
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRIPLE-BERT: DO WE REALLY NEED MARL FOR OR-
DER DISPATCH ON RIDE-SHARING PLATFORMS?

Anonymous authors
Paper under double-blind review

ABSTRACT

On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-
time challenge of bundling and matching passengers—each with distinct origins
and destinations—to available vehicles, all while navigating significant system
uncertainties. Due to the extensive observation space arising from the large number
of drivers and orders, order dispatching, though fundamentally a centralized task,
is often addressed using Multi-Agent Reinforcement Learning (MARL). However,
independent MARL methods fail to capture global information and exhibit poor
cooperation among workers, while Centralized Training Decentralized Execution
(CTDE) MARL methods suffer from the Curse of Dimensionality (CoD). To
overcome these challenges, we propose Triple-BERT, a centralized framework
designed specifically for large-scale order dispatching on ride-sharing platforms
based on Single Agent Reinforcement Learning (SARL). Built on a variant TD3,
our approach addresses the vast action space through an action decomposition
strategy that breaks down the joint action probability into individual driver action
probabilities. To handle the extensive observation space, we introduce a novel
BERT-based network, where parameter reuse mitigates parameter growth as the
number of drivers and orders increases, and the attention mechanism effectively
captures the complex relationships among the large pool of driver and orders.
We validate our method using a real-world ride-hailing dataset from Manhattan.
Triple-BERT achieves approximately an 11.95% improvement over current state-
of-the-art methods, with a 4.26% increase in served orders and a 22.25% reduction
in pickup times. Our code, trained model parameters, and processed data are
publicly available at the anonymous repository https://anonymous.4open.
science/r/Triple-BERT. 1

1 INTRODUCTION

Ride-sharing platforms, such as Uber and Lyft, face the complex challenge of dynamically matching
passengers with distinct origins and destinations to available vehicles in real time. This task must
account for significant system uncertainties, including fluctuating demand, varying traffic conditions,
and the availability of drivers. As the volume of concurrent ride requests increases, these platforms
must efficiently allocate resources to minimize detours, reduce waiting times, and maximize customer
satisfaction and platform revenue. However, the inherently large and dynamically changing action and
observation spaces make this problem highly challenging for the operation of ride-sharing platforms.

Recently, Reinforcement Learning (RL) methods have shown great potential in addressing the
order dispatching problem in ride-sharing platforms. Model-free RL, in particular, enables agents
to autonomously learn optimal dispatching policies by interacting with the environment, without
requiring complex system modeling. This approach allows platforms to optimize multiple objectives,
including platform income, driver payments, and customer satisfaction. Despite these advantages,
applying RL to large-scale order dispatching introduces significant challenges. The vast action
and observation spaces, stemming from the large number of drivers and orders, make sufficient
exploration and efficient training difficult. Multi-Agent Reinforcement Learning (MARL) methods

1Do We Really Need MARL for Order Dispatch on Ride-Sharing Platforms? In summary: No, because we
developed a SARL method that achieves better global planning. However, yes, our method still requires MARL
for pre-training to establish a strong starting point for SARL.

1

https://anonymous.4open.science/r/Triple-BERT
https://anonymous.4open.science/r/Triple-BERT

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

have been widely adopted to address these challenges by decomposing the problem into smaller
subproblems for individual agents (drivers). Independent MARL methods, such as Independent
Double DQN (IDDQN) [1; 29; 53] and Independent SAC (ISAC) [64], are computationally efficient
but fail to capture global information and exhibit limited cooperation among agents. Graph Neural
Networks (GNNs) have been introduced to enable the network to capture neighboring information
for each agent, alleviating this issue to certain extent [23; 57]. Meanwhile, Centralized Training with
Decentralized Execution (CTDE) methods, such as QMIX [16] and Coordinated Policy Optimization
(CoPO) [54], struggle with the Curse of Dimensionality (CoD) when applied to large-scale scenarios
with thousands of agents, resulting in slow convergence and suboptimal performance. (Due to page
limitations, we provide a detailed review of ride-sharing methods and cooperative MARL approaches
in Appendix F.)

To address these limitations, this paper proposes a centralized Single-Agent Reinforcement Learning
(SARL) method, named Triple-BERT, tailored for large-scale order dispatching in ride-sharing
platforms. Triple-BERT introduces an action decomposition method that simplifies the joint action
probability into individual driver action probabilities, enabling each driver to make independent
decisions while maintaining global coordination. The method leverages TD3 [12] for optimization,
with modifications to the actor optimization process via policy gradient [46] to better suit the ride-
sharing context. To handle the extensive observation space, we design a novel BERT-based [8]
neural network architecture. This network employs bi-directional self-attention to effectively capture
complex relationships between drivers and orders, while its parameter reuse mechanism prevents
parameter explosion as the number of drivers and orders increases. Additionally, compared to MARL,
SARL faces a unique challenge of sample scarcity, as the records of multiple agents are merged into
a single training stream. To address this, we propose a two-stage training strategy, where feature
extractors are pre-trained using a MARL approach to learn general embedding capabilities, followed
by centralized fine-tuning. The main contributions of this paper can be summarized as follows:

• We introduce Triple-BERT, which is the first centralized framework for large-scale order dispatching
on ride-sharing platforms based on a variant centralized TD3. This framework addresses the
limitations of the observation space and the inefficiencies in cooperation among agents present
in conventional MARL-based methods. To tackle the large action space inherent in the matching
problem of order dispatching tasks, we propose an action decomposition method that breaks down
the joint action probability into individual driver action probabilities. Additionally, we propose
a two-stage training method to address the sample scarcity issue in SARL, where the feature
extractors are first trained using a MARL approach.

• To support the proposed RL framework in a large observation space, we develop a novel neural
network architecture based on BERT. This design leverages self-attention mechanisms to effectively
capture the relationships between drivers and orders. Furthermore, we incorporate a QK-attention
module to reduce computational complexity from multiplication to addition in the order dispatching
task, along with a positive normalization method to mitigate parameter redundancy issues.

• We validate the proposed method in the ride sharing scenario, using a real-world dataset of ride-
hailing trip records from Manhattan. Our method outperforms the MARL methods reported in
previous works, demonstrating approximately a 11.95% improvement over current state-of-the-art
methods, with a 4.26% increase in served orders and reductions of about 22.25% in pickup time.

2 PROBLEM SETUP

In this paper, we address the order dispatching task within on-demand ride sharing platform. We
consider a platform managing n drivers (hereafter referred to as workers), represented by the state
Wt = {w1,t, w2,t, . . . , wn,t}, where wi,t denotes the state of worker i at time t. At each time step,
the platform processes a set of orders, including newly arrived orders and any previously unassigned
orders, denoted as Ot = {o1,t, o2,t, . . . , omt,t}, where mt is the total number of orders at time
t. Since real-time performance is crucial in on-demand systems, the platform aims to bundle and
assign orders in a way that minimizes delivery time while maximizing the number of served orders.
Customers are assumed to be impatient; if an order is not acknowledged within a specified time
frame, customers will decline it. Moreover, late deliveries beyond the scheduled time may result in
customer complaints, potentially causing losses for the platform. The overall workflow is illustrated

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Workflow: At each time step, the worker and order pools update their states based on the
assignments made in the previous time step. Specifically, the order pool adds newly arrived orders
and removes overdue ones. For IDDQN, the Q-value of each worker-order pair is calculated, and
ILP is applied to maximize the global Q-value. For TD3, the probability of each worker-order pair is
computed, followed by the application of ILP to maximize the global assignment probability.

in Fig. 1, and the Markov Decision Process (MDP) is formulated as < S,A,R, P >, encompassing
the state, action, reward, and transition function, which will be detailed below:

(i) State: At timestep t, the state or observation can be represented as St = [Wt, Ot], consisting of
the states of workers and orders. For the order j to be assigned, the state oi,j includes the order’s
origin and destination, pickup time, and scheduled arrival time. For each worker i, the state wi,t
consists of the onboard orders Hi,t that are still unfinished, the current location, the residual capacity,
and the estimated time when he/she will be available to accept a new order. (Note that we assume if
a worker is en route to pick up a new order or if his/her capacity is full, he/she cannot serve a new
order.) Specifically, Hi,t is a sequence of orders Hi,t = {hi,1,t, hi,2,t, . . . , hi,ki,t,t}, where ki,t is the
number of onboard orders for worker i at time t and each order hi,k,t contains the same information
as the orders to be assigned oj,t.

(ii) Action: At each time t, the action can be represented as At = {a1,t, a2,t, . . . , an,t}, where each
ai,t is an mt-dimensional vector with at most one element set to 1, indicating which order is assigned
to worker i. The order dispatching task is particularly challenging due to two main factors: (i) the size
of the action space keeps changing over time because the number of orders mt varies dynamically
as new orders arrive and old orders are completed or canceled; (ii) the size of the action space is
extremely large for real systems. For instance, considering n = 1000 workers and mt = 10 orders,
the action space can reach approximately 1030. (A detailed proof is provided in Appendix A.) This
combination of an enormous action space and its continuously changing size significantly complicates
sufficient exploration and stable network convergence for standard RL methods.

(iii) Reward Function: We split the reward function for each worker, meaning each worker will
receive a reward ri,t+1 at time step t, and the global reward is the sum of each worker’s reward:
Rt+1 =

∑n
i=1 ri,t+1. The reward ri,t+1 can be calculated according to the following function:

ri,t+1 = R(si,t, ai,t) =
{
β1 + β2p

in
i,t − β3pouti,t − β4χi,t − β5ρi,t , |ai,t| = 1

0 , |ai,t| = 0
(1)

where β1 to β5 are non-negative weights representing the platform’s valuation of each term, pini,t and
pouti,t represent the income from customers and the payout to workers, respectively. The variables
χi,t and ρi,t represent the number of en-route orders that will exceed their scheduled time and the
additional travel time of all en-route orders when the assigned order is added to the scheduled route
of worker i at time t, respectively. This reward function is designed to comprehensively consider

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the interests of the platform, workers, and customers, mimicking the operation of a real-world ride
sharing platform. It is important to emphasize that pini,t and pouti,t are calculated based on the order
distance and the additional travel distance for the worker, respectively. When calculating travel time,
we will utilize the Traveling Salesman Problem (TSP) to optimize the worker’s route.

(iv) Transition Function: In our system, the reward is deterministic given the current state and action.
Therefore, the transition function is represented by P (St+1|St, At). In this study, the transition
probabilities are not explicitly modeled; instead, they are inferred through the model-free RL.

3 METHODOLOGY

Figure 2: Network Architecture: The network consists of three main components: the feature
extractor, the actor sub-network, and the critic sub-network. First, a worker encoder and an order
encoder are used to extract features from individual worker and order information, respectively. Then
an Actor BERT model captures the relationships between them and a QK-Attention module calculates
the selection probabilities for each worker-order pair. Finally, the fused features of the selected
worker-order pairs are input into two separate Critic BERT models for further information extraction,
and two Critic MLPs compute the Q-values, as TD3 requires two critics. (In this figure, the fused
sequence (input to Critic-BERT) represents workers 1, 3, 6, and n selecting orders 2, 3, 4, and m,
respectively.)

3.1 OVERVIEW

In this work, we aim to utilize centralized SARL to address the large-scale order dispatching task,
with the goal of enabling the model to fully leverage global information to enhance cooperation
among workers. To tackle the challenges of large action and observation spaces, we propose a novel
network architecture, as illustrated in Fig. 2. This architecture employs the BERT model [8] to
effectively extract the relationships between workers and orders using the self-attention mechanism.
Additionally, an improved QK-attention [67] is implemented to reduce the computational complexity
associated with the order dispatching task. Furthermore, we introduce an action decomposition
method that breaks down the choice probability of each action within the vast action space into
individual action probabilities for each worker selecting each order. Finally, to address the data
scarcity challenge in MARL, we propose a two-stage training method, as shown in Fig. 1. In the
first stage, we train the upstream layers of the network using the IDDQN approach, allowing them
to develop general feature extraction capabilities. Subsequently, we train the entire neural network
using centralized TD3 to realize better cooperation between workers.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 NETWORK ARCHITECTURE

The proposed network structure is shown as Fig. 2, which constists of three parts: encoders (embed
the worker and order information to a common feature space), actor sub-network (a BERT to
extract the relationship between different workers and orders and a QK-Attention to generate the
utility/probability of each worker-order pair), and critic sub-network (two BERT taking output of
actor BERT as input and output the Q-value respectively).

3.2.1 FEATURE EXTRACTORS

At each time step, the network takes the entire state St = [Wt, Ot] as input. We consider this as a
combination of two sequences: Wt and Ot. For each element wi,t and oj,t, we employ two distinct
encoders, referred to as the “Worker Encoder” and the “Order Encoder”, to embed them separately
into a feature space of the same dimension, allowing them to be input into a single BERT model.

Each worker state wi,t consists of two parts: an on-board order sequence and other non-sequence
information. For the order sequence, a bi-directional LSTM [17] is utilized to extract its features. This
approach effectively encodes variable-length sequences into a uniform dimensional feature space,
addressing the CoD associated with conventional MLP encoders, where the number of parameters
increases with sequence length. For non-sequence information, an MLP is employed for feature
extraction. Finally, the two features are combined into a primary feature w̃i,t. For the orders
to be assigned oj,t, an MLP is also used to extract the feature õj,t. Notably, the dimensions of
w̃i,t and õj,t are identical, and their information is concatenated into a sequence represented as
S̃t = [w̃1,t, w̃2,t, . . . , w̃n,t, õ1,t, õ2,t, . . . , õmt,t].

Additionally, to facilitate network convergence and enhance the extraction of input features, we
incorporate a normalization layer and an Adaptive Re-weighting Layer (ARL) [4]. Given that different
parts of the input may have varying magnitudes, which can impede model training, the normalization
layer effectively addresses this issue. Furthermore, since different parts of the input carry different
levels of importance, we utilize the ARL to enable the model to learn these variations, represented as:
y = x ◦ Ω, where x denotes the input, Ω represents the weight vector, calculated by Ω = MLP(x),
and ◦ indicates the element-wise product.

3.2.2 ACTOR SUB-NETWORKS

The Actor sub-network consists of a BERT [8] model for feature extraction and a QK-attention
module [67] for action decomposition and generation, which we will introduce in turn. In the
feature extractors, we have already extracted the primary features from each worker and order
state separately. To further explore the relationships between workers and orders, we utilize the
BERT model, where the self-attention mechanism can effectively capture these relationships: St =
[w1,t, w2,t, . . . , wn,t, o1,t, o2,t, . . . , omt,t] = Actor-BERT(S̃t). Specifically, due to the permutation
invariance of our input sequence, we omit the positional embedding in BERT, ensuring that the order
in S does not influence the encoding result. In contrast to conventional MARL methods like [23; 16],
which encode each worker with its neighboring states to gain a broader perspective, our Actor-BERT
directly aggregates global worker information, facilitating more effective cooperative dispatching
between workers.

In conventional order dispatching tasks, the typical approach to address the dynamic action space
(related to the number of orders) involves evaluating each worker-order pair separately and finding the
optimal dispatching solution based on these evaluations. However, this approach has two significant
shortcomings. First, it neglects the relationships between orders, which we address through the
self-attention mechanism in BERT, capturing not only the relationships between workers but also
between orders and between orders and workers. Second, evaluating each worker-order pair is
time-consuming and resource-intensive: F(wi,t, oj,t; θF) ∈ R1, where F is the network and θF
represents its parameters. The complexity can be represented as O(|F| · n ·mt), where |F| denotes
the complexity of the neural network. To mitigate this issue, we employ a QK-attention module [67],
represented as:

QK-Attention(wi,t, oj,t) := f(wi,t; θf) · g(oj,t; θg)T ≈ F(wi,t, oj,t; θF) , (2)
where f and g are two smaller networks, and θf and θg are their parameters. The intuition behind QK-
attention is to use two smaller networks to approximate a larger network, similar to the motivation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

behind LoRA [20]. In this way, the complexity of computing all worker-order pairs becomes
O(|f| · n+ |g| ·mt + d · n ·mt), where |f| and |g| are the complexities of the two neural networks,
d is their output dimension, and d · n ·mt is the complexity of matrix multiplication. Here, d is
very small, making d · n ·mt much smaller than the neural network computation complexity, i.e.,
d · n ·mt ≪ |f| ≈ |g| < |F|. Thus, we have O(|f| · n+ |g| ·mt + d · n ·mt) < O(|F| · (n+mt)) <
O(|F| ·n ·mt), indicating that the QK-attention successfully transforms the multiplication complexity
of evaluating each worker-order pair into addition complexity.

However, we observe a parameter redundancy issue in Equation 2, which can lead to potential
instability during training. This redundancy arises because there are actually infinite solutions for f
and g, as f ′ = αf and g′ = g

α is also a valid solution for any non-zero real vector α. Inspired by
Dueling DQN [58], we propose a positive normalization method:

QK-Attention-Norm(wi,t, oj,t) := f(wi,t; θf) ·
Softplus(g(oj,t; θg))T

||Softplus(g(oj,t; θg))||2
. (3)

This normalization ensures that the elements in Softplus(g(oj,t;θg)T)
||Softplus(g(oj,t;θg)T)||2 are always non-negative, with

an L2 norm of 1. Although this approach does not guarantee a unique solution, it significantly
improves training stability, as demonstrated by our experimental results in Section 4. In our task, the
output of the QK-attention is a matrix Mt ∈ Rn,mt , representing the utility of each worker choosing
each order, which will be detailed in Section 3.3.2.

3.2.3 CRITIC SUB-NETWORKS

The role of the critic is to evaluate the quality of actions, with the detailed action generation method
introduced in Section 3.3.2. We first define an action function A:

A(wi,t) =
{
(wi,t, oj,t) if order j is assigned to worker i at time t
∅ if no order is assigned to worker i at time t

(4)

where wi,t and oj,t are the outputs of Actor-BERT, and (wi,t, oj,t) represents the combination
of the two vectors into a single feature vector. We then construct a new sequence: Ṡt =
[A(w1,t),A(w2,t), . . . ,A(wi,t)]. Another BERT network, referred to as “Critic-BERT”, is used
to further extract features from Ṡt, represented as S̈t = Critic-BERT(Ṡt). A self-attention mecha-
nism and a linear layer (collectively named Critic-MLP) are then utilized to estimate the Q-value
from S̈t (for detailed processing methods, refer to [6]). Furthermore, as TD3 [12] requires two critics,
we employ two distinct Critic-BERT and Critic-MLP networks. These share the input features from
Actor-BERT but process them separately.

3.3 TRAINING PROCESS

3.3.1 STAGE 1: DECENTRALIZED IDDQN TRAINING

In this stage, we aim to first train the feature-extracting capacity of the worker encoder and order
encoder using a substantial number of samples. To obtain sufficient samples, we view the dispatching
problem as a multi-agent scenario, where at each time step, each agent can access its own record. We
adopt the independent assumption that all agents share the same policy, allowing for the sharing of
records between agents and leading to a large experience replay buffer.

Since our goal in this stage is not to train a powerful model but rather to enable the feature extractor
to learn its general feature-extracting capabilities, we select the simplest yet efficient method for
order dispatching, namely, the IDDQN. Each worker is treated as an independent agent with the state
defined as si,t = [wi,t, Ot] at time t. We employ a neural network to estimate the Q-value at each
step as QDQN

πQ
Φ

(si,t, ai,t), where Φ represents the network parameters and πQΦ denotes the strategy.

To construct the network, we utilize QK-attention to process the outputs of the worker en-
coder and order encoders to estimate the Q-value for each worker-order pair, represented as
QK-Attention-Norm(w̃i,t, õj,t) (denoted as yi,j,t). Although the state space encompasses the entire

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

order state from o1,t to omt,t, we focus on a single order oj,t when computing the Q-value for choos-
ing order j. This approach aligns with previous work such as [23; 21], as the entire order state can be
excessively large for a simple network to learn (our Triple-BERT effectively addresses this issue) and
many networks struggle to process variable dimensional inputs (with order amounts varying at each
time step). Consequently, we can compute a Q-matrix Yt ∈ Rn,mt , where the element in the i-th row
and j-th column, yi,j,t, represents the Q-value of assigning order j to worker i at time t. The core
strategy of IDDQN is to maximize the global Q-value, expressed as Q(St, At) =

∑n
i=1 Q(si,t, ai,t)

at each time step. To achieve this, we construct a bipartite graph where each worker and order is
represented as a node. An arbitrary worker i and order j are linked by an edge weighted by the
Q-value of this worker selecting this order at the current time, i.e., yi,j,t. We then utilize Integer
Linear Programming (ILP) to solve this maximizing bipartite matching problem. (To avoid assigning
orders to unavailable workers—those at full capacity or on their way to pick up an assigned order—we
set the Q-value of all actions for such workers in the Q-matrix Yt to −∞.) A detailed construction of
the problem is provided in Appendix B.1. For the training of IDDQN, it follows the same process of
previous work [23]. Due to page limitation, we detailed it in Appendix D.1.

Here, We want to make some explanations about the independent assumption. We acknowledge that
the independent assumption can be unreliable, which indeed hinders the performance of conventional
independent MARL-based methods. However, previous works [40; 10; 56] have shown the efficacy
and simplicity of independent MARL methods. As a result, even if the performance of independent
MARL is not satisfactory, it does provide a good starting point for our centralized SARL method. In
our approach, the independent assumption is only utilized during the pre-training stage to warm up
the model. After pre-training, our centralized SARL framework no longer relies on the independence
assumption.

3.3.2 STAGE 2: CENTRALIZED TD3 TRAINING

In the standard AC framework, the process can be summarized as follows: an actor network generates
actions based on the current state, represented asAt = Actor(St; θA), while a critic network evaluates
these actions using Q̂t = Critic(St, At; θC , πTθA). Here, θA and θC are the parameters of the actor
and critic networks, respectively, and πAθA denotes the strategy of AC. During training, the critic
network is updated using TD-error, similar to Q-learning, and the actor network is updated to
maximize Q̂. However, a challenge mentioned in Section 2 is that the action space is too large for the
order dispatching scenario. Additionally, the actions in order dispatching are discrete, complicating
optimization using TD3. To address these issues, we propose an action decomposition method along
with a policy gradient-style optimization method.

Before delving into the details, we denote both θA and θC with the parameters Θ, as in our network
(Fig. 2), the actor and critic share the same architecture. The trained network parameters from Stage
1, Φ, are part of Θ. Moreover, the policy of TD3 is represented as πTΘ.

(i) Actor: In the standard AC framework for discrete action problems, the policy network generates
probabilities for each action, from which actions are sampled. However, in the ride-sharing task, this
approach encounters two significant challenges: (i) First, the action space is exceedingly large. As
shown in Appendix A, a typical scenario with 1,000 couriers and 10 orders can yield nearly 1030

possible actions. (ii) Second, because the orders vary at each step (including both order volume and
content), it is impossible to generate a fixed-dimension action probability vector as is customary in
the standard AC framework. (iii) Third, due to the dependency among drivers (an order cannot be
assigned to multiple workers concurrently), treating drivers as independent individuals for separate
action sampling is impractical.

To address these issues, we impose structural assumptions on the policy function to facilitate its
derivation (i.e. the proposed action decomposition strategy). We define Pi,j,t as the probability that
worker i chooses order j at time t, based on the logit model [33]. Specifically, we first expand the
utility matrixMt generated by the Actor QK-Attention toMt = [Mt, Nt] ∈ Rn,mt+1, whereNt is an
n-dimensional vector representing the utility of each worker choosing no order. This vector is obtained
by processing the output of Actor-BERT with a MLP, expressed asNt = MLP([w1,t, w2,t, . . . , wn,t]).
This allows us to compute the probability of each worker choosing each action using the logit model,
yielding Pt = Softmax(Mt).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Furthermore, we assume that the aggregate policy is derived from the product of these probabilities:

πTΘ(At|St) = z

 ∏
i,j∈h(At)

Pi,j,t

 , (5)

where z(·) is an increasing function that also depends on the current state St (which we omit for
simplicity), and h() is defined as h(At) = {(i, j)|ai,j,t = 1}. This is a reasonable simplification, as
it implies that if an action At has a higher value of

∏
i,j∈h(At)

Pi,j,t, it has a greater probability of
being chosen. We wish to emphasize that the probability P does not exist in reality but serves as a
virtual construct defined by us. We connect the output of the networkMt to the policy πTΘ through
this defined probability and the mapping function z(·). Essentially, we restrict the policy space to a
smaller class as defined by Eq. 5 to facilitate optimization and application, as follows.

However, defining and computing such a function z(·) is challenging due to the vast action space,
complicating the sampling of an action from the strategy πTΘ(At|St). We define an efficient approach
to address this. First, during inference, we can greedily select the action with the maximum probability,
as this action should theoretically have the highest utility:

arg max
At∈ψ(St)

πTΘ(At|St) = arg max
At∈ψ(St)

z

 ∏
i,j∈h(At)

Pi,j,t

 = arg max
At∈ψ(St)

∑
i,j∈h(At)

logPi,j,t ,

(6)
where ψ(St) is the set of all possible actions under the current state St. This holds because both z(·)
and log(·) are increasing functions. We can construct a bipartite graph similar to Stage 1, where each
available worker and order is represented as a node, and the link between each worker i and order j at
time t is weighted by their log probability logPi,j,t. By utilizing ILP, we can find the action At that
maximizes πTΘ(At|St). The bipartite graph construction process is detailed in Appendix B.2. During
training, we introduce random noise to the probability matrix Pt and the model selects actions using
the same method as in Eq. 6. When the noise is sufficiently large, the policy degrades to a totally
random policy, and when the noise is zero, the policy converges to a greedy strategy. Although we
cannot directly express the function z(·), it must ensure that the function is a increasing function
(since the noise is totally random). More details about the noise can be found at Appendix C.

Optimizing this probability using vanilla TD3 is challenging due to the variable action space and
the gap between action probabilities and the selected action (the gradient cannot propagate through
them). To address this, we employ an approximate policy gradient optimization method [46]:

∇ΘJ(Θ) ∝ EπT
Θ

(QTD3
πT
Θ

(St, At)−B)∇Θ

∑
i,j∈h(At)

logPi,j,t

 , (7)

where J(Θ) is the optimization objective (long-term cumulative reward), B is a baseline independent
of state (we simplify by setting it to 0), and QTD3

πT
Θ

(St, At) is the Q-value under the policy πTΘ,

which can be estimated by QTD3
πT
Θ,i

(St, At; Θ) using our proposed network (i = 1, 2, as there are two
estimated Q-values in TD3). Detailed derivations can be found in Appendix C. We then use gradient
ascent to maximize J(Θ), thus the loss function for the actor can be expressed as LA = −∇J(Θ).

(ii) Critic: For the critic, it can be updated in a manner similar to vanilla TD3, where the loss function
can be expressed as:

LC =
∑
i=1,2

EπT
Θ

[
QTD3
πT
Θ−

(St+1, Rt+1; Θ
−)− QTD3

πT
Θ,i

(St, At; Θ)
]
,

QTD3
πT
Θ−

(St+1, Rt+1; Θ
−) = Rt+1 + γ min

i=1,2
QTD3
πT
Θ− ,i

(St+1,Actor(St+1; Θ
−, ξ); Θ−) ,

(8)

where QTD3
πT
Θ−

is the learning target function, Θ− represents the parameters of the target network,

which updates more slowly than the policy network Θ to provide a stable target, and ξ is a small
random noise applied in the probability matrix P . More details can be viewed in Appendix D.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Different Ride Sharing Methods: Bold entries represent the best results.

Method DeepPool [1] BMG-Q [23] HIVES [16] Enders et al. [9] CEVD [3] Triple-BERT
Type Independent CTDE Centralized

RL Algorithm IDDQN [48] IDDQN [48] QMIX [38] MASAC [14] VD2 [45] IDDQN [48]→ TD3 [12]
Multi-Agent ✓ ✓ ✓ ✓ ✓ ✓→ ×
Reward Type Local Local Global Local Global Local→ Global
Network Backbone MLP3 GAT [51] GRU [5] MLP+Attention MLP BERT [8]

Model Size 20K 117K 16M 118K 23K 16M
GPU Occupation (GB) 3.97 4.28 6.01 8.19 21.45 8.03

Average Reward (103) 12.72 13.04 12.37 12.04 13.16 14.73

4 EXPERIMENT

To validate the proposed method, we evaluate its performance in the ride sharing dispatching task
using real-world yellow ride-hailing data from Manhattan, New York City[47]4 . To illustrate the
efficiency and superiority of our proposed Triple-BERT, we compare it with several previous ride
sharing methods of different types, including Independent MARL, CTDE MARL, and Centralized
MARL, as shown in Table 1. Detailed information regarding our experiment configuration, simulator
setup, and a comprehensive description of the comparative experiment can be found in Appendix E.

Figure 3: Training Process: Each method is trained five times, and the curve is smoothed using
Exponential Moving Average (EMA) with α = 0.1. The shaded area represents the standard
deviation.

As shown in Fig. 3, we first illustrate the training process of different models by evaluating their
performance in the training scenario every 10 episodes. The six sub-figures depict the cumulative
reward, the number of orders served, and the average delivery time, detour time, pickup time, and
confirmation time for each order. It is evident that our method outperforms the other models in most

2The original VD is a CTDE method. However, the CEVD variant modifies it to a centralized version.
3In the original paper fo DeepPool, the authors used CNN. However, due to differences in the observation

space of our task, we replaced it with MLP.
4https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

9

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

metrics, with the cumulative reward exceeding that of the best alternative method by approximately
15%. The highest number of served orders indicates that our method achieves better cooperation
among workers. We then evaluate these methods over different periods, and the average rewards are
shown in Table 1, where our method also demonstrates the best performance. More details about the
experimental results can be found in Appendix E.4.

To further demonstrate the model’s efficiency, we conduct a series of ablation studies. In terms of
model training, we compare the performance of the model with and without stage 1 pre-training.
Regarding the network structure, we primarily compare the QK-Attention mechanism with and
without the proposed positive normalization module. The detailed results are shown in Fig. 3.
We observe that without stage 1 pre-training, the model fails to converge and exhibits significant
fluctuations. Particularly in the later stages, the reward begins to decrease, which can be attributed
to the lack of samples. Additionally, without the proposed normalization in QK-Attention, the
model performs poorly, underperforming compared to all other methods. This is due to parameter
redundancy, which leads to substantial fluctuations and hinders efficient learning.

5 CONCLUSION

In this work, we propose the first centralized SARL method, Triple-BERT, for large-scale order
dispatching in ride-hailing platforms. Our method successfully addresses the challenge of large
action spaces through an action decomposition technique and tackles the issue of sample scarcity
with a proposed two-stage training method. The novel network also addresses the large observation
space challenge by leveraging the self-attention mechanism of BERT. Additionally, we introduce an
improved QK-Attention mechanism to reduce the computational complexity of order dispatching.
Through experiments on real-world ride sharing data, we demonstrate that our method significantly
outperforms conventional MARL methods, achieving better cooperation among drivers.

However, compared to traditional MARL-based ride-sharing methods, Triple-BERT is more sensitive
to single points of failure, as its decisions depend on comprehensive information from all drivers and
orders. Efficient strategies to address this dilemma warrant exploration in future work. Additionally,
while this study represents the first centralized SARL-based approach to ride-sharing, we view it as
merely the starting point for this new paradigm. Future research could focus on identifying more
efficient SARL frameworks or enhancing our existing method, such as exploring importance sampling
within our off-policy policy gradient-based actor optimization method, or investigating the use of
offline training to replace our pre-training phase.

ETHICS STATEMENT

This work adheres to the principles outlined in the ICLR Code of Ethics.

Efficient ride-sharing plays a crucial role in promoting convenient and sustainable urban transportation
services. By enabling greater sharing among passengers, our method not only increases platform
profitability and operational efficiency but also helps reduce total vehicle miles traveled and per-capita
carbon emissions compared to solo rides. This, in turn, supports environmental sustainability goals.
Moreover, our centralized reinforcement learning framework improves coordination among drivers,
reduces delivery and detour times, and enables the platform to serve more orders within the same
time frame. As a result, both platform income and customer satisfaction are enhanced, while also
contributing to a greener and more efficient transportation system. We believe these contributions
highlight the practical significance and societal value of our research.

However, the issue of algorithmic discrimination has received widespread attention over time. Closed-
box management algorithms, including those for order dispatching, have been shown to create
discriminatory scenarios for workers, as reinforcement learning methods primarily aim to maximize
rewards without considering ethical implications. For example, algorithms may set different payment
structures or order assignment preferences based on individual features or geographical locations of
workers. We hope that our method will not exacerbate these issues and can be further developed to
include constraints that promote fairness. Our goal is to strike a balance between profit and ethics,
fostering a win-win situation for platforms, workers, and customers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The source code, trained parameters, and processed dataset are available in the anonymous repository
at https://anonymous.4open.science/r/Triple-BERT. The appendix also includes
a detailed description of our methodology.

REFERENCES

[1] Abubakr O Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. Deeppool: Distributed model-free
algorithm for ride-sharing using deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 20(12):4714–4727, 2019.

[2] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus.
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3):462–467, 2017.

[3] Avinandan Bose, Hao Jiang, Pradeep Varakantham, and Zichang Ge. On sustainable ride
pooling through conditional expected value decomposition. In ECAI 2023, pp. 295–302. IOS
Press, 2023.

[4] Tingwei Chen, Yantao Wang, Hanzhi Chen, Zijian Zhao, Xinhao Li, Nicola Piovesan, Guangxu
Zhu, and Qingjiang Shi. Modelling the 5g energy consumption using real-world data: Energy
fingerprint is all you need. arXiv preprint arXiv:2406.16929, 2024.

[5] Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk, and Yoshua
Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP
2014), 2014.

[6] Yi-Hui Chou, I-Chun Chen, Joann Ching, Chin-Jui Chang, and Yi-Hsuan Yang. Midibert-piano:
Large-scale pre-training for symbolic music classification tasks. Journal of Creative Music
Systems, 8(1), 2024.

[7] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and
Joelle Pineau. Tarmac: Targeted multi-agent communication. In International Conference on
machine learning, pp. 1538–1546. PMLR, 2019.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

[9] Tobias Enders, James Harrison, Marco Pavone, and Maximilian Schiffer. Hybrid multi-agent
deep reinforcement learning for autonomous mobility on demand systems. In Learning for
Dynamics and Control Conference, pp. 1284–1296. PMLR, 2023.

[10] Siyuan Feng, Peibo Duan, Jintao Ke, and Hai Yang. Coordinating ride-sourcing and public
transport services with a reinforcement learning approach. Transportation Research Part C:
Emerging Technologies, 138:103611, 2022.

[11] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[12] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning, pp. 1587–1596. PMLR,
2018.

[13] Shuxin Ge, Xiaobo Zhou, and Tie Qiu. Marl-based pricing strategy via mutual attention for
mod systems with ridesharing and repositioning. In IEEE INFOCOM 2025-IEEE Conference
on Computer Communications, pp. 1–10. IEEE, 2025.

11

https://anonymous.4open.science/r/Triple-BERT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. Pmlr, 2018.

[15] Marina Haliem, Ganapathy Mani, Vaneet Aggarwal, and Bharat Bhargava. A distributed model-
free ride-sharing approach for joint matching, pricing, and dispatching using deep reinforcement
learning. IEEE Transactions on Intelligent Transportation Systems, 22(12):7931–7942, 2021.

[16] Jiang Hao and Pradeep Varakantham. Hierarchical value decomposition for effective on-demand
ride-pooling. In Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, pp. 580–587, 2022.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[18] Joshua Holder, Natasha Jaques, and Mehran Mesbahi. Multi agent reinforcement learning for
sequential satellite assignment problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 26516–26524, 2025.

[19] Heiko Hoppe, Tobias Enders, Quentin Cappart, and Maximilian Schiffer. Global rewards in
multi-agent deep reinforcement learning for autonomous mobility on demand systems. In 6th
Annual Learning for Dynamics & Control Conference, pp. 260–272. PMLR, 2024.

[20] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, volume 1, pp. 3, 2022.

[21] Yulong Hu, Tingting Dong, and Sen Li. Coordinating ride-pooling with public transit using
reward-guided conservative q-learning: An offline training and online fine-tuning reinforcement
learning framework. arXiv preprint arXiv:2501.14199, 2025.

[22] Yulong Hu, Yali Du, and Sen Li. Real-time coordination of human couriers and drones for on-
demand food-delivery platforms: A multi-stage risk-aware multi-agent reinforcement learning
framework. Transportation Research Part C: Emerging Technologies, 181:105381, 2025.

[23] Yulong Hu, Siyuan Feng, and Sen Li. Bmg-q: Localized bipartite match graph attention
q-learning for ride-pooling order dispatch. arXiv preprint arXiv:2501.13448, 2025.

[24] Weiqiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A
comprehensive survey on multi-agent cooperative decision-making: Scenarios, approaches,
challenges and perspectives. arXiv preprint arXiv:2503.13415, 2025.

[25] Jiahui Li, Kun Kuang, Baoxiang Wang, Furui Liu, Long Chen, Fei Wu, and Jun Xiao. Shapley
counterfactual credits for multi-agent reinforcement learning. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 934–942, 2021.

[26] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin Wu, and
Jieping Ye. Efficient ridesharing order dispatching with mean field multi-agent reinforcement
learning. In The world wide web conference, pp. 983–994, 2019.

[27] Xinran Li and Jun Zhang. Context-aware communication for multi-agent reinforcement learning.
In Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent
Systems, pp. 1156–1164, 2024.

[28] Xinran Li, Xiaolu Wang, Chenjia Bai, and Jun Zhang. Exponential topology-enabled scal-
able communication in multi-agent reinforcement learning. In The Thirteenth International
Conference on Learning Representations.

[29] Yang Liu, Fanyou Wu, Cheng Lyu, Shen Li, Jieping Ye, and Xiaobo Qu. Deep dispatching: A
deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform.
Transportation Research Part E: Logistics and Transportation Review, 161:102694, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[30] Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS ’11, pp. 513–516, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1031-
4. doi: 10.1145/2093973.2094062. URL http://doi.acm.org/10.1145/2093973.
2094062.

[31] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, and Zhibo Gong. Modelling the dynamic joint
policy of teammates with attention multi-agent ddpg. arXiv preprint arXiv:1811.07029, 2018.

[32] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an
algorithm for decentralized reinforcement learning in cooperative multi-agent teams. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 64–69. IEEE, 2007.

[33] Daniel McFadden. Conditional logit analysis of qualitative choice behavior. 1972.

[34] G Ayorkor Mills-Tettey, Anthony Stentz, and M Bernardine Dias. The dynamic hungarian
algorithm for the assignment problem with changing costs. Robotics Institute, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-07-27, 7, 2007.

[35] Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
ment learning. Applied Intelligence, 53(11):13677–13722, 2023.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32, 2019.

[37] Zhiwei Qin, Xiaocheng Tang, Qingyang Li, Hongtu Zhu, and Jieping Ye. Reinforcement
Learning in the Ridesharing Marketplace. Springer, 2025.

[38] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

[39] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[40] Jie Shi, Yuanqi Gao, Wei Wang, Nanpeng Yu, and Petros A Ioannou. Operating electric vehicle
fleet for ride-hailing services with reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 21(11):4822–4834, 2019.

[41] Ashutosh Singh, Abubakr O Al-Abbasi, and Vaneet Aggarwal. A distributed model-free
algorithm for multi-hop ride-sharing using deep reinforcement learning. IEEE Transactions on
Intelligent Transportation Systems, 23(7):8595–8605, 2021.

[42] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International conference on machine learning, pp. 5887–5896. PMLR, 2019.

[43] Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11352–11360,
2021.

[44] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropa-
gation. Advances in neural information processing systems, 29, 2016.

[45] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
pp. 2085–2087, 2018.

13

http://doi.acm.org/10.1145/2093973.2094062
http://doi.acm.org/10.1145/2093973.2094062

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[46] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[47] New York City Taxi and Limousine Commission. Nyc taxi and limousine
commission-trip record data nyc. URL https://www.nyc.gov/site/tlc/about/
tlc-trip-record-data.page.

[48] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[49] Paulina Varshavskaya, Leslie Pack Kaelbling, and Daniela Rus. Efficient distributed reinforce-
ment learning through agreement. In Distributed Autonomous Robotic Systems 8, pp. 367–378.
Springer, 2009.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[51] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[52] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods, 17(3):261–272,
2020.

[53] Dujuan Wang, Qi Wang, Yunqiang Yin, and TCE Cheng. Optimization of ride-sharing with
passenger transfer via deep reinforcement learning. Transportation Research Part E: Logistics
and Transportation Review, 172:103080, 2023.

[54] Jingwei Wang, Qianyue Hao, Wenzhen Huang, Xiaochen Fan, Zhentao Tang, Bin Wang, Jianye
Hao, and Yong Li. Dyps: Dynamic parameter sharing in multi-agent reinforcement learning for
spatio-temporal resource allocation. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3128–3139, 2024.

[55] Xuefeng Wang, Xinran Li, Jiawei Shao, and Jun Zhang. Ac2c: Adaptively controlled two-hop
communication for multi-agent reinforcement learning. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, pp. 427–435, 2023.

[56] Yinquan Wang, Jianjun Wu, Huijun Sun, Ying Lv, and Guangtong Xu. Reassignment algorithm
of the ride-sourcing market based on reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 24(10):10923–10936, 2023.

[57] Yinquan Wang, Jianjun Wu, Huijun Sun, Ying Lv, and Junyi Zhang. Promoting collaborative
dispatching in the ride-sourcing market with a third-party integrator. IEEE Transactions on
Intelligent Transportation Systems, 25(7):6889–6901, 2024.

[58] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pp. 1995–2003. PMLR, 2016.

[59] Shangyao Yan, Chun-Ying Chen, and Yu-Fang Lin. A model with a heuristic algorithm for
solving the long-term many-to-many car pooling problem. IEEE Transactions on Intelligent
Transportation Systems, 12(4):1362–1373, 2011.

[60] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field
multi-agent reinforcement learning. In International conference on machine learning, pp.
5571–5580. PMLR, 2018.

[61] Lei Yuan, Ziqian Zhang, Lihe Li, Cong Guan, and Yang Yu. A survey of progress on cooperative
multi-agent reinforcement learning in open environment. arXiv preprint arXiv:2312.01058,
2023.

14

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[62] Xianjie Zhang, Jiahao Sun, Chen Gong, Kai Wang, Yifei Cao, Hao Chen, and Yu Liu. Mutual
information as intrinsic reward of reinforcement learning agents for on-demand ride pooling.
arXiv preprint arXiv:2312.15195, 2023.

[63] Xianjie Zhang, Pradeep Varakantham, and Hao Jiang. Future aware pricing and matching
for sustainable on-demand ride pooling. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 14628–14636, 2023.

[64] Zhongyun Zhang, Lei Yang, Jiajun Yao, Chao Ma, and Jianguo Wang. Joint optimization
of pricing, dispatching and repositioning in ride-hailing with multiple models interplayed
reinforcement learning. IEEE Transactions on Knowledge and Data Engineering, 2024.

[65] Zijian Zhao and Sen Li. The impacts of data privacy regulations on food-delivery platforms.
Transportation Research Part C: Emerging Technologies, 181:105364, 2025.

[66] Zijian Zhao and Sen Li. One step is enough: Multi-agent reinforcement learning based on
one-step policy optimization for order dispatch on ride-sharing platforms. arXiv preprint
arXiv:2507.15351, 2025.

[67] Zijian Zhao, Tingwei Chen, Zhijie Cai, Xiaoyang Li, Hang Li, Qimei Chen, and Guangxu Zhu.
Crossfi: A cross domain wi-fi sensing framework based on siamese network. IEEE Internet of
Things Journal, 2025.

APPENDIX CONTENTS

A Action Space Size 16

B BiParite Graph Construction 16

B.1 IDDQN Bipartite Graph . 16

B.2 TD3 Bipartite Graph . 16

C Policy Gradient Proof 17

D Training Process 18

D.1 Stage 1: IDDQN Algorithm . 18

D.2 Stage 2: TD3 Algorithm . 19

E Experiment Details 20

E.1 Experiment Configurations . 20

E.2 Simulation Setup . 21

E.3 Introduction of Comparative Methods . 21

E.4 Additional Experiment Result . 22

E.5 Expanded Generalization and Extensibility Experiment 22

E.6 Expanded Ablation Study . 23

F Related Work 25

F.1 Order Dispatch in Ride-Sharing Task . 25

F.2 Cooperative Multi-Agent Reinforcement Learning 25

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ACTION SPACE SIZE

The action space in our order dispatching task is given by:

|At| =
mt∑
k=0

C(mt, k)P(n, k) =
mt∑
k=0

mt!

k!(mt − k)!
n!

(n− k)!
, (9)

whereP(n, k) represents the permutations of assigning k orders to nworkers and C(mt, k) represents
the combinations of selecting k orders from the total mt orders. This equation is based on two
assumptions: (i) the platform will assign an arbitrary number of orders at each step (some orders
yielding negative income will be declined by the platform) and (ii) the number of orders mt is less
than the number of workers n, which can always be satisfied since mt represents the order count at
only one timestep. Then we can derive the lower bound of |At| as:

|At| =
mt∑
k=0

C(mt, k)
n!

(n− k)!
≥

mt∑
k=0

C(mt, k)(n− k + 1)k

≥
mt∑
k=0

C(mt, k)(n−mt + 1)k = (n−mt + 2)mt ≥ 2mt (n ≥ mt ≥ 0) .

(10)

As a result, the action space has a lower bound with the exponent to mt. Consider the example in
Section 2 where the number of workers n is 1000 and the number of orders mt is 10. In this case, the
expression (n−mt + 2)mt evaluates to 99210 ≈ 1030.

B BIPARITE GRAPH CONSTRUCTION

B.1 IDDQN BIPARTITE GRAPH

The bipartite graph in the IDDQN-based order dispatching method is constructed as follows:

max
At

∑
i∈I

ai,j,t · yi,j,t, (11a)

s.t.
∑
i∈I

ai,j,t ≤ 1, ∀j ∈ Jt, (11b)∑
j∈Jt

ai,j,t ≤ 1, ∀i ∈ I, (11c)

ai,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ Jt, (11d)

where ai,j,t is the action representing whether worker i is assigned order j at time t (with 1 indicating
assignment and 0 indicating no assignment), yi,j,t denotes the Q-value of worker i choosing order j
at time t (with yi,j,t = −∞ for all unavailable workers at time t), I is defined as {1, 2, . . . , n}, and
the set Jt is defined as {1, 2, . . . ,mt}. Constraint 11b ensures that an order can be assigned to at
most one worker, while constraint 11c guarantees that each worker is assigned at most one order.

B.2 TD3 BIPARTITE GRAPH

The bipartite graph in our proposed TD3-based order dispatching method is constructed as follows:

max
Xt

∑
i∈Iw

t

xi,j,t · logPi,j,t, (12a)

s.t.
∑
i∈I

xi,j,t ≤ 1, ∀j ∈ Jt, (12b)∑
j∈Jt

xi,j,t = 1, ∀i ∈ Iwt , (12c)

xi,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ Jt ∪ {mt + 1}, (12d)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where Iwt represents the set of available workers at time t. Here, constraint 12b does not apply in
the last column, as it represents declining all orders, an action that can be chosen by any worker.
Constraint 12c requires each row to equal 1, ensuring that each worker must either take an order or
reject all, without other choices. We can then convert Xt to action At as follows:

ai,t =

{
xi,j,t if i ∈ Iwt and xi,mt+1,t = 0

0 otherwise
(13)

C POLICY GRADIENT PROOF

According to the policy gradient theory [46], we have:

∇ΘJ(Θ)

∝ EπT
Θ

[(
QTD3
πT
Θ

(St, At)−B
)
∇Θ log πTΘ(At|St)

]
= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
)
∇Θ log z

 ∏
i,j∈h(At)

Pi,j,t


= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
) dz(

∏
i,j∈h(At)

Pi,j,t)

d
∏
i,j∈h(At)

Pi,j,t

∏
i,j∈h(At)

Pi,j,t

z(
∏
i,j∈h(At)

Pi,j,t)
∇Θ log

∏
i,j∈h(At)

Pi,j,t


= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
)
Ez(x),x|x=∏

i,j∈h(At)
Pi,j,t

∇Θ

∑
i,j∈h(At)

logPi,j,t

 ,

(14)
where E denotes elasticity, which measures the sensitivity of one variable to changes in another, and
is defined as:

Ey,x =
d log y

d log x
=
dy

dx

x

y
. (15)

As introduced in Section 3.3.2, the probability P and the mapping function z(·) do not exist in reality
but serve as virtual constructs used to connect the output to the policy πTΘ for simplified optimization
and application. This means we can define them in any format we choose, and they restrict the policy
space to a structural class as defined by Eq. 5.

To further simplify optimization, we define the format of z(·) as z(x) = axb, where a, b > 0. This
formulation has the advantage that the elasticity of z(·) is a positive constant, i.e. Ez(x),x = ab. Thus,

we have: ∇ΘJ(Θ) ∝ EπT
Θ

[(
QTD3
πT
Θ

(St, At)−B
)
∇Θ

∑
i,j∈h(At)

logPi,j,t

]
, corresponding to Eq.

7. This format of z(·) aligns with our assumption that z(·) should be an increasing function, which
implies that if a driver-order pair has a higher probability of being chosen, it should also have a higher
utility, resulting in a greater likelihood of being selected in the joint action.

As mentioned in Section 3.3.2, during training, we add random noise to Pt and then choose the
action that maximizes

∑
i,j∈h(At)

logPi,j,t. Currently, the mapping from
∑
i,j∈h(At)

logPi,j,t to
the choosing probability πTΘ corresponds to z(·). To further illustrate the robustness of our method,
we compare the performance of our model using Gaussian noise [18], uniform noise, and binary
symmetric channel (BSC) noise, where the noise follows a Bernoulli distribution and has been widely
utilized in previous work [23; 21]. During training, we gradually reduce the noise to make the policy
more deterministic. The experimental results are shown in Fig. 4, where we observe that, despite
certain performance differences between the various types of noise, they all outperform conventional
MARL methods. This suggests the efficiency and high robustness of our proposed method, indicating
that the detailed expression of z(x) does not significantly influence the validation of the method based
on Eq. 7, even if it may cause some performance gaps. The optimal noise for our task may require
further exploration. For fairness, we choose to use BSC noise when comparing with other methods,
even though it appears to perform the worst among the three types of noise. We aim to demonstrate
that our results are robust and superior, not relying on a particular choice of hyper-parameters or
experiment scenarios.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: Comparison Between Different Noise Methods: Each method is trained three times, and the
curve is smoothed using EMA with α = 0.1. The shaded area represents the range of fluctuations,
while the solid line indicates the average value.

D TRAINING PROCESS

D.1 STAGE 1: IDDQN ALGORITHM

Figure 5: Network Structure in Stage 1

In stage 1, the network structure is shown as Fig. 5, which is consisted by the encoders and the
QK-Attention module of proposed network in Fig. 2. Although the model takes the entire worker and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

order sequence as input, it primarily aims to utilize parallel computation to enhance computational
efficiency. In the encoders, each worker and order’s information is processed separately. Similarly,
in the QK-Attention module, the Q-value for each worker-order pair is computed independently. It
is also feasible to input only a single worker-order pair into this network, computing the Q-value
exclusively for that pair; however, this would increase the computation time.

During IDDQN training, we need to introduce some noise into the Q-matrix Yt to facilitate sufficient
exploration. Specifically, for the ϵ-greedy strategy, we randomly select a proportion ϵ of non-−∞
elements in Yt and set them to a large positive number Y to enhance their likelihood of being selected.
We then update the neural network by minimizing the TD-error, expressed as:

LQ = EπQ
Φ

[
QDQN
πQ

Φ−
(si,t+1, ri,t+1; Φ

−)− QDQN
πQ
Φ

(si,t, ai,t; Φ)

]
,

QDQN
πQ

Φ−
(si,t+1, ri,t+1; Φ

−) = ri,t+1 + γQDQN
πQ

Φ−
(si,t+1, κi,t+1; Φ

−) ,

κi,t+1 = arg max
κi,t+1∈ψi,t+1

QDQN
πQ
Φ

(si,t+1, κi,t+1; Φ) ,

(16)

where QDQN
πQ

Φ−
is the learning target function, γ is the discount factor, ψi,t+1 is the possible action

space for worker i at time t+ 1, and Φ− represents the parameters of the target network, which are
updated at a slower pace compared to the policy network to provide a stable target for training. After
each training iteration, the target network is updated in a soft manner: Φ− := τΦ + (1 − τ)Φ−,
where τ is the update rate.

The detailed process is illustrated in Algorithm 1, where 1j represents the vector that only the jth
position is 1 and other positions are 0.

Algorithm 1 IDDQN Training Process

Require: Number of training episodes E, number of training steps T , mini-batch size m, target
update rate τ , exploration noise ϵ, final exploration ϵf , exploration decay δ, discount factor γ,
model parameters Φ

1: Initialize target networks Φ− ← Φ
2: Initialize replay buffer B
3: for k = 1 to E do
4: for t = 1 to T do
5: Calculate Q-value matrix Yt: yi,j,t = QDQN

πQ
Φ

(si,t, 1j ; Φ)
6: Select action with exploration noise:At = ILP(Yt, ϵ)
7: Observe reward ri,t+1 and new state si,t+1 for each worker i
8: Store transition (si,t, ai,t, ri,t+1, si,t+1) in B
9: Sample mini-batch of m transitions (s, a, r, s′) from B

10: Compute target Q-value:
11: y ← r + γQDQN

πQ

Φ−
(si,t+1, argmaxκi,t+1∈ψi,t+1 QDQN

πQ
Φ

(si,t+1, κi,t+1; Φ); Φ
−)

12: Update Q-Network: Φ← argminΦ
1
m

∑
(y − QDQN

πQ
Φ

(s, a; Φ))2

13: Update target networks: Φ− ← τΦ+ (1− τ)Φ−

14: end for
15: Decay exploration: ϵ← max(ϵf , ϵδ)
16: end for

D.2 STAGE 2: TD3 ALGORITHM

The process of our Stage 2 - TD3 training is illustrated in Algorithm 2. In experiment, we follow the
vanilla TD3 approach of updating the actor once after updating the critic twice.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 TD3 Training Process

Require: Number of training episodes E, number of training steps T , mini-batch size m, policy
delay d, target update rate τ , exploration noise ϵ, final exploration ϵf , exploration decay δ, target
policy smoothing noise ξ, discount factor γ, model parameters Θ

1: Initialize target networks Θ− ← Θ
2: Initialize replay buffer B
3: for k = 1 to E do
4: for t = 1 to T do
5: Select action with exploration noise:At = Actor(St; Θ, ϵ)
6: Observe reward Rt+1 and new state St+1

7: Store transition (St, At, Rt+1, St+1) in B
8: Sample mini-batch of N transitions (S,A,R, S′) from B
9: Compute target action with smoothing noise: A′ ← Actor(S; Θ−, ξ)

10: Compute target Q-value: y ← r + γmini=1,2 QTD3
πT
Θ− ,i

(S′, A′; Θ−)

11: Update critics: Θ← argminΘ
1
m

∑
[(y − QTD3

πT
Θ,1

(S,A; Θ))2 + (y − QTD3
πT
Θ,2

(S,A; Θ))2]

12: if t mod d == 0 then
13: Update actor using deterministic policy gradient:
14: ∇J(Θ) = 1

m

∑
(QTD3

πT
Θ,1

(S,A; Θ)−B)∇Θ log πTΘ(At|St), (A = Actor(S; Θ))

15: Update target networks: Θ− ← τΘ+ (1− τ)Θ−

16: end if
17: end for
18: Decay exploration: ϵ← max(ϵf , ϵδ)
19: end for

E EXPERIMENT DETAILS

E.1 EXPERIMENT CONFIGURATIONS

Our model was trained using the PyTorch framework [36] on a workstation running Windows 11,
equipped with an Intel(R) Core(TM) i7-14700KF processor and an NVIDIA RTX 4080 graphics card.
The detailed model configurations are shown as Table 2. During the training phase, the model utilized
approximately 8.03 GB of GPU memory. For optimization, we employed the Adam optimizer with
an initial learning rate of 10−4 and a decay rate of 0.99. In Stage 1, the batch size was set to 256,
while in Stage 2, it was reduced to 16, due to a sharp decrease in sample amount. Additionally,
optimization was performed once every 4 time steps, and in Stage 2, the actor was updated once for
every two updates of the critic.

Table 2: Model Configurations

Configuration Our Setting
Hidden Dimension 64 (Actor) / 128 (Critic)
Attention Heads 4
BERT Layers 3 for Each
Dropout Rate 0.1

Optimizer Adam
Learning Rate 10−4

Scheduler ExponentialLR
Learning Rate Decay 0.99
Batch Size 256 (Stage 1) / 16 (Stage 2)

Exploration Rate 0.99→ 0.0005
Updating Rate of Target Network 0.005
Discount Factor 0.99

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.2 SIMULATION SETUP

In the simulation, we follow previous works [23; 9; 1], setting the total number of drivers to 1,000,
with each car having a capacity of 3 passengers. The maximum waiting time for customers is set
to 5 minutes.Each episode lasts 30 minutes, divided into 30 time steps, where each step determines
the operations for the subsequent minute. For the TSP route optimization and time estimation, we
utilize the OSRM simulator [30], with a default traveling speed of 60 km/h. For solving the bipartite
matching, we use the Hungarian algorithm [34], provided in SciPy [52].

We train the model using data from 19:00 to 19:30 on July 17, 2024, which includes 3,726 valid orders,
and we test the trained model during other time periods on July 17, 2024, including 14:00-14:30
(2,850 valid orders), 17:00-17:30 (3,577 valid orders), 20:00-20:30 (3,114 valid orders), 21:00-21:30
(4,264 valid orders), and 22:00-22:30 (4,910 valid orders), where the order amount range from 2,850
to 4,264.

The evaluation metrics include:

• Served Rate: the rate of confirmed trips relative to the total trip requests initiated by customers.
• Delivery Time: the time taken to serve a trip from origin to destination.
• Detour Time: the extra time spent on delivery beyond the minimum delivery time (i.e., the time if

the vehicle only serves this trip without bundling other trips).
• Pickup Time: the waiting time for customers between the trip confirmation and the arrival of the

vehicle at the trip origin.
• Confirmation Time: the waiting time for customers from when they initiate the trip request to

when the platform assigns the trip to a vehicle.

E.3 INTRODUCTION OF COMPARATIVE METHODS

The methods using in our comparative experiment can be mainly divided into three categories:

• Independent MARL: The DeepPool [1] and BMG-Q [23] utilize a similar IDDQN method
as described in Section 3.3.1, with BMG-Q employing GAT [51] to capture the relationships
among neighboring agents. Additionally,in the original paper fo DeepPool, the authors used CNN.
However, due to differences in the observation space of our task, we replaced it with MLP.

• Centralized Training Decentralized Execution (CTDE): The HIVES [38] framework introduces
a QMIX [38] based method to address the shortcomings of IDDQN, specifically the inadequacy of
treating the global Q-value as a simple summation of the individual Q-values of each agent. Enders
et al. [9] propose a MASAC [14] based approach, allowing each driver to choose whether to accept
an order, thereby preventing low-profit orders from negatively impacting the global income.

• Centralized Training and Centralized Execution (CTCE): CEVD [3], based on VD [45],
innovatively combines the Q-values of each agent with those of their neighbors to create a new
type of Q-value, akin to the motivation behind BMG-Q.

Overall, most of these methods attempt various strategies to enhance each agent’s awareness of
the global state, facilitating better cooperation. In contrast, our method directly transforms the
formulation into a centralized single-agent reinforcement learning approach.

It is noteworthy that these Independent and CTDE MARL dispatching methods differ slightly from
general MARL methods. In order dispatching, one order cannot be assigned to multiple workers,
making it necessary to employ some centralized mechanism to achieve this. We refer to them as
independent MARL and CTDE methods because they can directly calculate their own Q-values
or action probabilities using their own or neighboring states. Conversely, CEVD must calculate
the primary Q-value of each agent separately and then combine those primary Q-values with their
neighbors to obtain a final Q-value for each agent.

Through the experimental results in Fig. 3, we observe that DeepPool [1], serving as one of the
earliest benchmarks, demonstrates relatively stable and good performance, suggesting the simplicity
and effectiveness of IDDQN features. In contrast, BMG-Q [23] significantly improves performance
by utilizing FAT to capture neighboring information. As for HIVES [38] and CEVD [3], while they
exhibit relatively good performance in the early stages of training—likely due to their hierarchical
structure and centralized training methods—their performance becomes unstable in later stages, with
rewards even starting to decrease. This instability may stem from the hierarchical approach not

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

adequately addressing the large network input of the mixture network in QMIX and the lazy agent
problem in VD. Additionally, their centralized training approach faces the same data scarcity issues
as our method, making convergence more challenging. For Enders et al. [9], we note that their
method shows worse performance than others. This may be related to their state processing method
during training, where they replace the next state in the replay buffer with the request state from the
current state to maintain a consistent agent count across two successive time steps, which appears
to be a strong assumption. Finally, for the last three methods, their original papers primarily focus
their reward functions on the serving order amount, without incorporating additional terms like ours
(which also considers income, outcome, and user satisfaction levels). This makes our scenario more
complex and may further reduce the performance of their methods in our setting.

E.4 ADDITIONAL EXPERIMENT RESULT

The detailed experimental results across different time periods are shown in Fig. 6, while the weighted
average numerical results are presented in Table 3. For each model in each scenario, we repeat the
experiment three times, and the error bars in the figure represent the standard deviation. We observe
that our Triple-BERT achieves the highest reward across all scenarios, with the advantage becoming
more pronounced as the order volume increases. Triple-BERT primarily optimizes the service rate
and pickup time, significantly outperforming other methods.

For delivery time and detour time, the figures only account for completed orders, as the status of
unfinished orders is uncertain, which may introduce some bias in the detailed values. In terms of
these two metrics, Triple-BERT clearly performs better in high order volume scenarios, but not in low
order volume scenarios. This may be due to the relatively low conflict caused by MARL in low order
scenarios, while in high order scenarios, both the observation and action spaces increase sharply,
making it challenging for MARL to find optimal solutions.

Lastly, we note that our method and the approach by Enders et al. [9] exhibit higher confirmation
times. This may be attributed to both methods having an explicit rejection action (i.e., choosing no
order), unlike the other methods. While this mechanism can lead to higher confirmation times, it also
enables the model to discard negative profit orders and reserve some orders for currently unavailable
workers.

Table 3: Average Performance under Multiple Periods: Bold entries represent the best results.

Method Reward Service Rate Delivery Time Detour Time Pickup Time Confirmation Time
DeepPool [1] 12723.85 0.91 11.53 2.47 7.77 0.06
BMG-Q [23] 13036.29 0.92 10.57 1.90 7.61 0.10
HIVES [16] 12365.11 0.89 11.04 2.28 7.99 0.03
Enders et al. [9] 12041.62 0.90 12.28 2.90 7.94 0.80
CEVD [3] 13157.96 0.94 11.36 2.31 7.37 0.06

Triple-BERT 14730.48 0.98 11.53 2.52 5.73 0.13
w/o stage 1 10665.02 0.87 11.92 2.72 9.36 0.68
w/o normalization 10839.33 0.88 12.50 2.85 9.10 0.24

E.5 EXPANDED GENERALIZATION AND EXTENSIBILITY EXPERIMENT

In this section, we first further prove the generalization capacity of our method in more testing
scenarios, using the scenarios of other days, not just the other periods in the same day as the last
section. The result is shown in Table 4. Specifically, we compared our Triple-BERT with other
methods using the testing scenario from July 16 to July 18, 2024, at 6 PM. The results indicate that our
Triple-BERT achieved the highest reward among all scenarios, highlighting its strong generalization
capacity.

Then, we aim to prove the extensibility and scalability of our method. As a result, we compared
its performance against other approaches as the driver count increased to 1,500 and 2,000 during a
high concurrency period. In this scenario, the order volume reached 6,775, which we synthesized by
combining orders from two different periods. The result is shown in Table 5. The results indicate that
our Triple-BERT model achieves the highest reward across various scenarios, without the need for
retraining.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: Reward of Different Methods Under Different Days

Scenario DeepPool [1] BMG-Q [23] HIVES [16] Enders et al. [9] CEVD [3] Triple-BERT
7.16 (4,451 orders) 13,473 14,121 12,070 12,142 14,226 16,831
7.17 (4,125 orders) 13,204 13,424 12,232 12,208 14,145 16,145
7.18 (3,635 orders) 12,679 13,067 12,397 12,268 13,336 14,819

Table 5: Reward of Different Methods During High Concurrency Period among Different Driver
Amounts

Driver Amount DeepPool [1] BMG-Q [23] HIVES [16] Enders et al. [9] CEVD [3] Triple-BERT
1,500 21,090 22,333 19,587 19,546 23,092 27,458
2,000 25,316 25,650 25,713 25,394 26,207 28,273

Additionally, to prove the practical application potential of our method, we test the computation time
with driver amounts ranging from 1,000 to 2,000 and order amounts from 300 to 500 at a single time
step, shown in Table 6. (In our real-world dataset, we typically observe that the order amount does
not exceed 200 at any single step.) The results indicate that the decision time remains consistently
under 0.2 seconds across all scenarios. Additionally, the order and driver counts have minimal impact
on computation time. This suggests that, for the current simulation, most of the processing time is
allocated to the simulator’s operations rather than to decision computation cost.

Table 6: Decision Time of Different Driver and Order Amounts (unit: seconds)

Driver Amount
Order Amount 300 400 500

1,000 0.1801 0.1839 0.1870
1,500 0.1806 0.1820 0.1830
2,000 0.1789 0.1829 0.1809

To further demonstrate the generalizability of our method, we conducted an expanded experiment
using High Volume For-Hire Vehicle (FHV) trip data from Queens, New York City [47]. We chose
not to continue with the yellow taxi data, as its primary operational area is Manhattan. Unlike the
capital-intensive region of Manhattan, Queens has a significantly lower trip volume, despite its area
being about five times larger. Consequently, the data distribution in Queens presents a markedly
different challenge: while the number of orders decreases, the distances between them tend to
increase, leading to greater difficulties for ride-hailing services. To adapt to this scenario, we set the
driver count to 500 while keeping all other settings consistent.

The detailed experimental results are presented in Table 7, using data from 19:00 to 19:30 on July
17, 2024, which includes 2,024 valid orders. We observe that our Triple-BERT maintains its SOTA
performance, primarily optimizing the assignment and improving rewards by serving more orders
and reducing pickup times. However, this inevitably leads to a slight increase in delivery and detour
times due to the bundling of more orders.

Additionally, compared to the results in Manhattan, as shown in Table 3, we noted that the average
pickup time in Queens is significantly longer. While the decrease in the number of drivers may
contribute to this, it is not the main factor, as the order volume has also declined significantly. The
primary reason lies in the larger area and more dispersed order distribution in Queens. This leads to a
substantial penalty in the pickup time term of the reward function, resulting in minimal differences
in the rewards among different policies. Such challenging scenarios further hinder the efficient
exploration and learning of centralized MARL methods like HIVES and CEVD.

E.6 EXPANDED ABLATION STUDY

In this section, we aim to further illustrate the efficacy of removing the positional embedding in
BERT and the utilization of ARL style attention-based encoder for better feature extraction.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Performance of Different Methods in Queens, New York City [47]

Method Reward Service Rate Delivery Time Detour Time Pickup Time Confirmation Time
DeepPool [1] 5222.85 0.64 11.24 1.84 12.30 0.21
BMG-Q [23] 5362.00 0.66 9.63 1.08 12.98 0.27
HIVES [16] 3560.80 0.60 8.30 0.36 14.67 0.41
Enders et al. [9] 4543.68 0.61 10.41 0.85 13.39 2.25
CEVD [3] 4388.83 0.62 11.61 1.33 13.74 0.29

Triple-BERT 5577.83 0.72 9.07 0.90 11.32 0.23

For the positional embedding, the rationale behind eliminating the positional embedding includes:

• Incorporated Position Information in State Space: The coordinates of each vehicle and order
are included as part of the state input, making additional positional embeddings unnecessary.

• Nature of Vehicle and Order Dispatching: In ride-sharing tasks, the optimal assignment should
be independent of the input sequence order. By removing the positional embedding, we ensure that
all positions are homogeneous, thus realizing this property.

• Scalability Considerations: Utilizing positional embeddings in BERT requires a predefined
maximum input length before model training, which cannot be altered later. In scenarios of extreme
concurrency, the number of orders may exceed this maximum length, potentially compromising
model efficacy.

To further prove it, we compare the model performance with and without the positional embedding as
shown in Table 8. The results indicate that positional embedding introduces additional interference,
resulting in lower performance. This is particularly evident in generalization problems: when using
positional embeddings, Triple-BERT only outperforms previous MARL SOTA in training scenarios,
but not in testing scenarios. Additionally, when the order amount exceeds the training scenario, the
maximum length restriction hinders the model’s effectiveness.

Table 8: Reward of Tripe-BERT w/ and w/o Positional Embedding (PE)

PE
Order Amount 3,726 (train) 2,850 3,114 3,577 3,910 4,264

w/ 14,092 10,679 11,431 12,841 × ×
w/o 15,388 11,148 13,483 14,477 16,335 17,366

To illustrate the efficiency of the encoder, we compare our methods and others when using the
attention-based encoder and vanilla MLP-based encoder. The result is shown in Table 9. The results
indicate that the ARL-based encoder significantly enhances the performance of our Triple-BERT
alongside independent MARL methods such as DeepPool and BMG-Q. However, this improvement
does not extend to CTDE and centralized MARL approaches like HIVES, Enders et al., and CEVD.
The underlying reason is that CTDE and centralized MARL methods in ride-sharing primarily
suffer from the CoD in the critic network, an issue that cannot be mitigated by a more powerful
feature extractor. We believe that the improvements observed in DeepPool, BMG-Q, and our Triple-
BERT effectively enhance the efficiency of our designed encoder. Furthermore, even with the
ARL-based encoder, our Triple-BERT consistently outperforms all previous methods, underscoring
the superiority of our approach. Additionally, even with the simple MLP-based encoder, Triple-BERT
still outperforms previous MARL methods, illustrating the robustness of our centralized SARL
method.

Table 9: Reward of Different Methods Under Different Encoder

Encoder DeepPool [1] BMG-Q [23] HIVES [16] Enders et al. [9] CEVD [3] Triple-BERT
Vanilla MLP 13,332 13,539 13,126 12,670 13,746 14,967
ARL-based 14,570 13,879 13,095 12,706 13,724 15,388

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F RELATED WORK

F.1 ORDER DISPATCH IN RIDE-SHARING TASK

Order dispatch methods in ride-sharing can be primarily categorized into model-based and RL-based
approaches. Model-based methods often rely on early assumptions that all order information is
known in advance [59] or neglect potential future dynamics, resulting in impractical or myopic
solutions. Later research focused on modeling and capturing environmental uncertainties for practical
applications [2]. However, accurately characterizing these complexities in the ride-sharing market
remains a challenging task.

In contrast, model-free RL methods free researchers from these constraints, allowing agents to
interact with and learn from the environment independently. Given the vast action and observation
spaces, most studies adopt a MARL paradigm (some referring to their methods as decentralized
RL) to effectively manage these challenges [37]. Similar to standard MARL, the methods adapted
for ride-sharing can be divided into Decentralized Execution (DTDE, also known as independent
MARL), Centralized Training with Decentralized Execution (CTDE), and Centralized Training with
Centralized Execution (CTCE) [24]. DTDE methods, while widely used in early studies [1; 10],
suffer from low cooperation since each agent perceives others merely as part of the environment, often
leading to instability during training. Hu et al. [23] introduced the GAT [51] to enable each agent
to consider the information of its neighbors, thereby reducing overestimation issues and improving
system performance. Other studies have shifted towards CTDE and CTCE paradigms to promote
effective cooperation. For instance, Enders et al. [9] proposed a delayed matching method based on
MASAC [14], allowing agents to decide whether to accept assigned orders at each step. Bose et al.
[3] developed a VD-based method [45] that utilizes a global reward to foster cooperation, although it
faces the challenge of lazy agents. Furthermore, Hao et al. [16] applied QMIX [38], while Hoppe et
al. [19] employed COMA [11] alongside a mix of global and local rewards to address existing issues.
However, many of these centralized methods require a centralized critic, reintroducing the challenge
of CoD. To address this, Li et al. [26] proposed a Mean Field MARL framework [60], and Zhao et
al. [66] developed the GRPO [39] and OSPO methods based on the homogeneous properties among
agents, although these assumptions are not always met in practice.

Additionally, several studies began to explore more practical scenarios that integrate order dispatch
with other tasks, such as repositioning, price setting, and multi-modal transportation5. For example,
Zhang et al. [63] considered the joint optimization of order dispatch and price setting, which can
significantly influence customer demand. Similarly, Haliem et al. [15] and Ge et al. [13] examined
repositioning strategies based on these factors. Hu et al. [21; 22] analyzed order assignment in
joint delivery scenarios involving cars, subways, and Unmanned Aerial Vehicles (UAVs), while
other works, such as Singh et al. [41], have studied multi-hop transportation. Furthermore, some
studies have examined fairness considerations. For instance, Zhang et al. [62] introduced mutual
information in the reward function to address challenges related to unusual order distributions and
improve platform income. Zhao et al. [65] investigated algorithmic discrimination by considering
joint order assignments and payment settings for workers.

Overall, current MARL-based ride-sharing methods face a fundamental dilemma: centralized training
paradigms foster cooperation at the cost of exacerbating the CoD, whereas decentralized approaches
mitigate CoD but suffer from non-stationarity and poor coordination, ultimately limiting system
performance. To navigate this dilemma, our paper offers a novel perspective by directly utilizing a
centralized SARL framework to leverage complete global information, where we then develop efficient
techniques, such as action decomposition, to directly address the ensuing CoD challenge.

F.2 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Cooperative MARL has a wide range of applications, including power control, robot fleet man-
agement, and ride-sharing tasks [61]. According to a recent survey [35], these methods can be
categorized into five types: independent learning, centralized critic, value decomposition, consensus,
and communication.

5To avoid confusion, we would like to clarify that the concept of multi-modal in transportation differs from
that in computer science. In transportation, “multi-modal” refers to a travel model that utilizes multiple vehicles,
such as taxis, buses, and subways, regardless of the model input.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Early-stage works primarily focused on independent learners, which represent the simplest realization
of MARL. By viewing each agent as an independent entity and others as part of the environment,
standard SARL methods can be easily transferred to MARL scenarios. However, this approach can
lead to unstable environments, as the policies of other agents continuously change. Additionally,
it often results in local optima, as each agent aims to maximize its own reward, neglecting the
cooperation necessary to optimize global reward. Despite efforts such as Hysteretic Q-Learning [32],
challenges remain in large-scale environments and sparse reward situations.

To overcome these challenges, the CTDE and CTCE paradigms have been widely explored in
centralized critic and value decomposition MARL methods. In the case of centralized critics, early
research focused on adapting actor-critic methods like PPO, SAC, and DDPG by replacing the critic
with a centralized one. During training, the critic receives input from all agents, thus addressing
the instability problem, although it is not needed during execution, allowing actors to function
independently. To further enhance this paradigm, attention-based critics were introduced to capture
the relationships among agents [31], inspired by the Transformer architecture [50]. Foerster et al.
[11] proposed COMA to resolve the credit assignment problem by introducing a counterfactual
baseline, which underwent further improvements in subsequent research [25]. Additionally, value
decomposition methods aim to effectively distribute global rewards among agents, enabling them
to optimize the overall reward rather than just their individual rewards. Starting from VD [45],
which struggles with lazy agents due to the simple addition of Q-values, many efforts have been
made to enhance the representation capacity of functions that combine global and individual Q-
values. Notable examples include QMIX [38], VDAC [43], and QTRAN [42]. However, most of
these methods encounter the challenge of CoD when the number of agents increases, particularly
in scenarios like our ride-sharing task, where the number of agents can exceed hundreds or even
thousands.

Consensus and communication methods, developed later, strive to find a balance between low co-
operation and the CoD challenge. Here, agents only exchange information with their neighbors or
selected agents. Consensus-based methods utilize sparse communication to achieve policy consensus
among agents, often with convergence guarantees under linear approximators [49]. However, many of
these methods often rely on multiple rounds of communication, leading to practical challenges in the
ride-sharing task, which has high demands for real-time performance. In contrast, communication-
based methods focus on designing efficient mechanisms for determining what information to send
and to whom. For instance, Sukhbaatar et al. [44] proposed CommNet, which broadcasts each
agent’s hidden features derived from their observations. However, similar to Mean Field approaches
[60] in MARL, this method considers only the average influence of others, neglecting the specific
relationships among agents. Subsequent attention-based methods were introduced to evaluate the
significance of information from different agents [7; 27]. However, the training difficulties associated
with communication-based methods are relatively high, particularly as early-stage communication of-
ten yields little meaningful information. Furthermore, many communication methods face a trade-off
between cooperation performance, communication costs, and the content of communication—issues
closely related to CoD. Even recent methods focusing on efficient communication mechanism design
[55] still encounter challenges in our ride-sharing scenario with extremely high agent volumes. For
example, [28] proposed a novel communication protocol based on exponential graphs, guaranteeing
global message exchange within ⌈log2(N − 1)⌉ steps. However, this number can reach 10 in our
experiment with 1,000 agents, which is relatively high compared to the total time step horizon of
30. Additionally, communication-based methods represent an ongoing challenge, as determining
what content to communicate and to whom poses risks associated with credit assignment. Despite
these advancements, most consensus and communication methods still encounter challenges such as
credit assignment and a lack of convergence theory. In contrast, the SARL-based method circumvents
these problems by directly capturing global information. Given that ride-sharing is fundamentally
a centralized decision task, we consider the SARL-based method to be a promising solution that
overcomes the limitations of previous MARL-based approaches.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Legend

(b) Accumulative Reward

(c) Service Rate

(d) Delivery Time

Figure 6: Detailed Evaluation Results

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(e) Detour Time

(f) Pickup Time

(g) Confirmation Time

Figure 6: Detailed Evaluation Results

28

	Introduction
	Problem Setup
	Methodology
	Overview
	Network Architecture
	Feature Extractors
	Actor Sub-Networks
	Critic Sub-Networks

	Training Process
	Stage 1: Decentralized IDDQN Training
	Stage 2: Centralized TD3 Training

	Experiment
	Conclusion
	Action Space Size
	BiParite Graph Construction
	IDDQN Bipartite Graph
	TD3 Bipartite Graph

	Policy Gradient Proof
	Training Process
	Stage 1: IDDQN Algorithm
	Stage 2: TD3 Algorithm

	Experiment Details
	Experiment Configurations
	Simulation Setup
	Introduction of Comparative Methods
	Additional Experiment Result
	Expanded Generalization and Extensibility Experiment
	Expanded Ablation Study

	Related Work
	Order Dispatch in Ride-Sharing Task
	Cooperative Multi-Agent Reinforcement Learning

