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Abstract

Oversmoothing is a fundamental challenge in graph neural
networks (GNNs): as the number of layers increases, the
node embeddings become progressively similar, leading to
smoothened representations. This phenomenon often results
in a sharp performance drop after only a few layers, sig-
nificantly limiting the depth of GNNs. Traditionally, over-
smoothing has been quantified using norm-based energy met-
rics, such as the Dirichlet energy, which measures the norm
of differences between neighbouring node features. These
metrics decay only when the embeddings converge to either
a rank-one or an all-zero representation as depth increases.
However, we argue that these metrics offer an overly simplis-
tic view and fail to reliably capture oversmoothing in realis-
tic scenarios, such as when network weights are unbounded,
graph adjacency matrices are not stochastic, or activation
functions are highly non-homogeneous (e.g. tanh). In such
cases, the embeddings may not collapse to a rank-one repre-
sentation, and norm-based energy metrics fail to detect a drop
in representational quality. Instead, we propose measuring the
effective rank of the representations, which provides a more
nuanced understanding of oversmoothing. Our findings reveal
that a significant drop in effective rank corresponds closely
with performance degradation, even in cases where energy
metrics remain unchanged. Extensive evaluations across di-
verse graph architectures demonstrate that rank-based met-
rics consistently capture oversmoothing, unlike energy-based
approaches, which often fail.

Introduction
Graph neural networks (GNNs) have emerged as a pow-
erful framework for learning representations from graph-
structured data, with applications spanning knowledge re-
trieval and reasoning (Peng et al. 2023; Tian et al. 2022), per-
sonalised recommendation systems (Damianou et al. 2024;
Peng, Sugiyama, and Mine 2022), social network analysis
(Fan et al. 2019), and 3D mesh classification (Shi and Ra-
jkumar 2020). Central to most GNN architectures is the
message-passing paradigm, where node features are iter-
atively aggregated from their neighbours and transformed
using learned functions, such as multi-layer perceptrons or
graph-attention mechanisms.
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A significant challenge limiting the effectiveness of
GNNs is the problem of oversmoothing. Although defi-
nitions of oversmoothing vary across the literature, it is
broadly understood as the phenomenon where learned node
features become increasingly similar as network depth in-
creases (Li, Han, and Wu 2018). This often leads to a notice-
able drop in performance, effectively constraining the max-
imum depth of message-passing GNNs.

Researchers have proposed various node similarity mea-
sures to quantify and understand oversmoothing, often rely-
ing on norm-based metrics such as the Dirichlet energy and
its variants (Oono and Suzuki 2019; Cai and Wang 2020; Wu
et al. 2023; Di Giovanni et al. 2023). These metrics are typ-
ically tailored to capture oversmoothing in a narrow range
of architectures, particularly those with homogeneous acti-
vations like ReLU. As a result, different metrics can yield
contradictory conclusions even for the same model. Notably,
these metrics only decay when feature embeddings converge
to a rank-one or all-zero representation as depth increases.
Therefore, while they provide sufficient (but not necessary)
conditions for oversmoothing, these metrics offer an overly
simplistic view and may fail to capture the phenomenon re-
liably (Rusch, Bronstein, and Mishra 2023). Despite these
limitations, they remain the standard tools for quantifying
oversmoothing, even in recent studies (Rusch et al. 2022;
Chen et al. 2022; Epping et al. 2024).

Motivated by these observations, we advocate for the use
of the effective rank (Roy and Vetterli 2007) as a more robust
and generalized metric for quantifying oversmoothing. The
effective rank provides an information-theoretic measure of
the dimensionality of the feature representation space.

Our results demonstrate that, in scenarios where GNNs
are trained with general nonlinear activations that are not
homogeneous, adjacency matrices that are not stochastic, or
unbounded weights, the effective rank converges to a small
value. This convergence indicates a collapse of the features
into a low-dimensional space, offering a clear explanation
for the poor performance of GNNs under these conditions.
In contrast, existing norm-based energy metrics often remain
unchanged in such scenarios and, therefore, fail to capture
the occurrence of oversmoothing.



Background
Graph Convolutional Network
Let G = (V, E) be an undirected graph with V denoting its
set of vertices and E ⊆ V × V its set of edges. Let A ∈
RN×N be the adjacency matrix, where N = |V| is the total
number of nodes of G. To construct a Graph Convolutional
Network (GCN) (Kipf and Welling 2016), standard practice
is to augment the adjacency matrix with self-loops Ã = A+
I and then normalize it to obtain

P = D̃−1/2ÃD̃−1/2, (1)

where D̃ = D + I , D is the diagonal degree matrix of
the graph G, and I is the identity matrix. The rows of the
feature matrix X ∈ RN×d are the concatenation of the d-
dimensional feature vectors of all nodes in the graph. At
each layer l, the GCN updates the node features as follows

X(l+1) = σ(PX(l)W (l)) (2)

where σ is a nonlinear activation function, W (l) is a train-
able weight matrix.

Graph Attention Network
While GCNs use a fixed normalized adjacency matrix to
perform graph convolutions at each layer, Graph Attention
Networks (GATs) (Veličković et al. 2017; Brody, Alon, and
Yahav 2021) perform graph convolution through a layer-
dependent message-passing matrix P (l) learned through an
attention mechanism as follows

P
(l)
ij = softmaxj(σa(a

(l)⊤
1 W (l)⊤Xi + a

(l)⊤
2 W (l)⊤Xj))

(3)
where a

(l)
i are learnable parameter vectors, Xi, Xj denote

the feature of the ith and jth nodes respectively, the activa-
tion σa is typically chosen to be LeakyReLU, and softmaxj

corresponds to the row-wise normalization

softmaxj(Aij) =
exp(Aij)∑
j′ exp(Aij′)

. (4)

The corresponding feature update is

X(l+1) = σ(P (l)X(l)W (l)) . (5)

Graph Oversmoothing
Although the exact definition of oversmoothing differs de-
pending on the sources, oversmoothing can be broadly con-
sidered as an increase in the similarity between the node
features as the inputs are propagated through an increasing
number of message passing layers, accompanied by an ob-
servable decay in GNN performance. We can easily under-
stand this problem when considering a linear GCN,

X(l) = PP · · ·PX(0)W (0) . . .W (l). (6)

Indeed, for a fully connected graph G with only one con-
nected component, P has spectral radius equal to 1 with
multiplicity 1, so P l collapses towards the eigenspace
spanned by the dominant eigenvector

P l → xy⊤ l → ∞ (7)

where Px = x, and P⊤y = y.
As a consequence, if the features X(l) converge in the

limit l → ∞, they degenerate to a matrix having rank at most
one, where all the features are aligned with the dominant
eigenvector x.

Existing Oversmoothing Metrics
To quantify oversmoothing, different metrics have been in-
troduced, and most of which measure the alignment of the
features with the dominant eigenvector of the matrix P .
Among these, the most prominent one is the Dirichlet En-
ergy, which aims to measure the overall norm of the dif-
ference between neighbouring node features (Cai and Wang
2020)

EDir(X) =
∑
i,j∈E

∥∥∥∥∥ Xi√
1 + di

− Xj√
1 + dj

∥∥∥∥∥
2

2

, (8)

where di is the degree of node i, Xi is the ith row of the fea-
tures matrix X . Note that the vector v = D̃1/21, with entries
vi =

√
1 + di, is the dominant eigenvector of the message-

passing matrix in (1) as Pv = D̃−1/2Ã1 = D̃−1/2(1+d) =

D̃−1/2D̃1 = v. It thus immediately follows from our dis-
cussion on the linear setting that EDir(X

(l)) converges to
zero as l → ∞ for a linear GCN. The intuition suggests
that a similar behaviour may occur for “smooth-enough”
nonlinearities. In particular, when the nonlinear activation
function used in the model is LeakyReLU, the authors of
(Cai and Wang 2020) have proved that EDir(X

(l+1)) ≤
slλ̄EDir(X

(l)), where sl = ∥W (l)∥2 is the largest singular
value of the weight matrix W (l), and λ̄ = (1 − mini λi)

2,
where λi ∈ (0, 2] varies among the nonzero eigenvalues
of the normalized graph Laplacian ∆̃ = I − P = I −
D̃− 1

2 ÃD̃− 1
2 . However, from our experience, the condition

to obtain exponential decaying energy, (λ̄maxl sl) < 1, is
rarely satisfied in practice, yet oversmoothing still occurs.

There are several variants of the Dirichlet energy for
quantifying oversmoothing, for example (Rusch, Bronstein,
and Mishra 2023)

E′
Dir(X) =

1

N

∑
i,j∈E

∥Xi −Xj∥22 . (9)

This formulation is applicable to the cases with a graph con-
volution matrix P ′ = D̃−1/2PD̃1/2 = D̃−1Ã. In that case,
P ′ is row-stochastic, and the dominant eigenvector becomes
the constant vector.

Being absolute measures, these notions of Dirichlet en-
ergy may fail to measure the norm of the difference between
neighbouring node features. This can occur because the
Dirichlet energy may decay to zero even when node features
remain far apart, but their norm decays to zero. To address
this limitation, normalised versions of the Dirichlet energy
have been proposed. For example, (Di Giovanni et al. 2023)
introduces a normalized Dirichlet energy, EDir(X)/∥X∥2F ,
where ∥ · ∥F denotes the Frobenius norm.



Architecture EDir(X) µ(X) Erank(X) ∥X∥F Accuracy ratio
standard normalized standard normalized

LeakyReLU + GCN (DAD) ✗ ✗ ✗ ✗ ✓* ✗ 0.2406
Tanh + GCN (DAD) ✗ ✗ ✗ ✗ ✓* ✗ 0.1937
LeakyReLU + GCN (DAD) + bias ✗ ✗ ✗ ✗ ✓* ✗ 0.2547
Tanh + GCN (DAD) + bias ✗ ✗ ✗ ✗ ✓* ✗ 0.1995
LeakyReLU + GCN (DAD) + layernorm ✗ ✗ ✗ ✗ ✓* ✗ 0.1825
Tanh + GCN (DAD) + layernorm ✗ ✗ ✗ ✗ ✓* ✗ 0.1807
LeakyReLU + GAT ✗ ✗ ✗ ✗ ✓* ✗ 0.2534
Tanh + GAT ✗ ✗ ✗ ✗ ✓* ✗ 0.1418

Table 1: Trained cases. Experimental results on networks trained for node classification on the Cora dataset. ✓ indicates a clear
decay of the metric to zero. For Erank(X), we measure Erank(X) − r∗ for some r∗ > 0 and use ✓for the case r∗ = 1 and
✓* for r∗ > 1 but r∗ ≪ min{N, d}, typically less than 1.5. ✗ indicates the metric stays roughly constant, or r∗ ≈ min{N, d}
for Erank(X). Accuracy ratio denotes the ratio between the classification accuracies of 2-layered GNN and 24-layered GNN.
DAD and DA denote the message-passing matrices D̃−1/2ÃD̃−1/2 (non-stochastic) and D̃−1Ã (stochastic), respectively.

Architecture EDir(X) µ(X) Erank(X) ∥X∥F
standard normalized standard normalized

LeakyReLU + GCN (DAD) + identity weights ✓ ✓ ✗ ✓ ✓ ✗
Tanh + GCN (DAD) + identity weights ✓ ✓ ✗ ✓ ✓ ✗
LeakyReLU + GCN (DA) + identity weights ✗ ✗ ✓ ✓ ✓ ✗
Tanh + GCN (DA) + identity weights ✗ ✗ ✓ ✓ ✓ ✗

LeakyReLU + GCN (DAD) + small weights ✓ ✓ ✓ ✓ ✓ ✓
Tanh + GCN (DAD) + small weights ✓ ✓ ✓ ✓ ✓ ✓
LeakyReLU + GCN (DA) + small weights ✓ ✗ ✓ ✓ ✓ ✓
Tanh + GCN (DA) + small weights ✓ ✗ ✓ ✓ ✓ ✓

LeakyReLU + GCN (DAD) + large weights ✗ ✓ ✗ ✓ ✓ ✗
Tanh + GCN (DAD) + large weights ✗ ✗ ✗ ✗ ✗ ✗
LeakyReLU + GCN (DA) + large weights ✗ ✗ ✗ ✓ ✓ ✗
Tanh + GCN (DA) + large weights ✗ ✗ ✗ ✗ ✗ ✗

Table 2: Synthetic cases. Experimental results of all major metrics on networks with 200 layers with random weights. Notations
have the same meaning as in table 1.

Similarly, Wu et al. (2023) analyse GATs as in (5), i.e., ar-
chitectures with row-stochastic message-passing matrix P (l)

that vary at each layer, and propose the following metric:

µ(X) = ∥X − 1γ∥F , γ =
1⊤X

N
. (10)

µ(X) measures the alignment of each feature with the dom-
inant eigenvector of the message-passing matrix, rather than
the alignment of features with one another as in the case of
the Dirichlet energy. For GATs, all P (l) share the same all-
ones dominant eigenvector 1.

A major result from (Wu et al. 2023) is that if
∥
∏L

l=1 |W |(l)∥ is bounded, then µ(X) provably decays to
zero for a wide range of ReLU-like activation functions.

Obviously, µ can also be used to measure the oversmooth-
ing of GCN architectures. However, for it to be meaningful,
a minor adjustment is required when GCNs are employed
with a message-passing matrix P that is not stochastic. In
such cases, the dominant eigenvector xD of P may differ

from 1. To account for this, µ should be modified to

µ(X) = ∥X/xD − 1γ∥F , γ =
1⊤(X/xD)

N
,

with the division done point-wise on each column of X .
It is important to note that, similar to the Dirichlet en-

ergy, this measure has the drawback that it can be zero when
the feature norms are small, thereby failing to capture the
distance from the dominant eigenspace in such cases. To ad-
dress this limitation, a more appropriate version of this met-
ric is its normalized form, µ(X)/∥X∥F . Interestingly, de-
spite its intuitive appeal, we have not encountered this nor-
malized version used in any existing literature.

It is evident that the primary purpose of all these energy
functions is to measure the alignment of features with a
specific rank-one embedding space spanned by the domi-
nant eigenvector of the message-passing matrix P . However,
these metrics are heavily dependent on the architecture being
used and, in particular, on prior knowledge of the dominant



eigenvector of P . Furthermore, they generally quantify the
convergence of the neural network towards a very specific
rank-one fixed point. While this approach is valid in certain
scenarios, we argue that it oversimplifies the oversmoothing
phenomenon. Oversmoothing is not merely about conver-
gence to a rank-one space but is fundamentally characterized
by the reduction of the rank of the feature representation,
which may collapse into a low-dimensional space without
necessarily being rank-one. To address this limitation, we
propose the use of the effective rank as a more general and
powerful tool for quantifying oversmoothing.

Effective Rank
The rank of a matrix is defined as the number of its non-
zero singular values. However, this notion is highly sensitive
to noise. To mitigate this sensitivity, one possible approach
is to set a minimum threshold for the singular values (Feng
et al. 2022). Alternatively, continuous relaxations of the rank
can be considered to provide a more robust measure.

In this work, we focus on the effective rank (Roy and Vet-
terli 2007). To define the effective rank of a matrix X , let
σ1 > σ2 > · · · > σmin{N,d} denote the singular values
of X . Define the normalized singular value probabilities as
pk = σk/

∑
i σi, and set the effective rank as

Erank(X) = exp (−
∑

k pk log pk) . (11)

For completeness, we note that other continuous relaxations
of the rank exist. Examples include ∥X∥∗/∥X∥2, the sta-
ble rank ∥X∥2∗/∥X∥2F , and ∥X∥2F /∥X∥22, where ∥X∥∗ =∑

i σi is the nuclear norm (Rudelson and Vershynin 2006;
Arora et al. 2019).

It is important to note that EDir(X) and µ(X) are only in-
formative for confirming oversmoothing when they decay to
zero. In contrast, a small Erank(X) directly corresponds to
the collapse of features onto a low-dimensional space, cap-
turing oversmoothing that can be correlated with a drop in
network performance (this is illustrated in figure 1).

We note that prior work has explored connections be-
tween effective rank and graph oversmoothing (Guo et al.
2023), particularly as a means to justify a proposed normal-
ization scheme. This paper has a different goal: emphasize
strong empirical evidence supporting the use of effective
rank to quantify oversmoothing. Through extensive numer-
ical investigations, we demonstrate the superiority of effec-
tive rank over norm-based energy metrics for this purpose.

Experiments
In this section, we validate the robustness of the effective
rank in quantifying oversmoothing in GNNs against the
available metrics in the literature. The experiments exam-
ine the behaviours of different metrics with homogeneous
(LeakyReLU) and subhomogeneous (Tanh) activation func-
tions and consider the following two scenarios:
• Trained cases: where the weights are obtained follow-

ing the normal training dynamics of a GNN. We use the
standard setup of GCN and GAT as stated in equation (2)
and (5) with a fixed hidden dimension of 32. For each
setup, eight GNNs of different depths ranging from 2 to

Figure 1: Two examples of GCNs trained with different ac-
tivations, corresponding to the first two rows in table 1. The
pink dashed line indicates the classification accuracy of the
trained GNNs. In this particular case, r∗ = 1.52211511 and
1.551852401 for the LeakyReLU (top) and tanh (bottom)
plots, respectively. Note that the effective rank of the input
features Erank(X(0)) is about 1084.

24 are trained separately, and the oversmoothing metrics
are computed at the last hidden layer.

• Synthetic cases: where the weights are either the identity
or randomly sampled at each layer from a distribution
N (0, s2). s is the standard deviation that can be varied
depending on the setting: small weights (s = 0.1) lead
to an exponentially decaying ∥X∥F , and large weights
(s = 1) lead to an exploding ∥X∥F for uncapped acti-
vation functions. For identity weights, ∥X∥F is roughly
constant. The adjacency matrix A is obtained from a
synthetic 10-node Barabasi Albert Graph that guarantees
connectivity between all nodes. The feature initialization
X(0) is sampled from N (0,1).

The full results are shown in table 1 and 2.
In the synthetic settings, we observe that the standard

EDir(X) and µ(X) only decays for D̃−1/2ÃD̃−1/2- or
D̃−1Ã-normalized P , which agrees with our analysis from



previous sections. In comparison, µ(X) normalized by both
xD and ∥X∥F as well as Erank(X) can more generally cap-
ture a wider range of oversmoothing settings.

In the trained settings, Erank(X) always decays towards a
small value close to one but not exactly one, while EDir(X)
and µ(X) are still far from converging to zero, as that would
correspond to the effective rank being one.
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