Since x⊤ (ZZ⊤)x ≥ 0 for all x, the matrix ZZ⊤ is positive semi-definite.

According to (Nie et al., 2014), given two positive semidefinite matrices C and D, the function f(P(v)) =
Tr
(
(P(v))⊤CP(v)D+ (P(v))⊤H

)
is convex. The optimal solution of max

(P(v))⊤P(v)=I
f(P(v)) is equal to solve the fol-

lowing problem,
max
P(v),Q

Tr
(
(P(v))⊤Q

)
,

s.t. (P(v))⊤P(v) = I,
(18)

where Q = f ′(P(v)) = 2CP(v)D+H. Eq. (18) is easy to solved by iteratively optimizing P(v) and Q until converge.

A.2. Theoretical Analysis for Convergence

In this section, we first analyse the convergence of the optimization process on the client side, followed by the convergence
analysis on the server side, and finally, we provide the overall convergence analysis of the algorithm.

First, the objective function of the v-th client is defined as follows:

Jc

(
A(v),Z(v)

)
=
∥∥X(v)G(v) −A(v)Z(v)G(v)

∥∥2
F
+ λ

∥∥P(v)ZG(v) − Z(v)G(v)
∥∥2
F
, (19)

When solving Eq. (19), we iteratively optimize each variable while keep others fixed. The optimal variables in the tc
iteration are defined as A(v)

tc ,Z
(v)
tc . In the tc + 1 iteration, we optimize A(v) with fixed Z

(v)
tc . We have

Jc

(
A

(v)
tc ,Z

(v)
tc

)
≥ Jc

(
A

(v)
tc+1,Z

(v)
tc

)
. (20)

Then we optimize Z(v) with fixed A
(v)
tc+1. We have

Jc

(
A

(v)
tc+1,Z

(v)
tc

)
≥ Jc

(
A

(v)
tc+1,Z

(v)
tc+1

)
. (21)

Along with Eq. (20), we have
Jc

(
A

(v)
tc ,Z

(v)
tc

)
≥ Jc

(
A

(v)
tc+1,Z

(v)
tc+1

)
, (22)
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which indicates that the objective function of the v-th client is monotonically decreasing as the number of iterations increases.
Moreover, since the objective function is lower-bounded by 0, the optimization process on the v-th client is guaranteed to
converge.

Defining the objective function of the server as follows:

Js

(
Z,P(v)

)
=

V∑
v=1

∥∥P(v)ZG(v) − Z(v)G(v)
∥∥2
F
+ β

∥∥(P(v)Z)i,: − (P(v)Z)j,:
∥∥2
2
S
(v)
i,j . (23)

Similar to the previous analysis, let Zts and P
(v)
ts be the optimal variables at the ts-th iteration. Then, we can derive that

Js

(
Zts ,P

(v)
ts

)
≥ Js

(
Zts+1,P

(v)
ts+1

)
. (24)

The objective function value also decreases monotonically with the number of iterations. Moreover, since Eq. (23) is
lower-bounded by 0, the optimization process on the server is guaranteed to converge.

Finally, we defined the overall function of EFIMVC by combining Eq. (19) and Eq. (23) as follows,

Jo

(
A(v),Z(v),Z,P(v)

)
=

V∑
v=1

∥∥P(v)ZG(v) − Z(v)G(v)
∥∥2
F
+

V∑
v=1

1
λ

∥∥X(v)G(v) −A(v)Z(v)G(v)
∥∥2
F

+β
∥∥(P(v)Z)i,: − (P(v)Z)j,:

∥∥2
2
S
(v)
i,j .

(25)

After the to-th iteration optimization, the optimal variables are defined as A(v)
to ,Z

(v)
to ,Zto and P

(v)
to . According to Algorithm

1, in the to + 1-th round, Zto and P
(v)
to are transmitted from the server to the clients for the optimization of A(v) and Z(v).

After the alternating optimization process on each client, A(v)
to+1 and Z

(v)
to+1 are obtained. Based on Eq. (22), we have

Jo

(
A

(v)
to ,Z

(v)
to ,Zto ,P

(v)
to

)
− Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto ,P

(v)
to

)
= 1

λJc

(
A

(v)
to ,Z

(v)
to

)
− 1

λJc

(
A

(v)
to+1,Z

(v)
to+1

)
≥ 0.

(26)

Therefore,
Jo

(
A

(v)
to ,Z

(v)
to ,Zto ,P

(v)
to

)
≥ Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto ,P

(v)
to

)
. (27)

Then the optimal A(v)
to+1 and Z

(v)
to+1 are input to the server for optimizing Z and P(v). Based on Eq. (24), we have

Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto ,P

(v)
to

)
− Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto+1,P

(v)
to+1

)
= Js

(
Zto ,P

(v)
to

)
− Js

(
Zto+1,P

(v)
to+1

)
≥ 0,

(28)

which means
Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto ,P

(v)
to

)
≥ Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto+1,P

(v)
to+1

)
. (29)

By combining Eq. (27) and Eq. (29), we can derive that,

Jo

(
A

(v)
to ,Z

(v)
to ,Zto ,P

(v)
to

)
≥ Jo

(
A

(v)
to+1,Z

(v)
to+1,Zto+1,P

(v)
to+1

)
. (30)

A.3. Supplementary Experiments

A.3.1. MORE IMPLEMENTATION DETAILS

The parameter settings in EFIMVC are grid search. For both λ and β, we search them in [0.001, 0.1, 1, 100]. To evaluate all
methods, we employ four widely used metrics, including Accuracy (ACC), Normalized Mutual Information (NMI), Purity,
and Fscore. All experiments are conducted on a computer with Intel Core i9-10900X CPU and 64G RAM.
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A.3.2. DETAILS OF EMPLOYED DATASETS

• ProteinFold 1: A biological dataset containing structural representations of protein folding processes.

• WebKB 2: A text dataset collected from webpages of four universities, where views correspond to content and citations.

• 100Leaves 3: A leaf species classification dataset containing multi-view representations corresponding to shape
descriptor, fine scale margin and texture histogram.

• CCV 4: A video dataset consisting of different types of features extracted from frames, including SIFT, GIST, and deep
features.

• YTF10 5: A subset of the YouTubeFaces dataset, containing facial videos with multiple feature extraction methods
applied.

• CIFAR10 6: A well-known image dataset with different views extracted by ResNet18, ResNet50, and DenseNet121.

• MNIST 7: A handwritten digit dataset where views generated by different feature extractor.

A.3.3. DETAILS OF COMPARED METHODS

To evaluate the performance of EFIMVC, we compared it against eight state-of-the-art methods, categorized into two groups:
incomplete multi-view clustering methods and federated multi-view clustering methods.

Incomplete multi-view clustering methods:

• FIMVC (Liu et al., 2022): This method introduces view-independent anchors to enhance clustering efficiency while
preserving multi-view consistency. By constructing an anchor graph rather than a full pairwise graph, it reduces
computational complexity and scales well to large datasets.

• SCBGL (Zhao et al., 2023): It uses bipartite graph learning to construct consensus anchor matrices, enabling effective
feature alignment across views. A self-completion mechanism ensures robustness to missing views while maintaining
low computational overhead.

• DSVAI (Yu et al., 2024a): It proposes diverse view-shared anchors with multiple dimensions and sizes to better
represent multi-view data. A linear integration strategy ensures computational efficiency while improving clustering
accuracy in large-scale scenarios.

• DAQINT (Yu et al., 2024b): This method introduces an adaptive weighting mechanism to assign varying numbers of
anchors per view, eliminating manual tuning. It improves the flexibility of anchor-based clustering while balancing
computational complexity and clustering performance.

Federated multi-view clustering methods:

• FMVC (Feng et al., 2024a): It integrates matrix factorization and K-Means clustering within a federated learning
framework, enabling collaborative clustering without sharing raw data. The method preserves data privacy while
maintaining strong clustering performance.

• HFMVC (Jiang et al., 2024): This method addresses heterogeneity in federated multi-view clustering by employing
contrastive learning and local-global model alignment. It effectively adapts to both IID and non-IID data distributions,
ensuring more stable clustering results.

1http://mkl.ucsd.edu/dataset/protein-fold-prediction/
2http://www.cs.umd.edu/sen/lbc-proj/LBC.html
3https://www.archive.ics.uci.edu/dataset/241
4https://www.ee.columbia.edu/ln/dvmm/CCV/
5https://www.micc.unifi.it/resources/datasets/e-ytf/
6http://www.cs.toronto.edu/kriz/cifar.html
7http://yann.lecun.com/exdb/mnist/
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• FMCSC (Chen et al., 2024): It focuses on hybrid-view heterogeneity by leveraging contrastive learning to align
single-view and multi-view clients. A global-specific weighting aggregation strategy enhances consistency across
distributed clients, improving clustering quality.

• FedMVFPC (Hu et al., 2023): This method extends fuzzy clustering into a federated setting by introducing consensus
prototype learning. It ensures stability in clustering performance across federated clients while maintaining privacy-
preserving optimization.

A.3.4. CLUSTERING RESULTS ON MORE METRICS

Beyond the ACC results reported in the main paper, we present additional evaluation metrics including NMI, purity, and
Fscore. As shown in Figures 5, 6, and 7, EFIMVC consistently achieves superior results across all datasets and missing
rates. The improvements are particularly significant in high-missing-rate scenarios, demonstrating the robustness of our
approach in handling incomplete multi-view data.
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Figure 5. The clustering performance curves of different methods across six datasets under varying missing rates (NMI).
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Figure 6. The clustering performance curves of different methods across six datasets under varying missing rates (Purity).

A.3.5. PARAMETER ANALYSIS ON MORE DATASETS

To further investigate the impact of hyperparameters, we analyse the performance of EFIMVC under varying values of λ
and β on more datasets. Figure 8 illustrates how different parameter settings affect clustering performance across additional
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Figure 7. The clustering performance curves of different methods across six datasets under varying missing rates (Fscore).

(a) 100Leaves (b) CCV (c) YTF10 (d) Cifar10 (e) MNIST

Figure 8. Sensitivity analysis of λ and β on other datasets.

datasets, including 100Leaves, CCV, YTF10, CIFAR10, and MNIST. The results indicate that while EFIMVC is relatively
stable to changes in β, setting λ too high or too low can negatively impact clustering accuracy. Dataset-specific tuning is
thus recommended for optimal results.
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