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ABSTRACT

Recent Convolutional Neural Networks (CNNs) utilize large-kernel convolutions
(e.g., 101 kernel convolutions) to simulate a large receptive field of Vision Trans-
formers (ViTs). However, these models introduce specialized techniques like re-
parameterization, sparsity, and weight decomposition, increasing the complexity
of the training and inference stages. To address this challenge, we propose Region-
aware CNN (RaCNN), which achieves a global receptive field without requiring
extra complexity, yet surpasses state-of-the-art models. Specifically, we design
two novel modules to capture global visual dependencies. The first is the Region-
aware Feed Forward Network (RaFFN). It uses a novel Region Point-Wise Con-
volution (RPWConv) to capture global visual cues in a region-aware manner. In
contrast, traditional PWConv shares the same weights for all spatial pixels and
cannot capture spatial information. The second is the Region-aware Gated Linear
Unit (RaGLU). This channel mixer captures long-range visual dependencies in
a sparse global manner and can become a better substitute for the original FFN.
Under only 84% computational complexity, RaCNN significantly outperforms the
state-of-the-art CNN model MogaNet (83.9% vs. 83.4%). It also demonstrates
good scalability and surpasses existing state-of-the-art lightweight models. Fur-
thermore, our RaCNN shows comparability with state-of-the-art ViTs, MLPs, and
Mambas in object detection, instance segmentation, and semantic segmentation.
All codes and logs are released in the supplementary materials.

1 INTRODUCTION
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Figure 1: Comparing the accuracy and FLOPs
with Swin (Liu et al., 2021), InceptionNeXt (Yu
et al., 2024), PeLK (Chen et al., 2024), Mo-
gaNet (Li et al., 2024), and UniRepLKNet (Ding
et al., 2024) on ImageNet-1K.

Convolutional Neural Networks (CNNs) have
been one of the most important fields in com-
puter vision over the past decade. Pioneering
works like AlexNet (Krizhevsky et al., 2012) use
large kernels to improve performance. After that,
ResNet (He et al., 2016) applies small kernels
and achieves leading performance through resid-
ual connections, establishing the dominant posi-
tion of small-kernel CNNs in the vision domain.
Recently, Vision Transformers (ViTs) Dosovit-
skiy et al. (2021); Liu et al. (2021); Hassani et al.
(2023a) have obtained great success in vision by
capturing the global receptive field. Inspired by
this, recent CNNs have utilized large-kernel con-
volutions (e.g., 101 kernels (Chen et al., 2024))
to simulate the large receptive fields of Vision
Transformers (ViTs). Both ConvNeXt (Liu et al.,
2022) and DWNet (Han et al., 2022) find using 7 × 7 kernels can obtain even better results than
Swin (Liu et al., 2021). RepLKNet (Ding et al., 2022) proposes replacing commonly used small
kernels with large Depth-Wise Convolution (DWConv) up to 31 × 31 to obtain a larger receptive
field, followed by more works attempting to increase the kernel size further (e.g., 51 in SLaK Liu
et al. (2023), and 101 in PeLK (Chen et al., 2024)). Large-kernel convolutions endow CNNs with
powerful capabilities, achieving comparable or superior accuracy to ViTs while maintaining higher
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Reference Method Max KS Throughput
(img/s) Param FLOPs Top-1 (%)

CVPR22 ConvNeXt (Liu et al., 2022) 7 2729 29M 4.5G 82.1
NeurIPS22 FocalNet (LRF) (Yang et al., 2022) 7 2443 29M 4.5G 82.3

ICLR23 ConvNeXt-dcls (Hassani et al., 2023b) 17 1585 29M 5.0G 82.5
ICLR23 SLaK (Liu et al., 2023) 51 417 30M 5.0G 82.5
ICCV23 ConvNeXt-1D++ (Kirchmeyer & Deng, 2023) 31 1043 29M 4.7G 82.7
CVM23 VAN (Guo et al., 2023) 21 1688 27M 5.0G 82.8

Our RaCNN-T Global 3037 19M 2.4G 82.9
CVPR23 ConvNeXt V2 (Woo et al., 2023) 7 1396 29M 4.5G 83.0

NeurIPS22 HorNet (Rao et al., 2022) 7 1417 22M 4.0G 82.8
ICLR22 DWNet (Han et al., 2022) 7 1741 74M 12.9G 83.2
CVPR24 UniRepLKNet (Ding et al., 2024) 7 1101 31M 4.9G 83.2
ICLR24 MogaNet (Li et al., 2024) 7 1171 25M 5.0G 83.4
CVPR22 RepLKNet (Ding et al., 2022) 31 585 79M 15.3G 83.5
CVPR24 InceptionNeXt (Yu et al., 2024) 11 2164 49M 8.4G 83.5

Our RaCNN-S Global 2185 28M 4.2G 83.9

Table 1: Comparison of various CNNs on ImageNet-1K image classification. Throughput is tested
on a 4090 GPU with 128 batch size and BN merge. Max KS is the abbreviation of the Max Kernel
Size of convolution. We show two scales of RaCNN to compare with others. Most state-of-the-art
CNNs introduce large-kernel convolutions to obtain better results, and our RaCNN obtains the best
results with sparse global kernel size.

(a) SLaK (b) UniRepLKNet (c) InceptionNeXt (d) MogaNet (e) RaCNN(Our)

Figure 2: Effective receptive field (ERF) of various CNNs. SLak (Liu et al., 2023), Unire-
pLKNet Ding et al. (2024), and InceptionNeXt (Yu et al., 2024) could capture long-range depen-
dencies but introduce excessive visual noises, as they allocate excessive weights to background and
edge areas. MogaNet (Li et al., 2024) could only capture local visual cues. Our RaCNN can capture
long-range dependencies and the local context features simultaneously without excessive noises.

efficiency. This renaissance emphasizes the potential of CNNs and highlights the importance of a
large receptive field in vision perception.

However, the quadratic complexity of the kernel size seriously hinders the efficiency of large-kernel
CNNs. As shown in Table 1, increasing the kernel size will add computational complexity, mak-
ing it difficult to train such models. RepLKNet (Ding et al., 2022) and UniRepLKNet (Ding et al.,
2024) propose re-parameterizing small kernels into larger ones. SLaK (Liu et al., 2023) uses two
stripe convolutions and leverages dynamic sparsity to obtain trainable large kernels. Inception-
NeXt (Yu et al., 2024) decomposes weights into several branches of smaller kernels in the Inception
style (Szegedy et al., 2015). All the above compensatory measures introduce additional complex-
ity during training and inference. As a result, these works remain conservative and cautious when
expanding the receptive field, impeding further exploration and experimentation.

The above discussion leads to the following question: Can we scale up the receptive field as much
as possible without extra complexity? To address this challenge, we present Region-aware CNN
(RaCNN), a large-kernel CNN that provides a global receptive field without specialized training
techniques. Specifically, we introduce two innovative modules to capture long-range dependencies.
We first design the Region-aware Feed Forward Network (RaFFN) with novel Region Point-Wise
Convolution (RPWConv) to capture global visual cues in a region-aware manner. Traditional PW-
Conv Howard et al. (2017) is essentially a 1× 1 convolution where all spatial pixels share the same
weights, diminishing its ability to aggregate spatial information. In contrast, our RPWConv divides
spatial feature maps into several sparse global regions, and generates dynamic weights within each
region, exhibiting a coarse-grained global spatial recognition capability. The second proposed mod-
ule is the Region-aware Gated Linear Unit (RaGLU), which captures long-range visual dependencies
at a lower feature resolution, and can effectively replace the original Feed-Forward Network. The
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above modules expand the receptive field of convolutions to a global scale, as illustrated in Fig-
ure 2. Unlike other CNNs, which either lose global visual cues or are susceptible to visual noise,
our RaCNN simultaneously captures global cues and local features with high robustness and low
complexity.

Our RaCNN impressively achieves leading performance compared with various architectures across
various visual tasks. RaCNN substantially surpasses the state-of-the-art CNN model Inception-
NeXt (Yu et al., 2024) (83.9% vs 83.5%) on ImageNet-1K image classification, while using only
half the FLOPs (4.2G vs 8.4G) and gaining a slightly faster training speed. Furthermore, RaCNN
exhibits satisfying scalability, outperforming existing state-of-the-art lightweight models. When
used as a vision backbone, RaCNN also demonstrates performance comparable to state-of-the-art
ViTs, MLPs, and Mambas in object detection, instance segmentation, and semantic segmentation,
highlighting its remarkable capability in dense prediction tasks.

2 RELATED WORK

2.1 LARGE-KERNEL CNNS

Large-kernel convolutions (7× 7 and 11× 11) are commonly utilized in old-fashioned CNNs such
as AlexNet (Krizhevsky et al., 2012) and Inception (Szegedy et al., 2015; Ioffe & Szegedy, 2015;
Szegedy et al., 2016; 2017). VGG (Simonyan & Zisserman, 2015) proposes stacking several small
kernels (3 × 3 and 1 × 1) deeply to get large receptive fields and achieve better results. After that,
large-kernel convolutions gradually fade away, and only some Neural Architecture Search-based
models try to incorporate them, like MobileNetV3 (Howard et al., 2019) and EfficientNet (Tan &
Le, 2019). Recently, inspired by the popularity of ViT (Dosovitskiy et al., 2021; Liu et al., 2021)
in modeling long-range dependencies, ConvNeXt (Liu et al., 2022) follows the design paradigm of
the Swin Transformer by modernizing a standard ResNet to a ViT, and it applies large 7 × 7 DW-
Conv to achieve competitive performance. HorNet (Rao et al., 2022), DWNet (Han et al., 2022),
and UniRepLKNet (Ding et al., 2024) also verify the validity of 7 × 7 kernel size in various tasks.
Subsequently, many works further increase the kernel sizes. RepLKNet (Ding et al., 2022) enlarges
the kernel to 31× 31 and proposes a re-parameterization technique to solve training issues of large
kernels. SLaK (Liu et al., 2023) combines two strip convolutions (51× 5 and 5× 51) with dynamic
sparsity to scale kernels up to 51 × 51. PeLK (Chen et al., 2024) pushes this further by incorpo-
rating parameter sharing to imitate human peripheral vision, which increases the kernel size to an
astonishing 101 × 101. Our work further maximizes the kernels to the fullest to achieve the global
receptive field free of specialized training tricks.

2.2 VISION TRANSFORMERS

Following the success of Transformer (Vaswani et al., 2017b) in NLP, Vision Transformer
(ViT) (Dosovitskiy et al., 2021) demonstrates outstanding performance in image classification on
ImageNet. Numerous follow-up works strive to enhance the performance of ViT. The well-known
Swin Transformer (Liu et al., 2021) proposes shifted window attention, combining the attention
mechanism with local windows, which remarkably boosts performance in various downstream vi-
sion tasks. Similarly, CSwin (Dong et al., 2022) computes self-attention in horizontal and vertical
stripes in parallel to achieve better results with less computation. SMT (Lin et al., 2023) introduces
multi-scale convolution to capture more local visual cues. Inspired by CNNs, NAT (Hassani et al.,
2023a) proposes a variant of window-based attention to compute neighborhood attention in a sliding
window manner, thus capturing sufficient local information for every spatial position. These novel
variants of ViTs introduce inductive bias to improve results but only have a local receptive field
within one block, instead of a global one in previous ViTs (Dosovitskiy et al., 2021; Touvron et al.,
2021). Our RaCNN captures global visual dependencies in a block, thus allowing it to interact with
long-range visual tokens.

2.3 VISION MLPS

Multilayer Perceptron (MLP) is a classical algorithm in the pre-CNN era. Recently, Channel MLP
has become a core component in ViTs (Dosovitskiy et al., 2021; Touvron et al., 2021). Consequently,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

some modern MLP-based architectures (Tolstikhin et al., 2021; Touvron et al., 2023) have been pro-
posed to mix spatial features further and are even comparable to ViT (Dosovitskiy et al., 2021). To
enhance the performance under limited computation, ViP (Hou et al., 2023), sMLPNet (Tang et al.,
2022a), and Strip-MLP (Cao et al., 2023) decompose spatial mixing in two independent vertical
and horizontal dimensions. However, all the aforementioned MLPs only process fixed-dimensional
inputs and cannot generalize to downstream dense prediction tasks. Thus, researchers have replaced
spatial MLPs with other spatial aggregation operations. AS-MLP (Lian et al., 2022), S2-MLP (Yu
et al., 2022), Shift (Wang et al., 2022), and Hire-MLP (Guo et al., 2022) propose a spatial shift
operation to aggregate spatial features. CycleMLP (Chen et al., 2023), Wave-MLP (Tang et al.,
2022b), ATMNet (Wei et al., 2023), and RaMLP (Lai et al., 2023) use DWConv to introduce more
fine-grained visual cues. Most of the above variants focus more on local information but lose the
global context. Our RaCNN, in comparison, can capture global visual dependencies in one block.

2.4 VISION MAMBA

Mamba (Gu & Dao, 2023; Dao & Gu, 2024) is a recent advancement in sequence modeling that
addresses the limitations of Transformer-based architectures and showcases new state-of-the-art per-
formance. One of the key innovations of Mamba is the Selective State Space Model (SSM), which
allows Mamba to manage long sequences more efficiently, scaling better with sequence length with
lower complexity. Subsequent efforts (Huang et al., 2024; Pei et al., 2024; Liu et al., 2024; Shi
et al., 2024; Yang et al., 2024; Zhu et al., 2024) have explored the adaptation of this block to vision
tasks, yielding competitive results compared to other vision backbones. A direct approach is using
different scanning routes to flatten 2D feature maps into 1D sequences, which are then modeled with
the block and integrated. Inspired by these considerations, various scanning routes have been em-
ployed and proven to be effective, as evidenced by multiple studies. Our RaCNN models long-range
dependencies in parallel, thus obtaining better training and inference speed.

3 METHOD

In this section, we first describe the overall architecture of RaCNN. Next, we show details of the
Region-aware Feed Forward Network (RaFFN) and the Region-aware Gated Linear Unit (RaGLU).
Finally, we describe several architecture variants of the RaCNN.

3.1 OVERALL ARCHITECTURE

Based on our proposed RaFFN and RaGLU, we build a series of architectures of different sizes,
collectively dubbed Region-aware Convolution Neural Network (RaCNN). Figure 3 illustrates the
architecture of RaCNN-Tiny. Following the ConvNeXt (Liu et al., 2022) framework, we construct
a 4-stage architecture. The stem at the beginning is a convolutional layer with 3 × 3 kernels and
a stride of 2, providing an effect of 2× downsampling. Each stage contains a Down Block and
several Region-aware (Ra) blocks. In all these blocks, PWConvs are commonly applied to facilitate
inter-channel communications. Specifically, the Down Block reduces the input along the height and
width dimensions, and increases the channel dimension using DWConv with 3 × 3 kernels of step
2 and a skip path. The Ra block consists of RaGLU and RaFFN, and these two modules do not
change the feature size. RaGLU applies the Region Attention to mix different channels and capture
the global context in a sparse global manner. In place of vanilla FFNs, RaFFN utilizes RPWConv
and DWConv to further refine the global-aware features dynamically and carefully.

3.2 REGION-AWARE FEED FORWARD NETWORK

As shown in Figure 3, the RaFFN first feeds the input into a layer normalization to prevent numeric
overflow issues. Then, the normalized features are fed into two parallel branches. One branch
includes a PWConv and a Region PWConv (RPWConv), while the other consists of a PWConv and
a DWConv. By adding the outputs of these two branches, we obtain multiscale features containing
both local and global visual cues. The final output is generated simply by a residual connection,
followed by GELU activation and another PWConv.
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Figure 3: Overview of RaCNN-Tiny. It is constructed by stacking Region-aware (Ra) blocks. In
each Ra block, the RaGLU module captures the global context, the RaFFN module aims to refine
features dynamically and carefully.

Formally, consider a feature x ∈ Rc×h×w. The tensor flow in RaFFN can be elaborated as follows:

yl = LN(xl−1), (1)

zl1 = RPW(PW(yl), rs), (2)

zl2 = DW(PW(yl), ks = 3), (3)

xl = xl−1 + PW(GELU(zl1 + zl2)), (4)

where l denotes the lth RaFFN. LN, PW, and GELU refer to Layer Normalization, PWConv,
and GELU activation, respectively. RPW(·, rs) indicates the RPWConv with region size rs, and
DW(·, ks = 3) represents the DWConv with kernel size 3. All DWConv and PWConv operations
are followed by Batch Normalization (BN), which is not explicitly labeled for simplicity.

Region Point-Wise Convolution: Figure 4a illustrates a traditional PWConv, which has been
widely used in previous models (Simonyan & Zisserman, 2015; He et al., 2016) to exchange channel
information. After finishing model training, the weights in PWConv become static. Thus, all inputs
share the same weights in all spatial positions, leading to incompatibility with some hard cases.
Dynamic PWConv, as shown in Figure 4b, is a variant of PWConv. The input generates its weight
matrix; thus, it could be adaptively adjusted according to the input to capture visual dependencies
better. Formally, consider a feature xl ∈ Rc×h×w. The tensor flow in Dynamic PWConv can be
elaborated as follows:

x = Reshape(xl) ∈ Rc×hw, (5)

w = Softmax(s
xxT

||x||22
), (6)

y = Reshape(wx) ∈ Rc×h×w, (7)

where l is the lth operation, s is the learnable parameter to scale the similarity score, w is the
generated dynamic weight, and y is the output.

However, Dynamic PWConv only generates weights for different inputs, but still shares the same
weight for all positions within one input, which limits its ability to capture spatial information and
expand the receptive field. To tackle this problem, we propose Region PWConv. Same as Swin

5
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Figure 4: Comparison of various Point-Wise Convolutions. (a) In PWConv, all inputs share the
same static weight in all spatial positions. (b) Dynamic PWConv tailors weights for different inputs,
but all spatial positions in a given input share the same weight. (c) Region PWConv partitions spatial
features into several sparse global windows. Positions with the same color form one such window.
Dynamic PWConv is applied in each window to generate region-aware dynamic weights.
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Figure 5: Detail of Region Attention. Sparse global average pooling is applied in each sparse global
window, aggregating global cues into each element in region feature. After PWConvs, upsampling
and sigmoid, the obtained global region weight contains global cues and is later fused with the input.

Transformer (Liu et al., 2021), we partition the visual tokens into several regular windows and
perform Dynamic PWConv within these windows respectively. Therefore, tokens in one input will
get different weights. Figure 4c shows the details of the window partitioning. Instead of employing
a local window approach like Swin, we adopt a dilated manner to capture global spare information
and obtain a global receptive field while implementing Dynamic PWConv in each window.

Comparison with Self-Attention: The core of our model is generating dynamic weights, which
is similar to self-attention (Vaswani et al., 2017a). Below, we outline the differences between them:

• Self-Attention requires three linear layers to project the input to different embeddings:
Query, Key, and Value. Our model eliminates these layers and shares the same input.

• Self-Attention employs inner-product to calculate similarity, whereas our model used co-
sine distance to better measure the similarity.

• Self-Attention has quadratic computational complexity relative to the input image size,
while the computational complexity of our model is linear to image size.

3.3 REGION-AWARE GATED LINEAR UNIT

Figure 3 shows the RaGLU, a two-branch residual architecture. The input is first processed through
a Layer Normalization and then sent to two branches simultaneously. One branch consists of a PW-
Conv, a GELU, and a DWConv. Another branch includes only a single PWConv. Then we multiply
the outputs of two branches and pass the result through a Region Attention and a PWConv. Fi-
nally, we perform a residual connection between the output and the input to produce the final output.
Mathematically, consider the input feature x̂ ∈ Rc×h×w. The whole process can be formulated as:

yl = LN(xx−1), (8)

zl1 = DW(GELU(PW(yl)), ks = 3) (9)

zl2 = PW(yl), (10)

xl = xl−1 + PW(RA(zl1 × zl2, rs)) (11)

where l is the lth GbR module. The notations LN, PW, and GELU mean Layer Normalization,
PWConv, and GELU activation, respectively. DW(·, ks = 3) represents DWConv with kernel size

6
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3, and RA(·, rs) indicates Region Attention with region size rs. All DWConv and PWConv are
followed by BN operation, and we do not make explicit labeling for convenience.

Region Attention (RA): Squeeze-and-Excitation (SE) (Hu et al., 2018) is a famous channel atten-
tion, but it loses spatial prior due to compressing all spatial features into a single embedding. RA
is a variant of the channel attention, and can better retain global visual cues because it maintains
spatial prior by generating multiple embeddings.

As shown in Figure 5, the key difference between SE and RA is the use of sparse global average
pooling. RA averages spatial features in a dilated manner, thereby generating several visual embed-
dings with spatial prior and a global receptive field.

3.4 MODEL VARIANTS

The architecture hyperparameters of these model variants are:

• RaCNN-P: C={24, 48, 96, 192}, L={2, 3, 8, 2}, R=8.0, Drop=0.00, Mix=0.1, Cut=0.2.

• RaCNN-N: C={32, 64, 128, 256}, L={3, 5, 8, 3}, R=6.0, Drop=0.05, Mix=0.2, Cut=0.3.

• RaCNN-T: C={48, 96, 192, 384}, L={3, 5, 10, 3}, R=4.0, Drop=0.10, Mix=0.4, Cut=0.5.

• RaCNN-S: C={64, 128, 256, 512}, L={3, 6, 14, 3}, R=3.0, Drop=0.20, Mix=0.8, Cut=1.0.

• RaCNN-B: C={96, 192, 384, 768}, L={4, 8, 16, 4}, R=2.0, Drop=0.35, Mix=0.8, Cut=1.0.

Here, C is the embedding dimension of tokens, L is the number of layers in Ra block, and R is the
expansion ratio for the RaGLU. Drop is the drop path rate during training, and Mix and Cut mean
the Mixup and Cutmix ratio during training. Besides, the region size for the RPWConv and RaGLU
S is {8, 4, 2, 1}, and the head number N for the RPWConv is set to {2, 4, 8, 16} for all variants.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Setings. We evaluate the RaCNN on ImageNet-1K (Deng et al., 2009) on 8 4090 GPUs. The training
and augmentation strategies remain the same as ConvNeXt (Liu et al., 2022).

Comparison with CNN-based Models. The comparison of experimental results between RaCNN
and other CNN-based models from recent years is presented in Table 2a. First of all, our break-
through in image classification is noticeable. MogaNet-B (Li et al., 2024), the previous state-of-the-
art CNN, uses three kernel sizes (3, 5, 7) to reach 84.3% accuracy with 9.9G FLOPs. In comparison,
our RaCNN-B delivers 0.2% higher performance while requiring less than 85% of the computational
cost. Moreover, compared with the large-kernel-based PeLK-B (Chen et al., 2024) that uses 51-size
kernels, RaCNN-B achieves 0.3% higher accuracy with less than half computation (8.7G vs 18.3G),
demonstrating its superiority and efficiency over previous large-kernel models.

Comparison with SOTA Models. Table 2b compares RaCNN with other state-of-the-art back-
bones, including Mamba-based, MLP-based and ViT-based models. When the model capacity is
below 3G FLOPs, our RaCNN surpasses SiMBA (Patro & Agneeswaran, 2024), Wave-MLP (Tang
et al., 2022b) and TransNeXt (Shi, 2024), all with similar FLOPs. For model capacities ranging
from 4G to 11G FLOPs, RaCNN outperforms state-of-the-art Mamba-based models (VMamba (Liu
et al., 2024) and SiMBA (Patro & Agneeswaran, 2024)), MLP-based models (RaMLP (Lai et al.,
2023) and Wave-MLP (Tang et al., 2022b)) and ViT-based models (NAT (Hassani et al., 2023a)
and BiFormer (Zhu et al., 2023)) with comparable FLOPs. For large models exceeding 11G FLOPs,
RaCNN achieves higher performance than state-of-the-art architectures such as VMamba (Liu et al.,
2024), RaMLP (Lai et al., 2023) and NAT (Hassani et al., 2023a).

Comparison with Lightweight Models. We further evaluate RaCNN-P against lightweight models,
as shown in Table 3, and RaCNN delivers a significant performance margin. Compared to smaller
lightweight models with less than 1G FLOPs, RaCNN has an advantage of 1.6%, significantly out-
performing state-of-the-art models such as SwiftFormer (Shaker et al., 2023) and UniRepLKNet-
F (Ding et al., 2024). For lightweight models with more than 1G FLOPs, RaCNN achieves at least
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(a)
Models Kernel Top1 FLOPs Params
DWNet 7 81.3 3.8G 24M
DWNet 7 83.2 12.9G 74M
ConvNeXt-T 7 82.1 4.5G 29M
ConvNeXt-S 7 83.1 8.7G 50M
ConvNeXt-B 7 83.8 15.4G 89M
HorNet-T 7 82.8 4.0G 22M
HorNet-S 7 83.8 8.8G 50M
HorNet-B 7 84.2 15.6G 87M
ConvFormer-S18 7 83.0 3.9G 27M
ConvFormer-S36 7 84.1 7.6G 40M
ConvNeXt-T-dcls 17 82.5 5.0G 29M
ConvNeXt-S-dcls 17 83.7 9.5G 50M
ConvNeXt-B-dcls 17 84.1 16.5G 89M
ConvNeXt-T-1D++ 31 82.7 4.7G 29M
ConvNeXt-B-1D++ 31 83.8 15.8G 90M
VAN-B2 21 82.8 5.0G 27M
VAN-B3 21 83.9 9.0G 45M
VAN-B4 21 84.2 12.2G 60M
FocalNet-T 3,5,7 82.3 4.5G 29M
FocalNet-S 3,5,7 83.5 8.7G 50M
FocalNet-B 3,5,7 83.9 15.4G 89M
InceptionNeXt-T 3,11 82.3 4.2G 28M
InceptionNeXt-S 3,11 83.5 8.4G 49M
InceptionNeXt-B 3,11 84.0 14.9G 87M
SLaK-T 5,51 82.5 5.0G 30M
SLaK-S 5,51 83.8 9.8G 55M
SLaK-B 5,51 84.0 17.1G 95M
PeLK-T 13,47,49,51 82.6 5.6G 29M
PeLK-S 13,47,49,51 83.9 10.7G 50M
PeLK-B 13,47,49,51 84.2 18.3G 89M
UniRepLKNet-N 3,5,7 81.6 2.8G 18M
UniRepLKNet-T 3,5,7 83.2 4.9G 31M
UniRepLKNet-S 3,5,7 83.9 9.1G 56M
MogaNet-S 3,5,7 83.4 5.0G 25M
MogaNet-B 3,5,7 84.3 9.9G 44M
RaCNN-T global 82.9 2.4G 19M
RaCNN-S global 83.9 4.2G 28M
RaCNN-B global 84.5 8.7G 51M
RaCNN-B† global 85.0 11.4G 51M

(b)
Models Arch. Top1 FLOPs Params
SiMBA-S Mamba 81.7 2.4G 15M
CycleMLP-B1 MLP 78.9 2.1G 15M
ATMNet-xT MLP 79.7 2.2G 15M
Wave-MLP-T MLP 80.6 2.4G 17M
BiFormer-T ViT 81.4 2.2G 13M
NAT-M ViT 81.8 2.7G 20M
SMT-T ViT 82.2 2.4G 12M
RMT-T ViT 82.4 2.5G 14M
TransNeXt-M ViT 82.5 2.7G 13M
RaCNN-T CNN 82.9 2.4G 19M
VMamba-T Mamba 82.2 4.5G 22M
SiMBA-B Mamba 82.6 5.5G 27M
CycleMLP-T MLP 81.3 4.4G 28M
AS-MLP-T MLP 81.3 4.4G 28M
ATMNet-T MLP 82.0 4.0G 27M
Wave-MLP-S MLP 82.6 4.5G 30M
RaMLP-T MLP 82.9 4.2G 25M
Swin-T ViT 81.3 4.5G 29M
HiViT-T ViT 82.1 4.6G 18M
CSWin-T ViT 82.7 4.3G 23M
CETNet-T ViT 82.7 4.3G 23M
SG-Former-S ViT 83.2 4.8G 23M
NAT-T ViT 83.2 4.3G 28M
RaCNN-S CNN 83.9 4.2G 28M
VMamba-S Mamba 83.6 8.7G 50M
SiMBA-L Mamba 83.8 8.7G 42M
CycleMLP-S MLP 82.9 8.5G 50M
AS-MLP-S MLP 83.1 8.5G 50M
ATMNet-B MLP 83.5 10.1G 52M
Wave-MLP-B MLP 83.6 10.2G 63M
Swin-S ViT 83.0 8.7G 50M
HiViT-S ViT 83.5 9.1G 38M
DAT-S ViT 83.7 9.0G 50M
BiFormer-B ViT 84.3 9.8G 57M
RaCNN-B CNN 84.5 8.7G 51M
VMamba-B Mamba 83.9 15.4G 89M
ATMNet-L MLP 83.8 12.3G 76M
RaMLP-B MLP 84.1 12.0G 58M
NAT-B ViT 84.3 13.7G 90M
RaCNN-B† CNN 85.0 11.4G 51M

Table 2: (a) Comparison with CNN-based models on ImageNet-1K image classification. (b)
Comparison with SOTA models on ImageNet-1K image classification. All models are trained
with the input resolution of 224× 224, except † with 256× 256.

Models Family Reference Top-1 FLOPs Params Top-1 FLOPs Params
FastViT ViT ICCV23 75.6 0.7G 4M 79.1 1.4G 7M
FAT ViT NeurIPS23 77.6 0.7G 5M 80.1 1.2G 8M
SwiftFormer ViT ICCV23 78.5 1.0G 6M 80.9 1.6G 12M
FasterNet CNN CVPR24 76.2 0.9G 8M 78.9 1.9G 15M
MogaNet CNN ICLR24 77.2 1.0G 3M 80.0 1.4G 5M
StarNet-S3 CNN CVPR24 77.3 0.8G 6M 78.4 1.1G 8M
EfficientMod CNN ICLR24 78.3 0.8G 7M 81.0 1.4G 13M
RepViT-M1 CNN CVPR24 78.5 0.8G 5M 80.6 1.3G 8M
UniRepLKNet-F CNN CVPR24 78.6 0.9G 6M 80.2 1.6G 11M
RaCNN CNN Our 80.2 0.8G 10M 81.8 1.4G 13M

Table 3: Comparison with lightweight models on ImageNet-1K image classification. RaCNN-P
and RaCNN-N are compared with other lightweight models with less than 1G FLOPs and with more
than 1G FLOPs, respectively.

+0.8% Top-1 accuracy with similar or lower computation compared to the previous best ViT-based
models (SwiftFormer (Shaker et al., 2023)) and CNN-based models (EfficientMod (Ma et al., 2024)).

4.2 OBJECT DETECTION

Settings. We conduct object detection experiments using RetinaNet (Lin et al., 2020) on the
COCO (Lin et al., 2014) dataset. We follow the settings of Swin Transformer (Liu et al., 2021).

Results. We classify object detection baselines into two scales based on FLOPs, and the experimen-
tal results are presented in Table 4. RaCNN achieves leading performance in terms of APb across

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Backbone Family Reference APb APb
50 APb

75 APb
S APb

M APb
L Params FLOPs

RetinaNet (1× schedule)
Swin-T ViT ICCV21 41.5 62.1 44.2 25.1 44.9 55.5 39M 245G

CrossFormer++-S ViT TPAMI24 45.1 66.6 48.5 28.7 49.4 60.3 41M 272G
WaveMLP-S MLP CVPR22 43.4 64.4 46.5 26.6 47.1 57.1 37M 231G
ATMNet-S MLP AAAI23 43.6 64.9 46.8 27.2 47.5 57.9 37M 233G

PlainMamba-Adapter-L1 Mamba BMVC24 41.7 62.1 44.4 - - - 19M 250G
EfficientVMamba-B Mamba arXiv24 42.8 63.9 45.8 27.3 46.9 55.1 44M -

MogaNet-S CNN ICLR24 45.8 66.6 49.0 29.1 50.1 59.8 35M 253G
RaCNN-S CNN Our 46.6 68.0 50.3 31.2 50.9 60.3 33M 236G

Swin-S ViT ICCV21 44.7 65.9 49.2 - - - 98M 477G
CrossFormer++-B ViT TPAMI24 46.6 68.4 50.1 31.3 50.8 61.5 62M 389G

WaveMLP-B MLP CVPR22 44.2 65.1 47.1 27.1 47.8 58.9 66M 334G
ATMNet-B MLP AAAI23 45.6 67.2 48.9 28.9 49.6 60.5 62M 359G

VanillaNet-13 CNN NeurIPS23 43.0 62.8 44.3 - - - 75M 397G
MogaNet-B CNN ICLR24 47.7 68.9 51.0 30.5 52.2 61.4 54M 355G
RaCNN-B CNN Our 47.8 68.9 51.6 31.4 52.2 61.5 57M 327G

Table 4: COCO val2017 object detection results using various backbones employing a 1× train-
ing schedule. FLOPs are evaluated with a resolution of 1280× 800.

Backbone Family Reference APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs
Mask R-CNN (1× schedule)

Swin-T ViT ICCV21 43.7 66.6 47.7 39.8 63.3 42.7 48M 264G
CrossFormer++-S ViT TPAMI24 46.4 68.8 51.3 42.1 65.7 45.4 43M 287G

SMT ViT ICCV23 47.8 69.5 52.1 43.0 66.6 46.1 40M 265G
Hire-MLP-S MLP CVPR22 42.8 65.0 46.7 39.3 62.0 42.1 43M 238G
ATMNet-T MLP AAAI23 44.8 66.9 49.0 41.0 64.2 44.3 47M 251G

Vim-S-F Mamba arXiv24 43.1 65.2 47.3 39.3 62.2 42.3 44M 272G
LocalVMamba-T Mamba arXiv24 46.7 68.7 50.8 42.2 65.7 45.5 45M 291G

MogaNet-S CNN ICLR24 46.7 68.0 51.3 42.2 65.4 45.5 45M 272G
RaCNN-S CNN Our 48.0 70.0 52.7 43.3 67.0 46.7 43M 254G

Swin-S ViT ICCV21 46.5 68.7 51.3 42.1 65.8 45.2 69M 354G
CrossFormer++-S ViT TPAMI24 47.7 70.2 52.7 43.2 67.3 46.7 72M 408G

SMT ViT ICCV23 49.0 70.2 53.7 44.0 67.6 47.4 52M 328G
Hire-MLP-B MLP CVPR22 45.2 66.9 49.3 41.0 64.0 44.2 68M 317G
ATMNet-B MLP AAAI23 46.5 68.6 51.0 42.5 66.1 45.8 72M 377G
SiMBA-S Mamba arXiv24 46.9 68.6 51.7 42.6 65.9 45.8 60M 372G

LocalVMamba-S Mamba arXiv24 48.4 69.9 52.7 43.2 66.7 46.5 69M 414G
MogaNet-B CNN ICLR24 49.0 70.4 53.7 43.8 67.4 47.4 63M 373G
RaCNN-B CNN Our 49.1 70.9 53.7 44.1 68.0 47.5 66M 346G

Table 5: COCO val2017 instance segmentation results using various backbones employing a
1× training schedule. FLOPs are evaluated with a resolution of 1280× 800.

different types of backbones in both scales. RaCNN surpasses the previous state-of-the-art CNN,
MogaNet (Li et al., 2024) by 0.8% and 0.1% in APb for the two scales, respectively, while having
fewer FLOPs. RaCNN also significantly outperforms the well-known ViT-based backbone, Swin
Transformer (Liu et al., 2021), by 5.1% and 3.1% in each group. Among smaller backbones, RaCNN
leads CrossFormer++ (Wang et al., 2024), ATMNet (Wei et al., 2023) and EfficientVMamba (Pei
et al., 2024) by margins of 1.5%, 3.0% and 4.1%, respectively. For larger backbones, RaCNN ex-
ceeds CrossFormer++ and ATMNet by 1.2% and 2.2%.

4.3 INSTANCE SEGMENTATION

Settings. Instance segmentation experiments are implemented with Mask R-CNN (He et al., 2020)
and conducted on the COCO (Lin et al., 2014) dataset, also following the settings of Swin Trans-
former (Liu et al., 2021).

Results. Different models are grouped into two scales based on FLOPs, and the results are presented
in Table 5. RaCNN surpasses all other models across all scales, exhibiting its powerful capability
in instance segmentation. Specifically, for smaller models, RaCNN outperforms the state-of-the-art
ViT SMT (Lin et al., 2023) by 0.2%, the state-of-the-art MLP ATMNet (Wei et al., 2023) by 3.2%,
the state-of-the-art Mamba LocalVMamba (Huang et al., 2024) by 1.3%, and the state-of-the-art
CNN MogaNet (Li et al., 2024) by 1.3%. Compared with larger backbones, RaCNN leads SMT,
ATMNet, LocalVMamba and MogaNet by 0.1%, 2.6%, 0.7% and 0.1%. Additionally, RaCNN en-
joys lower computational cost, simultaneously realizing high performance alongside high efficiency.
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Backbone Family Reference mIoU MS mIoU Params FLOPs
Swin-T ViT ICCV21 44.5 45.8 60M 945G

AS-MLP-T MLP ICLR22 - 46.5 60M 937G
CycleMLP-T MLP ICLR22 - 47.1 60M 937G

EfficientVMamba-B Mamba arXiv24 46.5 47.3 65M 930G
LocalVMamba-T Mamba arXiv24 47.9 49.1 57M 970G

SLaK-T CNN ICLR23 47.6 - 64M 957G
PeLK-T CNN CVPR24 48.1 - 62M 970G

InceptionNeXt-T CNN CVPR24 - 47.9 56M 933G
RaCNN-S CNN Our 48.2 49.4 53M 929G

Swin-S ViT ICCV21 47.6 49.5 81M 1038G
AS-MLP-S MLP ICLR22 - 49.2 81M 1024G

CycleMLP-S MLP ICLR22 - 49.6 81M 1024G
SiMBA-S Mamba arXiv24 49.0 49.6 62M 1040G

LocalVMamba-S Mamba arXiv24 50.0 51.0 81M 1095G
SLaK-S CNN ICLR23 49.4 - 89M 1057G
PeLK-S CNN CVPR24 49.6 - 84M 1077G

InceptionNeXt-S CNN CVPR24 - 50.0 78M 1020G
RaCNN-B CNN Our 50.1 51.2 77M 1025G

Table 6: The semantic segmentation results of different backbones on the ADE20K validation
set with UperNet. FLOPs are evaluated with a resolution of 2048× 512.

K Top1 FLOPs Params
3 82.9 2.4G 19M
5 82.8 2.4G 19M
7 82.8 2.5G 20M
9 82.6 2.6G 20M

Table 7: The impacts of the kernel size of
other DWConv.

RaFFN RaGLU Top1 FLOPs Params
✗ ✗ 82.0 2.1G 19M
✓ ✗ 82.5 2.4G 21M
✗ ✓ 82.6 2.5G 20M
✓ ✓ 82.9 2.4G 19M

Table 8: The impacts of the components.

4.4 SEMANTIC SEGMENTATION

Settings. To evaluate the potential of RaCNN in semantic segmentation, we implement Uper-
Net (Xiao et al., 2018) equipped with our RaCNN, and conduct experiments on the ADE20K (Zhou
et al., 2017) dataset, following the settings of InceptionNeXt (Yu et al., 2024).

Results. Table 6 presents the semantic segmentation results. Among smaller backbones, RaCNN
again excels beyond all other models w.r.t. both mIoU and MS mIoU. For larger backbones, RaCNN
outperforms Swin (Liu et al., 2021), CycleMLP (Chen et al., 2022) and LocalVMamba (Huang et al.,
2024). RaCNN also maintains its lead among other large-kernel CNNs (Liu et al., 2023; Chen et al.,
2024; Yu et al., 2024) while requiring lower computational costs.

4.5 ABLATION STUDY

In this section, we utilize RaCNN-T to verify the effectiveness of the proposed components by
conducting extensive ablation studies.

Study on Kernel Size. We increase the kernel size of traditional DWConv in the model and find
that it negatively affects the results. We believe that since RaCNN has captured global information,
using large kernel size in DWConv will introduce extra noises.

Study on Components. We replace RPWConv with DWConv in RaFFN and substitute RaGLU with
FFN, and the loss of performance verify that all the proposed components have obvious effects.

5 CONCLUSION

This paper introduces the Region-aware CNN (RaCNN), which achieves a global receptive field
without requiring extra techniques, yet surpasses state-of-the-art CNNs and ViTs. Specifically, we
design the Region-aware Feed Forward Network (RaFFN) and Region-aware Gated Linear Unit
(RaGLU) to capture global visual dependencies. The core of RaFFN is RPWConv, which divides
spatial feature maps into several sparse global regions and generates dynamic weights within these
regions, to capture coarse-grained global spatial cues. The RaCNN outperforms state-of-the-art
CNNs, MLPs, ViTs, and Mambas in vision recognition, object detection, instance segmentation,
and semantic segmentation while requiring fewer FLOPs.
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