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ABSTRACT

Domain generalization aims at training machine learning models to perform ro-
bustly across different and unseen domains. Several recent methods use multiple
datasets to train models to extract domain-invariant features, hoping to generalize
to unseen domains. Instead, we explicitly train domain-dependant representations
by using ad-hoc batch normalization layers to collect independent domain’s statis-
tics. We propose to use these statistics to map domains in a shared latent space,
where membership to a domain can be measured by means of a distance func-
tion. At test time, we project samples from an unknown domain into the same
space and express their domain as a linear combination of the known ones. We
apply the same mapping strategy at training and test time, learning both a latent
representation and a powerful but lightweight ensemble model. We show a signif-
icant increase in classification accuracy over current state-of-the-art techniques on
popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.

1 INTRODUCTION

Machine learning models trained on a certain data distribution often fail to generalize to samples
from different distributions. This phenomenon is commonly referred to in literature as domain
shift between training and testing data (Sugiyama & Storkey (2007); Luo et al. (2019)), and is one
of the biggest limitations of data driven algorithms. Assuming the availability of few annotated
samples from the test domain, the problem can be mitigated by fine-tuning the model with explicit
supervision (Yosinski et al. (2014)) or with domain adaptation techniques (Wang & Deng (2018)).
Unfortunately, this assumption does not always hold in practice as it is often unfeasible in real
scenarios to collect samples for any possible environment.

Domain generalization refers to algorithms to solve the domain shift problem by training models
robust to unseen domains. Several works leverage different domains at training time to learn a
domain-invariant feature extractor (Muandet et al. (2013); Ghifary et al. (2015); Koch et al. (2015);
Motiian et al. (2017); Li et al. (2018b)). Other works focus on optimizing the model parameters
to obtain consistent performance across domains via ad-hoc training policies (Tobin et al. (2017);
Shankar et al. (2018); Volpi et al. (2018); Li et al. (2019)), while a different line of work requires
modifications to the model architecture to achieve domain invariance (Khosla et al. (2012); Li et al.
(2017); Ding & Fu (2017); Mancini et al. (2018a)).

While these methods try to extract domain-invariant features, we go in the opposite direction and
explicitly leverage domain-specific representations by collecting domain-dependent batch normal-
ization (BN) statistics for each of the domains available at training time. By doing so we train
a lightweight ensemble of domain-specific models sharing all parameters except for BN statistics.
Upon convergence, we propose to use the accumulated statistics to map each domain as a point in
a latent space of domains, we will refer to this mapping as the Batch Normalization Embedding
(BNE) of a domain. Fig. 1 (a) sketches a visualization of such a space for a simplified case of three
domains available at training time and a single batch normalization layer operating on the output of
a convolutional layer with two output channels (i.e., two means and variances are accumulated and
therefore each domain can be represented as a 2D gaussian). Fig. 1 (b, c) illustrate how in this space
the membership of a sample to a domain can be measured by looking at the distance (in yellow) be-
tween the instance normalization statistics of the sample (in green) and the accumulated population
statistics of each domain (in red). The reciprocal of the distances distances are used at test time to
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(a) Creation of domain representa-
tions.

(b) Projection of a sample from an
unknown domain.

(c) Localization with respect to
known domains.

Figure 1: We propose to: (a) learn domain specific models and map training domains (in red) in a
latent space via population statistics of the BN layers, (b) project a sample from an unknown domain
to the same space via its instance statistics (in green), and (c) measure its distance from the known
domains to approximate the unknown test distribution by a mixture of the domain models.

classify a test sample from an unknown domain as a weighted combination of the domain-specific
predictions of our lightweight ensemble. The same combination of domain-specific models can be
used at training time on samples from the known domains to force the ensemble to learn a mean-
ingful latent space and logits that can be linearly combined according to the proposed weighting
strategy.

To sum up the contributions of our work: (i) We propose to use batch normalization statistics ac-
cumulated on convolutional layers to map image samples to a latent space where membership to a
domain can be measured according to a distance from domain BNEs; (ii) We propose an effective
way to use this concept to learn a lightweight ensemble model that shares all parameters excepts
the normalization statistics and can generalize better to unseen domains; (iii) Compared to previous
work, we do not discard domain specific attributes but use them to learn a domain latent space and
map unknown domains with respect to known ones. (iv) Our method can be applied to any modern
Convolutional Neural Network (CNN) that relies on batch normalization layers and scales gracefully
to the number of domains available at training time.

2 RELATED WORK

Domain Generalization. Most domain generalization works attempt to expose the model to domain
shift at training time to generalize to target domains. Invariance can be encouraged at multiple levels:

Feature-level, denotes methods deriving domain invariant features by minimizing a discrepancy
between multiple training domains. Ghifary et al. (2015) brought domain generalization to the at-
tention of the deep learning community by training multi-task auto-encoders to transform images
from one source domain into different ones, thereby learning invariant features. Analogously, Li
et al. (2018b) extended adversarial autoencoders by minimizing the Maximum Mean Discrepancy
measure to align the distributions of the source domains to an arbitrary prior distribution via adver-
sarial feature learning. Conditional Invariant Adversarial Networks (Li et al. (2018c)) have been
proposed to learn domain-invariant representations, whereas Deep Separation Networks (Bousmalis
et al. (2016)) extract image representations partitioned into two sub-spaces: one private to each do-
main and one shared. Differently, Motiian et al. (2017) propose to learn a discriminative embedding
subspace via a Siamese architecture (Koch et al. (2015)). Episodic training (Li et al. (2019)) was
proposed to train a generic model while exposing it to domain shift. In each episode, a feature ex-
tractor is trained with a badly tuned classifier (or vice-versa) to obtain robust features. For all these
methods, the limited variety of domains to which the model can be exposed at training time can limit
the magnitude of the shift to which the model learns invariance.

Data-level, denotes methods attempting to reduce the training set domain bias by augmenting the
cardinality and variety of the samples. Data augmentation methods based on domain-guided per-
turbations of input samples (Shankar et al. (2018)) or on adversarial examples (Volpi et al. (2018))
have been proposed with the purpose of training a model to be robust to distribution shift. Domain

2



Under review as a conference paper at ICLR 2021

randomization was adopted (Tobin et al. (2017); Loquercio et al. (2019)) to solve the analogous
problem of transferring a model from synthetic to real data by extending synthetic data with random
renderings. By performing data augmentation those methods force the feature extractor to learn
domain-invariant features, while we argue that discarding domain specific information might be
detrimental for performance.

Model-based, denotes methods relying on ad-hoc architectures to tackle the domain generalization
problem. Li et al. (2017) introduced a low-rank parameterized CNN model, a dynamically parame-
terized neural network that generalizes the shallow binary undo bias method (Khosla et al. (2012)).
Similarly, a structured low-rank constraint is exploited to align multiple domain-specific networks
and a domain-invariant one in (Ding & Fu (2017)). Mancini et al. (2018a) train multiple domain-
specific classifiers and estimate the probabilities that a target sample belongs to each source domain
to fuse the classifiers’ predictions. A recent work (Carlucci et al. (2019)) proposes an alternative ap-
proach to tackle domain generalization by teaching a model to simultaneously solve jigsaw puzzles
and perform well on a task of interest. Most of these methods require changes to state-of-the-art
architectures, resulting in an increased number of parameters or complexity of the network.

Meta-learning, denotes methods relying on special training policies to train models robust to do-
main shift. Li et al. (2018a) extend to domain generalization the widely used model agnostic meta
learning framework (Finn et al. (2017)). Balaji et al. (2018) propose a novel regularization function
in a meta-learning framework to make the model trained on one domain perform well on another
domain. Huang et al. (2020) propose a training heuristic that iteratively discards the dominant fea-
tures activated on the training data, challenging the model to learn more robust representations. A
gradient-based meta-train procedure was introduced by Dou et al. (2019) to expose the optimization
to domain shift while regularizing the semantic structure of the feature space. These methods simu-
late unseen domains by splitting the training data in a meta-training set and meta-test set, therefore
are inherently bounded by the variety of the samples available at training time.

Batch Normalization for distribution alignment. The use of separate batch normalization statis-
tics to align a training distribution to a test one has been firstly introduced for domain adaptation
by Carlucci et al. (2017a) and Carlucci et al. (2017b). The same domain-dependent batchnorm
layer has been adapted to the multi-domain scenario (Mancini et al. (2018c;b)) and exploited in a
graph-based method (Mancini et al. (2019)) that leverages domain meta-data to better align unknown
domains to the known ones. In all these works, however, some representation of the target domain is
required to perform the alignment during training, using either samples or metadata describing the
target domain. Our approach instead does not rely on any external source of information regarding
the target domain.

3 METHOD

The core idea of our method is to use batch normalization statistics to map known and unknown
domains in a shared latent space where domain membership of samples can be measured according
to distance between gaussian distributions.

3.1 PROBLEM FORMULATION

LetX andY denote the input (e.g., images) and the output (e.g., object categories) spaces of a model.
Let D = {di}Ki=1 denote the set of the K source domains available at training time. Each domain di
can be described by an unknown conditional probability distribution pyx,di

= p(y|x, i) over the space
X ×Y . The aim of a machine learning model is to learn the probability distribution pyx = p(y|x) of
the training set (Bridle (1990)) by training models to learn a mapping X → Y . We propose to use
a lightweight ensemble of models to learn a mapping (X ,D) → Y that leverages the domain label
to model a set of conditional distributions {pyx,di

}Ki=1 conditioned on the domain membership. Let
t be a generic target domain available only at testing time and following the unknown probability
distribution pyx,t over the same space. Since it is not possible to learn the target distribution pyx,t
during training, the goal of our method is to approximate it as a mixture (i.e., linear combination) of
the learned source distributions pyx,di

.
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(a) Multi-Source Domain Alignment Layer. (b) Source domains and target sample projected to L.

Figure 2: Our method on PACS (Li et al. (2017)) with Sketch as unknown domain. Our Multi-Source
Domain Alignment Layer (a) collects domain-specific population statistics and compute instance
statistics for test samples. (b) The population and instance statistics map respectively the source
domain and the test sample into the latent space L. Domain similarity is estimated as the reciprocal
of the distance Dd,t between the target embedding rt and each domain centroids ed.

For each source domain d ∈ D a training set Sd = {(x1d , y1d), ..., (xnd
, ynd

)} containing nd
labelled samples is provided. The test set T = {x1t , ..., xnt} is composed of mt unlabelled samples
collected from the unknown marginal distribution pxt of the target domain t. As opposed to the
domain adaptation setting, we assume that samples from the target domain(s) are not available at
training time and that each of them might belong to a different unseen domain.

3.2 MULTI-SOURCE DOMAIN ALIGNMENT LAYER

Our work is motivated by the observation that neural networks are particularly prone to capture
dataset bias in their internal representations (Li et al. (2016)) making internal features distributions
highly domain-dependent. To capture and alleviate the distribution shift that is inherent in the multi-
source setting, we draw inspiration from (Carlucci et al. (2017b); Mancini et al. (2018c;b)) and adapt
batch normalization layers (Ioffe & Szegedy (2015)) to normalize the domain-dependent activations
to the same reference distribution via domain-specific normalization statistics. Nevertheless, we
differ from previous works since we do not need samples from the target domain to update statistics
of our layer and we do not require an extra network which increase the number of parameters (e.g.,
domain discovery network in (Mancini et al. (2018b))) to compute the domain membership of a
sample.

At inference time, the activations of a certain domain d are normalized by matching their first and
second order moments, nominally (µd, σ

2
d), to those of a reference Gaussian with zero mean and

unitary variance:

BN(z; d) =
z − µd√
σ2
d + ε

, (1)

where z is an input activation extracted from the marginal distribution qzd of the activations from the
domain d; µd = Ez∼qzd [z] and σ2

d = V arz∼qzd [z] are the population statistics for the domain d, and
ε > 0 is a small constant to avoid numerical instability.

At training time, the layer collects and applies domain-specific batch statistics (µ̃d, σ̃
2
d), while up-

dating the corresponding moving averages to approximate the domain population statistics. At infer-
ence time, if the domain label d of a test sample is unknown or it does not belong to D, we can still
rely on normalization by instance statistics, i.e., the degenerate case of batch statistics with batch
size equal to 1. Fig. 2 (a) depicts the functioning of our multi-source domain generalization layer.

Indeed, for convolutional layers, instance statistics and batch statistics are approximations of the
same underlying distribution with different degrees of noise. Since the population statistics are a
temporal integration of the batch statistics, the validity of this statement extends to the comparison
with them. For example, the computation of the statistics for a single channel in the case of a batch
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normalization layer applied on a 2D feature map of size H ×W with a generic batch size B (batch
statistics) and with B = 1 (instance statistics) is equals to:

µ̃ =
1

B ·H ·W
∑
b,h,w

zb,h,w
(B=1)

=
1

H ·W
∑
h,w

zh,w (2)

σ̃2 =
1

B ·H ·W
∑
b,h,w

(zb,h,w − µ̃)2
(B=1)

=
1

H ·W
∑
h,w

(zh,w − µ̃)2, (3)

where µ̃ and σ̃2 are respectively the batch mean and variance and zb,h,w is the value of a single
element of the feature map. If we consider zb,h,w to be described by a normally distributed random
variable Z ∼ N (µ, σ2), then the instance and batch statistics are an estimate of the parameters of the
same gaussian computed over a different number of samples, H ·W and B ·H ·W respectively. In
the next section, we will explain how this property is exploited to map source domains and samples
from unknown domain in the same latent space.

3.3 DOMAIN LOCALIZATION IN THE BATCHNORM LATENT SPACE

The domain alignement layer described in Sec. 3.2 allows to learn the multiple source distributions
{pyx,d}d∈D distinctly. By leveraging them we can learn a lightweight ensemble of domain specific
models, where every network shares all the weights except for the normalization statistics. Since
such lightweight ensemble embodies the multiple source distributions, we propose to reduce the do-
main shift on the unknown target domain by interpolating across these distributions to approximate
the unknown distribution pyx,t. The choice of the weights depends on the similarity of a test sample
to each source domain.

We denote with a l ∈ B = {1, 2, ..., L} in superscript notation the different batch normalization
layers in the model. For each of them we can define a latent space Ll spanned by the activation
statistics at the l − th layer of the model. In this space, single samples x are mapped via their
instance statics (µ̃, σ̃2), whereas the population statistics accumulated for each domain (µd, σ

2
d) are

used to represent domain centroids. Considering all latent spaces at different layers we define a batch
normalization embedding (BNE) for a certain domain d as the stacking of the population statistics
computed at every layer:

ed = [e1d, e
2
d, ..., e

L
d ] = [(µ1

d, σ
1
d
2
), (µ2

d, σ
2
d
2
), ..., (µL

d , σ
L
d

2
)]. (4)

For a target sample xt from an unknown domain t, we can derive its projection by forward propa-
gating it through the network and computing its instance statistics. The latent embedding rt of xt is
defined as the stacked vector of its instance statistics at different batch normalization layers in the
network:

rt = [r1t , r
2
t , ..., r

L
t ] = [(µ1

t , σ
1
t
2
), (µ2

t , σ
2
t
2
), ..., (µL

t , σ
L
t

2
)]. (5)

Each rlt represents the instance statistics collected at a certain layer l during forward propagation
and can be used to map the sample xt in the latent space Ll of layer l. Once the BNE for the test
sample is available, it is possible to measure the similarity of a target sample xt to one of the known
domains d as the inverse of the distance between rt and ed. By extension, this allows a soft 1-Nearest
Neighbour domain classification of any test sample.

To compute a distance between two points in Ll, we consider the means and variances of the cor-
responding batch normalization layer as the parameters of a multivariate Gaussian distribution. We
can hence adopt a distance on the space of probability measures, i.e., a symmetric and positive defi-
nite function that satisfies the triangle inequality. We select the Wasserstein distance for the special
case of two multivariate gaussian distributions, but we report a comparison to alternative distances
in the supplementary material. Let p ∼ N (µp, Cp) and q ∼ N (µq, Cq) be two normal distributions
on Rn, with expected value µp and µq ∈ Rn respectively and Cp, Cq ∈ Rn×n covariance matrices.
Denoting with || · ||2 the Euclidean norm on Rn, the 2-Wasserstein distance is:

W(p, q) = φ((µp, Cp), (µq, Cq)) = ||µp − µq||22 + trace(Cp + Cq − 2(C1/2
q CpC

1/2
q )1/2) (6)
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We rely on Eq. 6 to measure the distance between a test sample xt and the domain d by summing
over the batch normalization layers l ∈ B the distance between the activation embeddings rlt and eld:

DL(ed, rt) =
∑
l∈B

W(eld, r
l
t) =

∑
l∈B

φ((µl
d, Diag(σl

d

2
)), (µl

xt
, Diag(σl

xt

2
))) (7)

Eq. 2 shows that instance and batch statistics differ only for the number of samples over which they
are estimated, making the comparison meaningful. The similarity of a test sample xt to the domain
d is defined as the reciprocal of the distance from that domain and denoted as wt

d.

Once the similarity to each source domains is computed, we can use them to recover the unknown
target distribution pyx,t as a mixture (i.e., a linear combination) of the learned source distributions
pyx,d weighted by the corresponding domain similarity:

pyx,t =

∑
d∈D w

t
dp

y
x,d∑

d∈D w
t
d

. (8)

We denote with f(·) the result of a forward pass in a neural network. We get the final prediction
of our lightweight ensemble model f(xt) as a linear combination of the domain dependant models
f(xt|d):

f(xt) =

∑
d∈D w

t
df(xt|d)∑

d∈D w
t
d

, (9)

Fig. 2 shows an application of our method to the PACS dataset (Li et al. (2017)) with 3 domain
available at training time and one unknown.

Our formulation allows to navigate in the latent space of the batchnorm statistics. Specifically, if a
test sample belongs to one of the source domains, our method assigns a high weight to the prediction
of the corresponding domain specific model. On the other hand, if the test sample does not belong
to any of the source domains, the final prediction will be expressed as a linear combination of the
models of the domains embodied in our lightweight ensemble.

3.4 TRAINING POLICY

To help shape the latent space of every batch normalization layer, we replicate at training time the
distance weighting procedure described in Eq. 9 to compute predictions on samples from known
domains. Each training batch is composed of K domain batches with an equal number of samples.
During every training step, (i) the domain batches are first propagated to update the corresponding
domain population statistics (µd, σ

2
d, ). Then, (ii) all individual samples are propagated assuming

an unknown domain to collect their instance statistics and compute the domain similarities wt
d, as

in Sec. 3.3. Finally, (iii) each sample is propagated under K different domain assumptions (i.e.,
through the corresponding domain-specific branches) and the resulting domain-specific predictions
are weighted according to Eq. 9. Applying this procedure during training encourages the creation of
a well-defined batch normalization latent space.

Since we initialize our model with weights pre-trained on ImageNet, each domain-specific batch
normalization branch needs to be specialized before starting the distance training (DT) procedure
described above, otherwise convergence problems might occur. We thus warm-up domain-specific
batch normalization statistics by pre-training the model on the whole dataset following the stan-
dard procedure, except for the accumulation and application of domain-specific batch normalization
statistics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

By means of a synecdoche, we name our method after BNE, its main component.

Datasets. In the main paper we evaluate on two domain generalization benchmarks: (a.) PACS (Li
et al. (2017)) features 4 domains (Art Painting, Cartoon, Photo, Sketch) with a significant domain
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Table 1: State-of-the-art comparison on PACS with ResNet-18.

Method Art Cartoon Photo Sketch Avg. DA Avg. ∆%

CrossGrad - Shankar et al. (2018) 78.7 73.3 94.0 65.1 79.1 77.8 -1.64
MetaReg - Balaji et al. (2018) 79.9 75.1 95.2 69.5 79.9 81.7 +2.25

MLDG - Li et al. (2018a) 79.5 77.3 94.3 71.5 79.1 80.7 +2.02
Epi-FCD - Li et al. (2019) 82.1 77.0 93.9 73.0 79.1 81.5 +3.03

JiGen - Carlucci et al. (2019) 79.4 75.3 96.0 71.4 79.1 80.5 +1.77
MASF - Dou et al. (2019) 80.3 75.7 94.3 69.6 79.2 80.0 +1.01

DeepAll 75.8 73 94.4 70.9 - 78.5 -
BNE (Ours) 78.8 78.9 94.8 79.7 78.5 83.1 +5.86

shift. Each domain includes samples from 7 different categories, for a total of 9991 samples. Some
examples are shown in Fig. 2. (b.) Office-31 (Saenko et al. (2010)) was originally introduced for the
task of domain adaptation and has been subsequently used for domain generalization as well. The
dataset is composed of 3 different sources and 31 categories, representing images captured with a
Webcam and a dSLR camera or collected from the Amazon website. In the supplementary material
we report results also for the Office-Caltech (Gong et al. (2012)) dataset and expand the evaluation
on PACS and Office-31.

Evaluation Protocol. Coherently with other works, we evaluate both the AlexNet (Krizhevsky
et al. (2012)) and the more recent ResNet-18 (He et al. (2016)) architectures. For the experiments
on PACS and Office-31 we follow the standard leave-one-domain-out evaluation procedure, where
the model is trained on all domains but one and tested on the left-out one. However, since the
original version of AlexNet does not include batch normalization layers, we adopt a variant with
batch normalization applied on the activations of each convolutional layer (Simon et al. (2016)).
Since the goal of domain generalization is to leverage multiple sources to train models that are robust
on any target domain, the natural deep-learning baseline to compare against consists in training
directly on the merged set of source domains. We will refer to it as (DeepAll). We compare our
method against this strong baseline and to several deep-learning based state-of-the-art methods for
domain generalization. Since different methods rely on different initialization of network weights
which result in different baselines, we compare to methods providing their own baseline and report
for every competitor: the performance on each unseen domain, the average baseline performance
(Avg. DA), the average performance of the method itself (Avg.) and the relative gain (∆%).

4.2 DOMAIN GENERALIZATION FOR CLASSIFICATION

We compare models for the task of object classification on commonly used benchmarks.

4.2.1 PACS

We first benchmark our method on the PACS dataset (Li et al. (2017)), which presents a challenging
domain generalization setting for object recognition. Every test uses 3 domains as training set and
one as unknown test set; for each of this leave-one-out configuration we train a model from the same
initialization for 60 epochs. We first test our method using the ResNet-18 architecture and report the
results in Tab. 1. Overall, our proposal obtains the best absolute accuracy across on 2 out of 4 target
sets, with an average accuracy (Avg.) of 83.1% and a relative gain (∆%) almost double than the
closest competitor. Since all the networks are initialized with weights trained on ImageNet they are
implicitly biased towards the Photo domain, as testified by the higher accuracy on it when treated as
test set. Sketch, instead, is arguably the more challenging and different from ImageNet as testified
by the lower accuracy achieved by all methods and it is when testing on it that our method provides
the bigger gain (+9.6% absolute gain in accuracy over our baseline and +8.4% over the strongest
competitor).

4.2.2 OFFICE-31

We evaluate our method on Office-31 (Saenko et al. (2010)) according to the leave-one-domain-out
protocol. We use AlexNet initialized with ImageNet weights to compare with published results and
train it with our method for 100 epochs with learning rate 10−4. Tab. 2 shows that our approach
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Table 2: State-of-the-art comparison on Office-31 with AlexNet.

Method Amazon Dslr Webcam Avg. DA Avg. ∆%

UB - Khosla et al. (2012) 42.4 98.5 93.4 74.2 78.1 +5.26
DSN - Bousmalis et al. (2016) 44.0 99.0 94.5 74.2 79.2 +6.74
MTAE - Ghifary et al. (2015) 43.7 99.0 94.2 74.2 79.0 +6.47
DGLRC - Ding & Fu (2017) 45.4 99.4 95.3 74.2 80.0 +7.82
MCIT - Rahman et al. (2019) 51.7 97.9 94.0 74.2 81.2 +9.43

DeepAll 43.8 94.1 88.4 - 75.4 -
BNE (Ours) 54.0 99.4 92.3 75.4 81.9 +8.62

Table 3: Comparison of different variants of our method on PACS with Resnet.

Method DT Warm-up Art Cartoon Photo Sketch Avg. ∆%

DeepAll - - 75.8 73.0 94.4 70.9 78.5 -

(a) BNE 7 7 74.7 71.7 93.0 74.8 78.6 +0.03
(b) BNE 3 7 79.8 76.0 92.5 72.5 80.2 +2.13
(c) BNE 3 3 78.8 78.9 94.8 79.7 83.1 +5.86

(d) DNet 3 3 77.3 73.8 94.2 71.2 79.1 +0.08

obtains the best absolute accuracy in two out of three test scenarios and a relative gain comparable
or better than the alternatives. The Amazon target domain is the more challenging as the images
are acquired in ideal conditions (i.e., white backgrounds, studio lighting. . . ) that are fairly different
from the ImageNet domain. On it, we boost the absolute accuracy with respect to the baseline by an
impressive +11.2% and +2.3% with respect to the closest competitor.

4.3 ABLATION STUDY

We want to measure the impact on performance of the different components of our methods. We run
ablation experiments on the PACS dataset using the ResNet-18 architecture and report the results
in Tab. 3, comparing again with the DeepAll baseline and to an alternative method (DNet, short for
‘DiscoveryNet’ on row (d)) inspired by Mancini et al. (2018b). In the latter domain membership
is assigned by a domain discovery network instead of computing the distance between the latent
batch normalization embeddings as we propose. More details on the domain discovery network
are reported in the supplementary material. On row (a) we show the performance gained by using
separate batchnorm statistics for the different train domains and using the projection and weighting
strategy described in Sec. 3.3; row (b) extends the method above by using the distance weighting
at training time (DT) as described in Sec. 3.4; finally, row (c) includes a warm-up phase in the
training of the model to make population statistics converge to stable values before starting the
distance training. By comparing the average accuracy (Avg.) across the four possible target sets, it
is clear how every component contributes to an increase in performance with respect to the baseline.
Comparing line (c) to (d) we can see how our proposal is more effective and require less parameters
than the alternative domain mapping strategy inspired by Mancini et al. (2018b).

5 CONCLUSIONS

Our method allows to navigate in the latent space of batch normalization statistics to describe un-
known domains as a combination of the known ones. We rely on domain-specific normalization lay-
ers to keep different representations for the different domains, then use this implicit representations
to localize samples from unknown domains. We explicitly keep separate per domain representations
while previous works mainly focused on deriving domain-invariant ones. We believe that this work
highlights some not yet well explored properties of the batch normalization layers. Our formulation
could also be easily adapted to the domain adaptation setting by injecting unlabelled samples from
the target domain during training. In the case where few target samples are available at the same
time, they could all be used to produce a less biased estimate of the unseen domain statistics. Those
are both promising directions that we plan to explore in future works.
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