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Abstract

Test-time scaling (TTS) has emerged as a new
frontier for scaling the performance of Large
Language Models. In test-time scaling, by
using more computational resources during
inference, LLLMs can improve their reasoning
process and task performance.  Several
approaches have emerged for TTS such as
distilling reasoning traces from another model
or exploring the vast decoding search space by
employing a verifier. The verifiers serve as
reward models that help score the candidate
outputs from the decoding process to diligently
explore the vast solution space and select
the best outcome. This paradigm commonly
termed has emerged as a superior approach
owing to parameter free scaling at inference
time and high performance gains. The verifiers
could be prompt-based, fine-tuned as a
discriminative or generative model to verify
process paths, outcomes or both. Despite
their widespread adoption, there is no detailed
collection, clear categorization and discussion
of diverse verification approaches and their
training mechanisms. In this survey, we cover
the diverse approaches in the literature and
present a unified view of verifier training, types
and their utility in test-time scaling. Our repos-
itory can be found at https://github.
com/elixir-research—group/
Verifierstesttimescaling.
github.io.

1 Introduction

Large language models (LMs) have largely been
driven by scaling up train-time compute through
large-scale self-supervised pretraining (Kaplan
et al., 2020; Hoffmann et al., 2022). Recently a
new paradigm: fest-time scaling has been evolving
where additional computational resources are allo-
cated during inference, allowing models to further
refine their predictions and improve performance.

The central idea behind test-time scaling (TTS)
is that increasing the compute budget at inference

can yield substantial gains in model performance.
This additional compute is used to search over the
space of possible solutions. The test-time scaling
mechanisms can be divided into two classes namely
the verifier-free approaches which generate reason-
ing traces from larger model and distill them to a
smaller LLM or verifier-based approaches which
employ an external signal to guide search over so-
lution space to select the best one.

The verification of generated solutions and rea-
soning paths is central to test-time scaling. Recent
studies (Setlur et al., 2025b) have demonstrated
that scaling test-time compute without verifiers
is suboptimal and the performance gap between
verification-based scaling and verifier-free scaling
widens as the allotted compute increases.

Common approaches for TTS include letting
the LLM generate a long chain-of-thought trajec-
tory (Wei et al., 2022a; Kojima et al., 2022; Ope-
nAl, 2024; Zeng et al., 2024), or asking the LLM
to iteratively refine the solutions that it has gen-
erated (Davis et al., 2024; Madaan et al., 2023;
Du et al.,, 2024; Yin et al., 2023, 2024) termed
as modifying proposal distribution. Another cate-
gory of approaches entails sampling multiple can-
didate solutions and then choosing the best one
via majority voting (Chen et al., 2024b; Wang
et al., 2023; Brown et al., 2024; Li et al., 2024),
ranking with pairwise comparisons (Jiang et al.,
2023), or using an external verifier or trained re-
ward model(Kambhampati et al., 2024; Stroebl
et al., 2024) (Cobbe et al., 2021; Lightman et al.,
2024; Zhang et al., 2024a).

Employing external verifiers or self-verification
is crucial for test-time scaling, as they help guide
the search process over large reasoning space. Ver-
ification for test-time scaling entails mechanisms
or scoring functions used to evaluate the quality
or plausibility of different reasoning paths or so-
lutions from the language model during inference,
enabling efficient search or selection among them
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Category Approach Approach Description Type
(1) Deepseek-R1 (DeepSeek-Al et al., 2025) Heuristic check for domain-specific problems (6]

Heuristic (2) RVLLM (Zhang et al., 2025b) Uses domain specific rules to verify solution candidates P
(3) Naive ORM (Cobbe et al., 2021) Trains solution-level and token-level verifiers on labeled-dataset (0]
(4) OVM (Yu et al., 2024) Train a value model under outcome supervision for guided decoding (6]

Discriminative (5) Naive ORM (Chen et al., 2024c) SFT a domain-specific LM as a discriminator (6]
(6) Naive PRM (Lightman et al., 2024) SFT an LM as a PRM on each reasoning step over mathematical tasks (0]
(7) AutoCv (Lu et al., 2024) Trains an ORM first to use its confidence variations as step-level annotations to train a PRM O,P
(8) Math-Shepherd (Wang et al., 2024b) Trains discriminative PRM using automated process-level annotations P
(9) DiVeRSe (Li et al., 2023b) Employs voting and step-wise voting verifier trained using binary cross-entropy loss P
(10) Alphamath (Chen et al., 2024a) Trains a process-level verifier using data from MCTS rollouts P
(11) Re*Search + + (Xiong et al., 2025) Trains a ceritic/verifier with contrastive loss on preference data [e]
(12) VersaPRM (Zeng et al., 2025) extends to domain beyond math by augmenting MMLU with step-level annotations P

Generative

- Classical SFT (13) Generative Verifier (Zhang et al., 2024a) Exploit the generative ability of LLM-based verifiers via reformulating the verification O, P
(14) UQ-PRM (Ye et al., 2025) Quantifies uncertainty of verifier for each step of reasoning P
(15) WoT (Zhang et al., 2024c) Multi-Perspective Verification on : Assertion, Process, and Result wiht single verifier O,P
(16) Multi-Agent Verifiers (Lifshitz et al., 2025)  Multi-Perspective Verification with multiple verifiers O,P
(17) SyncPL (Liang et al., 2025) Trains a generative process verifier using criteria based data generation P

- Self-verification
(classical SFT) (18) ReVISE (Lee et al., 2025)

(19) Self-Reflection Feedback (Li et al., 2025¢)
(20) Tool Verifier (Mekala et al., 2024)

(21) T1 (Kang et al., 2025)

Trains on self-generated training data using SFT to elicit self-verification

formulate the feedback utilization as an optimization problem and solve during test-time
Trains a LLM on data generated for verifying tool usage

Trains a LLM using SFT by distilling from tool integrated data generation for self-verification

(37) RaLU (Li et al., 2025b)
(38) SymbCOT (Xu et al., 2024)
(39) ENVISIONS (Xu et al., 2025)

Trains a verifier to check alignment of natural language to symbolic program
Translates natural language rationales to symbolic outputs for verification using logic deduction
Proposes an environemnt guided neuro-symbolic self-training, self-verifying framework

(40) START (Li et al., 2025a)
(41) LMLP (Zhang et al., 2024b)
(42) FOVER (Kamoi et al., 2025)

(¢}
(¢}
P
(¢}
- RL-based (22) GenRM (Mahan et al., 2024) Trains a generative verifier on preference data by unifying RL from human and Al feedback. P
(23) V-STaR (Hosseini et al., 2024) Verifier trained on both accurate and inaccurate rationale/reasoning chains P
(24) VerifierQ (Qi et al., 2024) Trains process-level verifier using Q-Learning P
(25) PAV (Setlur et al., 2025a) Trains based on measure of progress achieved using a step than absolute values P
(26) RL-Tango (Zha et al., 2025) Trains a generator and verifier in tandem using RL P
(27) S2R (Ma et al., 2025) trains ORM and PRM with RL O,P
Reasoning (28) Heimdall (Shi and Jin, 2025) Adopts a LRM and pessimistic approach for verification reducing uncertainty P
(29) Think-J (Huang et al., 2025) LRM fine-tuned to serve as LLM judge P
(30) ThinkPRM (Khalifa et al., 2025) proposes to train a generative PRM using a reasoning model on synthetic data P
(31) J1 (Whitehouse et al., 2025) Fine-tunes a LRM with RL and classical SFT for verification O,P
(32) RLY (Sareen et al., 2025) Trains a LRM on generative verification and RL objectives jointly P
(33) Dy Ve (Zhong et al., 2025b) Trains a LRM as dynamic verifier through SFT on carefully curated data P
(34) FlexiVe (Zhong et al., 2025a) Trains a LRM as dynamic verifier with RL alternating between fast and slow thinking P
(35) OREO (Wang et al., 2024a) Trains a value function by optimizing soft Bellman equation for test-time scaling P
Symbolic (36) Deductive PRM (Ling et al., 2023) Generates symbolic programs for process verification by distilling from stronger LLMs P
P
P
P
P
P
P

Self-distilled reasoner with external tool calling for verification
Learns to generate facts and logic programs over a KB for step-by-step verification
trains PRMs on step-level labels automatically annotated by formal verification tools

Table 1: Summary of verifier training mechanisms as applied to test-time scaling. KB- Knowledge Base, O -

Outcome, P - Process

without access to ground-truth labels.

The verifiers can be divided into process-based
namely Process Reward Models (PRMs) (Uesato
etal., 2022; Lightman et al., 2023) if they verify the
LLM reasoning process step-by-step or outcome-
based - Outcome Reward Models (ORM) (Cobbe
et al., 2021) if they are only concerned about cor-
rectness of final solution. However, manual anno-
tation of step-level correctness for training PRMs
is time-consuming and infeasible leading to new
paradigm of synthetic reasoning path generation
and annotation of them using various signals such
as final ground truth answer (Chen et al., 2024a),
LLM uncertainty (Ye et al., 2025) or verifier confi-
dence (Lu et al., 2024).

While a large number of verification approaches
have emerged very recently, there is a lack of clear
distinction based on how they are trained, how
their training data is collected and how they are
employed for test-time scaling. The diversity in
verifier types, synthetic data generation and train-
ing objectives for verifiers can also be understood

from the lens of asymmetry of verification: where
certain tasks are hard to solve but easy to verify or
easy to solve but hard to verify (Liu et al., 2025;
Qin et al., 2025).

In this survey, our goal is to present a clear and
simple taxonomy for verifiers based on training
recipes, objective functions and their inference time
utility in test-time scaling. Note that while reward
models are also used for verification purposes in
pre-training, our scope is limited to verification
strategies, particularly for test-time scaling. We
observe based on our survey that the verifier design
choices can be ascribed to task-specific challenges
due to asymmetry of verification. We also present
challenges with current approaches and new per-
spectives on future of verifier training mechanisms.
We also discuss a training recipe for verifiers that
could emerge from recent advances in self-play
(Zhao et al., 2025a) as future directions. Details
on how we collect literature for this topic can be
found at Appendix A

Comparison to adjacent surveys While several



surveys focus on Test-Time Scaling (TTS) (Zhang
et al., 2025a; Chung et al., 2025), they do not
adequately cover wide-range of verifier types and
their training mechanisms in context of test-time
scaling. To the best of our knowledge, our survey
is the first to do this as verifiers are cornerstone
of TTS and a clear taxonomy of approaches help
inform their usage for real-world applications.
Our repository can be found at https://
github.com/elixir-research—-group/
Verifierstesttimescaling.github.
io and our website can be found at https:
//elixir-research—-group.github.
io/Verifierstesttimescaling.
github.io/.

2 Notions and Concepts in Test-Time
Scaling

Test-time scaling refers to allocating additional
computational resources to language models
(LLMs) during inference to improve their outputs
without modifying the model weights. Test-time
scaling involves three key dimensions: when ver-
ification occurs (at the outcome or process level),
how exploration is conducted (in parallel, sequen-
tially, or using hybrid strategies), and how candi-
date solutions are selected or refined (via sampling,
reranking, structured search, or self-correction). A
clear understanding of these dimensions is critical
for designing more robust and capable inference-
time reasoning systems.

2.1 Scaling Paradigms at Inference

Test-time scaling can be broadly categorized into
three paradigms.

In parallel scaling, the model generates mul-
tiple independent outputs simultaneously, often
by varying sampling temperature or prompt exem-
plars to induce diversity (Levy et al., 2023; Brown
et al., 2024). These outputs form a candidate set
S = {s1,..., 8k}, from which a selection mecha-
nism V identifies the final answer s* = V(S).

Sequential scaling, in contrast, decomposes a
problem into intermediate steps or sub-questions.
Each step builds on the previous one, produc-
ing a sequence {sqi, ..., sqr} where each sq; =
LLM(sq;—1,c;) depends on the prior reasoning
step and contextual information c; (Madaan et al.,
2023; Du et al., 2024).

Hybrid scaling strategies integrate both ap-
proaches. A model may first generate multiple rea-

Verifier training
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Figure 1: Categorization of verifier training approaches.

soning paths in parallel, then iteratively refine or se-
lect from them using sequential reasoning. Notable
examples include beam search (Wang et al., 2024a;
Snell et al., 2024), tree/graph/forest-of-thoughts
(Yao et al., 2023; Besta et al., 2024; Bi et al., 2025),
and constrained Monte Carlo Tree Search (MCTS)
(Lin et al., 2025), where exploration and refinement
are tightly coupled.

2.2 Verification Strategies

No matter how the candidate solutions are gen-
erated, selecting a reliable answer often requires
verification. Outcome verification, also known
as outcome reward modeling (ORM), evaluates
whether the final answer is correct without inspect-
ing intermediate steps. These models are relatively
easy to train using weak supervision and are com-
monly used in reranking or filtering (Cobbe et al.,
2021; Lightman et al., 2024; Zhang et al., 2024a).

In contrast, process verification—or process
reward modeling (PRM)—assesses the reasoning
path itself, step by step. This approach typically
relies on annotated reasoning traces and provides
more fine-grained evaluations of model behavior
(Uesato et al., 2022; Zhang et al., 2025c; Zheng
et al., 2025). Recent work also explores self-
verification, where the model critiques its own rea-
soning path without external feedback (Weng et al.,
2023; Lee et al., 2025; Kang et al., 2025).

3 Training Paradigms and Types of
Verifiers

We start by giving an overview of the verifier train-
ing procedure as in Figure 2 that is organized along
three key dimensions: (1) the nature of the supervi-
sion (heuristic, supervised, reinforcement learning),
(2) the type of data used (manual annotations, syn-
thetic rollouts, symbolic derivations), (3) the output
modality (discriminative vs. generative). We also
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Figure 2: An overview of verifier training mechanisms

categorize training strategies for verifiers used in
test-time scaling in Figure 1. This taxonomy not
only provides a conceptual map of existing meth-
ods but also considers design trade-offs that affect
performance, scalability, and robustness. Under-
standing the diversity and limitations of current
training strategies is crucial for choosing the right
approach for a given task, whether it be math rea-
soning, fact verification, or open-domain QA.

Verifier training approaches vary in how they
model solution correctness: via rules, scores, ra-
tionales, or logic chains and differ in their data
needs and robustness. Discriminative models are
lightweight but narrow in domain; generative and
reasoning-based verifiers better capture complex
verification needs, while symbolic verifiers offer
formal guarantees.

3.1 Heuristic Verifiers

Early verification strategies primarily relied on
heuristics to verify final solutions such as output flu-
ency, plausibility, adherence to format (DeepSeek-
Al et al., 2025) where LLMs are trained to self-
verify using these heuristics as rewards for RL-
based training using Group Relative Policy Opti-
mization (GRPO). RvLLM (Zhang et al., 2025b)
designs an Expert Specification language (ESL)
that can be used by experts to design domain spe-
cific rules for verification. However, rule based
verification approaches are not scalable as it is time-
consuming to author comprehensive rules. They
may also fail to capture semantic variations in ex-
pression (for example: “2 hours" and “120 min-
utes" imply the same) resulting in incorrect verifi-
cation. Hence, model-based verifiers are proposed
as covered in subsequent sections.

3.2 Discriminative Verifiers

Discriminative verifiers frame the verification task
as a supervised classification problem, where mod-
els are trained to assign correctness scores to rea-
soning steps or final answers. These models are
commonly used in tasks that are relatively easy to
verify, where correctness can be inferred from ob-
servable outputs. A standard distinction exists be-
tween Outcome Reward Models (ORMs), which
evaluate only the final answer, and Process Re-
ward Models (PRMs), which assign scores to each
step in the reasoning trajectory (Cobbe et al., 2021;
Lightman et al., 2023; Yu et al., 2024).

PRMs are typically fine-tuned on datasets with
binary step-level annotations (Uesato et al., 2022;
Zhang et al., 2025¢). Given a reasoning step, the
model encodes the input and outputs a binary score
using a classification head optimized with cross-
entropy loss. Final solution quality is often esti-
mated by aggregating the predicted scores across
steps (Snell et al., 2024; Wu et al., 2024).

However, manually creating step-level labels is
labor-intensive, prompting the development of au-
tomated annotation strategies. In many approaches,
a reasoning step is deemed correct if a valid final
answer can be generated by an LLM in a fixed
number of sampling trials (e.g., via Monte Carlo
rollouts) (Wang et al., 2024b; Luo et al., 2024;
Chen et al., 2024a). This proxy ties the answer
accuracy from future rollouts to the value of the
current step. Subsequent steps after the first failure
are typically discarded.

To avoid information loss by discarding paths,
AutoCV (Lu et al., 2024) proposes a confidence-
based annotation strategy. An ORM is trained on
final-answer correctness, and its confidence change
upon adding a new reasoning step is used to esti-



mate that step’s value. A significant drop in con-
fidence suggests a flawed reasoning step, which
helps label steps without explicit human annota-
tions.

Despite empirical success, these models often
assume stepwise independence. Li et al. (Li and Li,
2025) identify that this independence assumption
undermines reward distribution across reasoning
trajectories. They reformulate step-level verifica-
tion as a Markov Decision Process (MDP) and
introduce a Q-value ranking objective to model
dependencies between steps, enabling more consis-
tent and context-aware feedback.

While early work focused on math and code
reasoning, more recent approaches extend dis-
criminative verifiers to knowledge-intensive tasks.
RE2SEARCH++ (Xiong et al., 2025) leverages con-
trastive learning to distinguish correct intermediate
actions from incorrect ones in open-domain QA,
offering feedback not only on reasoning correct-
ness but also on auxiliary decisions such as query
formulation. VersaPRM (Zeng et al., 2025) aug-
ments the MMLU benchmark with synthetic CoT
traces and counterfactual variants, expanding PRM
training to general-domain tasks. This helps im-
prove verifier generalization across diverse topics
beyond structured tasks like math.

3.3 Generative Verifiers

Generative verifiers leverage the inherent capa-
bilities of large language models (LLMs), in-
cluding natural language generation, chain-of-
thought (CoT) reasoning (Wei et al., 2022b), and
instruction-following, to assess the correctness of
solutions. Unlike discriminative verifiers, which
produce scalar confidence scores, generative veri-
fiers produce textual critiques or judgments. This
approach not only aligns with the pretraining objec-
tive of LLMs but also enables greater interpretabil-
ity, compositionality, and adaptability during infer-
ence (Wang et al., 2024c; Brown et al., 2024).
While prompting off-the-shelf LLMs as
judges (Zheng et al., 2023a) offers a straightfor-
ward way to tap into these capabilities, it often
underperforms compared to fine-tuned models on
reasoning benchmarks. To overcome this, recent
work has focused on training generative verifiers
using synthetic supervision or reinforcement
learning. We group these approaches into three
main categories: (i) supervised fine-tuning (SFT),
(i1) reinforcement learning (RL), and (iii) self-

verification. These are summarized in Table 1 and
Figure 1. Table 4 gives an overview of hypothesis
behind some of important training recipes for
verifiers.

Supervised Fine-Tuning (SFT) Early work in
generative verification (Zhang et al., 2024a) fine-
tunes LLMs using next-token prediction to jointly
generate critiques and correctness assessments for
solution candidates. Here, the verifier is trained on
synthetic critiques generated for reasoning paths
and final answers. Instead of assigning numeric
scores, correctness is inferred from the model’s
token probabilities over natural language outputs.

Other approaches rely on synthetic supervision
from stronger LLMs or tool-augmented critiques
(Li et al., 2025c; Lee et al., 2025; Kang et al.,
2025; Mekala et al., 2024). These are used in self-
verification pipelines, where models are trained to
evaluate their own outputs or those of a fixed gener-
ator. These approaches employ Rejection Sampling
Fine-tuning (RSFT) where only synthetic trajecto-
ries leading to correct solutions are retained for
SFT of verifier. SyncPL (Liang et al., 2025) alter-
natively proposes to augment RSFT with criteria
based filtering like logical consistency of synthetic
solution trajectories.

While simple and scalable, these methods can
suffer from poor robustness and susceptibility to
reward hacking (Ye et al., 2025), where the veri-
fier learns spurious correlations that inflate reward
without genuine correctness. To address these con-
cerns, Ye et al. (2025) introduce COT-entropy,
a generative verifier with uncertainty quantifica-
tion. Their method explicitly penalizes overconfi-
dent predictions by modeling token-level entropy
during reasoning, improving reliability in process-
level verification tasks.

Reinforcement Learning (RL) Approaches Re-
inforcement learning has emerged as a powerful
paradigm for training generative verifiers, offering
better alignment with preferences and improved
generalization.

V-Star (Hosseini et al., 2024) builds on the StaR
framework (Zelikman et al., 2022) by sampling
both correct and incorrect reasoning traces and de-
riving preference data from correctness labels. The
verifier policy is then optimized using Direct Pref-
erence Optimization (DPO), encouraging the gener-
ation of faithful reasoning steps and accurate final
answers. GenRM (Mahan et al., 2024) follows a



similar design, fine-tuning a generative verifier on
synthetic preference data using preference-based
loss functions.

VerifierQ (Qi et al., 2024) adopts a different RL
objective by training the verifier using Q-learning.
Here, the verifier estimates step-level Q-values that
reflect the expected reward for continuing from
a given reasoning step. Conservative Q-learning
is used to avoid overestimation, enabling stable
training. This formulation allows parallel ranking
of solution candidates and supports hybrid search
strategies. Rather than assigning absolute values
to steps and ignoring incorrect steps like previous
approaches, PAV (Setlur et al., 2025a) measures
progress that can be achieved by including a step
enabling more exploration when coupled with RL-
based training outperforming VerifierQ and other
approaches.

Co-evolution of Generator and Verifier Fixed-
generator settings introduce a bottleneck: if the
verifier is trained on poor-quality samples, it risks
overfitting or reward hacking. RL-Tango (Zhaetal.,
2025) addresses this by jointly training a generator-
verifier pair using Group Relative Policy Optimiza-
tion (GRPO). The verifier is trained using outcome-
level rewards to predict stepwise correctness, which
in turn informs the generator’s updates, closing the
feedback loop. This co-evolution leads to improved
solution quality and better verifier generalization.
S2R (Ma et al., 2025) builds on this idea by en-
couraging the generator to self-verify, using both
outcome- and process-level feedback to guide train-
ing. Like RL-Tango, it avoids manual step-level
annotations by relying on downstream rewards.

3.4 Reasoning-Based Generative Verifiers

While generative verifiers capitalize on the nat-
ural generation capabilities of LLMs, they often
fall short when applied to tasks that are inherently
“hard to verify” — a challenge rooted in the asym-
metry of verification: some problems are easy to
solve but difficult to verify, and vice versa. Address-
ing this limitation has led to the rise of reasoning-
based generative verifiers, which employ long-form
reasoning and deliberate critique generation, lever-
aging recent advances in Large Reasoning Models
(LRMs) (Huang et al., 2025; Khalifa et al., 2025).

ThinkPRM (Khalifa et al., 2025) is one such
model that trains a process verifier (PRM) us-
ing LRMs in a generative fashion. It utilizes
high-quality synthetic reasoning trajectories, gen-

erated via automated step-level labeling, to fine-
tune the verifier. Despite using less annotated data,
ThinkPRM demonstrates strong data efficiency and
performance, outperforming models trained on
over 100x more human-labeled data.

Other efforts extend this approach by refining the
“LLM-as-a-judge” paradigm (Zheng et al., 2023a).
For example, (Whitehouse et al., 2025; Huang et al.,
2025) fine-tune LRMs to reason through and rank
candidate responses based on verification-specific
objectives. Unlike previous approaches requiring
enormous data engineering, OREO (Wang et al.,
2024a), frames verification as a byproduct of rein-
forcement learning. OREO jointly trains a “policy”
and a “value function” within an offline RL frame-
work using a LRM. The training optimizes a soft
Bellman equation to closely approximate optimal
value estimates. The resulting value function acts
as an implicit verifier during test-time search, simi-
lar to verifier strategies such as RL-Tango.

While reasoning-based generative verifiers like
ThinkPRM and OREO are powerful, they often
do not explicitly address robustness and out-of-
domain generalization. The verifier from (Shi and
Jin, 2025) targets these challenges by combining
long-form reasoning generation with reinforcement
learning on diverse data. To further improve robust-
ness, the paper introduces a pessimistic verification
strategy, which prefers solutions with lower asso-
ciated uncertainty. Despite their strengths, most of
these methods allocate a fixed compute budget to
all verification instances. However, real-world use
cases often involve a mix of easy and complex veri-
fications. Allocating equal compute to all instances
may lead to inefficiencies, including overthink-
ing, where unnecessary reasoning is generated for
obvious cases (Chen et al., 2025).

To address this, DyVe(Zhong et al., 2025b) and
FlexiVe (Zhong et al., 2025a) propose adaptive
verification frameworks that tailor compute usage
to the complexity of the instance. Drawing in-
spiration from dual-system theories of cognition
(Kahneman, 2011), they alternate between “fast
thinking” (direct token-level verification) and “slow
thinking”(long-form deliberation). Dy Ve trains on
both simple and complex reasoning traces from
datasets like MathShepherd (Wang et al., 2024b),
with stepwise judgments on whether deeper verifi-
cation is needed. It fine-tunes an LRM using cross-
entropy loss to produce labels for simple tasks and
to generate full reasoning paths for complex ones.



In contrast, FlexiVe avoids the need for labeled
signals about complexity. Instead, it uses Group
Relative Policy Optimization (GRPO )(DeepSeek-
Al et al., 2025) to train a process verifier. The
reward function is composite: one component en-
courages correct verification, and another penalizes
unnecessarily long outputs. This incentivizes the
verifier to dynamically switch between fast and
slow modes based on task difficulty.

3.5 Symbolic Verifiers

Despite the advances in process reward models
(PRM5) trained using synthetic reasoning traces,
these models often suffer from two key limitations:
inaccurate step-level annotations due to reasoning
drift or hallucinations, and poor generalization to
out-of-distribution (OOD) tasks. Symbolic veri-
fication methods aim to address these issues by
grounding reasoning in formal representations and
structured logic, offering correctness guarantees,
and improving robustness. Tasks that lend them-
selves to formal validation, namely mathematical
proofs, logical inference, and code reasoning, are
thus considered easy to verify under this paradigm.

In this section, we categorize symbolic verifi-
cation approaches based on their use of symbolic
reasoning at inference time or as a training signal.
We distinguish between methods that (1) execute
or emulate formal logic systems during inference,
(2) translate natural language reasoning into sym-
bolic forms for stepwise validation, and (3) aug-
ment training data with symbolic verification feed-
back.

Symbolic Reasoning at Inference Time Sym-
bCOT (Xu et al., 2024) and LMLP (Zhang et al.,
2024b) leverage symbolic reasoning to validate or
derive intermediate steps during inference. Symb-
COT translates chain-of-thought (CoT) responses
into first-order logic expressions, which are solved
step by step by an LLM acting as a logic engine. A
verification module then ensures semantic consis-
tency and logic deduction validity. LMLP general-
izes this idea to logic programs over a knowledge
base (KB), verifying intermediate conclusions in
knowledge-intensive QA tasks.

START (Li et al., 2025a) builds a reasoning agent
that learns to invoke symbolic tools adaptively.
Hints are inserted into solution traces to prompt
tool use at key reasoning junctures, and the model
is fine-tuned via self-distillation. At inference time,
the verifier strategically uses symbolic tools during
sequential test-time scaling.

Symbolic Supervision for Training Verifiers: De-
ductive PRM (Ling et al., 2023) proposes using
symbolic representations, called natural programs,
which specify premises, conditions, and conclu-
sions to guide the training of PRMs. These pro-
grams generated using strong LLMs (e.g., GPT-3.5-
turbo), along with verification labels are distilled
into smaller models like Vicuna through supervised
fine-tuning (SFT).

FOVER (Kamoi et al., 2025) uses formal veri-
fication tools such as Z3 and Isabelle to generate
step-level annotations. Instead of verifying full
proofs, the tools validate individual steps from rea-
soning traces generated by LLLMs. This supervision
signal is then used to train PRMs. Notably, FOVER
achieves strong OOD generalization on reasoning
benchmarks like ANLI, HANS, and MMLU.
Neuro-Symbolic Self-Training: EnVISIONS (Xu
et al., 2025) departs from static annotation
paradigms by interacting with an external symbolic
environment. The model outputs symbolic repre-
sentations (e.g., first-order logic), which are exe-
cuted and scored by the environment. The resulting
binary feedback is converted into soft rewards and
used for iterative refinement and self-training, en-
abling verification without human supervision.

4 Benchmarks and Evaluations

We discuss different reference-based and reference-
free benchmarks specifically created to evaluate
process-based verifiers (Lightman et al., 2024;
Zheng et al., 2025) or outcome based ones (Liu
et al., 2024; Lambert et al., 2024). The benchmark
design can also be mapped to asymmetry of verifi-
cation based on the tasks represented. When con-
structing these benchmarks, researchers generate
multiple responses for the same query. During the
manual annotation or automated judgment phase,
for outcome-based verifier benchmarks, annotators
are required to compare final responses or interme-
diate ones in case of process-level benchmarks and
assign scores based on preference, correctness.
RM-Bench (Liu et al., 2024) primarily focuses
on verifying ORM models and comprises tasks
from domains code, math, open-ended chat and
safety. Code and math are objective and hence are
easy to verify through unit tests and final answers,
but verifying factual inaccuracies in open-ended
chat and assessing whether responses are safe or
not are a bit subjective and hard to verify.
However, the existing ORM benchmarks primar-



ily focus on preference-based evaluation, where
verifiers are ranked based on their ability to com-
pare competing solutions.

Verifybench (Yan et al., 2025) bridges this gap
by curating a benchmark for reference-based re-
ward models by focusing on objective accurate
judgments with respect to a reference solution
when compared to pairwise assessments aligning
well with real-world applications of verification
models such as test-time scaling or training of rea-
soning models. While this benchmark focuses on
moderately easy to verify tasks, authors also intro-
duce Verifybench-Hard which comprises of hard
to verify instances

PRMBS800K (Lightman et al., 2024) primarily fo-

cused on collecting large volume of step-by-step
reasoning based verification labels for math prob-
lems to benchmark PRMs. But it lacks task di-
versity and mostly comprises of easy to verify
math problems. ProcessBench (Zheng et al., 2025)
proposed to Olympiad level difficulty problems,
with high task diversity. Unlike existing synthetic
benchmarks, Processbench collected fine-grained
human feedback for step-level annotations. While
math domain is generally considered easy to verify,
Olympiad problems are more subjective to evaluate
as verification does not only pertain to correctness
of final answer but also creativity of the solution
rendering it a hard to verify task.
Evaluation Metrics: Most of the benchmarks ver-
ify the correctness of error identification by the ver-
ifiers. The ORM benchmarks namely RM-Bench,
Rewardbench employ accuracy of verifying the fi-
nal output with respect to reference annotations as
metric. Processbench computes step-level verifica-
tion accuracy (earliest error detection) with respect
to ground truth and employs F1 score to balance
between being overly critical and being incapable
of identifying errors. PRM80OK uses the final task
performance as metric to determine quality of the
verification rather than the accuracy of verification
process itself. Additional details are in Appendix
B with benchmark classification in Table 2 and
corresponding metrics in Table 3.

5 Challenges and Future Directions

Limited Modalities: Current verifier approaches
for test-time scaling primarily focus on textual
modality. This is primarily due to significant ad-
vances in test-time scaling being currently limited
to text modality (Zhang et al., 2025a; Chung et al.,

2025). However, though more recently scaling ap-
proaches for visual modality have emerged, corre-
sponding verification approaches has not advanced
significantly. While there is some initial research
in this area namely VisualPRM (Wang et al., 2025),
a future direction could be to focus on developing
principled verification methods beyond text.

Efficiency of verifiers: A large number of ver-
ifier approaches primarily train a LLM or a LRM
as ORM or PRM as outlined in this survey in Sec-
tion 3. However, this requires additional compute
compounding over compute used for solution candi-
dates generation using another LLM with test-time
scaling. Hence, there is a need for efficient verifi-
cation approaches. While pruning and quantization
are possible approaches for reducing memory re-
quirements, they may lead to sub-par performance.
One of the interesting future directions would be
to develop novel learning approaches for verifiers
employing Small Language Models (SLMs). Al-
ternatively algorithms for assembling an ensemble
of expert SLMs which is dynamically determined
for a task so they can achieve robustness and gen-
eralization capabilities similar to their larger coun-
terparts is an interesting direction. Data efficient
training mechanisms and data augmentation for im-
proving data quality are also possible directions
that could improve performance of SLMs.

Generalization gap and Limited Benchmarks:
Many of the current state-of-the-art verifier training
approaches still suffer from the out of distribution
generalization gap (Zhao et al., 2025b). This also
primarily stems from lack of benchmarks represen-
tative of diverse real-world tasks, as current bench-
marks are majorly focused on code or math. While
multi-domain data augmentation strategies (Zeng
et al., 2025) have shown some promise, curating
data for diverse tasks with manual annotations is
time-consuming. Further augmenting them with
step-level annotations manually for training veri-
fiers becomes infeasible. While existing data aug-
mentation approaches for training verifiers focus
on generating step-level or final accuracy annota-
tions (Zeng et al., 2025; Khalifa et al., 2025; Wang
et al., 2024b; Luo et al., 2024; Lu et al., 2024),
they still rely on all the queries and corresponding
ground truth to be curated through manual annota-
tion. This limits the query and task distribution that
the verifier can observe limiting generalization.

Future Directions: We envision a generalized
framework for training verifiers that would contain



the following characteristics: 1) generation of syn-
thetic data with automated annotations for training
outcome or process level verifiers 2) produce veri-
fiers for wide-range of natural language reasoning
tasks beyond math and code and 3) produce veri-
fiers that ideally help generalize out of distribution

To achieve 2) and 3) it is necessary for the ver-
ifier to be trained on diverse tasks and diverse
queries corresponding to these tasks. Hence, 1) in-
volves a generating queries for diverse tasks going
beyond human annotated task distributions. The
recent advances in reinforced self-play (Zhao et al.,
2025a), and verification based self-certainty based
signals (Zhao et al., 2025¢), could lead to an unified
framework comprising task proposer, task solver
and verifier that co-evolve using specific rewards
such as task diversity, step-wise correctness de-
signed for each component. This coupled with
signals from uncertainty quantification could be
used as step-wise reward (without annotations) for
training verifiers beyond math and code.

6 Conclusion

This work presents a survey of verification ap-
proaches scoped to the different types and train-
ing mechanisms for verifiers when employed for
for test-time scaling. We define a clear taxon-
omy primarily focusing verifier types , training
mechanisms, objectives and categorize the litera-
ture based on this taxonomy (Table 1). Finally, we
highlight challenges in current verifiers and future
directions.

7 Limitations

While our survey provides a comprehensive
overview of verifier mechanisms that aid in test-
time scaling, due to the rapid progress in the field,
several adjacent works in reward models or reward
design may have been overlooked. While reward
design for pre-training is an interesting topic, our
survey is scoped to reward models /verifiers for test-
time scaling as in this setup verifiers guide search
over vast candidate space. We will maintain this
survey in form of repository to enable addition of
new literature as the field progresses. Addition-
ally, we do not focus on different prompt based
reasoning mechanisms that briefly touch upon self-
verification by asking LLM. While we have briefly
discussed some of the important works in this area,
adjacent works which do not primarily contribute to
new approaches for verification or works where ver-

ification is not one of the core focus areas are omit-
ted. This is primarily because fine-tuning based
or symbolic approaches have shown to be more
robust and calibrated than simply asking LLMs.
Covering robust mechanisms for training or em-
ploying verifiers is one of the important aspects of
our survey.

8 Ethical Considerations and Risks

The reliance on LLM-generated reasoning paths
in test-time scaling introduces potential risks of
reinforcing model biases or factual errors during
verifier training with automatically generated data.
Although the verifier is trained to select accurate
reasoning, it may inherit systematic flaws from the
base LLM. However, in our survey we also particu-
larly focus on training mechanisms and verification
approaches that help improve robustness of veri-
fiers which would help discard solution candidates
with factual errors. However, the problem of hal-
lucination in LL.Ms that lead to such issues is far
from solved and building more robust verification
mechanisms could help mitigate this issue.

Second, current landscape of verification ap-
proaches do not currently include fairness or bias
mitigation across different attributes for tasks like
Question Answering. While this is not the scope
of this work, we believe this could be an important
direction to build trustworthy systems.
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A Literature Compilation

A.1 Search Strategy

We conducted a comprehensive search on Google
Scholar. We first focused on highly relevant Natural
language Processing (NLP) venues such as ACL,
EMNLP, NAACL, COLM and journals like TACL.
Since, a lot of verifier advancements come from
the ML community we also focused on venues
like NeurIPS, ICLR, AAAI and ICML. Since this
area is rapidly moving we also focused on arXiV
pre-prints. We employed keywords like “verifiers",

"o

“test-time scaling", “self-verification", “process re-
ward models", “outcome reward models" to retrieve
relevant surveys and works. We focus on papers
till march 2025 and also include some recent paper
in July 2025. however, owing to rapid progress in
this topic, some latest pre-prints could have been

excluded inadvertently from this survey.

A.2 Selection Strategy

We primarily focus on verification approaches that
help verify the final answer (ORM) or step-by-step
reasoning process for arriving at solution (PRM) in
context of test-time scaling. While reward models
which also help value outputs during pre-training
have similar objectives they are always not used in
guiding exploration or search for solutions. Hence,
they are excluded from our survey as our focus
is on verification approaches for test-time scaling.
this filtering was done based on careful review of
abstract, Introduction, Conclusion and Limitations
sections of these papers. We also focused on the
Methodology section of these papers to compile
papers that detailed different training mechanisms
for verifiers which is one fo the key focus areas
of our survey. After careful review, 42 papers (Ta-
ble 1) were selected which forms the foundational
content of this survey.

B Additional Benchmark and Evaluation
Details

Expanding upon benchmarks discussed in Section
4, we expand upon the statistics of these bench-
marks in this section. An overview of benchmarks
and their categorization based on verification types
and asymmetry of verification are as shown in Ta-
ble 2 providing a mental model of the discussion
in Section 4.

PRMB800K is among the first large-scale, human-
labeled datasets with fine-grained feedback on rea-
soning steps. The final dataset comprises 800,000

step-level labels across 75,000 solution traces from
12,000 problems.

The PRM800K dataset was curated in two major
phases:

* Phase 1 (~ 5% of data): Randomly sampled
solution traces generated by an LLM were
labeled by human annotators.

* Phase 2 (~ 95% of data): An active learning
strategy was adopted:

1. Generate multiple candidate solutions
per problem.

2. Use the current PRM to rank the solu-
tions.

3. Present the most convincing incorrect an-
swers to human annotators for labeling.

This approach reduces redundant labeling and
prioritizes informative, borderline cases.

Labeling Scheme:
Each reasoning step in a solution trace is anno-
tated with one of three labels:

* Positive (+): Step is correct and helpful.

* Neutral (0): Step is ambiguous or correct but
non-progressive.

» Negative (-): Step contains an error or irrele-
vant content.

RM-Bench It comprises approximately
2,000-3,000 preference instances, across multiple
domains: Chat, Code, Math, Safety. It was created
to evaluate outcome reward models’ sensitivity to
subtle content changes and robustness against style
bias, which traditional benchmarks overlooked for
open-ended chat tasks. it also comprises objective
tasks like code and math which are easy to verify.

Verifybench was primarily curated to bench-
mark reference-based verifiers. It comprises
2,000 well-balanced question-answer-completion-
correctness tuples. Instructions and gold refer-
ence answers were sourced from established open
datasets across diverse reasoning domains (e.g.,
GSMS8K, MATHS500, MultiArith, ProofWriter).
For each instruction, multiple candidate comple-
tions were generated using both open-source and
proprietary LLMs (e.g., GPT-40, Qwen) to cover
a spectrum of success levels. Each completion is
labeled by human annotators as correct or incor-
rect based on alignment with the reference answer,



Verification Type Easy to Verify

Hard to Verify

QOutcome-level (ORM) | v RM-Bench (code, math) — Objective correct- | v RM-Bench (safety, open-ended QA) — Re-

uation against gold answers.

ness via unit tests or exact numeric answers. quires subjective judgment of safety and factual
v" VerifyBench — Objective reference-based eval- | accuracy.

v" VerifyBench-Hard — Contains ambiguous ref-
erences and subtle factual inconsistencies.

Process-level (PRM) v PRMB800K - Step-by-step math reasoning with | v" ProcessBench — Olympiad-level math and cre-

deterministic correctness; easy to check. ative proofs; requires subjective evaluation of rea-

soning path and novelty.

Table 2: Matrix mapping benchmarks to verification type (rows) and verification difficulty (columns), with reasons
for categorization. Easy-to-verify tasks are typically objective (unit tests, deterministic solutions), whereas hard-to-
verify tasks require subjective or nuanced evaluation (safety, creativity, subtle factuality).

without preference comparisons. Verification is bi-
nary and absolute, not relative which requires that
classifiers predict true/false alignment with ground
truth

ProcessBench consists of 3,400 test cases which
are high quality Olympiad math problems, with all
solutions annotated with step-wise labels indicating
which steps are accurate or inaccurate by multiple
human experts. The expert annotation ensure the
data quality and the reliability of evaluation. The
annotators were instructed to identify the following
types of errors for step-wise reasoning for con-
structing ProcessBench: (1) Mathematical errors:
incorrect calculations, algebraic manipulations, or
formula applications. (2) Logical errors: invalid
deductions, unwarranted assumptions, or flawed
reasoning steps. (3) Conceptual errors: misunder-
standing or misapplication of mathematical or prob-
lem concepts. (4) Completeness errors: missing
crucial conditions, constraints, or necessary justifi-
cations that affect the solution’s validity.
RewardBench comprises of instances from differ-
ent task categories namely open-ended chat (easy
and hard), Reasoning (code and math) and a task
which tests for safety of LLMs. For open-ended
chat prompts, preferred and rejected response pairs
are chosen from Alpaca Eval (Li et al., 2023a) and
70 instance from MT-bench (Zheng et al., 2023b)

For the safety category, the goal is to test models’
tendencies to refuse dangerous content and to avoid
incorrect refusals to similar trigger words. Prompts
and chosen, rejected pairs are selected from cus-
tom versions of the datasets XSTest (Rottger et al.,
2024) and Do-Not-Answer (Wang et al., 2024d).
Evaluation metrics Expanding upon metrics dis-
cussed in Section 4, Table 3 provides a detailed
overview of evaluation metrics employed for veri-
fiers on different benchmarks with the correspond-

ing explanation (rationale).



Benchmark

Maetrics

Rationale

PRMS800K

» Step-level classification accuracy (cor-
rect/incorrect step labeling)

¢ Downstream final-answer pass@1/pass@k
improvement when PRM guides inference

Provides large-scale human-labeled step correct-
ness for math. PRMs trained on it can re-rank
reasoning paths during inference, improving fi-
nal task accuracy.

ProcessBench

* Earliest-error detection accuracy
* F1 score for identifying first incorrect step

¢ Final-task accuracy improvement when veri-
fier guides inference

Focuses on localizing the exact failure point
in reasoning chains. F1 balances false posi-
tives/negatives. Evaluates both detection quality
and downstream accuracy gains when used in
test-time scaling.

VerifyBench
VerifyBench-Hard

* Accuracy of binary correct/incorrect judgment
vs. reference answer

Evaluates reference-based correctness judg-
ments. The “Hard” split contains subtle or am-
biguous examples to test robustness.

RM-Bench

 Pairwise accuracy (chosen > rejected)

e Accuracy breakdown by difficulty (easy,
medium, hard)

Evaluates how well outcome reward models rank
human-preferred completions over rejected ones,
with breakdown by difficulty.

RewardBench

» Pairwise accuracy across prompt—chosen—
rejected triples

* Domain-specific accuracy breakdown (safety,
reasoning, chat, etc.)

Measures preference-based ranking performance
across diverse domains; tests cross-domain gen-
eralization of reward models.

Table 3: Evaluation metrics for major verifier benchmarks used in test-time scaling.



Category

Approach

Hypothesis

Training Recipe

Heuristic

(1) Deepseek-R1 (DeepSeek-Al et al., 2025)

(2) RVLLM (Zhang et al., 2025b)

Domain specific rules for verification leads to more
deterministic outcomes

Generative
- Classical SFT

(3) Generative Verifier (Zhang et al., 2024a)

(4) SyncPL (Liang et al., 2025)

Trains a generative process verifier using criteria
based data generation

Employs SFT to fine-tune a LLM
to generate critiques and correct-
ness label for solution candidates

(5) UQ-PRM (Ye et al., 2025)

Uncertainty quantification of Process verifiers leads
to more robust reasoning in LLMs

Stepwise Uncertainty Quantifica-
tion is included as part of training
process for verifiers.

(6) WoT (Zhang et al., 2024c)

(7) Multi-Agent Verifiers (Lifshitz et al., 2025)

Verification process is not uni-dimensional and
hence the verifier must cover diverse perspectives
of this process

Scaling verifiers
to cover diverse task-related as-
pects that need to be verifier

- Self-verification
(classical SFT)

(8) ReVISE (Lee et al., 2025)

(9) Self-Reflection Feedback (Li et al., 2025¢)

Traiining to self-verify through synthetic data

and external feedback leads to iterative self-
improvement and efficient verification

Training using imitation learning
on

iterative self-reflection based syn-
thetic data

(10) Tool Verifier (Mekala et al., 2024)

(11) T1 (Kang et al., 2025)

Self-verification through tool use
or data from tool use leads to more robust verifica-
tion.

SFT of LLM on data from tool
use

- RL-based (12) GenRM (Mahan et al., 2024) Verifier training through preference optimization Trains generative verifiers using
preference optimization
(13) V-STaR (Hosseini et al., 2024) using automatically curated data or from human like Direct Preference Optimiza-
feedback offers better alignment to preferred re- tion (DPO)
sponses.
(14) RL-Tango (Zha et al., 2025) Jointly training Generator and Verifier together RL-based Co-evolution
(15) S2R (Ma et al., 2025) is better than training a verifier with fixed generator ~ of Generator and Verifier
Reasoning (16) Heimdall (Shi and Jin, 2025) Training a reasoning model Trains a Large Reasoning Model
(17) Think-J (Huang et al., 2025) on joint objective of reasoning or critique on generative and solution
(18) ThinkPRM (Khalifa et al., 2025) generation and correctness prediction correctness prediction tasks to .
(19) J1 (Whitehouse et al., 2025) renders it an effective judge for verification tasks serve as judge
(20) RLY (Sareen et al., 2025) Scaling generative verifier training by employing  Trains a LRM on generative veri-
fication and RL objectives jointly
(21) OREO (Wang et al., 2024a) reasoning models with RL objectives enables bet- Trains a value function by opti-
twe exploration of solution space than SFT based mizing soft Bellman equation for
imitation learning test-time scaling
- Adaptive (22) DyVe (Zhong et al., 2025b) Training an adaptive verifier through imitation SFT on curated data
(23) FlexiVe (Zhong et al., 2025a) learning (SFT) or RL to alternate between fast & RL based adaptive verifier.
slow thinking leads to efficient TTS
Symbolic (24) RaL.U (Li et al., 2025b) Symbolic reasoning through program generation Trains to generate accurate

(25) SymbCOT (Xu et al., 2024)

aids in more structured LLM-based verification.

symbolic programs to aid in veri-
fication

(26) START (Li et al., 2025a)

(27) LMLP (Zhang et al., 2024b)

Self-distillation for learning to use symbolic tools

for step-wise verification improves factuality of gen-
erated responses

Trains a reasoning agent to in-
voke symbolic tools adaptively
using instruction tuning through
self-ditillation.

Trains to use programs that can
be run over KB for step-wise ver-
ification.

(28) ENVISIONS (Xu et al., 2025)

Neruo-symbolic self-training than distilling from
stronger LLMs helps overcome the scarcity of sym-
bolic data, and improves the proficiency of LLMs
in processing symbolic language

Self-training framework for ver-
ifiers using interactive feedback
from symbolic environment than
static annotations

(29) Deductive PRM (Ling et al., 2023)

(30) FOVER (Kamoi et al., 2025)

Verifier trained through Distilling symbolic pro-
gram generation capabilities

& verification labels from formal verification tools
leads to deterministic and accurate verification

Symbolic supervision for train-
ing verifiers

Table 4: Summary of verifier training mechanisms as applied to test-time scaling. KB- Knowledge Base,



