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Abstract

We focus on the problem of efficient sampling and learning of probability densities
by incorporating symmetries in probabilistic models. We first introduce Equivari-
ant Stein Variational Gradient Descent algorithm – an equivariant sampling method
based on Stein’s identity for sampling from densities with symmetries. Equivariant
SVGD explicitly incorporates symmetry information in a density through equiv-
ariant kernels which makes the resultant sampler efficient both in terms of sample
complexity and the quality of generated samples. Subsequently, we define equiv-
ariant energy based models to model invariant densities that are learned using
contrastive divergence. By utilizing our equivariant SVGD for training equivariant
EBMs, we propose new ways of improving and scaling up training of energy based
models. We apply these equivariant energy models for modelling joint densities in
regression and classification tasks for image datasets, many-body particle systems
and molecular structure generation.

1 Introduction

Many real-world observations comprise symmetries and admit probabilistic models that are invariant
to such symmetry transformations. Naturally, overlooking these inductive biases while encoding
such domains will lead to models with inferior performance capabilities. In this paper, we focus on
the problem of efficient sampling and learning of equivariant probability densities by incorporating
symmetries in probabilistic models.

We accomplish this by first proposing equivariant Stein variational descent algorithm in §3 for
sampling from invariant densities. Stein Variational Gradient Descent (SVGD) is a kernel-based
inference method that constructs a set of particles iteratively along an optimal gradient path in an
RKHS to approximate and sample from a target distribution. We extend SVGD for invariant densities
by considering equivariant kernel functions that evolve the set of particles such that the density at
each time-step is invariant to the same symmetry transformations as encoded in the kernel. We
demonstrate that equivariant SVGD is more sample efficient, produces a more diverse set of samples,
and is more robust compared to regular SVGD when sampling from invariant densities.

Subsequently, in §4, we build equivariant Energy Based Models EBMs for learning invariant densities
given access to i.i.d. data by leveraging the tremendous recent advances in geometric deep learning
where the energy function is equivariant neural network. We train these equivariant EBMs through
contrastive divergence by generating samples using equivariant SVGD. We show that incorporating
the symmetries present in the data into the energy model as well as the sampler provides an efficient
learning paradigm to train equivariant EBMs that generalize well beyond training data.

We empirically demonstrate the performance of equivariant EBMs using equivariant SVGD in §5. We
consider real-world applications comprising of problems from many-body particle systems, molecular
structure generation and, classification and generation for image datasets.

*Equal contribution.
35th Conference on Neural Information Processing Systems (NeurIPS 2021).



2 Preliminaries and Setup

In this section we set-up our main problem, introduce key definitions and notations and formulate an
approach to incorporate symmetries in particle variational inference optimization methods through
Stein variational gradient descent. Along the way, we also discuss directly related work and relegate
a detailed discussion on previous work to Appendix B.

Let G be a group acting on Rd through a representation R : G → GL(d) where GL(d) is the general
linear group on Rd, such that ∀g ∈ G, g → Rg . Given a target random variable X ⊆ Rd with density
π, we say that π is G-invariant if ∀g ∈ G and x ∈ Rd, π(Rgx) = π(x). Additionally, a function f(·)
is G-equivariant if ∀g ∈ G and x ∈ Rd, f(Rgx) = Rgf(x). We denote with O(x) the orbit of an
element x ∈ X defined as O(x) := {x′ : x′ = Rgx,∀g ∈ G}. We call π|G the factorized density of
a G-invariant density π where π|G has support on the set X|G where the elements of XG are indexing
the orbits i.e. if x, x̃ ∈ XG then x 6= Rgx̃,∀g ∈ G. In this paper, we are interested to incorporate
inductive biases given by symmetry groups to develop efficient sampling and learning paradigms for
generative modelling. Precisely, we consider the following problems:

(i) Equivariant Learning: Given access to an i.i.d. samples *x1, . . . ,xn+ ∼ π from a G-invariant
density π, we want to approximate π. Rezende et al. (2019) and Köhler et al. (2020) addressed this by
learning an equivariant normalizing flow (Tabak and Vanden-Eijnden, 2010; Tabak and Turner, 2013;
Rezende and Mohamed, 2015) that transforms a simple latent G-invariant density q0 to the target
density π through a series of G−equivariant diffeomorphic transformations T = (T1,T2, · · · ,Tk)
i.e. π := T#q0. They achieved this by proving (cf. (Köhler et al., 2020, Theorem 1), (Rezende et al.,
2019, Lemma1)) that if q0 is a G-invariant density in Rd, F is a proper sub-group of G i.e. F < G,
and T is an F -equivariant diffeomorphic transformation, then π := T#q0 is F -invariant. However, a
major drawback of this formalism is that it requires T to not only be a F -equivariant diffeomorphism,
but computation of the inverse and Jacobian must be cheap as well. This is problematic in practice.

Köhler et al. (2020) overcame this issue by using continuous normalizing flows (Grathwohl et al.,
2018) that define a dynamical system through a time-dependent Lipschitz velocity field Ψ : Rd ×
R+ → Rd with the following system of ordinary differential equations(ODEs):

dx(t)

dt
= Ψ(x(t), t), x(0) = z (1)

This allows to define a bijective function TΨ,t(z) := x(0) +
∫ t

0
Ψ(x(t), t) dt which leads to a

push-forward density qt at each time-step t satisfying d log qt
dt = −div

(
Ψ(x(t), t)

)
, which implies to

the following important result:
Lemma 1 ((Köhler et al., 2020, Theorem 2)). Let Ψ be an F-equivariant vector-field on Rd. Then,
the transformation TΨ,t(z) := x(0) +

∫ t
0

Ψ(x(t), t) dt is F-equivariant ∀t ∈ R+. Furthermore,
the push-forward qt := TΨ,t,#q0 is F-invariant ∀t, if q0 is G-invariant and F < G.

Lemma 1 conveniently provides a framework to transform any G-invariant density to an F -invariant
density along a path in which each intermediate density is also F-invariant. However, equivariant
normalizing flows cannot be used directly to generate samples when given access to an invariant
density π since they require i.i.d. samples from π to train the flow1.

(ii) Equivariant Sampling: In this paper, we are also interested in solving the inference problem
i.e. we are interested in evaluating Eπ[f ], the expectation of f when given access to a G-invariant
density π which typically involves generating samples *x1,x2, · · · ,xn+ ∼ π. Intuitively, sampling
from a G-invariant density can be reduced to sampling from its corresponding factorized distribution
π|G . This is because any set of samples {x̃i}ni=1 ∼ π|G can be used to get samples representing π
by applying group actions from G to {x̃i}ni=1. Indeed, sampling methods like Markov Chain Monte
Carlo (MCMC) (Brooks et al., 2011) or Hybrid Monte Carlo (HMC) Neal et al. (2011) and their
variants, in principle, can use this paradigm to sample from an invariant density π. However, MCMC
methods for approximate posterior sampling are often slow and it still remains challenging to scale
them up to big data settings. An alternate to MCMC methods for approximate posterior sampling is
Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016) which is a particle optimization

1In Appendix A, we discuss a way to use equivariant normalizing flow for direct sampling given access to π.
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variational inference method that combines the paradigms of sampling and variational inference for
Bayesian inference problems.

In SVGD, a set of n particles {xi}ni=1 ∈ X ⊆ Rd are evolved following a dynamical system to
approximate the target (posterior) density π(x) ∝ exp

(
− E(x)

)
where E(·) is the energy function.

This is achieved in a series of T discrete steps that transform the set of particles {x0
i }ni=1 ∼ q0(x)

sampled from a base distribution q0 (e.g. Gaussian) at t = 0 using the map xt = T(x) :=
xt−1 + ε · Ψ(xt−1) where ε is the step size and Ψ(·) is a vector field. Ψ(·) is chosen such that it
maximally decreases the KL divergence between the push-forward density qt(x) = T#qt−1(x) and
the target π(x).

If Ψ is restricted to the unit ball of an RKHSHdk with positive definite kernel k : Rd ×Rd → R, the
direction of steepest descent that maximizes the negative gradient of the KL divergence is given by:

Ψ∗q,π(x) := arg max
Ψ∈Hd

k

−∇εKL
(
q||π

)
|ε→0 = Ex∼q[trace(AπΨ(x))], (2)

where AπΨ(x) = ∇x log π(x)Ψ(x)> +∇xΨ(x) is the Stein operator. Thus, an iterative paradigm
can be easily implemented wherein a set of particles {x0

1,x
0
2, · · · ,x0

n} ∼ q0 are transformed
to approximate the target density π(·) using the optimal update Ψ∗q,π(x) ∝ Ex′∼q[Aπk(x′,x)].
Since AπΨ(x) = ∇x[π(x)Ψ(x)]/π(x) we have that Ex∼π[AπΨ(x)] = 0 for any Ψ implying
convergence when q = π. Replacing the expectation in the update with a Monte Carlo sum over the
current set of particles that represent q we get:

xt+1
i ← xti + εΨ̃∗(xti), where, Ψ̃∗(xti) :=

1

n

n∑
j=1

(
∇xt

j
k(xtj ,xi)︸ ︷︷ ︸

repulsive force

− k(xtj ,xi) · ∇xt
j
E(xtj)︸ ︷︷ ︸

attractive force

)
(3)

Stein variational gradient descent intuitively encourages diversity among particles by exploring
different modes in the target distribution π through a combination of the second term in Equation (3)
which attracts the particles to high density regions using the score function and the repulsive force
(first term) which ensures the particles do not collapse together. In the continuous time limit, as
ε→ 0, Equation (3) results in a system of ordinary differential equations describing the evolution of
particles {x0

1,x
0
2, · · · ,x0

n} according to dx
dt = Ψ̃∗(x).

Furthermore, as shown in Wang et al. (2019), geometric information using pre-conditioning matrices
can be incorporated in Equation (3) by using matrix valued kernels (cf. Definition 2.3 (Reisert and
Burkhardt, 2007)) leading to the following generalized form of SVGD (Wang et al., 2019):

xt+1
i ← xti +

ε

n

n∑
j=1

(
∇xt

j
K(xtj ,xi)−K(xtj ,xi) · ∇xt

j
E(xtj)

)
, (4)

where K(x,x′) is a matrix valued kernel. Matrix-valued SVGD allows to flexibly incorporate
preconditioning matrices yielding acceleration in the exploration of the given probability landscape.

SVGD has gained a lot of attention over the past few years as a flexible and scalable alternative to
MCMC methods for approximate Bayesian posterior sampling. Further, it is more particle efficient
since it generates diverse particles due to the deterministic repulsive force induced by kernels instead
of Monte Carlo randomness. A natural question to ask is: Can we incorporate symmetry information
into SVGD for more efficient sampling from invariant densities? We answer this in the affirmative in
the next section by proposing equivariant Stein variational gradient descent algorithm for sampling
from invariant densities.

3 Equivariant Stein Variational Gradient Descent
We begin this section by presenting the main result of this section by introducing equivariant Stein
variational gradient descent (E-SVGD) by utilizing Lemma 1 and Equations (3) and (4).
Proposition 1. Let π be a G-invariant density and *x0

1,x
0
2, · · · ,x0

n+ ∼ q0 be a set of particles at
t = 0 with q0 being F-invariant where F > G. Then, the iterative update given by Equation (3) is
G-equivariant and the density qt+1 defined by it at time t+ 1 is G-invariant if the positive definite
kernel k(·, ·) is G-invariant. The same holds for Equation (4) ifK(·, ·) is G-equivariant.
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Proof. Since the initial distribution q0 is F -invariant, following Lemma 1 the update in Equation (3)
is G-equivariant if Ψ is G-equivariant. If k(·, ·) is G-invariant then ∇xk(·,x) is G-equivariant.
Furthermore, since π = exp

(
− E(x)

)
is G-invariant, ∇xE(x) is also G-equivariant. Thus, both

the terms for Ψ are G-equivariant if k(·, ·) is G-equivariant making the update in Equation (3)
G-equivariant. The result follows similarly for Equation (4) whenK(·, ·) is G-equivariant.

Following Proposition 1, we call the updates in Equations (3) & (4) equivariant Stein variational
gradient descent when the kernel k(·, ·) (andK(·, ·) respectively) is invariant (equivariant) and the
initial set of particles *x0

1, · · · ,x0
n+ are sampled from an invariant density q0. Thus, all that is required

to sample from a G-invariant density π using equivariant SVGD is to construct a positive definite
kernel that is G-equivariant. Let us next give a few examples for constructing in- and equivariant
positive definite kernels.
Example 1 (Invariant scalar kernel). Let G be a finite group acting onRd with representation R such
that ∀g ∈ G, g → Rg . Then,

kG(x,x′) =
∑

x∈O(x)

∑
x′∈O(x′)

k(x,x′)

is G-invariant where k(·, ·) is some positive-definite kernel. While this provides a general method to
construct invariant kernels for finite groups, the double summation can be computationally expensive.
In practice, usually simple kernels like RBF kernel (for rotation symmetries) or uniform kernel suffice
as more practical alternatives.

Example 1 is only restricted to finite groups and does not directly apply to continuous symmetry
groups. We can construct kernels for continuous groups following Example 1 by either using a Monte
Carlo approximation or using a transformation that performs computations in the factorized space
X|G as we show in the next example.

Example 2 (Continuous Symmetry Groups). Let π(x) be SO(2)-invariant (cf. Figure 3b for an
example) where x ∈ R2 i.e. O(x) := {x′ : ‖x‖ = ‖x′‖}. We can either construct an invariant
kernel for sampling from π using a Monte Carlo approximation by sampling random rotations on a
unit sphere i.e.

kG(x,x′) =

n∑
i,j=1

k(gjx, gix
′), gi, gj ∈ G, ∀(i, j) ∈ [n]× [n]

Or alternately, we can consider the function ΦG : R2 → R such that ΦG(x) = ‖x‖. Then, ΦG(x) is
SO(2) invariant since ΦG(gx) = ΦG(x),∀g ∈ G. Thus, we can now use the following kernel

kG(x,x′) = k
(
ΦG(x),ΦG(x′)

)
Examples (1) and (2) are both invariant scalar kernels. Let us next give an example of an equivariant
matrix valued kernel for matrix valued SVGD (cf. Equation (4)).
Example 3 (Equivariant Matrix-Valued Kernels, Reisert and Burkhardt (2007)). Examples 1 and 2
define an invariant scalar kernel. Following Reisert and Burkhardt (2007), we can also construct a
G-equivariant matrix-valued kernel for the generalized update as in Equation (4) by defining:

K(x,x′) =

∫
G
k(x, gx′)Rg dg

where Rg is a group representation and k(·, ·) is a scalar symmetric, G-invariant function. It is
easy to check thatK(x,x′) is equivariant in the first argument and anti-equivariant in the second
argument, leading to an equivariantK(x,x′) (cf. Proposition 2.2 Reisert and Burkhardt (2007)).

Advantages of Equivariant Sampling: As we discussed briefly in Section 2, SVGD works by
evolving a set of particles using a dynamical system through a combination of attractive and repulsive
forces among the particles that are governed by the inter-particle distance. Thus, a particle exerts
these forces in a restricted neighbourhood around it. Equivariant SVGD, on the other hand, is able
to model long-range interactions among particles due to the use of equivariant kernel. Intuitively,
any point x is able to exert these forces on any other point x′ in equivariant SVGD if x′ is in the
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neighbourhood of any point in the orbit O(x) of x. This is because for any point x′ the repulsive
and attractive force terms are the same in Equations (3) and (4) for all points that are in the orbit
O(x). This ability to capture long-range interactions by equivariant Stein variational gradient descent
subsequently makes it more efficient in sample complexity and running time with better sample
quality, and makes it more robust to different initial configurations of the particles compared to vanilla
SVGD. We illustrate these next with the help of the following examples:

0 1000 2000 3000 4000 5000
Step

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Lo
g-

lik
el

ih
oo

d

true
regular
regular x2
regular x4
regular x8
regular x16
regular x32
invariant

Figure 1: Sample efficiency

(i) C4-Gaussians (cf. Figure 3a and 3c): This
example consists of four Gaussians invariant to
C4 symmetry group. In this case, the group fac-
torized distribution π|C4

is Gaussian with the
original C4-invariant density obtained by rotat-
ing π|C4

through the set {0◦, 90◦, 180◦, 270◦}.
In Figure 3a, the first column shows the sam-
ples generated by equivariant SVGD, the second
column is the projection of these samples on
the group factorized space X|C4

and, the third
column shows the samples obtained by rotating
the original samples through the C4-symmetry
group. Figure 3c shows a similar setup for vanilla SVGD.
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Figure 2: Robustness

(ii) Concentric Circles (cf. Figure 3b and 3d): This example com-
prises of two concentric circles invariant to the SO(2) symmetry
group. In this case, the group factorized space is a union of two dis-
connected lines with length equal to the thickness of the circles. In
Figure 3b, the first column shows the samples generated by equivari-
ant SVGD and, the second column is the projection of these samples
on the group factorized space X|SO(2). Figure 3d shows a similar
setup for vanilla SVGD.

We keep the experimental setup i.e. number of particles and number
iterations exactly the same for both vanilla SVGD and equivariant
SVGD. For both the examples, it may seem that the original samples
from the vanilla SVGD capture the target distribution better than
the equivariant counterpart (first column for Figs. 3a-3d). However,
projecting the samples onto the factorized space (second column
for the aforementioned figures) shows that equivariant SVGD more
faithfully captures the target density compared to vanilla SVGD.
Furthermore, due to its ability to model long-range interactions, we
see for both examples that in the projected space of the invariant
sampler, the samples are not close together whereas for vanilla
SVGD most samples end up in a configuration where they reside in the same orbit. This phenomena
is most evident for the concentric circles example where samples from vanilla SVGD reside on the
high density region throughout the two circles resulting in all the samples being positioned on top of
each other in the factorized space demonstrating its inability to capture the distribution. On the other
hand, invariant SVGD prevents any sample from residing on the same orbit of another sample due to
long-range repulsive force from the equivariant kernel allowing it to sample more faithfully from the
invariant densities.

Secondly, we study the effect of increasing the number of particles used for vanilla SVGD for the
two concentric circles example. In Figure 1, we plot the average log-likelihoods of the particles from
vanilla SVGD and particles from invariant SVGD as a function of number of iterations and compare it
to the ground-truth average log-likelihood. We run vanilla SVGD with up to 32 times more particles
than invariant SVGD. As evident from the plot, invariant SVGD converges to the final configuration
within the first 100 iterations with average log-likelihood closely matching the ground truth. Vanilla
SVGD, on the other hand, is unable to converge to the ground truth with even 32 times more samples
and 5000 iterations due to its inability to interact with particles at longer distances.

Finally, we study the effect of different configurations of the initial particles on the performance of
vanilla and invariant SVGD in Figure 2 for the C4-Gaussian example. As shown by Zhuo et al. (2018);
Zhang et al. (2020) and D’Angelo and Fortuin (2021), the particles in vanilla SVGD have a tendency
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(a) C4 Gaussians : Invariant SVGD sampling (b) Two Circles : Invariant SVGD sampling

(c) C4 Gaussians : Vanilla SVGD Sampling (d) Two Circles : Vanilla SVGD Sampling

Figure 3: Recommended to view in color. 3a (Left to Right) Original Samples from E-SVGD, samples
projected on to the group-factorized space and, samples obtained after applying group actions to the
original samples. Yellow, Green and, Blue samples represent original samples rotated by 90◦, 180◦

and, 270◦ respectively. 3b (Left to Right) Original Samples from E-SVGD and, samples projected on
to the group-factorized space. 3c-3d: Same as 3a-3b but for vanilla SVGD.

to collapse to a few local modes that are closest to the initial distribution of the particles. We test
the robustness of invariant SVGD to particles with initial distributions localized to different regions
in the space. We plot the average log-likelihoods of the converged samples for both invariant and
vanilla SVGD for all random initializations in Figure 2 and compare this to the ground truth average
log-likelihood. The plot illustrates that equivariant SVGD is more robust to the initial distribution of
particles than vanilla SVGD. Nevertheless, if the group-factorized space is multi-modal, equivariant
SVGD might exhibit a tendency to favour one of modes. However, this can be easily alleviated by
either adding some noise to the SVGD update as proposed by Zhang et al. (2020) similar to SGLD
(Welling and Teh, 2011) or using an annealing strategy (D’Angelo and Fortuin, 2021).

4 Equivariant Joint Energy Model

In Section 3, we developed equivariant Stein variational gradient descent algorithm for sampling
from invariant densities. In this section, we leverage the recent tremendous advances in deep
geometric learning (Cohen and Welling, 2016; Dieleman et al., 2016; Bronstein et al., 2021) to
propose equivariant energy based models that are trained contrastively using our proposed equivariant
Stein variational gradient descent algorithm to learn invariant (unnormalized) densities π given access
to i.i.d. samples *x1,x2, · · · ,xn+ ∼ π.

Given a set of samples *x1,x2, · · · ,xn+ ⊆ Rd, energy-based models (LeCun et al., 2006) learn an
energy function Eθ(x) : Rd → R that defines a probability distribution π̃θ(x) = exp

(
−Eθ(x)

)
/Zθ,

where Zθ =
∫
exp
(
− Eθ(x)

)
dx is the partition function. Unlike other popular tractable density

models like normalizing flows, EBMs are less restrictive in the parameterization of the functional
form of π̃θ(·) since the energy function does not need to integrate to one, it can be parameterized
using any nonlinear function. Conveniently, if π is G-invariant, we can use the existing equivariant
deep network architectures to parameterize Eθ(·) to encode the symmetries into the energy network.
Such an equivariant energy network defines an equivariant energy based model. EBMs are usually
trained by maximizing the log-likelihood of the data under the given model:

θ∗ := arg min
θ

LML(θ) = Ex∼π
[
− log π̃θ(x)

]
(5)

However, evaluating Zθ is intractable for most (useful) choices of Eθ(·) which makes learning EBMs
via maximum likelihood estimation problematic. Contrastive divergence (Hinton et al., 2006) provides
a paradigm to learn EBMs using maximum likelihood estimation without needing to compute Zθ by
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approximating the gradient of∇θLML(θ) in Equation (5) as follows:

∇θLML(θ) ≈ Ex+∼π
[
∇θEθ(x+)

]
− Ex−∼π̃θ

[
∇θEθ(x−)

]
(6)

Intuitively, the gradient in Equation (6) drives the model such that it assigns higher energy to the
negative samples x− sampled from the current model and decreases the energy of the positive
samples x+ which are the data-points from the target distribution. Since, training an EBM using
MLE requires sampling from the current model π̃(θ), successful training of EBMs relies heavily
on sampling strategies that lead to faster mixing. Fortuitously, since Eθ(·) in our present setting is
G-equivariant, we propose to use our equivariant sampler for more efficient training2 of the equivariant
energy based model.

Algorithm 1: Equivariant EBM training

Input: *x+
1 ,x

+
2 , · · · ,x+

m+ ∼ π(x)
while not converged do

. Generate samples from current eqNN model Eθ
*x−1 ,x

−
2 , · · · ,x−m+ = EquivariantSVGD(Eθ) ;

. Optimize objective LML(θ):
∆θ ←

∑m
i=1∇θEθ(x+

i )−∇θEθ(x−i ) ;
. Update θ using ∆θ and Adam optimizer

end

Additionally, following Grathwohl
et al. (2019), we can extend equiv-
ariant energy based models to equiv-
ariant joint energy models. Let
{(x1, y1), (x2, y2), · · · , (xn, yn)} ⊆
Rd × [K] be a set of samples with ob-
servations xi and labels yi. Given a
parametric function fθ : Rd → Rk, a
classifier uses the conditional distribu-
tion π̃θ(y|x) ∝ exp(fθ(x)[y]) where
fθ(x)[y] is the logit corresponding to
the yth class label. As shown by Grathwohl et al. (2019), these logits can be used to define the joint
density π̃θ(x, y) and marginal density π̃θ(x) as follows:

π̃θ(x, y) =
exp
(
fθ(x)[y]

)
Zθ

, and, π̃θ(x) =

∑
y exp

(
fθ(x)[y]

)
Zθ

(7)

Hence, the energy function at a point x is given by Eθ = − log
∑
y exp(fθ(x)[y]) with joint energy

Eθ(x, y) = −fθ(x)[y]. In our setting, the joint distribution π(x, y) is G-invariant in the first
argument i.e. π(Rgx, y) = π(x, y),∀g ∈ G. An example of such a setting is any image data-set
where the class label does not change if the image is rotated by an angle. Using Equation (7), it suffices
for the function fθ to be G-equivariant to model a G-invariant density π̃θ(x, y). Furthermore, a
G-equivariant fθ also makes the marginal density π̃θ(x) and conditional density π̃θ(y|x) G-invariant
in the input x. We call such an energy model where fθ is equivariant to a symmetry transformation
to be an equivariant joint energy model.

We can train this model by maximizing the log-likelihood of the joint distribution as follows:

L(θ) : = LML(θ) + LSL(θ) = log π̃θ(x) + log π̃θ(y|x) (8)

where LSL(θ) is the supervised loss which is the cross-entropy loss in the case of classification.
Thus, an equivariant joint energy model can now be trained by applying the gradient estimator in
Equation (6) for log π̃θ(x) and evaluating the gradient of log π̃θ(y|x) through back-propagation.
Conveniently, Equation (8) can also be used for semi-supervised learning with LSL((θ)) substituted
with the appropriate supervised loss e.g. MSE for regression.

Let us end this section with an empirical example for learning a mixture of C4-Gaussians (Figure 4)
as shown in row two of the leftmost column of Figure 4. The innermost C4-Gaussian defines the
class conditional probability π(x|y = 0) (row 3) and the outer C4-Gaussian defines π(x|y = 1) (row
4). We learn a non-equivariant joint EBM using vanilla SVGD (cf. Figure 4 center column) and an
equivariant joint EBM using equivariant SVGD (cf. Figure 4 right column) keeping the number of
iterations and particles the same for training. In Figure 4, we plot the decision boundaries learned
by the model in the top row. The star marked samples in the figure are the samples generated by
the underlying model. We plot the joint distribution and the class conditional distributions in row
two-four respectively. The figure abundantly demonstrates the superior performance of an equivariant
joint energy model trained using equivariant SVGD over its non-equivariant counterpart. A more
detailed figure with comparisons to an equivariant joint energy model trained using vanilla SVGD is
presented in Appendix D.1.

2compared to using a regular sampler with no encoded symmetries.
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5 Experiments

Figure 4: C4-Gaussian mixture model. Row 1:
Decision Boundary. Row 2: Samples and energy
of joint distribution π(x, y). Row 3: Samples and
energy of conditional distribution π(x|y = 0).
Row 4: Samples and energy of conditional distri-
bution π(x|y = 1). Left: Target distribution. Mid-
dle: Non-equivariant EBM trained with vanilla
SVGD. Right: E-EBM trained with E-SVGD.

In this section, we present empirical analysis
of equivariant EBMs and E-SVGD through ex-
periments to (i) reconstruct potential function
describing a many-body particle system (DW-
4) trained using limited number of meta-stable
states, (ii) model a generative distribution of
molecules (QM9) and generate novel samples
and (iii) hybrid (generative & discriminative)
model invariant to rotations for FashionMNIST
trained using dataset with no rotations. Due to
space constraints, details about all the experi-
ments as well as detailed figures are relegated to
Appendix E.

DW-4: In this many-body particles system, a
double-well potential describes the configuration
of four particles that is invariant to rotations,
translations and, permutation of the particles.
This system comprises five distinct metastable
states which are characterized as the mimina in
the potential function. In our experiment, we
show that given access to only a single example
of each metastable state configuration, an equiv-
ariant EBM trained with E-SVGD can recover
other states with similar energy as those of in the
training set. In Figure 7, the first column shows
the metastable states present in the training set.
The second column are the states recovered by an
EBM trained with vanilla SVGD which results in
configurations that exactly copy the training set.
The third column shows configurations generated
by the equivariant model which are distinct from
the training set but mimic the energies of the cor-
responding metastable states in the training set. Our setup is different from that of Köhler et al.
(2020); we discuss this in detail in Appendix E.1 and also produce similar results as Köhler et al.
(2020) for our model.

QM9: QM9 is a molecular dataset containing over 145,000 molecules used for moleccular property
prediction. However, we use this for molecular structure generation of constitutional isomers of
C5H8O1. Similar to DW-4, the molecules here are invariant to rotations, translations and, permutations
of the same atoms. We encode these symmetries using E-GNN (Satorras et al., 2021), an equivariant
graph neural network, to represent the energy. We trained our model via E-SVGD using C5H8O1
molecules present in the QM9 dataset and used the trained energy model to generate novel samples
that are isomers of C5H8O1. We show these novel generated molecules in Figure 5 wherein we used
the relative distance between atoms as a proxy for determining the covalent bonds. Our generated

Figure 5: (a) Molecules sampled from a EBM parameterized by a E-GNN trained using E-SVGD. (b)
Distribution of distance and angle between atom pairs and triplets.
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Joint distribution Conditional distribution Accuracy

Figure 6: Left & Center: Samples generated from joint and class-conditional distribution using
equivariant EBM. Right: Plot of classification accuracy vs. training iterations for equivariant and
regular EBMs trained using vanilla SVGD and E-SVGD.

molecules demonstrate the correct 3D arrangement of bonds while containing complex atom structures
like aromatic rings. This is further supported by the plots comparing the radial distribution functions
of the two most common heavy atom pairs to quantify our model fit to QM9 (Figure 5). While, the
generated molecules have a larger distributional spread, the range of values and modes – for both
angles and distances– resemble the true distribution. We provide more details in Appendix E.2.

Figure 7: Col. 1: Sam-
ples from true potential en-
ergy. Col. 2: Samples from
EBM trained with SVGD. Col.
3: Samples from equivariant
EBM trained with E-SVGD.

FashionMNIST: (Details in Appendix E.3) In this experiment, we
take the FashionMNIST dataset with training set consisting regular
images whereas the test set is processed to contain images that
are randomly rotated using the C4-symmetry group. We train an
equivariant energy model where the energy function is aC4 steerable
CNN (Weiler and Cesa, 2019) with both E-SVGD and vanilla SVGD.
Furthermore, we also compare to an energy model with no rotation
symmetries and depict the performance in terms of classification
accuracy on the held out images of these three models as a function
of the number of training iterations. The plot in Figure 6 shows,
albeit unsurprisingly, that an equivariant energy model performs
better than a regular model. Furthermore, the results also illustrate
that an equivariant model trained with E-SVGD converges faster than
when trained with vanilla SVGD highlighting the benefit of using E-
SVGD for training equivariant EBMs. Furthermore, in Figure 6, we
show samples generated by E-SVGD using the trained equivariant
EBM from the joint and the class-conditional distribution.

6 Discussion and Conclusion
In this paper, we focused on incorporating inductive bias in the form
of symmetry transformations using equivariant functions for sam-
pling and learning invariant densities. We first proposed equivariant
Stein variational gradient descent algorithm for sampling from in-
variant densities by using equivariant kernels which affords many
benefits in terms of efficiency due to its ability to model long-range interactions between particles.
However, a major limitation of Stein variational gradient descent algorithm in general is its sensitivity
to the kernel hyper-parameters. An interesting future work might be to develop strategies to either
adapt or learn these hyper-parameters while running the SVGD dynamics.

Subsequently, we proposed equivariant energy based models wherein the energy function is pa-
rameterized by an equivariant network. In our experiments, we leveraged the recent advances in
geometric deep learning to model EBMs using steerable CNNs (Weiler and Cesa, 2019) for images,
equivariant graph networks (Satorras et al., 2021) for representing molecules, and group equivariant
networks (Cohen and Welling, 2016) for many-body particle systems. We used equivariant SVGD
to train these equivariant energy based models for modelling invariant densities and demonstrated
that incorporating symmetries in the energy model as well as the sampler leads to efficient training.
However, as discussed in previous works (Grathwohl et al., 2019), training EBMs using contrastive
divergence and short sampling chains is often unstable and challenging. These issues remain with
equivariant samplers and have to be addressed to be able to train large-scale energy based models.
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