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ABSTRACT

Multi-modal Large Language Models (MLLMs) have made significant strides in
expanding the capabilities of Large Language Models (LLMs) through the incor-
poration of visual perception interfaces. Despite the emergence of exciting appli-
cations and the availability of diverse instruction tuning data, existing approaches
often rely on CLIP or its variants as the visual branch, and merely extract features
from the deep layers. However, these methods lack a comprehensive analysis of
the visual encoders in MLLMs. In this paper, we conduct an extensive inves-
tigation into the effectiveness of different vision encoders within MLLMs. Our
findings reveal that the shallow layer features of CLIP offer particular advantages
for fine-grained tasks such as grounding and region understanding. Surprisingly,
the vision-only model DINO, which is not pretrained with text-image alignment,
demonstrates promising performance as a visual branch within MLLMs. By sim-
ply equipping it with an MLP layer for alignment, DINO surpasses CLIP in fine-
grained related perception tasks. Building upon these observations, we propose
a simple yet effective feature merging strategy, named COMM, that integrates
CLIP and DINO with Multi-level features Merging, to enhance the visual capa-
bilities of MLLMs. We evaluate COMM through comprehensive experiments on
a wide range of benchmarks, including image captioning, visual question answer-
ing, visual grounding, and object hallucination. Experimental results demonstrate
the superior performance of COMM compared to existing methods, showcasing
its enhanced visual capabilities within MLLMs.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023a;b; Touvron et al., 2023a;b; Taori et al., 2023; Chi-
ang et al.) have made significant strides in the domains of language understanding and generation,
achieving remarkable progress recently. Through instruction tuning (Wei et al., 2021; Wang et al.,
2022), existing LLMs demonstrate their versatility as general-purpose models capable of handling
a wide range of tasks. This capability unlocks their potential zero-shot learning ability, enabling
seamless task switching guided by instructions. Building upon the promising performance of LLMs,
researchers are now motivated to enhance their capabilities by incorporating visual signals as inputs.
This extension allows for the generation of textual outputs that are closely related to visual content,
opening up exciting possibilities in the realm of vision-language understanding and generation.

To this end, Flamingo (Alayrac et al., 2022) and BLIP2 (Li et al., 2023c) align the powerful LLMs
with a frozen visual encoder to understand visual inputs and perform various vision-language tasks.
A series of following works, LLaVA (Liu et al., 2023a), InstructBLIP (Dai et al., 2023), MiniGPT-
4 (Zhu et al., 2023) and mPLUG-OWL (Ye et al., 2023) further improve the ability to follow human
instructions by constructing multi-modal instruction-following datasets for training. However, these
methods are built on image-level alignments, which suffer from the limited fine-grained understand-
ing (such as region description (Liu et al., 2017) and reasoning (Zellers et al., 2019)) and severe
object hallucination problem (Li et al., 2023d). To this end, GPT4ROI (Zhang et al., 2023b) pro-
poses instruction tuning on region-of-interest and unlocks the region-level multimodal capacities.
Kosmos-2 (Peng et al., 2023) and Shikra (Chen et al., 2023) further integrate the grounding abilities
into LLMs and unlock the referential ability in dialogue, i.e., enable the user to point to the object or
region as input and the model responds with spatial coordinates of bounding boxes. Such grounding
capacity can fulfill numerous vision-language tasks, which is a great progress in MLLMs.
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Despite a wide variety of exciting methods and applications, most of existing multi-modal LLMs
employ CLIP (Radford et al., 2021) or its variants (Sun et al., 2023) as the visual branch, where the
features output from the deep layers (e.g., the penultimate layer) are usually employed as inputs to
the language decoders. However, it still lacks analysis that: Whether using the Vanilla CLIP features
as visual encoder is the best way for MLLMs? Though the visual encoder of CLIP is apparently
well aligned with the word embedding space by image-text contrastive learning, it fails to learn
more detailed pixel-level information such as color and positioning due to the global supervision of
image captions, which might hinder the fine-grained perception ability in MLLMs. Besides, existing
MLLMs have quite unbalanced visual and language encoders (e.g., ViT-Large-300M vs. Vicuna-
7B/13B). Since the language models have succeeded in scaling up the model size with progressively
powerful language abilities, the short plate of the Buckets Effect for MLLMs lies in the visual
models, which fails to perform in-context learning, and suffer from domain gap and limited zero-
shot ability. Consequently, it is critical to enhance the visual capabilities for boosting MLLMs.

This paper presents an extensive investigation into different visual encoders for MLLMs. Four typi-
cal visual foundation models are considered, i.e., image-text contrastive learning CLIP, image-only
contrastive learning DINOv2 (Oquab et al., 2023), masked image modeling MAE (He et al., 2022)
and supervised learning DeiT (Touvron et al., 2021). We evaluate the performance on commonly-
used vision-language tasks including visual grounding, object hallucination, visual question answer-
ing, image captioning and MME benchmark. Our analysis reveals that different layers of features
exhibit varying biases towards local and global patterns. Shallow layer features containing low-
level detailed information prove beneficial for fine-grained perception tasks such as grounding and
positioning ability, while deep layer features are superior at global understanding. To enhance rep-
resentation, we propose a multi-level feature merging strategy that incorporates both low-level and
high-level features. Surprisingly, when equipped with an MLP layer for alignment, the vision-only
model DINOv2 shows promise as a visual branch for MLLMs. We attribute this to the fine-grained
localization information captured by DINOv2. Conversely, MAE and DeiT perform inferiorly as
visual branches for MLLMs. MAE learns limited semantic information, while DeiT’s strong su-
pervised training makes the alignment with the textual space challenging. Based on the above ob-
servations, we propose a fusion strategy that integrates CLIP and DINO with Multi-level features
Merging), dubbed as COMM, for boosting the visual branches of MLLMs. Experimental results
demonstrate clear advantages of the proposed model over existing approaches and highlight the
enhanced visual capabilities brought by COMM.

In a nutshell, the contributions of this paper are summarized as follows:

• We are the first to extensively investigate the effectiveness of different visual encoders
for MLLMs. Based on the analysis that shallow layer features contain low-level detailed
information which is helpful for fine-grained tasks, we propose a multi-level feature fusion
strategy to incorporate low-level and high-level features for improving representation.

• Our analysis indicates that vision-only DINOv2 achieves promising results in MLLMs with
only an MLP layer for alignment. Considering fine-grained pixel information in DINOv2
and global semantic information in CLIP, we propose COMM to fuse the visual embed-
dings of these two models to enhance visual capabilities for boosting MLLMs.

• Extensive experiments on a wide range of tasks including visual grounding, referring ex-
pression generation, object hallucination, visual question answering and image captioning
demonstrate the superiority of COMM over existing works.

2 RELATED WORK

Multi-modal Large Language Model. LLMs (Dai et al., 2019; Brown et al., 2020) have gar-
nered significant attention in both academia and industry due to their remarkable understanding and
generative abilities. The success of LLMs has motivated researchers to explore the integration of
vision into these models, leading to the development of powerful multi-modal LLMs (MLLMs).
Flamingo (Alayrac et al., 2022) employs a cross-attention module to extract visual contexts, which
are concatenated with text token as input for LLMs. LLaVA (Liu et al., 2023b) and FROMAGe (Koh
et al., 2023) leverage the vision encoder of CLIP to extract visual features, which is aligned to text
features using a single linear layer and then input to LLMs. Models such as BLIP-2 (Li et al.,
2023b), mPLUG-OWL (Ye et al., 2023), MiniGPT-4 (Zhu et al., 2023) and InstructBLIP (Dai et al.,
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Figure 1: Feature correspondence visualization by computing the cosine similarity of different visual
tokens extracted from the shallow and deep layers of CLIP and DINOv2.

2023) employ Q-former to extract text-aligned visual features for LLMs. Recently, some interesting
works extend LLMs to image retrieval (Koh et al., 2023), video understanding (Zhang et al., 2023a),
audio (Su et al., 2023), biomedical analysis (Li et al., 2023a), control systems Driess et al. (2023).

In recent studies, there has been a growing interest in extending MLLMs to improve their fine-
grained understanding abilities through region-level image-text alignment. Kosmos-2 (Peng et al.,
2023) addresses this by constructing a large-scale dataset of grounded region-text pairs, enabling
the integration of grounding abilities into LLMs. GPT4RoI (Zhang et al., 2023b) reformulates the
bounding box as a spatial instruction format and extracts visual features based on region-of-interest,
facilitating region-level multi-modal understanding. Shikra (Chen et al., 2023) proposes a unified
model that handles spatial coordinates to possess referential abilities in dialogue contexts. Addition-
ally, Qwen (Bai et al., 2023) presents a set of MLLMs that demonstrate remarkable performance
across various tasks. However, previous works have predominantly focused on extracting visual
features solely from the last few layers of the CLIP model, resulting in an emphasis on global image
properties. In this study, we draw attention to the fact that features extracted from shallower layers
exhibit a stronger focus on localized properties, which we argue can be more potent in comprehend-
ing object locations and image details. Additionally, while CLIP primarily learns globally aligned
features, advanced vision-alone models such as DINOv2 excel in capturing more fine-grained vi-
sion features. We posit that leveraging these fine-grained vision features can effectively enhance the
capabilities of MLLMs, as demonstrated in our analysis. To further advance this line of research,
we introduce a novel fusion module that expands and enhances the visual branches, thereby aiming
to significantly improve the performance of MLLMs.

Large Vision Foundation Model. Recent progresses in training vision foundation models with
large-scale image data focus on contrastive learning, masked image modeling and supervised train-
ing. For one thing, contrastive learning can be conducted in an image-only or image-text manner.
DINOv2 (Oquab et al., 2023) pretrains the image encoder on large curated image data, which shows
a superior understanding of object parts and scene geometry across image domains. Image-text con-
trastive learning as CLIP (Radford et al., 2021) and EVA-CLIP (Sun et al., 2023) employs the natural
language as weak supervision to guide the learning of visual features. For another, BEiT (Bao et al.,
2021) predicts discrete tokens based on a pre-trained image tokenizer while iBOT (Zhou et al., 2021)
proposes an online image tokenizer. MAE (He et al., 2022) proposes a masked autoencoder for re-
constructing image pixels. Besides, DeiT III (Touvron et al., 2022) proposes a training recipe to
achieve promising performance. Recent MLLMs employ the vision encoder of CLIP/EVA-CLIP
without considering the properties of specific visual models. In this paper, we are the first to re-
examine the effectiveness of existing visual models in MLLMs and propose a simple yet effective
fusion strategy for boosting visual capabilities.

3 ANALYSIS OF THE VISUAL BRANCH IN MLLMS

Previous MLLMs usually utilize the vision encoder of CLIP as their visual branch. Typically, these
models extract features from the last few layers, such as the penultimate layer, which are then fed
into an alignment network. Subsequently, the aligned features are concatenated with text tokens to
serve as input for the LLMs. While the image-text pretraining of CLIP aligns well with the language
model, it primarily learns image-level features but overlooks the richer pixel-level features due to
the constraint of limited fine-grained information in the guided captions. Moreover, the deep-layer
features primarily focus on global image properties and inadequately explore the intricate details
of local object parts. As depicted in Fig. 1, the visual features extracted from the shallow layers
of CLIP and the deep visual features obtained from the visual-only model DINOv2 contain more
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(a) Average REC accuracy. (b) Average POPE accuracy. (c) Average REG CIDEr.

Figure 2: Average REC, POPE accuracy and REG CIDEr for using different layers of features ex-
tracted from various vision models (CLIP, DINOv2 and MAE), as input to MLLMs. Shikra uses the
23rd layer features of CLIP and we reproduce its results with fewer iterations (denoted as Shikra∗).

(a) REC acc for CLIP. (b) POPE acc for CLIP. (c) REC acc for DINOv2. (d) POPE acc for DINOv2

Figure 3: Average REC and POPE accuracy for merging different layers of features with mutli-
feature merging (MFM) strategies as input to MLLMs for visual backbones of CLIP and DINOv2.

detailed information regarding local objects, such as shape or texture. Leveraging these detailed
features may enhance the MLLMs’ fine-grained perception abilities.

Evaluation Settings. For further analysis, we conduct a series of quantitative experiments using
different kinds of visual models, i.e., image-text contrastive learning CLIP, image-only contrastive
learning DINOv2, masked image modeling MAE and supervised learning DeiT. In specific, the vi-
sual features extracted from different layers of visual models (based on ViT-Large) are aligned using
a linear projection layer and then concatenated with text tokens as the input for LLMs (here we use
Vicuna-7B (Chiang et al.)). The overall architecture and training process follow Shikra (Chen et al.,
2023) but with fewer iterations (9400 iterations, batch size 16 on 4 A800) to save the computation
cost. Then, we measure the capability of the trained MLLMs on referring expression comprehension
(REC) (Chen et al., 2023), referring expression generation (REG) (Peng et al., 2023) and object hal-
lucination benchmark (POPE) (Li et al., 2023d). Detailed descriptions of these tasks can be referred
to Sec. 5.

CLIP as the Visual Branch of MLLMs. As depicted in Fig. 2, we observe that different layers
of features exhibit varying biases towards grounding and understanding abilities. For instance, the
shallow features demonstrate relatively higher accuracy in terms of REC and reach their optimal
value at layer 12. Conversely, the deep features achieve higher accuracy in terms of POPE, indicating
superior understanding ability. Notably, the relatively deep features (layer 16) display the best REG
CIDEr score, showcasing promising region understanding capabilities. Consequently, instead of
solely relying on deep features as done in previous works, we argue that integrating both shallow
and deep features is crucial for MLLMs with improved overall performance.

We further explore various merging modes of low-level and high-level features. Denoting the output
features from each transformer layer of ViT with a depth of N as z = [z1, .., zi, ..., zN ], we dis-
cuss several multi-level feature merging (MFM) strategies for combining shallow and deep features,
namely:

• Mean(half): averaging output patch token features in the second half of the backbone as z =
(zN/2 + · · ·+ zN )/(N/2).

• Mean(all): averaging features output by all layers as z = (z1 + · · ·+ zN )/N .
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Table 1: Comparison of the visual model using CLIP, DINOv2 with Multi-level Feature Merging
(MFM) and COMM to incorporate visual embeddings of both models on VL tasks. CLIP baseline
use the 23rd layer features, which follows Shikra but with fewer training iterations. MME CS and
PS indicate the cognition score and perception score, respectively.

Visual Model Avg REC Avg POPE COCO Flickr30k MME CS MME PS VQAv2 OK-VQA

CLIP 47.3 82.3 125.0 80.7 209.6 1107.8 68.8 44.2
DINOv2 54.8 78.3 118.0 68.9 261.8 930.5 63.1 41.9

CLIP w/ MFM 70.0 83.6 125.8 79.3 296.6 1164.4 69.5 44.7
DINOv2 w/ MFM 73.1 83.3 123.4 76.3 252.9 1086.8 68.0 42.1

COMM 72.8 83.6 127.3 81.9 360.4 1234.9 70.1 45.0

• Layerscale(all): learning a scale parameter as the weight to sum features output by all layers as
z = w1z1 + · · · + wNzN , where wi refers to the weight assigned to the i-th layer feature and all
these weights are dynamically updated and summed up to 1.

• LLN-Layerscale(all): using a linear-layernorm module to align the feature space between different
layers’ features and then summed by Layerscale as z = w1LLN(z1) + · · ·+ wNLLN(zN ).

• Conv-Layerscale(all): using a convolution and bn module to align the feature space between
different layers’ features and then summed by Layerscale as z = w1Conv(z1)+· · ·+wNConv(zN ).

Fig. 3 (a) and (b) shows that simply averaging all shallow and deep features of CLIP can de
facto achieve a satisfactory accuracy and LLN-Layerscale strategy further improves performance.
With LLN-Layerscale as MFM module, the performance of CLIP can be evidently improved on
commonly-used vision-language tasks as shown in Table 1.

DINOv2 as the visual Branch of MLLMs. To leverage the rich fine-grained visual information
present in DINOv2, but not inherently aligned with text, we employ a non-linear Multi-Layer Per-
ceptron (MLP) module to align the image features with the word embedding space. Fig. 2 demon-
strates that the deep-layer features of DINOv2 exhibit superior grounding abilities, as evidenced
by higher REC accuracy, and display satisfactory understanding abilities, as indicated by favorable
POPE and REG results. Additionally, we explore the efficacy of multi-level feature merging to en-
hance performance. In contrast to CLIP, the merging of shallow features from DINOv2 leads to a
significant performance degradation. Specifically, in Fig. 3(c) and (d), it is evident that Mean(all)
performs notably worse than Mean(19-24) in terms of both REC and POPE accuracy, indicating that
the shallow representations lack sufficient semantic information. Building upon the LLN-Layerscale
approach, the incorporation of the MLP module for a more potent connection between the visual and
text spaces demonstrates a clear improvement in performance. Table 1 showcases the substantial
performance gains achieved by employing LLN-Layerscale-MLP as Multi-Level Feature Merging
(MFM) module across various vision language tasks. Further detailed ablation studies on the MLP
module can be found in the appendix.

MAE and DeiT as the Visual Branch of MLLMs. Fig. 2 shows that MAE features achieve ac-
ceptable REC accuracy, but suffers large performance drop on POPE and REG evaluation. This is
because MAE features lack sufficient semantic information for global or regional understanding.
Therefore, MAE is not suitable as the visual branch for MLLMs. DeiT performs even worse than
MAE (details in the appendix). We speculate that this is because supervised training is too strong,
which learns a specialized visual space that is difficult to align with the word embedding space.

4 COMM: COMBINING CLIP AND DINO WITH MULTI-LEVEL FEATURE
MERGING

Architecture Overview. In this section, we introduce the proposed COMM, that integrates CLIP
and DINO with Multi-level features Merging to enhance the visual capabilities of MLLMs. The
overall framework is illustrated in Fig. 4, COMM is incorporated into a vision-language instruction
following model built upon the recent advanced language and vision-language foundation mod-
els. Following the input instructions, our model takes vision and language as inputs to generate
text responses following the input instructions. Specifically, we adopt the visual encoder of CLIP
and DINOv2 (based on ViT-Large) with our proposed fusion strategy as the visual branch, and Vi-
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Figure 4: Overview of our COMM. The image is input to the vision encoder of CLIP and DINOv2,
and the features from shallow and deep layers are incorporated by multi-level feature merging. The
features of DINOv2 are aligned with an MLP and concatenated with features of CLIP, which are
input to a linear layer. Then the fused features are concatenated with text tokens as input to LLMs.

cuna (Chiang et al.) (7B/13B) as language decoder. The visual encoder is downsampled with rate
14, meaning that an image with resolution H × W will be represented by a sequence of H

14 × W
14

tokens. The fused token features are projected using a linear layer and then concatenated with the
instruction tokens as inputs to the language decoder, which is a generic interface to unify various
vision-language tasks as text generation task.

Specifically, denote the visual encoder of CLIP and DINOv2 (ViT Large used) as f1 and f2, re-
spectively. Given an input image x, we extract the patch token features output by all layers of
CLIP as f1(x) = [v11 , ..., v

i
1, ..., v

24
1 ], where vi1 ∈ RN×D, N is the number of patch tokens

and D is the embedding dimension. The features output by the deep layers of DINOv2 are
f2(x) = [v192 , ..., vi2, ..., v

24
2 ]. Then we concatenate the features output by these two models as

v = [v11 , ..., v
24
1 , v192 , ..., v242 ]. A linear-layernorm module is leveraged to align the feature space

between different layers’ features and layerscale is employed for merging the multiple layer features
as,

v1 =

24∑
i=1

αi · Linear(LN(vi1), v2 =

24∑
j=19

βj · Linear(LN(vj2) (1)

where α and β are the learnable scaling parameter. Then, we employ an MLP layer to project the
features of DINOv2 and concatenate the output features with that of CLIP as v = [v1,MLP(v2)].
Then, a linear layer is employed to match the dimension of visual features to that of text features as
v̂ = Linear(v). Finally, fused visual features v̂ are concatenated with text tokens as input to LLMs.

5 EXPERIMENTS

In this section, we conduct extensive evaluation on four kinds of vision-language tasks to com-
prehensively evaluate the visual understanding ability of our model, namely, Referring Expression
Comprehension, Referring Expression Generation, Object Hallucination Benchmark, and Visual
Question Answering and Image Captioning.

Training Details. Similar to previous MLLM methods, COMM is trained in two stages. In the
first pretraining stage, we train the model on the reorganized vision-language dataset as (Chen et al.,
2023), including public VQA, Image Captioning datset and several datasets containing positional
annotation RefCOCO, visual gemone (Krishna et al., 2017) and Visual-7W (Mani et al., 2020).
The first pretraining stage is conducted for 100K steps. In the second instruction tuning stage, we
set the sampling ratio to 50% on LLaVA-Instruct-150K (Liu et al., 2023a) and Shikra-RD (Chen
et al., 2023). Instead of 224 × 224 resolution currently used by existing MLLMs, we use 336 ×
336 resolution to reduce the information loss caused by image down-sampling and promote the
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Table 2: Results on standard referring expression comprehension (REC) task. Generalist VL models
can perform various vision-language tasks. Specialist models are designed specifically for localiza-
tion tasks or generalist pretraining models that have undergone finetuning. The results of Shikra and
Qwen are taken from their papers.

Model type Model RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val-u test-u

Generalist VL SOTAs
(w/o finetuning)

OFA-L* 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58
OFASys - 80.10 - - - - - -
VisionLLM-H - 86.70 - - - - - -
Shikra-7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19
Shikra-13B 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16
Qwen-VL-7B 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48
Qwen-VL-7B-Chat 88.55 92.27 84.51 82.82 88.59 76.79 85.96 86.32
COMM-7B (Ours) 91.73 94.06 88.85 87.21 91.74 81.39 87.32 88.33

Specialist SOTAs
(Specialist/Finetuned)

G-DINO-L 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02
UNINEXT-H 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37
ONE-PEACE 92.58 94.18 89.26 88.77 92.21 83.23 89.22 89.27

Table 3: Results on standard referring expression generation (REG) task in CIDEr score. We repro-
duce the results of Shikra-7B using its officially released checkpoint. SLR is a finetuned listener-
speaker model with an added reward-based module (SLR).

Model RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val-u test-u

SLR Yu et al. (2017) - 69.7 132.3 - 49.4 70.9 59.2 -
SLR+Rerank Yu et al. (2017) - 77.5 132.0 - 52.0 73.5 66.2 -

Shikra 75.61 44.26 104.83 56.42 40.98 68.25 62.71 65.58
Kosmos-2 - - - - - - 62.3 -
COMM (Ours) 93.35 54.95 131.13 70.00 52.27 79.05 79.22 77.96

fine-grained perception ability. In both stages, we freeze the visual encoder and tune all parameters
in LLMs, alignment layer and multi-level feature fusion module. We adopt AdamW (Loshchilov
& Hutter, 2019) as the optimizer and cosine annealing scheduler (Loshchilov & Hutter, 2017) as
learning rate scheduler with an initial learning rate of 2e-5 and global batch size of 64. All training
runs on 8 NVIDIA A800 GPUs. It takes around 100h for stage one training and 20h for stage two.

5.1 REFERRING EXPRESSION COMPREHENSION

To evaluate the fine-grained understanding and positioning capability of our model, we investi-
gate the referring expression comprehension task on benchmarks as RefCOCO (Kazemzadeh et al.,
2014), RefCOCO+ (Mao et al., 2016) and RefCOCOg (Mao et al., 2016), where models are asked
to localize the object described with an expression. As shown in Table 2, compared with gener-
alist VL models and previous SOTA MLLMs, COMM achieves significant performance gain on
all benchmarks, i.e., COMM-7B outperforms Shikra-13B and Qwen-VL-7B-Chat by 4.87% and
3.10% accuracy on average, respectively. With more powerful visual capabilities of our proposed
fusion model, we can evidently surpass recent SOTA MLLMs in a more efficient way, e.g., using a
smaller LLM than Shikra (7B vs. 13B) and less training data than Qwen (3.6M vs. 1.4B). Besides,
our generalist model even achieves comparable results with specialist SOTA methods, showing the
superior grounding ability of our MLLMs.

5.2 REFERRING EXPRESSION GENERATION

Moreover, we evaluate the ability to understand image regions or objects referred via inputting
bounding boxes. Instead of referring image regions or objects via detailed text descriptions, directly
referring to image regions via its bounding boxes is more effective and can reduce the ambiguity. The
experiments are conducted on the referring expression generation task with RefCOCO, RefCOCO+
and RefCOCOg, aiming to generate text descriptions of specific regions in the bounding box. Table 3
shows that our model outperforms Shikra and Kosmos-2 by a considerable margin of 16.51 CIDEr
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Table 4: Object hallucination benchmark using POPE evaluation pipeline (Li et al., 2023d). The
results of Shikra-7B are taken from its paper. Except for Shikra-7B, the other results are obtained
from Li et al., 2023d.

Datasets COMM Shikra InstructBLIP MiniGPT-4 LLaVA mPLUG-Owl

Random 87.29 86.90 88.57 79.67 50.37 53.97
Popular 86.50 83.97 82.77 69.73 49.87 50.90
Adversarial 84.50 83.10 72.10 65.17 49.70 50.67

Table 5: Results on visual question answering (VQA) and image captioning. For VQA, we evaluate
SOTA generalist models and our COMM onVQAv2 and OK-VQA following the normalization
rules. Shikra is based on the 13B variant. For image captioning, we evaluate them on COCO and
Flickr30k in CIDEr score. We call Flamingo as FM for short.

Datasets COMM Qwen Shikra FM-80B BLIP-2 Unified-IO VPGTrans VisionLLM

VQA

VQAv2val 79.05 - 75.33 - 65.2 - 65.2 -
VQAv2dev 81.04 79.5 77.36 56.3 65.0 77.9 - -
VQAv2std 81.17 - 77.51 - - - - -
OK-VQA 59.18 58.6 47.16 50.6 45.9 54.0 45.0 -

Caption Flickr30k 88.2 85.8 73.9 67.2 - - - -
COCO 132.7 - 117.5 84.3 - 122.3 - 114.2

and 16.92 CIDEr gain on RefCOCOg, demonstrating the effectiveness of our model for fine-grained
understanding. Besides, COMM even outperforms finetuned SLR on RefCOCO+ and RefCOCOg.

5.3 OBJECT HALLUCINATION BENCHMARK

We compare our model against the baseline models on the hallucination evaluation dataset recently
introduced by POPE (Li et al., 2023d), which randomly selects 500 images from COCO (Caesar
et al., 2018). Table 4 shows that COMM surpasses recent popular MLLMs with 1.44% and 4.95%
higher accuracy on average than Shikra and InstrutBLIP, respectively. By enhancing the fine-grained
visual capabilities, COMM can effectively alleviate the object hallucination problem.

5.4 VISUAL QUESTION ANSWERING AND IMAGE CAPTIONING

We evaluate COMM on conventional VL tasks of VQA and Image Captioning. Specifically, image
captioning requires the model to generate description for the given image and VQA asks the model to
generate answer for the given image-question pair. For image captioning, we choose COCO (Chen
et al., 2015) and Flickr30K (Plummer et al., 2015) as benchmarks and report the CIDEr score. For
VQA task, we experiment on VQAv2 (Antol et al., 2015) and OK-VQA (Marino et al., 2019). As
shown in Table 5, COMM achieves state-of-the-art performance on image captioning task, i.e., 88.2
CIDEr score on Flickr30K and 132.7 CIDEr score on COCO, even outperforms previous SOTA
models with much more parameters (e.g., Shikra-13B with 13B parameters) or much more training
data (e.g., Qwen with 1.4B data). For VQA task, our model also shows significant advantages
compared to other MLLMs. On VQAv2 val, dev and std, our model achieves 79.05, 81.04 and
81.17 accuracy respectively, which surpasses recent proposed Shikra with the same training data
and procedure by a large margin, demonstrating the effectiveness of merging visual embeddings
of DINOv2 and CLIP for enhancing visual capabilities. Besides, our COMM model outperforms
Qwen with 1.54 and 0.58 accuracy gain on VQAv2 dev and OK-VQA respectively with less VQA
training data, i.e., we use 0.6M and Qwen with 3.6M. Training with more VQA data might further
improve performance and we leave it as future work.

5.5 DEMONSTRATIONS

As shown in Fig. 5, our COMM model exhibits a multitude of promising capabilities including
visual grounding, fine-grained region understanding and robustness to object hallucination. The first
example showcases our strong fine-grained perception ability, which identifies implicit strawberries
in a blender. The second example exhibits our strong visual grounding ability to successfully locates

8
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Figure 5: Qualitative comparison between Shikra with its official checkpoint and our COMM.

the object of sugar. The third case demonstrates our robustness to object hallucination. In contrast,
Shikra fails on these challenging cases, showing the superior capabilities of our model.

6 CONCLUSION

This paper presented an extensive investigation into the efficacy of different visual models when em-
ployed as the visual branch in MLLMs. Through a systematic analysis, we highlight the significance
of shallow layer features, which capture low-level details that prove beneficial for grounding and po-
sitioning tasks. Furthermore, we recognize the potential of the vision-only model DINOv2, which
leverages its inherent fine-grained pixel-level information for enhanced fine-grained perception in
MLLMs when combined with an MLP layer for alignment purposes. Motivated by our analysis,
we introduce a fusion approach to combine the visual features obtained from CLIP and DINOv2,
thereby further augmenting the visual capabilities and performance of MLLMs. Through qualitative
analysis and extensive quantitative experiments, we demonstrate the effectiveness of our proposed
method, surpassing the performance of existing MLLM models across diverse benchmark datasets.
Looking ahead, we encourage future research to explore the integration of more powerful vision
models to enhance the capabilities of visual branches in MLLMs. We believe that this avenue of
investigation holds the key to unlocking the potential of the next generation of MLLMs.
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APPENDIX

A ANALYSIS OF DEIT AS THE VISUAL BRANCH

We conduct experiment with recent supervised learning model DeiT III (Touvron et al., 2022). Since
the visual model does not align with text, we employ a non-linear MLP layer as the alignment
network. Here we use the ViT-Large variant as the visual branch and employ Vicuna-7B as the
language branch of MLLMs. The architecture and training process follow Shikra (Chen et al., 2023)
but with fewer training iterations (9400 iterations, batch size 16 on 4 A800) to save the computation
cost. As shown in Table 6, DeiT suffers from evident performance degradation as the visual branch
of MLLMs. We speculate that maybe the supervised training is so strong that it learns specialized
visual space, making it difficult to align with the word embedding space.

Table 6: Comparison of the visual model using CLIP, DINOv2 with our proposed multi-level feature
merging (MFM), MAE and DeiT. Experiments are conducted on referring expression comprehen-
sion and object hallucination benchmark on Random (R), Adversarial (A), and Popular (P). MAE-20
denotes using the features output by the 20-th layer of MAE. DeiT-20 denotes using the features out-
put by the 20-th layer of DeiT.

Visual Model RefCOCO+ RefCOCOg RefCOCO POPE
test-A test-B val test-u val-u test-A test-B val A/P/R

CLIP w/ MFM 73.7 53.8 64.3 69.1 70.3 83.8 68.4 76.4 80.7/84.2/85.8

DINOv2 w/ MFM 75.3 59.3 67.0 73.0 71.8 84.4 74.1 79.6 80.3/84.2/85.5

MAE-20 64.7 49.4 56.8 63.7 62.8 77.9 68.6 73.6 66.8/71.1/76.7
MAE-22 65.9 50.0 58.5 64.2 63.2 79.3 69.8 74.9 68.0/71.2/77.5
MAE-24 67.7 51.5 60.2 65.4 64.3 80.5 69.9 75.8 69.8/76.1/80.8

DeiT-20 18.4 13.0 15.9 17.0 16.2 29.0 21.6 25.7 66.2/69.6/77.9
DeiT-22 25.3 15.4 19.4 22.6 21.8 36.9 25.3 32.0 67.9/71.6/78.7

B ABLATION ON THE MLP OF DINOV2

We conduct ablation study on the MLP module of DINOv2 for aligning visual and text embedding
space. Here we use the ViT-Large variant as the visual branch and employ Vicuna-7B as the language
branch of MLLMs. The architecture and training process follow Shikra Chen et al. (2023) but with
fewer training iterations (9400 iterations, batch size 16 on 4 A800) to save the computation cost.
We ablate on the number and the expanding ratio of MLP module. Table 7 shows that increasing
the number of MLP to 2 can evidently improve performance, demonstrate the effectiveness of using
a more powerful network to align the vision only model DINOv2 to the word embedding space.
However, increasing the number beyond 2 suffers the degraded performance. For the expanding
ratio, increasing to 8 can improve performance, while increasing to 16 does not achieve significant
performance gain. Moreover, we experiment with one linear layer, which suffers severe performance
degradation. Thus, non-linear MLP is necessary for aligning the features of vision-only DINOv2 to
the word embedding space.

C EVALUATION BENCHMARK FOR MULTIMODAL LARGE LANGUAGE
MODELS

We evaluate our final model on the recently proposed MME benchmark to further demonstrate its
strong generalizability to follow a diverse range of instructions. MME benchmark measures both
perception and cognition abilities on a total of 14 subtasks. We report the average results of percep-
tion tasks and cognition tasks, respectively. As shown in Table 8, the performance of our COMM
model outperforms Shikra by a large margin of 176.59 and 39.95 score for perception and cognition
abilities on MME benchmark, demonstrating the effectiveness of enhancing visual capabilities with
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Table 7: Ablation study on the number and expanding ratio of MLP module. Experiments are
conducted on referring expression comprehension and object hallucination benchmark on Random
(R), Adversarial (A), and Popular (P).

Visual Model RefCOCO+ RefCOCOg RefCOCO POPE
test-A test-B val test-u val-u test-A test-B val A/P/R

DINOv2 w/ MLP Ratio 4 75.3 59.3 67.0 73.0 71.8 84.4 74.1 79.6 80.3/84.2/85.5

DINOv2 w/ 2MLP Ratio 4 77.5 60.3 69.2 74.6 74.7 86.5 75.3 81.4 82.4/84.5/86.2
DINOv2 w/ 4MLP Ratio 4 53.7 34.4 45.3 49.0 48.8 65.4 48.0 57.9 79.2/82.9/84.6
DINOv2 w/ 8MLP Ratio 4 8.2 6.5 7.4 6.8 6.7 14.8 12.9 14.9 56.0/55.3/59.0

DINOv2 w/ MLP Ratio 8 77.4 59.9 69.7 73.7 73.3 85.7 74.1 80.9 81.5/85.8/86.7
DINOv2 w/ MLP Ratio 16 76.2 60.2 69.7 74.5 74.6 85.7 75.5 81.5 80.4/83.7/85.7

DINOv2 w/ Linear 61.8 48.8 55.1 64.1 62.9 76.5 67.0 71.9 75.6/79.3/83.7

Table 8: Zero-shot evaluation of perception and cognition abilities on MME benchmark.

COMM-13B COMM-7B Shikra-7B† Qwen InstructBLIP LLaVA MiniGPT-4 mPLUG-Owl

Perception 1421.00 1387.00 1210.41 1487.58 1212.82 502.82 866.57 967.34
Cognition 315.00 314.60 274.65 360.71 291.79 214.64 292.14 276.07

our fused visual embeddings. Compared with Qwen, our model suffers a litter performance degra-
dation, and we speculate it is due to less training data than Qwen (3.6M vs. 1.4B) and we will try to
train with more data for evaluation in the future work.

D MORE DEMONSTRATIONS

We provide additional demonstrations of our COMM model in this section to demonstrate a mul-
titude of promising capabilities including visual grounding, fine-grained region understanding and
robustness to object hallucination. For instance, we showcase Referring Expression Comprehension
in Fig. 6 and Spot Captioning in Fig. 7. We also include cases of Referring Expression Generation
in Fig. 8 and Object Hallucination in Fig. 9.

Figure 6: Referring Expression Comprehension (REC) using our COMM-7B. The task intends to
localize a target object in an image described by a referring expression.
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Figure 7: Spotting Captioning using our COMM-7B. The task requires the model to describe the
image and spots the mentioned objects or regions using points or boxes.

Figure 8: Referring Expression Generation (REG) using our COMM-7B. This task aims to generate
a unique description for a specified location.
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Figure 9: Object hallucination using our COMM-7B. This task aims to evaluate the robustness to
object hallucination, i.e., answer yes or no for the existence of questioned object.
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