
Under review as a conference paper at ICLR 2024

UNDERSTANDING AND TACKLING OVER-DILUTION IN
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Message Passing Neural Networks (MPNNs) have become the predominant archi-
tecture for representation learning on graphs. While they hold promise, several in-
herent limitations have been identified, such as over-smoothing and over-squashing.
Both theoretical frameworks and empirical investigations substantiate these lim-
itations, facilitating advancements for informative representation. In this paper,
we investigate the limitations of MPNNs from a novel perspective. We observe
that even in a single layer, a node’s own information can become considerably
diluted, potentially leading to negative effects on performance. To delve into this
phenomenon in-depth, we introduce the concept of Over-dilution and formulate
it with two types of dilution factors: intra-node dilution and inter-node dilution.
Intra-node dilution refers to the phenomenon where attributes lose their influence
within each node, due to being combined with equal weight regardless of their
practical importance. Inter-node dilution occurs when the node representations of
neighbors are aggregated, leading to a diminished influence of the node itself on
the final representation. We also introduce a transformer-based solution, which
alleviates over-dilution by merging attribute representations based on attention
scores between node-level and attribute-level representations. Our findings provide
new insights and contribute to the development of informative representations.

1 INTRODUCTION

Recent progress in representation learning on graph-structured data has been largely attributed
to Graph Neural Networks (GNNs), powered by their ability to utilize structural information. In
particular, Message Passing Neural Networks (MPNNs) have gained significant attention due to their
simple mechanism yet powerful performance (Gilmer et al., 2017). Various extensions of MPNNs
have been proposed, primarily, to improve their expressivity and solve issues with degeneration
caused during the message passing (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al.,
2017; Wu et al., 2019; Chen et al., 2020b; Corso et al., 2020; Bianchi et al., 2021; Brody et al., 2022).

Towards a deeper understanding, several phenomena have been observed and formalized that cause
MPNNs to deviate from optimal behavior, such as over-smoothing (Xu et al., 2018; Li et al., 2018b; Nt
& Maehara, 2019; Zhao & Akoglu, 2020; Oono & Suzuki, 2020; Chen et al., 2020a), over-squashing
(Alon & Yahav, 2021; Topping et al., 2022), and over-correlation (Jin et al., 2022). They have become
the foundation for addressing distortions in information on irregular structures, laying the groundwork
for subsequent studies to enhance MPNNs (Arnaiz-Rodrı́guez et al., 2022; Wu et al., 2023; Guo
et al., 2023; Eliasof et al., 2023; Nguyen et al., 2023; Di Giovanni et al., 2023; Karhadkar et al.,
2023; Gravina et al., 2023). Therefore, it is essential to identify and formalize the limitations (i.e.
undesirable behaviors) of MPNNs for the advancement of representation learning on graphs.

In this paper, we investigate a limitation associated with the preservation of attribute-level information.
This perspective is distinct from previous categories of limitations, where the primary focus has
been on the propagation of node-level representation as illustrated in Figure 1. Although often not
emphasized sufficiently, node attributes provide important information about the nodes that can be
used to make predictions such as potential links between them (Gong et al., 2014; Huang et al.,
2017; Li et al., 2017; 2018a; Hao et al., 2021). We first introduce the phenomenon that outlines
the diminishment of a node’s own information on the final representation in MPNNs, referred to
as over-dilution. This phenomenon has been observed when nodes have an excessive number of

1

Under review as a conference paper at ICLR 2024

		()	Σ
		()	Σ
		()	Σ
		()	Σ
		()	Σ

= 𝐴𝑔𝑔

Inter-node dilution Intra-node dilution

= 𝐴𝑔𝑔

(a) (b)

: attribute-level representation
: node-level representation

(c) (d)Over-squashing Inefficacy in propagating long-distance node featuresOver-smoothing Inability to distinguish node features

Over-dilution Failure to preserve a node’s own informationAttributed graph

Figure 1: (a) illustrates an attributed graph. Each node is initially characterized by a set of attributes,
which are represented by corresponding vectors. (b) illustrates the two sequential steps of the dilution
process occurring in the first layer of MPNNs. The first step, intra-node dilution, occurs when the
node-level representation is formed by summing the representations of its attributes. The more
attributes a node has, the less influence each attribute exerts on the node’s representation. The second
step, inter-node dilution, takes place when a node representation is integrated with those of neighbor
nodes during message propagation. (c) and (d) illustrate over-smoothing and over-squashing.

attributes, hindering their ability to focus on important attributes, or when each node receives an
overwhelming amount of information from neighboring nodes, leading to a relative loss of their
individual information. As illustrated in Figure 1, we analyze this phenomenon by dividing it into two
cascaded sub-phenomena: intra-node dilution and inter-node dilution. These describe the weakening
of influence of the attribute-level and the node-level representations, respectively.

To address the over-dilution phenomenon, we introduce a transformer-based architecture (Vaswani
et al., 2017) designed to utilize attribute representations as tokens. Notably, this architecture is not
a competitor but a complement to existing node embedding methods (e.g. MPNNs). Its flexibility
is underscored by its ability to seamlessly integrate with any node embedding method, computing
the final representation by weighting attribute representations based on attention scores associated
with the aggregated node-level representation. We theoretically and empirically demonstrate its
effectiveness for solving the over-dilution problem. Our main contributions can be summarized as:

• We introduce the over-dilution phenomenon from a new perspective, shedding light on
its impact on the representation of graph-structured data. We formulate and elucidate this
concept through two sub-phenomena: intra-node dilution and inter-node dilution, which
describe the dilution of attribute-level and node-level representations, respectively.

• The concept of over-dilution delves into the limitation tied to the preservation of attribute-
level information, setting it apart from existing limitations primarily centered on the propa-
gation of node-level representation.

• By investigating the over-dilution phenomenon and addressing it with a transformer-based
approach that complements any node embedding methods, we contribute to a deeper under-
standing and provide insights into the development of informative representations.

2 PRELIMINARIES

Attributed graphs are of the form G = (T ,V, E) that consists of sets of attributes T , nodes V , and
edges E ⊆ V × V . Let Tv be a subset for attributes t ∈ T that node v ∈ V is associated with.
NV = |V| and NT = |T | indicate the total numbers of nodes and attributes, respectively. The

2

Under review as a conference paper at ICLR 2024

node feature matrix and the adjacency matrix are represented as X ∈ RNV×NT and A ∈ RNV×NV ,
respectively. We assume that each node has a discrete binary vector, Xv ∈ RNT , indicating existence
of attributes where Xv,t=1 if the node v has attribute t, otherwise Xv,t=0. The embedding of attribute
t is represented as zt ∈ Rd with dimension d, which is a randomly initialized representation.

2.1 MESSAGE PASSING NEURAL NETWORKS

In MPNNs, the representations of nodes are calculated through a series of layers, where each layer
consists of two main operations: the Update function and the Aggregate function. The update
function is used to transform the node representation and the aggregate function is used to combine
information from neighboring nodes. This process is repeated for multiple layers, thereby refining the
node representations and extracting higher-level features from the graph. We formulate MPNNs as:

h(l)
v = σ(Aggregate({Update(h(l−1)

u)|u ∈ Ñ (v)})) = σ(
∑

u∈Ñ (v)

αvuh
(l−1)
u W (l)) (1)

where Ñ (v) is a set of neighbor nodes of v including itself, W (l) ∈ Rd×d is the learnable parameter
at l-th layer, and Aggregate(·) denotes the aggregate function for neighbor nodes. h(0) = XW (0) ∈
RNV×d is the initial node feature matrix with learnable parameter W (0) ∈ RNT ×d and dimension
d. In this context, the t-th row of W (0) is equivalent to zt, the representation of the corresponding
attribute. The parameter αvu denotes the aggregation coefficient assigned to the edge connecting
neighbor node u to the center node v in the aggregation function. This coefficient is calculated as

1√
deg(v)deg(u)

in the case of GCN, or as an attention coefficient between nodes v and u in GAT. The

receptive field of node v is defined as: Bl(v) := {u ∈ V | sG(v, u) ≤ l}, where sG is the standard
shortest-path distance on the graph G and l ∈ N is the radius.

2.2 OVER-SMOOTHING AND OVER-SQUASHING

Over-smoothing refers to the phenomenon where the model excessively propagates information
between nodes, leading to a loss of distinguishability of their representations (Xu et al., 2018; Nt &
Maehara, 2019; Oono & Suzuki, 2020). In the process of exchanging information through message
propagation, all nodes have similar representations and noise is conveyed alongside important
information (Li et al., 2018b; Chen et al., 2020a).

Over-squashing is a problem that arises when exponentially increasing amounts of information are
compressed into a fixed-size vector (Alon & Yahav, 2021). This leads to a bottleneck, particularly in
the extended paths within a graph, which hinders GNNs from fitting long-range signals and causes
them to fail to propagate messages originating from distant nodes. As a result, the performance is
typically compromised, where the task necessitates long-range interaction (Topping et al., 2022).

3 OVER-DILUTION

In this section, we introduce a new concept named over-dilution, which is distinct from over-
smoothing and over-squashing as illustrated in Figure 1. Over-dilution refers to the diminishment of
a node’s information at both the attribute and the node levels. To assess the severity of over-dilution,
we define the dilution factor, as a metric that measures the retention of node’s own information in the
updated representation. This factor can be decomposed into two cascaded components as described
in Eq (2). We define the intra-node dilution factor δintra

v mainly for attribute representations and the
inter-node dilution factor δinter for node representations. As depicted in Figure 1 (b), the attribute
representation is diluted during the first step of message passing (i.e. Update) and then subsequently
diluted in the second step (i.e. Aggregate) in form of the node-level representation. Therefore, the
dilution factor of attribute t at node v can be defined as corresponding to two cascaded steps:

δv,t = δintra
v (t) ∗ δinter(v) (2)

where δintra
v (t) represents the intra-node dilution factor of attribute t at the node v and δinter(v)

represents the inter-node dilution factor of node v in the graph. We exploit the Jacobian matrix of
node representations to quantify dilution factors based on the influence distribution in a similar way
as Xu et al. and Topping et al..

3

Under review as a conference paper at ICLR 2024

(a) (b)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

0

2000

4000

6000

8000

10000

12000

13752

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 2: (a) The histogram of the inter-dilution factor (aggregation-only) values after single layer of
GCN in Computers dataset. (b) The average of the inter-dilution factor (aggregation-only) with the
left y-axis and the average size of the receptive field with the right y-axis in the Computers dataset.

Taking the Computers dataset as a primary example, consider a node with 204 attributes (the median
value for the number of attributes) and 19 neighboring nodes (the median degree). In this scenario,
each attribute of the node would be diluted to 1/204 ∗ 1/20, or roughly 0.025%, in a single layer
when using either the mean or sum as the aggregation operator.

3.1 INTRA-NODE DILUTION: MEASURING ATTRIBUTE INFLUENCE WITHIN EACH NODE

The intra-node dilution factor is a metric that quantifies the degree to which an attribute is diluted at
a specific node. We measure the influence of zt on h

(0)
v indicating how much the representation of

attribute t affects the initial representation of node v.
Definition 3.1. (Intra-node dilution factor). For a graph G = (T ,V, E), let zt be the representation
of attribute t ∈ T and h

(0)
v denote the initial feature representation of node v ∈ V , which is

calculated from the representations of attribute subset Tv that node v possesses. The influence score
Iv(t) attribute t on node v is the sum of the absolute values of the elements in the Jacobian matrix[
∂h(0)

v

∂zt

]
. We define the intra-node dilution factor as the influence distribution by normalizing the

influence scores: δintra
v (t) = Iv(t)/Σs∈Tv Iv(s). In detail, with the all-ones vector e:

δintra
v (t) = eT

[
∂h

(0)
v

∂zt

]
e

/ ∑
s∈Tv

eT

[
∂h

(0)
v

∂zs

]
e (3)

Hypothesis 1. (Occurrence of intra-node dilution). Intra-node dilution occurs when a node-
level representation is computed by equally weighting and fusing attribute-level representations,
irrespective of their individual importance. The over-dilution effect at the intra-node level becomes
more pronounced as the number of attributes increases.

For example, given node v where the important attributes are sparse compared to the total number of
attributes |Tv|, the influence of the key attributes get proportionally limited to 1/|Tv|. In MPNNs,
the representation of node v is calculated by summing or averaging the representations of attributes
t ∈ Tv as h

(0)
v = XW (0) =

∑
t∈Tv

zt or h(0)
v =

∑
t∈Tv

zt
|Tv| . Therefore, the intra-node dilution

factor δintra
v (t) takes the constant value 1

|Tv| for all attributes at each node v. This implies that the
influence of each attribute on the representation of a node is treated as equal and, as the number of
attributes increases, the impact of important attributes on the representation of the node is diluted.
Given that attributes possess different levels of practical importance, their influences may be diluted
in cases where only a small subset of attributes is crucial for the node representation.

3.2 INTER-NODE DILUTION: MEASURING NODE INFLUENCE ON FINAL REPRESENTATION

The inter-node dilution factor of each node is calculated by considering the influence of the initial
node representation on the output representation in the last layer and the influences of all other nodes.
We adapt the Jacobian matrix of node representation, as introduced by Xu et al. for quantifying the
influence of one node on another, to measure the influence of each node on itself.

4

Under review as a conference paper at ICLR 2024

Definition 3.2. (Inter-node dilution factor). Let h(0)
v be the initial feature and h

(l)
v be the learned

representation of node v ∈ V at the l-th layer. We define the inter-node dilution factor as the
normalized influence distribution of node-level representations: δinter(v) = Iv(v)/Σu∈V Iv(u), or

δinter(v) = eT

[
∂h

(l)
v

∂h
(0)
v

]
e

/∑
u∈V

eT

[
∂h

(l)
v

∂h
(0)
u

]
e (4)

In MPNNs, the representation h
(l)
v is calculated from the non-linear transformation (i.e. Update(·))

and the aggregation of the representations h
(l−1)
u for u ∈ Ñ(v). To observe the effect of the

aggregation exclusively, we eliminate the effect of the non-linear transformation by setting all weight
and initial node feature matrices to be the identity matrix. We define δinter

Agg (v), which is the exclusive
version of the inter-node dilution factor, with W (l) = W (l−1) = ... = W (1) = h(0) = INV ∈
RNV×NV . The output representation of the aggregation-only version of GCN is calculated as
h′(l) = (D̃− 1

2 ÃD̃− 1
2)lINV , where Ã indicates the adjacency matrix with self-loop and D̃ is the

corresponding degree matrix. The numerator of δinter
Agg (v) is calculated from:

∂h
′(l)
v

∂h
(0)
v

=

l∏
i=1

α(i)
vv · ∂h

(0)
v

∂h
(0)
v︸ ︷︷ ︸

for l≥1

+
∑

u∈Ñ (v)\{v}

l−1∑
k=1

 l∏
j=k+2
k≤l−2

α(j)
vv

α(k+1)
vu

∂h
′(k)
u

∂h
(0)
v︸ ︷︷ ︸

for l≥2

(5)

where α
(i)
vu indicates the aggregation coefficient from node u to the node v at i-th layer. The former

term, which is defined for l ≥ 1, indicates the preserved amount of the representation of node v and
the latter term, which is defined for l ≥ 2, indicates the returned amount of representation of node
v from neighbors after more than two hops aggregation. The denominator of δinter

Agg (v) is calculated
from: ∑

u∈V

∂h
′(l)
v

∂h
(0)
u

=
∑

x∈Ñ(v)

∑
u∈V

l−1∑
k=0

 l∏
j=k+2
k≤l−2

α(j)
vv

α(k+1)
vx

∂h
′(k)
x

∂h
(0)
u

(6)

Hypothesis 2. (Occurrence of inter-node dilution 1). For a node v and its adjacent nodes, which
are denoted as Ñ (v) , inter-node dilution occurs when the aggregation coefficient of the self-loop,
αvv , is significantly smaller than the sum of the coefficients of the other edges connecting node v and
its adjacent nodes: αvv ≪

∑
u∈Ñ (v)\{v}

αvu.

The inter-node dilution factor for the aggregation-only at a single layer is calculated as:

δinter
Agg (v) = eT

[
αvv

∂h
(0)
v

∂h
(0)
v

]
e

/
eT

 ∑
u∈Ñ(v)

αvu
∂h

(0)
u

∂h
(0)
u

 e =
αvv∑

u∈Ñ (v) αvu
(7)

In most MPNNs, the inter-node dilution occurs when the degree (i.e. |N (v)|) is high. For GCN, it
can even occur with the low degree if the neighbor nodes have smaller degrees compared to node
v, because the aggregation coefficient for self-loop is defined as αvv = 1

deg(v) while the coefficients
for edges with neighbor nodes are defined as αvu = 1√

deg(v)deg(u)
. As shown in the Figure 2(a), a

significant number of nodes exhibits low δinter
Agg (v) values even after one-hop aggregation.

Hypothesis 3. (Occurrence of inter-node dilution 2). Inter-node dilution occurs at node v as the
size of its receptive field |Bl(v)| increases.

As explained in Xu et al. and Topping et al., the size of the receptive field grows exponentially as
the number of layers increases. Consequently, the information from a larger number of nodes is
integrated, resulting in a dilution of the information specific to each individual node. Figure 2(b)
illustrates the average of this relationship between the inter-node dilution factor (aggregation-only)
and the average size of the receptive field in the Computers dataset, as the number of hops increases.

5

Under review as a conference paper at ICLR 2024

Multi-Head Self-Attention

Add & Norm

FFN

Add & Norm

N×

Multi-Head Attention with Mask

Q K V

M×

V K Q

Attribute tokens

Add & Norm

FFN

Add & Norm
Node Embedding

(e.g. MPNNs)

Input graph

Attribute EncoderAttribute Decoder

Figure 3: The overall architecture of the Node Attribute Transformer (NATR) comprises of two main
components: the attribute encoder for attribute-level representations and the attribute decoder for
node-level representations. It can be combined with any node embedding modules such as MPNNs.

4 NODE ATTRIBUTE TRANSFORMER

In this section, we describe the architecture of Node Attribute Transformer (NATR) in details. As
illustrated in Figure 3, NATR consists of the attribute encoder and the attribute decoder. While the
encoder is designed to consider the correlation between attributes, the decoder plays a crucial role in
mitigating over-dilution. It integrates attribute representations across all layers, addressing inter-node
dilution, and assigns greater weight to important attributes, tackling intra-node dilution, as discussed
in Section 6.1.

4.1 ATTRIBUTE ENCODER

Given a set of randomly initialized representations of attribute tokens z(0)t ∈ RdT and its matrix form
Z(0) ∈ RNT ×dT with dT dimension, the attribute representation Z(n), which is the output of n-layer
of the attribute encoder, is obtained as: Z(n) = SelfAttn(n)(Z(n−1)), where SelfAttn(n) is the n-th
layer of the attribute encoder containing Multi-Head Self-Attention (MHSA), Add&Norm (Ba et al.,
2016), and Feed-Forward Network (FFN) layers as illustrated in the Figure 3. We add z

(0)
t to z(n)

for the key and the query at all encoder layers like the positional encoding and it is omitted in the
formulation for simplicity. After N layers of attribute encoder in total, the attribute representation
zt = z

(N)
t + z

(0)
t , which is Z ∈ RNT ×dT in a matrix form, is fed to the attribute decoder. For

simplicity, we use the same dimension (dT = d) for attribute-level and node-level representations.

4.2 ATTRIBUTE DECODER

The attribute decoder is comprised of the node embedding module, Multi-Head Attention (MHA),
Add&Norm, and FFN. The output of the attribute encoder, Z is used to calculate the key K(m) =

ZW
(m)
DEC,K and the value V (m) = ZW

(m)
DEC,V in the MHA of m-th decoder layer. The query

Q(m) = H(m)W
(m)
DEC,Q is calculated from the output of the node embedding module H(m) ∈ RNV×d,

such as MPNNs, at the m-th decoder layer:

H(m) = NodeModule(H̃(m−1), A) (8)

where H̃(m−1) is the output of the previous decoder layer (H̃(0) = H(0) = XW (0)) and A represents
the adjacency matrix. We add H(0) before calculating the query at all decoder layers and it is
also omitted in the formulation for simplicity. We denote the node embedding module in the
subscript as NATRNodeModule. If H(m) is updated by GCN layer with the formulation H(m) =

D̃− 1
2 ÃD̃− 1

2 H̃(m−1)W (m), the model is denoted as NATRGCN. Then, the attention coefficient for
each attribute at MHA is calculated according to the node-level representation Q(m).

O(m) = MHA(Q(m),K(m), V (m)) = Concat(head1, ..., headh)W
(m)
DEC,O (9)

6

Under review as a conference paper at ICLR 2024

Table 1: Dataset statistics. |Tv| and degree are related to intra- and inter-node dilutions, respectively.

|V| AVG. DEGREE MEDIAN DEGREE |T | AVG. |Tv| MEDIAN |Tv| MAX. |Tv|
AMAZON COMPUTERS 13752 30.393 19 767 267.2 204 767
AMAZON PHOTO 7650 26.462 18 745 258.8 193 745
CORA ML 2995 4.632 3 2879 50.5 49 176
OGB-DDISUBSET 3531 499.582 500 1024 58.2 56 270
OGB-DDIFULL 4267 500.544 446 1024+1 49.1 51 271

where headi = softmax(QiK
⊤
i√

d
)Vi. We use masks in the MHA to merge the representations of the

attributes possessed by each node exclusively. The aggregated representation of neighbor nodes H(m)

is added to the output O(m) ∈ RNV×d and then fed to Normalization layer followed by FFN layer.
After additional normalization layer with skip connection, the final representation at m-th layer of
attribute decoder, H̃(m) ∈ RNV×d is used as the input feature of the node embedding module at the
next decoder layer.

G(m) = Norm(H(m) +O(m)), H̃(m) = Norm(FFN(G(m)) +G(m)) (10)

Note that H(m) is the representation which is aggregated from neighbors and O(m) is the repre-
sentation of each node. Therefore, we can control the inter-node dilution factor by changing as
G(m) = Norm((1 − λ)H(m) + λO(m)), where 0 ≤ λ ≤ 1 can be a hyperparameter, a learnable
parameter, or an attention coefficient. In this work, we use the original formulation in Eq. (10).

Plug-in Version of NATR. We also provide a variant of NATR which is a plug-in version. In the
scenario where an established node embedding model (e.g. MPNNs) is already trained and running
in the industry, NATR can be easily incorporated into the existing model as a form of the separate
architecture which is illustrated in Appendix. The plug-in version is also available for single layer
models such as SGC (Wu et al., 2019). The difference from standard NATR is that the node embedding
module is not nested inside the decoder but operated separately.

5 EXPERIMENTS

We evaluate NATR on four benchmark datasets with the OGB pipeline (Hu et al., 2020). To validate
the informativeness of node representations, we conduct the link prediction and the node classification
tasks. All experiments are repeated 20 times, and the averages of performance are reported. GCN
(Kipf & Welling, 2017), SGC (Wu et al., 2019), and GAT (Veličković et al., 2018) are selected as
the main baselines. For NATRSGC , we adapt the plug-in version of the architecture. In GCN and
SGC, aggregation coefficients are calculated based on the degree. GAT uses attention coefficients
to calculate its aggregation coefficients. Thereby, the inter-node dilution factor in GCN and SGC
is affected by the topology, while in GAT it is affected by node representations. The details of
the experiments, the extended results, a comparison with various node embedding modules such
as GCNII and Graphormer (Hamilton et al., 2017; Bianchi et al., 2021; Corso et al., 2020; Chen
et al., 2020b; Ying et al., 2021), an analysis on complexity, and ablation studies are reported in the
Appendix.

5.1 DATASETS

Computers and Photo datasets are segments of the Amazon co-purchase graph (McAuley et al., 2015;
Shchur et al., 2018). Nodes indicate products and edges represent that two products are purchased
together frequently. The bag-of-words in the product reviews is used as a set of attributes. CoraML
dataset also contains bag-of-words as attributes, but in this case, nodes are documents and edges
represents the citation link between them (McCallum et al., 2000; Bojchevski & Günnemann, 2018).
In the OGB-DDI dataset, provided by Wishart et al. and Hu et al., each node represents drug and the
edges represent interaction between drugs. We extract node attributes from molecular structures in
DrugBank DB (Wishart et al., 2018) and generating Morgan Fingerprints (radius 3, 1024 bits) with
RDKit. Any nodes that are not supported by RDKit or DrugBank are deleted, and the corresponding
graph is subsequently reconstructed as OGB-DDISUBSET. The OGB-DDIFULL dataset includes all
nodes and edges and the unsupported nodes are assigned a dummy attribute.

7

Under review as a conference paper at ICLR 2024

Table 2: Experimental results of the link prediction with Hits@20 performance (top) and the node
classification with MAD score (bottom) on benchmark datasets. The extended results for various
node embedding methods including SAGE, PNA, and Graphormer are reported in the Appendix.

COMPUTERS PHOTO CORA ML OGB-DDISUBSET OGB-DDIFULL

GCN 31.01 ±3.37 51.05 ±5.45 75.93 ±4.36 76.11 ±5.92 68.18 ±9.24
NATRGCN 42.38 ±3.21 58.12 ±4.18 77.04 ±2.61 78.51 ±4.03 73.07 ±8.16

GAT 24.73 ±4.96 48.23 ±7.43 72.42 ±3.45 61.46 ±11.51 29.02 ±12.52
NATRGAT 40.63 ±3.97 56.06 ±3.54 74.10 ±3.22 80.68 ±2.32 77.80 ±6.79

SGC 30.37 ±2.73 51.31 ±4.80 74.49 ±3.03 41.04 ±7.12 39.19 ±7.87
NATRSGC 36.99 ±3.34 57.42 ±4.38 77.20 ±2.85 86.79 ±3.66 76.99 ±10.91

COMPUTERS PHOTO CORA ML
ACCURACY MAD ACCURACY MAD ACCURACY MAD

GCN 80.12 ±1.71 0.46 ±0.03 88.50 ±2.11 0.83 ±0.06 78.71 ±2.00 0.55 ±0.03
NATRGCN 81.70 ±2.75 0.82 ±0.04 90.84 ±1.26 0.91 ±0.02 80.39 ±2.28 0.68 ±0.03

GAT 80.86 ±1.95 0.63 ±0.05 88.87 ±2.04 0.57 ±0.04 77.35 ±2.02 0.84 ±0.04
NATRGAT 81.39 ±2.12 0.67 ±0.03 89.23 ±1.93 0.89 ±0.02 79.36 ±1.66 0.74 ±0.02

SGC 80.31 ±1.53 0.26 ±0.03 89.18 ±1.67 0.45 ±0.07 79.30 ±1.89 0.34 ±0.02
NATRSGC 80.63 ±2.30 0.68 ±0.03 89.60 ±1.74 0.78 ±0.05 80.22 ±1.03 0.92 ±0.02

5.2 TASKS Table 3: Hits@20 performance on Computers
dataset by the number of layers.

2 Layers 3 Layers 4 Layers 5 Layers

GCN 31.01 30.84 28.97 26.99
GCNJK 29.47 27.85 28.00 27.49
NATRGCN 39.81 41.54 40.96 42.38
GAT 24.73 21.07 11.52 4.15
GATJK 27.22 24.54 23.90 23.98
NATRGAT 39.51 39.58 40.63 40.21

SGC 30.37 25.78 24.30 23.87
NATRSGC 36.99 36.47 35.31 34.01

Link Prediction. We conduct intensive experi-
ments on the task of link prediction. The attribute-
level representation is especially important in pre-
dicting potential links between nodes (Li et al.,
2018a; Hao et al., 2021). In the case of the OGB-
DDIFULL dataset, the attribute indicates substruc-
tures of chemical compounds so it can provide
information about potential interactions between
drugs in a biological system. The overall perfor-
mance is reported in Table 2 (top), and the perfor-
mance based on the number of layers is reported in Table 3.

Node Classification. Despite the potential benefits of smoothing node representations to be more
similar to their neighboring nodes in the node classification task for homogeneous graphs, as opposed
to preserving the individual features of each node, our experimental results demonstrate that NATR
does not impede performance. We also measure the smoothness of node representations based on
Mean Average Distance (MAD) (Chen et al., 2020a). The experimental results in the Table 2 (bottom)
show that the NATR architecture is beneficial in addressing the over-smoothing issue by preserving
the individual representation of each node.

6 ANALYSIS

6.1 IMPROVEMENTS IN THE DILUTION FACTORS OF NATR

The intra-node dilution factor. Unlike the 1/|Tv| approach used in MPNNs, NATR can enhance the
representation of important attributes while suppressing others. The intra-node dilution factor for
attribute t is calculated as exp (QvK

⊤
t)/

∑
s∈Tv

exp (QvK
⊤
s), which is the attention coefficient at

node v. In comparison to GCN, NATRGCN increases δintra
v (t) in 38.07% of all cases with a median

increase of +30.31% and a maximum increase of +4005.60% on the Computers dataset. The detailed
statistics are reported in the Appendix.

The inter-node dilution factor. The final representation of node v at the last layer H̃(M)
v is calculated

based on two node-level representations: H(M)
v and O

(M)
v . The term H

(M)
v contains information

from its neighboring nodes, while O(M)
v pertains exclusively to node v. The inter-node dilution factor

8

Under review as a conference paper at ICLR 2024

of NATR is defined as:

δinter(v) = eT

[
∂H̃

(M)
v

∂H
(0)
v

+

M∑
m=1

∂H̃
(M)
v

∂O
(m)
v

]
e

/
eT

[∑
u∈V

∂H̃
(M)
v

∂H
(0)
u

+

M∑
m=1

∂H̃
(M)
v

∂O
(m)
v

]
e (11)

Even when ∂H̃(M)
v

∂H
(0)
v

value of the numerator is smaller than
∑

u∈V
∂H̃(M)

v

∂H
(0)
u

value of the denominator as
in MPNNs, the factor value can still be high in NATR. This is primarily due to the contribution from∑M

m=1
∂H̃(M)

v

∂O
(m)
v

helping each node preserve its own feature as shown in Figure 2(b). As demonstrated
in Table 3, the performance of MPNNs deteriorates as the depth of the layers increases, whereas NATR
models exhibit performance gains. In the case of NATRSGC , because we adapt the plug-in version
that uses over-diluted representations as queries, the performance is slightly decreased. MPNNs with
jumping knowledge (JK) (Xu et al., 2018), which concatenate the outputs of all layers, alleviate the
performance drop compared to original models. However, JK models fail to improve performance
implying that they are inadequate in utilizing the information as the number of layers increases.

6.2 EFFECTIVENESS OF NATR Table 4: Hits@5 performance on subsets
of Computers dataset.

EQ1 EQ4

GCN 19.96 42.69
NATRGCN 23.96 (+20.04%) 45.18 (+5.84%)

GAT 13.57 34.86
NATRGAT 24.46 (+80.38%) 43.49 (+24.74%)

SGC 19.39 38.61
NATRSGC 24.10 (+24.29%) 39.72 (+2.89%)

To explore the effectiveness of NATR, we measure per-
formance on subsets standing for over-diluted nodes VQ1

and less-diluted nodes VQ4 after two hops aggregation,
which are defined as:

VQ1 = {v ∈ V | δinter
Agg (v) ≤ Q1} (12)

VQ4 = {v ∈ V | δinter
Agg (v) ≥ Q3 ∧ δinter

Agg (v) ̸= 1}

where Q1 and Q3 represent the first and the third quar-
tiles, which divide the set into the bottom 25% and the top 25% of δinter

Agg (v) values, respectively.
We define two subsets of corresponding edges as EQ1 = {(i, j) ∈ E | i ∈ VQ1 ∨ j ∈ VQ1} and
EQ4 = {(i, j) ∈ E | i ∈ VQ4 ∨ j ∈ VQ4}. The isolated nodes, defined as those with δinter

Agg (v) = 1, are
excluded. As shown in Table 4, NATR models demonstrate improved performance on both subsets,
with particularly noteworthy improvement on over-diluted nodes compared to MPNNs.

Table 5: Comparison with various models: (A)-
MLP, (B)-GCN, (C)-GCNJK , (D)-NATRMLP

with a MLP encoder, (E)-NATRMLP with a
SelfAttn encoder, (F)-NATRGCN . The model
utilizing the correlation between attributes is in-
dicated by CORR, MP denotes the use of mes-
sage passing, and ATTN indicates that the value
is determined by the attention mechanism.

δintra
v (t) δinter

Agg (v) Corr MP Hits@20

(A) 1/|Tv| high ✗ ✗ 20.37
(B) 1/|Tv| low ✗ ✓ 31.01
(C) 1/|Tv| high ✗ ✓ 29.47
(D) Attn high ✗ ✗ 33.26
(E) Attn high ✓ ✗ 34.89
(F) Attn high ✓ ✓ 42.38

Furthermore, we compare models with various
conditions as described in Table 5. The distinction
between (A) and (D) lies in the weight assigned
to attribute-level representations. Both are MLP-
based models but (D) alleviates the intra-node di-
lution by mixing attributes according to the atten-
tion coefficients. The comparison with (D) and
(E) shows the effectiveness of the correlation be-
tween attributes through SelfAttn in the attribute
encoder. The GCN models, (B) and (C), improve
performance compared to (A) as a result of incor-
porating contextual information from neighboring
nodes. The complete model (F) exploits GCN as
a node embedding module, allowing attribute rep-
resentation to be fused while taking into account
the context of the graph.

7 CONCLUSION

In this work, we first introduce the concept of over-dilution phenomenon to comprehend the limitations
of MPNNs. To assess the over-dilution effect in formal way, we define factors for two sub-phenomena:
intra-node dilution and inter-node dilution. The concept of over-dilution encompasses the diminution
of information at both the attribute-level and the node-level. Based on our analysis of the dilution
effect, we propose the Node Attribute Transformer (NATR) as a solution to alleviate over-dilution and
enhance performance. Our approach presents a novel perspective for understanding the limitations of
MPNNs and a foundation to the development of more informative representations on graphs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In Proceedings of International Conference on Learning Representations (ICLR), 2021. URL
https://openreview.net/forum?id=i80OPhOCVH2.

Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovász bound. In Proceedings of the First Learning on Graphs
Conference (LOG), pp. 15:1–15:27, 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In Proceedings of International Conference on Learning Represen-
tations (ICLR), 2018. URL https://openreview.net/forum?id=r1ZdKJ-0W.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In
Proceedings of International Conference on Learning Representations (ICLR), 2022. URL
https://openreview.net/forum?id=F72ximsx7C1.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 3438–3445, 2020a.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of International conference on machine learning (ICML),
pp. 1725–1735, 2020b.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS) 33, pp. 13260–13271. Curran Associates, Inc., 2020.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M.
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In Proceedings of the 40th International Conference on Machine Learning (ICML),
pp. 7865–7885, 2023.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with learnable
propagation operators. In Proceedings of the 40th International Conference on Machine Learning
(ICML), pp. 9224–9245, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of International conference on machine
learning (ICML), pp. 1263–1272. PMLR, 2017.

Neil Zhenqiang Gong, Ameet Talwalkar, Lester Mackey, Ling Huang, Eui Chul Richard Shin, Emil
Stefanov, Elaine Shi, and Dawn Song. Joint link prediction and attribute inference using a social-
attribute network. ACM Transactions on Intelligent Systems and Technology (TIST), 5(2):1–20,
2014.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric DGN: a stable architecture
for deep graph networks. In The Eleventh International Conference on Learning Representations
(ICLR), 2023.

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning per-
spective on oversmoothing and beyond. In International Conference on Learning Representations
(ICLR), 2023.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=r1ZdKJ-0W
https://openreview.net/forum?id=F72ximsx7C1

Under review as a conference paper at ICLR 2024

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NIPS), pp. 1024–1034, 2017.

Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. Inductive link prediction for nodes
having only attribute information. In Proceedings of International Joint Conferences on Artificial
Intelligence (IJCAI), pp. 1209–1215, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network embedding. In Proceedings of
the 2017 SIAM international conference on data mining (SDM), pp. 633–641. SIAM, 2017.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022.

Wei Jin, Xiaorui Liu, Yao Ma, Charu Aggarwal, and Jiliang Tang. Feature overcorrelation in deep
graph neural networks: A new perspective. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 709–719, 2022.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral rewiring
for addressing oversquashing in GNNs. In International Conference on Learning Representations
(ICLR), 2023.

Jinwoo Kim, Dat Tien Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Proceedings of Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022. URL https://openreview.net/forum?id=
um2BxfgkT2_.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of International Conference on Learning Representations (ICLR), 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2021. URL https://openreview.net/forum?id=huAdB-Tj4yG.

Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection in
attributed networks. In Proceedings of International Joint Conferences on Artificial Intelligence
(IJCAI), volume 17, pp. 2152–2158, 2017.

Jundong Li, Liang Wu, Kewei Cheng, and Huan Liu. Streaming link prediction on dynamic atributed
networks. In Proceedings of ACM International Conference on Web Search and Data Mining
(WSDM), pp. 369–377. Association for Computing Machinery, Inc, 2018a.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018b.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 43–52, 2015.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In Proceedings of the
40th International Conference on Machine Learning (ICML), pp. 25956–25979, 2023.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

11

https://openreview.net/forum?id=um2BxfgkT2_
https://openreview.net/forum?id=um2BxfgkT2_
https://openreview.net/forum?id=huAdB-Tj4yG

Under review as a conference paper at ICLR 2024

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In Proceedings of International Conference on Learning Representations (ICLR),
2020. URL https://openreview.net/forum?id=S1ldO2EFPr.

Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae Kim, et al. Grpe: Relative positional
encoding for graph transformer. In ICLR2022 Workshop Machine Learning for Drug Discovery,
2022.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), 35, 2022.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.org/
abs/1811.05868.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Proceedings
of International Conference on Learning Representations (ICLR), 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of International Conference on Learning Repre-
sentations (ICLR), 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir Sajed,
Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update to the drugbank
database for 2018. Nucleic acids research, 46(D1):D1074–D1082, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Proceedings of International conference on machine
learning (ICML), pp. 6861–6871. PMLR, 2019.

Xinyi Wu, Zhengdao Chen, William Wei Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. In International Conference on Learning Representations
(ICLR), 2023.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings of
International conference on machine learning (ICML), pp. 5453–5462. PMLR, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Proceedings
of Advances in Neural Information Processing Systems (NeurIPS), 2021. URL https://
openreview.net/forum?id=OeWooOxFwDa.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In Proceed-
ings of International Conference on Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=rkecl1rtwB.

12

https://openreview.net/forum?id=S1ldO2EFPr
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB

Under review as a conference paper at ICLR 2024

[Over-squashing] - Inefficacy in propagating long-distance node features

[Over-smoothing] - Inability to distinguish node features

[Over-dilution] - Failure to preserve a node’s own information

= "##

Inter-node dilutionIntra-node dilution

		()	
		()	
		()	

		()	
		()	

Σ
Σ
Σ
Σ
Σ

= "## =

Figure 4: Comparison between concepts: Over-smoothing, Over-squashing, and Over-dilution.

A OVER-SMOOTHING AND OVER-SQUASHING

Over-smoothing and over-squashing are both related to over-dilution in that they both pertain to
the distortion of information resulting from the irregular structure of graphs. The over-dilution phe-
nomenon is a comprehensive concept that encompasses not only the node-level representation, such
as over-smoothing and over-squashing, but also the attribute-level representation, which is essential
for achieving informative representations on graphs. Therefore, regardless of the circumstances that
trigger over-smoothing and over-squashing, over-dilution can occur at the intra-node level when the
number of attributes contained by the nodes becomes excessively large.

Comparison with over-smoothing
Over-smoothing refers to the occurrence of similar representations among the nodes after a few
layers of message passing, akin to the effect of a low-pass filter (Xu et al., 2018; Li et al., 2018b;
Nt & Maehara, 2019; Oono & Suzuki, 2020; Chen et al., 2020a). This is caused by the exchange
of information among nodes, which is more likely to occur when nodes have large receptive fields
in multi-hop layers. In contrast, over-dilution can occur even with a single aggregation layer as
described in the Hypothesis 2 of the main text. As shown in the histogram of δinter

Agg (v) for one hop
aggregation in Figure 2(a) of the main text, some nodes already have low δinter

Agg (v) values. Apart from
this comparison of two concepts, NATR alleviates the over-smoothing issue as shown in the Table 3
of the main text.

13

Under review as a conference paper at ICLR 2024

Comparison with over-squashing
Both phenomena are related in that they may result from the concentration of information from a
large number of nodes. However, Over-squashing refers to the propagation of long-range information
from node u to node v, while Over-dilution refers to the attenuation of information for individual
nodes. Over-dilution is distinct from Over-squashing in that it can occur even in the first layer (i.e.
with a small receptive field) according to the aggregation coefficients. Specifically, Over-dilution at
node v can occur when αvv ≪ Σ

u∈Ñ (v)\{v}
αvu, where αvu is defined according to the topology for

GCN (1√
deg(v)deg(u)

) and to the attention coefficient for GAT (softmax(exp(avu)
Σw∈Ñ(v) exp(avw)). It is true

that Over-dilution occurs more often as the range increases, but as can be seen in the histogram of
δinter

Agg (v), it also occurs frequently in short-range.

B INTRA-DILUTION FACTOR

Unlike MPNNs, which assign equal weight (i.e. 1
|Tv|) to all attributes during the construction of

the node representation, NATR merges attribute representations based on the attention coefficients
between node and attribute representations (i.e. exp (QvK

⊤
t)/

∑
s∈Tv

exp (QvK
⊤
s)). To examine

the ability of NATR to prevent over-dilution at the intra-node level, we construct synthetic dataset.
While keeping the original graph topology (i.e. adjacency matrix) of the CoraML dataset, we generate
a new attribute set and assign 10 attributes to each class as key attributes. The key attributes assigned
to each class are highly likely to be held by the node (e.g. with p = 0.8), while the remaining non-key
attributes are less likely to be held (e.g. with p = 0.2). The train, validation, test sets include 1000,
210, and 1785 nodes, respectively. Overall, for all nodes in the synthetic data’s test set, NATRGCN

amplifies the influence of key attributes in the node representation by approximately 1508.62% in
comparison to non-key attributes. This approach effectively curbs over-dilution of key attributes at
the intra-node level. We randomly sample 10 nodes for each class in the test set and visualize the
intra-node dilution factors of NATRGCN in the Figure 5.

N
od

es

Attributes

N
od

es

Attributes

𝑐𝑙𝑎𝑠𝑠	1

𝑐𝑙𝑎𝑠𝑠	7

𝑐𝑙𝑎𝑠𝑠	1 𝑐𝑙𝑎𝑠𝑠	7𝑐𝑙𝑎𝑠𝑠	4 𝑐𝑙𝑎𝑠𝑠	1 𝑐𝑙𝑎𝑠𝑠	7𝑐𝑙𝑎𝑠𝑠	4

Figure 5: This figure presents a visualization of the synthetic node feature matrix (left) and the
intra-node dilution factors of NATRGCN (right). The y-axis represents nodes sorted according to the
class and the x-axis represents attributes. We randomly sample 10 nodes for each class in the test set
for this visualization. We assign the 10 attributes to each class sequentially, identifying them as the
block-diagonal elements in the matrix and principal attributes for class prediction. The remaining
attributes are considered noise. As shown in the figure on the right, NATRGCN amplifies the attribute
representations pertinent to each node’s class, while diminishing the influence of other attributes.
On average, across all nodes in the synthetic data test set, NATRGCN boosts the strength of the key
attributes in the node representation by 1508.62% compared to non-key attributes, thus preventing
their over-dilution at the intra-node level.

14

Under review as a conference paper at ICLR 2024

We define a new quantitative metric δ̄intra
v (t) as below to examine how much NATR adjusts the dilution

factors compared to the original ones δ̂intra
v (t) = 1

|Tv| .

δ̄intra
v (t) =

δintra
v (t)− δ̂intra

v (t)

δ̂intra
v (t)

∗ 100(%)

where δintra
v (t) is the intra-node dilution factor of NATR. we consider the Computers dataset (3,675,081

instances of the intra-node dilution factor). NATRGCN enhances the importance of 38.07% cases
(δ̄intra

v (t) > 0) compared to GCN , with a median gain +30.31% and a maximum gain +4005.60%.
NATRGCN suppresses the importance of 61.92% cases (δ̄intra

v (t) < 0) compared to GCN , with
median -29.46% and minimum -95.82%. In contrast to MPNNs, where attributes are equally diluted
regardless of their importance, NATR is designed to prioritize important attributes (δ̄intra

v (t) > 0) and
give less weight to unimportant ones (δ̄intra

v (t) < 0). The detailed statistics are reported in Table 6.

Table 6: (left) NATRGCN enhances the importance of attributes δ̄intra
v (t) > 0. Remarkably, there are

instances where the improvement ranges from 2 to 40 times compared to GCN , which constitutes
12.53% of the enhanced cases. (right) NATRGCN suppresses the importance of attributes δ̄intra

v (t) ≤ 0.

δ̄ INTRA
v (t) > 0 COUNT PROPORTION δ̄ INTRA

v (t) ≤ 0 COUNT PROPORTION

0% ∼ +10% 285,150 20.38% 0% ∼ -10% 344,872 15.15%
+10% ∼ +20% 229,552 16.41% -10% ∼ -20% 395,988 17.40%
+20% ∼ +30% 179,963 12.86% -20% ∼ -30% 419,467 18.43%
+30% ∼ +40% 139,937 10.00% -30% ∼ -40% 398,607 17.51%
+40% ∼ +50% 108,893 7.78% -40% ∼ -50% 327,231 14.38%
+50% ∼ +60% 852,85 6.10% -50% ∼ -60% 222,725 9.79%
+60% ∼ +70% 67,096 4.80% -60% ∼ -70% 118,015 5.19%
+70% ∼ +80% 53,009 3.79% -70% ∼ -80% 41,757 1.83%
+80% ∼ +90% 41,827 2.99% -80% ∼ -90% 6,988 0.31%

+90% ∼ +100% 33,254 2.38% -90% ∼ -100% 185 0.01%
+100% ∼ +4006% 175,280 12.53%

100.0% 100.0%

C INTER-DILUTION FACTOR

As described in Eq. (4) of the main text, the inter-node dilution factor is defined as:

δinter(v) =

eT

[
∂h

(l)
v

∂h
(0)
v

]
e

∑
u∈V eT

[
∂h

(l)
v

∂h
(0)
u

]
e

To observe the effect of the aggregation exclusively, we eliminate the effect of the non-linear
transformation by setting all weight and initial node feature matrices to be the identity matrix. The
inter-dilution factor (aggregation-only) δinter

Agg (v) is calculated as:

δinter
Agg (v) =

eT

[
∂h

′(l)
v

∂h
(0)
v

]
e

∑
u∈V eT

[
∂h

′(l)
v

∂h
(0)
u

]
e

, where h′(l) = (D̃− 1
2 ÃD̃− 1

2)lINV for GCN

15

Under review as a conference paper at ICLR 2024

C.1 THE NUMERATOR OF δINTER
AGG (v)

The numerator of δinter
Agg (v) is calculated from:

∂h
′(l)
v

∂h
(0)
v

=

l∏
i=1

α(i)
vv · ∂h

(0)
v

∂h
(0)
v︸ ︷︷ ︸

for l≥1

+
∑

u∈Ñ (v)\{v}

l−1∑
k=1

 l∏
j=k+2
k≤l−2

α(j)
vv

α(k+1)
vu

∂h
′(k)
u

∂h
(0)
v︸ ︷︷ ︸

for l≥2

Computers

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: The purple bar represents the average ratio of the former term eT

[(
1

deg(v)

)l ∂h(0)
v

∂h
(0)
v

]
e,

which is the amount (influence) of the initial node-level feature h
(0)
v that is not prop-

agated to other nodes. The gray bar represents the average ratio of the latter term

eT

[∑l−1
k=1

∑
u∈Ñ (v)\{v}

1√
deg(v)

√
deg(u)

(
1

deg(v)

)l−k−1 ∂h
′(k)
u

∂h
(0)
v

]
e, which is the amount (influence)

of the representation preserved by its neighbors. It implies that in the GCN, the representation of
each node is primarily maintained by its neighboring nodes, with the representation being ’received
back’ from them after two hops aggregation.

For l = 1,

∂h
′(1)
v

∂h
(0)
v

= α(1)
vv

∂h
(0)
v

∂h
(0)
v

For l = 2,

∂h
′(2)
v

∂h
(0)
v

= α(1)
vv α

(2)
vv

∂h
(0)
v

∂h
(0)
v

+
∑

u∈Ñ(v)\{v}

α(2)
vu

∂h
′(1)
u

∂h
(0)
v

For l = 3,

∂h
′(3)
v

∂h
(0)
v

= α(3)
vv α

(2)
vv α

(1)
vv

∂h
(0)
v

∂h
(0)
v

+
∑

u∈Ñ(v)\{v}

(
α(3)
vv α

(2)
vu

∂h
′(1)
u

∂h
(0)
v

+ α(3)
vu

∂h
′(2)
u

∂h
(0)
v

)

For l = 4,
∂h′(4)

v

∂h
(0)
v

= α
(4)
vv α

(3)
vv α

(2)
vv α

(1)
vv

∂h(0)
v

∂h
(0)
v

+
∑

u∈Ñ(v)\{v}

(
α
(4)
vv α

(3)
vv α

(2)
vu

∂h′(1)
u

∂h
(0)
v

+ α
(4)
vv α

(3)
vu

∂h′(2)
u

∂h
(0)
v

+ α
(4)
vu

∂h′(3)
u

∂h
(0)
v

)
16

Under review as a conference paper at ICLR 2024

For GCN,

∂h
′(l)
v

∂h
(0)
v

=
1√

deg(v)
· diag

(
1
f
(l)
v >0

)
·W (l) ·

∑
u∈Ñ (v)

1√
deg(u)

∂h
(l−1)
u

∂h
(0)
v

=
1√

deg(v)
·
∑

u∈Ñ (v)

1√
deg(u)

∂h
′(l−1)
u

∂h
(0)
v

=
1

deg(v)
∂h

′(l−1)
v

∂h
(0)
v

+
∑

u∈Ñ (v)\{v}

1√
deg(v)

√
deg(u)

∂h
′(l−1)
u

∂h
(0)
v

=
1

deg(v)

 1

deg(v)
∂h

′(l−2)
v

∂h
(0)
v

+
∑

u∈Ñ (v)\{v}

1√
deg(v)

√
deg(u)

∂h
′(l−2)
u

∂h
(0)
v


+

∑
u∈Ñ (v)\{v}

1√
deg(v)

√
deg(u)

∂h
′(l−1)
u

∂h
(0)
v

=

(
1

deg(v)

)l
∂h

(0)
v

∂h
(0)
v

+

l−1∑
k=1

∑
u∈Ñ (v)\{v}

1√
deg(v)

√
deg(u)

(
1

deg(v)

)l−k−1
∂h

′(k)
u

∂h
(0)
v

where f
(l)
v represents the pre-activated feature of h(l)

v and k, j ∈ N.

We can interpret the former term
∏l

i=1 α
(i)
vv · ∂h

(0)
v

∂h
(0)
v

as the amount (influence) of the initial node-level

feature h
(0)
v that is not propagated to other nodes.

For the latter term
∑

u∈Ñ (v)\{v}
∑l−1

k=1

(∏l
j=k+2
k≤l−2

α
(j)
vv

)
α
(k+1)
vu

∂h(k)
u

∂h
(0)
v

,
∂h

(k)
u

∂h
(0)
v

is the amount (influ-

ence) of the representation of node v that node u has at k-th layer. It is passed to node v at the
next layer, which is (k + 1)-th layer, with aggregation coefficient α(k+1)

vu . Then it is regarded as a

portion of own representation
∂h

(k+1)
v

∂h
(0)
v

and diluted with a factor
∏l

j=k+2
k≤l−2

α
(j)
vv , which is the product

of aggregation coefficients for self-loop from (k + 2)-th layer to (l)-th layer.

Figure 6 shows the ratio between the former term and the latter term.

C.2 THE DENOMINATOR OF δINTER
AGG (v)

The denominator of δinter
Agg (v) is calculated from:

∑
u∈V

∂h
′(l)
v

∂h
(0)
u

=
∑

x∈Ñ(v)

∑
u∈V

l−1∑
k=0

 l∏
j=k+2
k≤l−2

α(j)
vv

α(k+1)
vx

∂h
′(k)
x

∂h
(0)
u

For l = 1, ∑
u∈V

∂h
′(1)
v

∂h
(0)
u

=
∑

u∈Ñ(v)

α(1)
vu

∂h
(0)
u

∂h
(0)
u

For l = 2, ∑
u∈V

∂h
′(2)
v

∂h
(0)
u

=
∑

x∈Ñ(v)

(
α(2)
vv α

(1)
vx

∂h
(0)
x

∂h
(0)
x

+
∑
u∈V

α(2)
vx

∂h
′(1)
x

∂h
(0)
u

)

17

Under review as a conference paper at ICLR 2024

For l = 3,∑
u∈V

∂h
′(3)
v

∂h
(0)
u

=
∑

x∈Ñ(v)

(
α(3)
vv α

(2)
vv α

(1)
vx

∂h
(0)
x

∂h
(0)
x

+
∑
u∈V

α(3)
vv α

(2)
vx

∂h
′(1)
x

∂h
(0)
u

+
∑
u∈V

α(3)
vx

∂h
′(2)
x

∂h
(0)
u

)

=
∑

x∈Ñ(v)

∑
u∈V

(
α(3)
vv α

(2)
vv α

(1)
vx

∂h
(0)
x

∂h
(0)
u

+ α(3)
vv α

(2)
vx

∂h
′(1)
x

∂h
(0)
u

+ α(3)
vx

∂h
′(2)
x

∂h
(0)
u

)

For l = 4,∑
u∈V

∂h′(4)
v

∂h
(0)
u

=
∑

x∈Ñ(v)

∑
u∈V

(
α
(4)
vv α

(3)
vv α

(2)
vv α

(1)
vx

∂h(0)
x

∂h
(0)
u

+ α
(4)
vv α

(3)
vv α

(2)
vx

∂h′(1)
x

∂h
(0)
u

+ α
(4)
vv α

(3)
vx

∂h′(2)
x

∂h
(0)
u

+ α
(4)
vx

∂h′(3)
x

∂h
(0)
u

)
For GCN,

∑
u∈V

∂h
′(l)
v

∂h
(0)
u

=
∑

x∈Ñ(v)

∑
u∈V

l−1∑
k=0

(
1

deg(v)

)l−k−1
1√

deg(v)
√

deg(u)
∂h

′(k)
x

∂h
(0)
u

C.3 THE FINAL FORM OF δINTER
AGG (v)

The final form of δinter
Agg (v) is defined as:

δinter
Agg (v) =

eT

[∏l
i=1 α

(i)
vv

∂h
(0)
v

∂h
(0)
v

+
∑

u∈Ñ (v)\{v}
∑l−1

k=1

(∏l
j=k+2
k≤l−2

α
(j)
vv

)
α
(k+1)
vu

∂h
′(k)
u

∂h
(0)
v

]
e

∑
u∈V eT

[∑
x∈Ñ(v)

∑
u∈V

∑l−1
k=0

(∏l
j=k+2
k≤l−2

α
(j)
vv

)
α
(k+1)
vx

∂h
′(k)
x

∂h
(0)
u

]
e

For l = 1 (used in Hypothesis 2 of the main text),

δinter
Agg (v) =

eT

[
α
(1)
vv

∂h
(0)
v

∂h
(0)
v

]
e

eT

[∑
u∈Ñ(v) α

(1)
vu

∂h
(0)
u

∂h
(0)
u

]
e

=
α
(1)
vv∑

u∈Ñ (v) α
(1)
vu

For l = 2,

δinter
Agg (v) =

eT

[
α
(1)
vv α

(2)
vv · ∂h

(0)
v

∂h
(0)
v

+
∑

u∈Ñ (v)\{v} α
(2)
vu

∂h
′(1)
u

∂h
(0)
v

]
e

eT

[∑
x∈Ñ(v)

∑
u∈V

(
α
(2)
vv α

(1)
vx

∂h
(0)
x

∂h
(0)
u

+
∑

u∈V α
(2)
vx

∂h
′(1)
x

∂h
(0)
u

)]
e

Figure 7 shows that the inter-dilution factor (aggregation-only) is dramatically decreased as the
number of layers and the size of the receptive field increase for all datasets. The histograms of the
inter-dilution factor (aggregation-only) and the average size of the receptive field are shown in Figure
8.

For NATR,

δinter
Agg (v) =

eT

[∏l
i=1 α

(i)
vv

∂h
(0)
v

∂h
(0)
v

+
∑

u∈Ñ (v)\{v}
∑l−1

k=1

(∏l
j=k+2
k≤l−2

α
(j)
vv

)
α
(k+1)
vu

∂h
′(k)
u

∂h
(0)
v

]
e + eT

[∑M
m=1

∂H̃
(M)
v

∂O
(m)
v

]
e

∑
u∈V eT

[∑
x∈Ñ(v)

∑
u∈V

∑l−1
k=0

(∏l
j=k+2
k≤l−2

α
(j)
vv

)
α
(k+1)
vx

∂h
′(k)
x

∂h
(0)
u

]
e+ eT

[∑M
m=1

∂H̃
(M)
v

∂O
(m)
v

]
e

18

Under review as a conference paper at ICLR 2024

Figure 7: The average of the inter-dilution factor (aggregation-only) with the left y-axis (blue line)
and the average size of the receptive field (orange line) with the right y-axis in all datasets. The x-axis
represents the number of hops for the aggregation.

Figure 8: Histograms of the average size of the receptive field (top) and the inter-node dilution factor
(aggregation-only) (bottom), from one hop (left) to five hops (right).

For NATR with l = 1,

δinter
Agg (v) =

eT

[
α
(1)
vv

∂h
(0)
v

∂h
(0)
v

]
e + eT

[
∂H̃

(1)
v

∂O
(1)
v

]
e

eT

[∑
u∈Ñ(v) α

(1)
vu

∂h
(0)
u

∂h
(0)
u

]
e+ eT

[
∂H̃

(1)
v

∂O
(1)
v

]
e

For NATR with l = 2,

δinter
Agg (v) =

eT

[
α
(1)
vv α

(2)
vv · ∂h

(0)
v

∂h
(0)
v

+
∑

u∈Ñ (v)\{v} α
(2)
vu

∂h
′(1)
u

∂h
(0)
v

]
e + eT

[
∂H̃

(2)
v

∂O
(1)
v

+
∂H̃

(2)
v

∂O
(2)
v

]
e

eT

[∑
x∈Ñ(v)

∑
u∈V

(
α
(2)
vv α

(1)
vx

∂h
(0)
x

∂h
(0)
u

+
∑

u∈V α
(2)
vx

∂h
′(1)
x

∂h
(0)
u

)]
e+ eT

[
∂H̃

(2)
v

∂O
(1)
v

+
∂H̃

(2)
v

∂O
(2)
v

]
e

19

Under review as a conference paper at ICLR 2024

D DATASETS

Table 7: Dataset statistics.

|V| |T | |Etrain| |Evalid| |Etest|
AMAZON COMPUTERS 13752 767 196689 24586 24586
AMAZON PHOTO 7650 745 95265 11908 11908
CORA ML 2995 2879 6936 407 815
OGB-DDISUBSET 3531 1024 882012 110446 114363
OGB-DDIFULL 4267 1024+1 1067911 133489 133489

As described in Table 7, we split the edge set into train/valid/test without overlap as 80/10/10 for
Computers and Photo (Shchur et al., 2018) and 85/5/10 for Cora ML (Bojchevski & Günnemann,
2018). For OGB-DDIFULL and OGB-DDISUBSET datasets, we use pre-defined data split (Hu et al.,
2020). We randomly sample the negative edges with the same number of the positive set. We assume
that the node has a discrete binary vector Xv ∈ RNT , where Xv,t ∈ {0, 1} in the paper. However,
even in the dataset where each node has a continuous vector, NATR works just as well. The values in
Xv can be interpreted as the pre-defined magnitude of each attribute in the node. We can binarize
these values to fit our assumption because the pre-defined magnitude may not match the importance
in representation learning. There are several methods for binarization, such as thresholding and
discretization into a set of discrete bins. In another way, we can incorporate the magnitude into the
attention coefficient of the decoder as exp (QvK

⊤
t +Xv,t)/

∑
s∈Tv

exp (QvK
⊤
s +Xv,s).

E DETAILS ON TRAINING

We conduct the grid search for hyperparameter configurations. The search space sets are {2, 3, 4, 5}
for the number of layers, {64, 128, 256} for the hidden dimension, and {0.01, 0.005, 0.001, 0.0005}
for the learning rate. For NATR, dFFN is set to 512 and the number of encoder layers is set to two. We
apply the dropout with p = 0.5, 10k epochs of the optimization step, and the early stopping with 1k
epochs at the hyperparameter search for all models. As done for other transformers, we train NATR
with the auxiliary loss for the outputs from intermediate layers of the decoder.

F COMPATIBILITY WITH OTHER NODE EMBEDDING MODELS

Table 8: Comparison of Hits@20 on the Computer dataset with various node embedding models.

SAGE GATV2 ARMA PNAt=2 PNAt=4 GCNIIα=0.1 GCNIIα=0.5 GRAPHORMER

Node Model 32.30 ±4.32 28.69 ±2.46 31.42 ±3.07 21.77 ±3.82 29.41 ±3.56 30.00 ±3.69 27.54 ±3.27 25.94 ±4.32

NATRNodeModel 36.11 ±3.75 37.52 ±3.37 37.23 ±3.91 31.62 ±2.66 33.68 ±4.03 37.47 ±4.56 36.78 ±3.03 30.71 ±3.68

The NATR architecture can be attached to various node embedding models for improving performance.
Any kind of models for learning node-level representations can be exploited as NodeModule in
the decoder of NATR. We conduct extended comparison with various node embedding models and
report the results in Table 8. SAGE (Hamilton et al., 2017) aggregates node representations with
the coefficient defined as αvv = αvu = 1

deg(v) and ARMA (Bianchi et al., 2021) indicates the graph
convolution inspired by the auto-regressive moving average filter which is robust to noise and better
to capture the global graph structure. PNA (Corso et al., 2020) combines multiple aggregators with
scalers for degree, which is a generalized sum aggregator. GCNII (Chen et al., 2020b) updates node
representations as h(l) =

(
(1− α(l))D̃− 1

2 ÃD̃− 1
2h(l−1) + α(l)h(0)

)
((1 − β(l))I + β(l)Θ) while

preserving the initial feature h(0). The NATR architecture shows performance gains through the
integration of various node embedding models.

20

Under review as a conference paper at ICLR 2024

G INVESTIGATION OF THE EFFECTIVENESS OF NATR, INCLUDING ABLATION
STUDIES

Table 9: Ablation studies for NATR with the link prediction performance on the Computers dataset.

ENCODER DECODER
AUX LOSS HITS@20 REMARKS

NUM. LAYERS TYPE NUM. LAYERS NODE MODULE

(REF1) 2 SelfAttn 5 GCN ✓ 42.38 ±3.21 -
(REF2) 2 SelfAttn 2 GCN ✓ 39.81 ±2.88 -

(a) 2 SelfAttn 5 MLP ✓ 34.89 ±3.42 MLP for Node Embedding (w/o aggregation)
(b) 2 MLP 5 GCN ✓ 42.03 ±3.06 MLP for Encoder (w/o correlation of attributes)
(c) 2 MLP 5 MLP ✓ 33.26 ±3.20 MLP Node Embedding, MLP Encoder

(d) 2 SelfAttn 5 GCN ✗ 22.50 ±3.32 w/o intermediate loss
(e) 2 SelfAttn 2 GCN ✗ 33.04 ±4.09 Two decoder layers w/o intermediate loss

(f) 1 SelfAttn 5 GCN ✓ 42.66 ±3.95 The number of encoder layers
(g) 3 SelfAttn 5 GCN ✓ 42.62 ±3.55 The number of encoder layers
(h) 4 SelfAttn 5 GCN ✓ 43.15 ±2.94 The number of encoder layers
(i) 5 SelfAttn 5 GCN ✓ 43.00 ±3.43 The number of encoder layers
(j) 6 SelfAttn 5 GCN ✓ 42.34 ±2.87 The number of encoder layers

(k) 2 SelfAttn 3 GCN ✓ 41.54 ±3.70 The number of decoder layers
(l) 2 SelfAttn 4 GCN ✓ 40.96 ±4.19 The number of decoder layers
(m) 2 SelfAttn 6 GCN ✓ 41.06 ±4.36 The number of decoder layers
(n) 2 SelfAttn 7 GCN ✓ 44.30 ±3.54 The number of decoder layers
(o) 2 SelfAttn 8 GCN ✓ 43.20 ±2.95 The number of decoder layers
(p) 2 SelfAttn 12 GCN ✓ 43.38 ±2.94 The number of decoder layers

(q) 1 SelfAttn 1 GCN ✗ 34.98 ±3.77 Single layer for both encoder and decoder
(r) 1 SelfAttn 1 GAT ✗ 36.49 ±3.41 Single layer for both encoder and decoder

To demonstrate the effectiveness of NATR, we report the comparison of models with various conditions
in Table 6 of the main text. The illustration to help understanding each model in Table 6 of the main
text is shown in Figure 9. The MLP model, (A) produces the node-level representation by mixing
attribute representations equally, without the message propagation. The (A) model suffers from the
intra-node dilution but not the inter-node dilution with high value of the inter-node dilution factor
(δinter

Agg (v) = 1 for all nodes) and the low value of the intra-node dilution factor δintra
v (t) = 1/|Tv|.

The NATRMLP models, (D) and (E) also do not propagate node representations, but instead mix
attribute representations according to attention coefficients (importance of each attribute). This
comparison also reveals that NATR effectively alleviates the intra-node dilution.

We also provide comprehensive ablation studies with various configurations in Table9. The effec-
tiveness of the node-level aggregation in NATR is explained by (a)→(ref1), with a performance gain
about 7.49 (21.5%). It implies the importance of both preserving attribute-level representation and
aggregating node-level representation. The effectiveness of the encoder (i.e. the correlation between
attributes) is demonstrated by (c)→(a) (+1.63, 4.9%) and (b)→(h) (+1.12, 2.7%). The intermediate
loss is crucial as the number of decoder layers increases, demonstrated by (d)→(ref1) (+19.88, 88.4%)
and (e)→(ref2) (+6.77, 20.5%). We fix the number of encoder layers as two and the number of
decoder layers less than six when comparing to MPNNs under controlled conditions in the paper.
However, (f)-(j) and (m)-(p) show the potential of NATR to boost performance.

Table 10: P: the number of parameters, S: model size (actual disk size in MB), I: inference time (ms)
are reported with d = 128, dFFN = 512, NENC = 2 on Computers dataset. The average of the
practical inference time is measured 10k times on GPU - RTX 8000.

2 LAYERS 3 LAYERS 4 LAYERS 5 LAYERS
P S I P S I P S I P S I

NATRGCN W/ MLP ENC 830,592 3.18 16.78 1,062,144 4.07 24.98 1,293,696 4.96 33.19 1,525,248 5.85 41.41
NATRGCN W/ SelfAttn ENC 1,194,368 4.58 17.60 1,409,408 5.40 25.80 1,624,448 6.23 33.99 1,839,488 7.05 42.19

NATRGAT W/ MLP ENC 831,104 3.19 22.45 1,062,912 4.08 34.04 1,294,720 4.97 45.36 1,526,528 5.86 56.23
NATRGAT W/ SelfAttn ENC 1,194,880 4.58 23.27 1,410,176 5.41 34.48 1,625,472 6.24 46.04 1,840,768 7.06 56.80

NATRSGC W/ MLP ENC 813,824 3.12 18.10 1,028,608 3.94 26.10 1,243,392 4.76 34.35 1,458,176 5.59 42.38
NATRSGC W/ SelfAttn ENC 1,177,600 4.51 18.95 1,375,872 5.27 27.10 1,574,144 6.03 35.13 1,772,416 6.79 42.98

21

Under review as a conference paper at ICLR 2024

Figure 9: The illustration for models in Table 5 of the paper. Compared to MLP model (A),
the NATRMLP with MLP encoder (D) alleviates the intra-node dilution by mixing attribute repre-
sentations based on the attention coefficients between the node-level representation and attribute
representations, improving performance about 12.88 (63.28%). The model (E) considers the correla-
tion between attributes by using SelfAttn as the attribute encoder and improves performance about
1.63 (4.90%) over the (D) model. The complete model (F), NATRGCN is equipped with MPNNs
(GCN) as a node embedding module in the attribute decoder. (F) produces node-level representations
on the context of graph structure and uses them as queries for attribute representations. This brings
the performance gain about 7.49 (21.48%) over the model (E).

H COMPLEXITY

In this section, we analyze the computational complexity which can be a limitation of NATR due to
quadratic computation. The computational complexity with omitting d and l is depending on O(|T |2)
for the attribute encoder and O(|V||T |) for the attribute decoder, and O(|V| + |E|) for MPNNs.
Even though the complexity of the attribute encoder is quadratic to the number of attributes, the
number of attributes is relatively smaller than the number of nodes as shown in Table 7 because the
attributes are specific information about the nodes, and the number of attributes is rarely increased
unlike the number of nodes which can increase with the expansion of the graph. As seen in Table 10,
the attribute encoder with SelfAttn has a slightly higher practical computation time of about 1 ms
compared to the encoder with MLP.

22

Under review as a conference paper at ICLR 2024

I PLUG-IN VERSION WITH THE PRE-TRAINED MODEL

Node Embedding
(e.g. MPNNs)

𝑙-hop M×

N× Encoder

Q K V

Decoder

Figure 10: Plug-in version of NATR. The node
embedding module is operated separately from
the decoder to generate queries.

As described the main text, we introduce the plug-
in version as a variant of NATR for single-layer
models such as SGC. The plug-in version archi-
tecture can be also applied in scenarios where the
node embedding model already exists. For exam-
ple, if a trained model is already being utilized for
service execution and it is infeasible to re-train or
incorporate it into the decoder of NATR, it can be
utilized as a query generator of the plug-in version.
As shown in Figure 11, we train the GCN (green
line) with the best configuration and attach it to
the plug-in version of NATR (orange line). We can
find that the NATRpre

GCN which is trained from the
pre-trained GCN converges faster than the NATRscratch

GCN which is trained from scratch. It implies
that NATR architecture is beneficial even for the pre-trained models. The NATRpre

GCN model and the
NATRscratch

GCN show the performance on test set 38.830 ±4.026 and 38.171 ±3.629, respectively.

Figure 11: Hits@20 performance on validation set in the Computers dataset. The orange line (top)
and the purple line (middle) indicate the performance of NATR trained from a pre-trained model and
from scratch, respectively. The green line (bottom) indicates the performance of the GCN model.

J RELATED WORKS

J.1 GRAPH TRANSFORMERS

NATR is a transformer that can be applied to graph-structured data. Recently, there have been
numerous endeavors to utilize the benefits of transformer architecture in the contexts of node
embedding and graph embedding such as Graphormer, GRPE, EGT, SAN, TokenGT, and GraphGPS
(Ying et al., 2021; Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Park et al., 2022; Hussain et al.,
2022; Kim et al., 2022; Rampášek et al., 2022). However, the comparison with graph transformers
is out of main scope in this work because we focus on the alleviation of over-dilution phenomenon.
The transformer in NATR accepts attribute-level representations as inputs (specifically, key and
value) to alleviates the over-dilution issue while others take node-level representations for long-range
dependencies. It is noteworthy that our model, owing to its general architecture, can be seamlessly
integrated with the graph transformers. As reported in Table 8, we exploit Graphormer (Ying et al.,
2021) as a node embedding module in the decoder of NATRGraphormer. The graph transformers, which
are used to generate graph-level representations, can utilize NATR to generate node-level tokens
rather than using graph transformers as a node embedding module of NATR. In this manner, existing
graph transformers and NATR can be employed in a complementary fashion.

23

	Introduction
	Preliminaries
	Message Passing Neural Networks
	Over-Smoothing and Over-Squashing

	Over-dilution
	Intra-Node Dilution: Measuring Attribute Influence within Each Node
	Inter-node Dilution: Measuring Node Influence on Final Representation

	Node Attribute Transformer
	Attribute Encoder
	Attribute Decoder

	Experiments
	Datasets
	Tasks

	Analysis
	Improvements in the Dilution Factors of NATR
	Effectiveness of NATR

	Conclusion
	Over-smoothing and Over-squashing
	Intra-dilution factor
	Inter-dilution factor
	The numerator of interAgg(v)
	The denominator of interAgg(v)
	The final form of interAgg(v)

	Datasets
	Details on training
	Compatibility with other node embedding models
	Investigation of the effectiveness of NATR, including ablation studies
	Complexity
	Plug-in version with the pre-trained model
	Related works
	Graph Transformers

