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Abstract

Medical code prediction from clinical notes001
aims at automatically associating medical002
codes with the clinical notes. Rare code prob-003
lem, the medical codes with low occurrences, is004
prominent in medical code prediction. Recent005
studies employ deep neural networks and the006
external knowledge to tackle it. However, such007
approaches lack interpretability which is a vital008
issue in medical application. Moreover, due009
to the lengthy and noisy clinical notes, such010
approaches fail to achieve satisfactory results.011
Therefore, in this paper, we propose a novel012
framework based on medical concept driven013
attention to incorporate external knowledge for014
explainable medical code prediction. In spe-015
cific, both the clinical notes and Wikipedia doc-016
uments are aligned into topic space to extract017
medical concepts using topic modeling. Then,018
the medical concept-driven attention mecha-019
nism is applied to uncover the medical code020
related concepts which provide explanations021
for medical code prediction. Experimental re-022
sults on the benchmark dataset show the supe-023
riority of the proposed framework over several024
state-of-the-art baselines.025

1 Introduction026

Medical codes, also known as ICD codes, are or-027

ganized by International Classification of Diseases028

(ICD, recent versions are ICD-9 and ICD-10) tax-029

onomies. Each medical code corresponds to a dis-030

ease, procedure or sign, and so on. Medical codes031

can abstract away fine details of free-text clinical032

notes, which provide great convenience for ana-033

lyzing clinical data directly (Shull, 2019; Bai and034

Vucetic, 2019). It is time consuming, costly and035

error-prone for manual medical coding due to the036

large menu of options (over 15,000 codes in ICD-037

9) and the complex lengthy clinical notes (Adams038

et al., 2002; Lang, 2007). Medical code predic-039

tion aims at automatically associating the relevant040

medical codes with the clinical notes.041

Figure 1: An example of a clinical note annotated
with 3-digit ICD-9 code “250” and the corresponding
Wikipedia document, where words in red are medical
concept-indicative words which can be employed as ev-
idences to infer medical codes.

Treating medical code prediction as a multi-label 042

text classification problem, many machine learning 043

based approaches have been proposed including 044

Bayesian-based (Larkey and Croft, 1995) and Sup- 045

port Vector Machine based (Lita et al., 2008; Per- 046

otte et al., 2014). With the success of deep learning, 047

many researchers propose neural networks with at- 048

tention mechanism (Mullenbach et al., 2018; Li 049

and Yu, 2020; Vu et al., 2020) to identify represen- 050

tative words in clinical notes and those with large 051

weights serve as evidence for prediction. Li and 052

Yu (2020) utilize convolutional neural networks 053

with several fixed window sizes to capture various 054

medical patterns, then identify representative ones 055

through label attention mechanism. 056

Rare code problem, the medical codes with low 057

occurrences, is prominent in medical code predic- 058

tion. It was pointed out in (Bai and Vucetic, 059

2019) that among 942 3-digit ICD-9 codes oc- 060

curring in the MIMIC-III database (the largest 061

publicly-available medical database), the least com- 062

mon 437 codes account for only 1% of code oc- 063
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currences. To tackle the rare code problem, Cao et064

al. (2020) leverage the code hierarchy and code co-065

occurrences information to aid predict rare codes.066

Vu et al. (2020) introduce a hierarchical joint learn-067

ing architecture using the hierarchical relationships068

among codes to alleviate the rare code problem.069

Bai and Vucetic (2019) incorporate the external070

Wikipedia knowledge to enhance semantic informa-071

tion of the rare codes. The matching score between072

a clinical note and a medical code is calculated073

based on the code’s related Wikipedia document.074

However, most of the approaches mentioned075

above lack interpretability, which is vital for076

medical-related tasks. Moreover, most of these077

approaches fail to achieve satisfactory results be-078

cause of the noisy and lengthy clinical notes (con-079

taining an average of 1,596 words). To address080

these challenges, we propose to explore latent med-081

ical concepts (including signs, symptoms, treat-082

ments, etc.) related to diseases, hidden in the clini-083

cal notes and Wikipedia knowledge. As shown in084

Figure 1, we can identify the informative medical085

concepts related to ‘diabetes mellitus’, including086

signs ‘high blood sugar’ and ‘not enough insulin’,087

typical symptoms ‘frequent urination, increased088

thirst, increased hunger’, and typical treatments089

‘insulin injection’ and ‘insulin sensitizer’ based on090

the Wikipedia document describing ICD-9 code091

“250”. Obviously, medical concepts mentioned092

above in clinical notes provide the effective evi-093

dences to infer disease ‘diabetes mellitus’. More-094

over, based on the extracted medical concepts, the095

lengthy and noisy clinical notes can be alleviated.096

Therefore, in this paper, we propose a novel097

framework based on medical concept driven at-098

tention (MCDA) to predict medical codes. Specif-099

ically, both the clinical notes and Wikipedia doc-100

uments are fed as a whole corpus into the topic101

model to extract medical concepts. Both the102

Wikipedia documents and the clinical notes are103

represented as the distributions over the hidden top-104

ics (medical concepts) instead of the lengthy texts.105

Then, the medical concept-driven attention mech-106

anism is applied, consisting of note-specific and107

label-specific concept-driven attention. On the one108

hand, the note-specific concept-driven attentions109

capture the salient medical concepts hidden in a110

specific clinical note. On the other hand, the label-111

specific concept-driven attentions focus on relevant112

medical concepts in a clinical note for each medical113

code. Experimental results show that the proposed114

framework outperforms a number of state-of-the- 115

art models on a benchmark dataset. 116

The main contributions of this paper are listed 117

as follows: 118

• A novel framework based on medical concept 119

driven attention (MCDA) is proposed to pre- 120

dict medical codes. Moreover, the medical 121

concept-driven attention mechanism, consist- 122

ing of note-specific and label-specific concept- 123

driven attention, is proposed to uncover the 124

medical code related concepts hidden in the 125

lengthy and noisy clinical notes. To the best of 126

our knowledge, our work is the first attempt to 127

explore latent medical concepts hidden in both 128

the clinical notes and the external knowledge 129

for explainable medical code prediction. 130

• Experimental results show that the proposed 131

framework significantly outperforms several 132

state-of-the-art models in all evaluation met- 133

rics. Moreover, it outperforms several state- 134

of-the-art frameworks incorporating external 135

knowledge in most evaluation metrics on the 136

benchmark dataset. 137

2 Related work 138

Medical code prediction, also known as automatic 139

ICD coding, is a challenging and important task in 140

the limelight of medical informatics community. 141

Many traditional machine learning methods have 142

been proposed including Bayesian-based (Larkey 143

and Croft, 1995) and Support Vector Machine 144

based (Lita et al., 2008; Perotte et al., 2014). Fueled 145

by deep learning, many researchers have proven 146

the effectiveness of convolutional neural network 147

(CNN) and long short-term memory (LSTM) for 148

medical code prediction. For example, Baumel et 149

al. (2018) apply hierarchical attention networks for 150

predicting medical codes. Mullenbach et al. (2018) 151

propose a CNN with attention mechanism to cap- 152

ture relevant information in source text for each 153

code. To find the specific evidence in the lengthy 154

and noisy text for predicting accurately, researchers 155

use CNN and variants (including multi-filter con- 156

volution, dilated convolution) with label attention 157

mechanism to capture codes’ relevant text patterns 158

(i.e. n-grams) in clinical notes (Mullenbach et al., 159

2018; Li and Yu, 2020; Ji et al., 2020). Vu et 160

al. (2020) focus on label-specific words in notes via 161

LSTM with customized label attention mechanism. 162
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To tackle the rare code problem, different163

kinds of knowledge, such as label structure, la-164

bel co-occurrence statistics, label descriptions and165

Wikipedia are employed. For example, the hier-166

archical tree structure of ICD-9 ontology is firstly167

exploited by (Perotte et al., 2014). Xie et al. (2019)168

employ graph convolutional network (GCN) to cap-169

ture the hierarchical relationships among medical170

codes. Cao et al. (2020) construct a co-graph to171

incoporate code co-occurrence prior.172

Instead of employing internal knowledge such173

label structure and label co-occurrence, some ex-174

ternal knowledge are incorporated. Regarding la-175

bel descriptions, Shi et al. (2017) apply character-176

aware neural network to match medical codes and177

clinical notes. Xie and Xing (2018) develop tree178

LSTM to use label descriptions. Zhou et al. (2021)179

train a teacher network with label descriptions and180

model the code co-occurrence through interactive181

shared attention. Regarding Wikipedia, Bai and182

Vucetic (2019) propose Knowledge Source Inte-183

gration (KSI) framework to integrate Wikipedia184

documents describing medical codes during train-185

ing of any baseline models. Compared with other186

external knowledge, Wikipedia knowledge is more187

informative and accessible.188

Regarding incorporating the Wikipedia knowl-189

edge, the proposed approach is similar to KSI (Bai190

and Vucetic, 2019), but with the following signifi-191

cant differences: (1) we propose medical concept-192

driven attention to find note-specific and label-193

specific medical concepts in clinical notes as ex-194

plainable evidences. While KSI simply calculates195

the matching score between a clinical note and a196

medical code’s related Wikipedia document, un-197

able to locate evidences in the context of clinical198

notes; (2) we make the most of Wikipedia knowl-199

edge through medical concepts, while KSI only200

considers the intersection of words in a clinical201

note and a Wikipedia document when predicting202

the corresponding medical code.203

3 Methodology204

3.1 Problem Setting205

Given a collection of Q clinical notes denoted as206

D = {d1, d2, . . . , dQ}. Each clinical note dj con-207

sists of a sequence of words and is accompanied208

with a set of associated medical codes. We denote209

the size of medical code set L = {l1, l2, . . . , l|L|}210

as |L|. In addition, we construct an external knowl-211

edge source Z = {z1, z2, . . . , z|L|} which consists212

of Wikipedia documents describing the medical 213

codes. Each unique medical code li corresponds to 214

a Wikipedia document zi. Given a clinical note dj , 215

the goal is to predict the associated medical codes 216

via the external knowledge source Z , which can be 217

treated as a multi-label text classification problem. 218

Therefore, in the rest of the paper, medical codes 219

are called labels for simplicity. 220

3.2 The Framework 221

The overall architecture of the proposed framework 222

(MCDA) is shown in Figure 2, which consists of 223

five parts: 224

(1) Medical Concept Extraction Module which 225

extracts medical concepts from the clinical notes 226

and Wikipedia documents; (2) Embedding Layer 227

which includes word embeddings, medical con- 228

cept embeddings and label embeddings; (3) En- 229

coder Layer which includes backbone encoder and 230

concept encoder; (4) Concept-Driven Attention 231

Layer which calculates the note-specific and label- 232

specific attention scores with the aid of medical 233

concepts; (5) Output Layer which predicts the med- 234

ical codes. 235

3.2.1 Medical Concept Extraction Module 236

The medical concepts are extracted via Latent 237

Dirichlet Allocation (LDA) (Blei et al., 2003). 238

At first, as the focuses and writing styles of 239

Wikipedia documents and clinical notes are dif- 240

ferent, we pre-process both the Wikipedia docu- 241

ments and clinical notes. Words appearing in both 242

the Wikipedia documents and clinical notes are 243

retained. 244

Then, we feed the pre-processed D and Z as a 245

whole corpus with vocabulary size V c, into LDA 246

to generate medical concepts. The granularity of 247

the extracted medical concepts is controlled by the 248

predefined K, the number of medical concepts. 249

Based on LDA, we obtain overall medical 250

concept-word distribution matrix C ∈ RK×|V c|. 251

For the single clinical note dj , the note-concept 252

distribution pj = (pj1, pj2, . . . , pjK) represents 253

the probability of the clinical note over each med- 254

ical concept. Likewise, for a single Wikipedia 255

document zi (corresponding to label li), the label- 256

concept distribution wi = (wi1, wi2, . . . , wiK) 257

represents the probability of the label over each 258

medical concept. Thereby, the labels-concept dis- 259

tribution matrix is represented as W ∈ R|L|×K . 260
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Figure 2: The architecture of the proposed MCDA Framework. Z and D denote the Wikipedia knowledge source
and clinical notes set respectively. Label-Specific CDA represents label-specific concept-driven attention, and
Note-Specific CDA represents note-specific concept-driven attention. It is worth noting that Backbone Encoder can
be any neural encoders.

3.2.2 Embedding Layer261

Embedding layer contains word embeddings, med-262

ical concept embeddings and label embeddings.263

As for word embeddings, a clinical note264

dj with Nj words is represented as dj =265 {
xj1, xj2, . . . , xjNj

}
using pre-trained word em-266

beddings.267

As for medical concept embeddings, the kth268

medical concept’s embedding ck can be obtained269

from the overall medical concept-word distribution270

matrix C.271

With respect to the label embeddings matrix272

U ∈ R|L|×K , we use the labels-concept distribu-273

tion matrix W as the initialization of U since LDA274

can capture the medical concepts information hid-275

den in labels and implicitly model correlations be-276

tween labels and clinical notes by projecting them277

into the same feature space.278

3.2.3 Encoder Layer279

Encoder layer contains both the backbone encoder280

and the concept encoder.281

As for the backbone encoder, theoretically282

it can be any neural encoders, such as CNN283

based encoders, RNN based encoders or Trans-284

former (Vaswani et al., 2017) based encoders.285

Given the clinical note dj = {xj1, xj2, · · · , xjNj},286

the hidden state of each word is generated by the287

backbone encoder. Thereby, the clinical note dj288

can be encoded as hj = (hj1, hj2, . . . , hjNj )
⊤ ∈289

RNj×t, where t is the dimension of the hidden290

state.291

As for the concept encoder, concept represen-292

tations are produced by a fully connected layer293

followed by ReLU activation function taking the 294

medical concept-word distribution matrix C as in- 295

puts. Hence, each concept representation sk ∈ Rt 296

is obtained according to the medical concept em- 297

bedding ck, k ∈ {1, 2, 3, . . . ,K}. 298

3.2.4 Concept-Driven Attention Layer 299

Not all words in the clinical note contribute equally 300

to the decision of medical diagnosis. Moreover, not 301

all medical concepts hidden in the clinical note con- 302

tribute equally for medical code prediction. There- 303

fore, attention weights are utilized to enhance clin- 304

ical note representations according to both word 305

representations and concept representations. We 306

aggregate the representations of medical concepts- 307

indicative words to form the clinical note represen- 308

tation. 309

Given the kth concept representation sk, we can 310

measure the interaction of words in the clinical note 311

dj and the medical concept by an attention weight 312

vector mjk, which can be computed as the inner 313

product of sk and φj as follows, 314

φj = tanh (hjW
c + bc)

mjk = φj sk
(1) 315

where hj =
(
hj1, hj2, . . . , hjNj

)⊤ stands for the 316

combination of all hidden states of words in the 317

clinical note dj , W c ∈ Rt×t and bc ∈ Rt are train- 318

able parameters, φj = (φj1, φj2, . . . , φjNj ) refers 319

to hj . The attention weight vector mjk indicates 320

how much attention the kth medical concept pays 321

to each word of the clinical note dj . 322

Then, we propose two kinds of attention mecha- 323

nisms including Note-Specific Concept-Driven At- 324
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tention and Label-Specific Concept-Driven Atten-325

tion based on mjk in (1).326

Note-Specific Concept-Driven Attention:327

The note-specific concept-driven attention mech-328

anism is employed to attend to note-specific med-329

ical concept words distributed in the clinical note.330

It leverages the note-specific medical concept in-331

formation based on the note-concept distribution332

pj = (pj1, pj2, . . . , pjK) with each dimension rep-333

resenting the level of prominence of the correspond-334

ing medical concept occurred in the clinical note dj .335

Then, it leverages the label-concept distribution ma-336

trix W ∈ R|L|×K to generate an attention weight337

vector for each label. Given the clinical note dj ,338

for the ith label, the note-specific concept-driven339

attention is calculated as follows,340

ac
ji = softmax

( K∑
k=1

mjkpjkW ik

)
rcji =

(
ac
ji

)⊤
hj

(2)341

for the ith label, ac
ji stands for the attention weight342

after incorporating the note-concept distribution343

pj along with the label-concept distribution W i,344

to discover medical concept keywords that a sin-345

gle clinical note concerns for the specific label.346

The final note-specific concept-driven clinical note347

representation matrix Rc
j =

(
rcj1; r

c
j2; . . . ; r

c
j|L|

)
348

is constructed with the sum of hidden states hj349

weighted by Ac
j =

(
ac
j1,a

c
j2, . . . ,a

c
j|L|

)
. Each350

ith row rcji of the matrix Rc
j is the note-specific351

clinical note representation regarding the ith label.352

Label-Specific Concept-Driven Attention:353

The label-specific concept-driven attention354

mechanism is proposed to capture label relevant355

medical concept words hidden in clinical notes us-356

ing label embeddings. Given the clinical note dj ,357

for the ith label, label-specific concept-driven at-358

tention is calculated as follows,359

al
ji = softmax

( K∑
k=1

mjkU ik

)
rlji =

(
al
ji

)⊤
hj

(3)360

We construct the label-specific clinical note repre-361

sentation matrix Rl
j =

(
rlj1; r

l
j2; . . . ; r

l
j|L|

)
with362

the sum of hidden states hj weighted by Al
j =363 (

al
j1,a

l
j2, . . . ,a

l
j|L|

)
.364

Frequency Number of Percentage of
range medical codes code occurrences
1-10 80 0.1%
11-50 73 0.6%
51-100 25 0.6%
101-500 82 6.7%

>500 84 92.0%

Table 1: Label frequency distribution

3.2.5 Output Layer 365

At last, we concatenate both representations calcu- 366

lated by note-specific and label-specific concept- 367

driven attention to obtain final representation ma- 368

trix Rj = [Rc
j ,R

l
j ] of clinical note dj . Rj is then 369

fed to a multi-layer perceptron (MLP) followed 370

by the Sigmoid activation function for predicting 371

all associated medical codes. This process can be 372

formalized as follow, 373

ỹ = Sigmoid(MLP (Rj)) (4) 374

The training objective is to minimize the binary 375

cross entropy loss between the prediction score ỹ 376

and the target y: 377

Loss = −
|L|∑
i=1

{yi log (ỹi) + (1− yi) log (1− ỹi)}

(5)

378

4 Experiments 379

In this section, we describe the datasets, evalua- 380

tion metrics, baselines and implementation details, 381

before discussing the experimental results. 382

4.1 Dataset 383

The dataset is constructed based on clinical notes 384

in MIMIC-III dataset and Wikipedia documents 385

of ICD-9 diagnosis codes following the same way 386

in (Bai and Vucetic, 2019). There are 52,722 con- 387

densed clinical notes in MIMIC-III (Johnson et al., 388

2016) dataset. On average, each note has 1,596 389

words. All medical codes are grouped by their first 390

three digits. A subset of 344 medical codes is kept 391

where each medical code has the corresponding 392

Wikipedia document. On average, each Wikipedia 393

document has 1,058 words. The whole word vocab- 394

ulary contains 60,968 unique words, out of which 395

only 12,173 can be found in clinical notes. It can 396

be deduced that both the clinic notes and Wikipedia 397

documents share significantly different word distri- 398

butions. 399
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Model
AUC F1

Top-10 recall
Macro Micro Macro Micro

CAML (Mullenbach et al., 2018) 0.855 0.978 0.257 0.656 0.806
+KSI (Bai and Vucetic, 2019) 0.891 0.980 0.285 0.659 0.814
+MCDA (ours) 0.894 ± 0.004 0.982 ± 0.001 0.300 ± 0.010 0.679 ± 0.001 0.828 ± 0.001
MultiResCNN (Li and Yu, 2020) 0.864 ± 0.008 0.980 ± 0.001 0.301 ± 0.011 0.673 ± 0.002 0.823 ± 0.001
+KSI (Bai and Vucetic, 2019) 0.892 ± 0.005 0.982 ± 0.001 0.320 ± 0.010 0.682 ± 0.002 0.830 ± 0.001
+MCDA (ours) 0.883 ± 0.005 0.982 ± 0.001 0.284 ± 0.008 0.684 ± 0.004 0.827 ± 0.002
DCAN (Ji et al., 2020) 0.847 ± 0.008 0.980 ± 0.001 0.260 ± 0.008 0.665 ± 0.002 0.822 ± 0.001
+KSI (Bai and Vucetic, 2019) 0.880 ± 0.005 0.981 ± 0.002 0.302 ± 0.011 0.679 ± 0.003 0.831 ± 0.002
+MCDA (ours) 0.898 ± 0.006 0.982 ± 0.001 0.311 ± 0.008 0.684 ± 0.001 0.831 ± 0.001
LAAT (Vu et al., 2020) 0.899 ± 0.006 0.983 ± 0.001 0.342 ± 0.010 0.687 ± 0.003 0.835 ± 0.002
+KSI (Bai and Vucetic, 2019) 0.908 ± 0.003 0.984 ± 0.001 0.352 ± 0.010 0.690 ± 0.003 0.837 ± 0.001
+MCDA (ours) 0.918 ± 0.006 0.984 ± 0.001 0.362 ± 0.008 0.702 ± 0.003 0.844 ± 0.002

Table 2: Performance comparisons among several baselines and their counterparts under KSI framework and the
proposed MCDA framework. We run all approaches 10 times with the same hyper-parameters using different
random seeds except CAML and CAML+KSI, statistics of which are from the source paper. We report the
mean± standard deviation for each approach.

Figure 3: Macro-averaged AUC by label frequency group for CAML, MultiResCNN, DCAN and LAAT. x-axis
denotes the label frequency group and y-axis denotes the macro-averaged AUC for each group.

Model
AUC F1

Top-10 recall
Macro Micro Macro Micro

LAAT+MCDA 0.918 0.984 0.362 0.702 0.844
w/o medical concept 0.899 0.983 0.342 0.687 0.835

w/o label-specific 0.872 0.974 0.223 0.630 0.772
w/o note-specific 0.904 0.983 0.342 0.686 0.833
w/o note-concept 0.915 0.983 0.350 0.698 0.842
w/o label-concept 0.912 0.984 0.345 0.698 0.843

Table 3: Ablation results.

4.2 Evaluation Metrics400

We evaluate the proposed method using micro and401

macro AUC, F1 metrics and Top-10 recall follow-402

ing the same way in (Bai and Vucetic, 2019). As403

shown in Table 1, medical codes in the dataset is404

highly imbalanced, the most common 84 codes ac-405

count for 92% of all code occurrences. We employ406

macro metrics to emphasize on rare code predic-407

tion.408

4.3 Baselines409

We choose four state-of-the-art models as the base-410

lines, which employ the label attention mechanism411

over neural word encoders. Moreover, for fair com-412

parison, all the baselines (as backbone encoder) are413

combined with KSI framework (Bai and Vucetic,414

2019) and the proposed framework (MCDA) re-415

spectively to incorporate Wikipedia knowledge. 416

Details of the baselines are described as follows: 417

KSI: Bai and Vucetic (2019) proposed the Knowl- 418

edge Source Integration framework to integrate the 419

Wikipedia knowledge. It can be combined with 420

some medical code prediction baselines. 421

CAML: Mullenbach et al. (2018) proposed the 422

convolutional attention network, which learns at- 423

tention distribution for each medical code. 424

MultiResCNN: Li and Yu (2020) utilized the multi- 425

filter convolutional layer to capture variable medi- 426

cal patterns and residual block to enlarge model’s 427

receptive field, incorporating the label attention 428

mechanism to generate label-aware representa- 429

tions. 430

DCAN: Ji et al. (2020) integrated dilated convolu- 431

tions and residual connections to capture complex 432

medical patterns and also incorporated label atten- 433

tion mechanism. 434

LAAT: Vu et al. (2020) proposed the customized 435

label attention model to learn attention distributions 436

over BiLSTM encoding hidden states for each med- 437

ical code. 438
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4.4 Implementation Details439

We use word2vec (Mikolov et al., 2013) to pre-train440

word embeddings with the size of 100 from clinical441

notes. The number of extracted medical concepts442

K is set to 100. We utilized default Adam opti-443

mizer (Kingma and Ba, 2014) to minimize the loss444

function. Regarding the training of the baseline445

models, we perform a grid search over hyperparam-446

eters according to their default parameter setting.447

4.5 Results448

Table 2 shows the performance comparisons among449

baselines and their counterparts under KSI frame-450

work and the proposed MCDA framework.451

Overall, it can be observed that by employing452

the KSI or MCDA framework, the performances of453

all the baseline models are improved, which shows454

the effectiveness and necessity of incorporating the455

Wikipedia knowledge for medical codes. It is worth456

noting that, compared with KSI, MCDA improves457

baselines more significantly in most metrics. The458

great improvement of top-10 recall demonstrates459

the effectiveness of the proposed framework in rec-460

ommending relevant medical codes. It is notewor-461

thy that MCDA outperforms most baselines with a462

larger margin than KSI (except MultiResCNN) on463

the macro metric. As the performance on the macro464

metric shows how well the rare codes problem is465

handled, we can deduce that MCDA captures pre-466

cisely the representations of labels and notes based467

on the medical concept from the external Wikipedia468

documents, which is crucial for rare codes.469

To further validate this deduction, we divide470

medical codes into 5 groups based on their fre-471

quencies in the dataset as shown in Table 1: [1,472

10], [11, 50], [51, 100], [101, 500] and [500, +∞).473

We calculate macro-averaged AUC of each medical474

code group for all baselines and their counterparts475

under KSI framework and our MCDA framework.476

The results are summarized in Figure 3. It can be477

observed that both KSI and MCDA bring major478

improvements of AUC on the least common [1-10]479

and [11-50] group. For DCAN and CAML, MCDA480

improves much more than KSI on [1-10] group,481

7.8% of DCAN and 2.8% of CAML. For the best482

baseline LAAT, MCDA improves 5.1% on [1-10]483

group and 2.1% on [11-50] group, which is better484

than 2.6% and 1.4% of KSI. The results demon-485

strate the benefit of incorporating medical concept486

driven attention than KSI in handling rare codes.487

For MultiResCNN, though MCDA brings im-488

provements on [1-10] group, it performs worse on 489

[11-50], [51-100] group and the overall dataset. 490

The possible reason is that, MultiResCNN concate- 491

nates outputs from 6 kernels with different sizes to 492

generate hidden state hi. Therefore, hi is the sim- 493

ple concatenation of 6 n-grams’ hidden states, not 494

the hidden state of the ith word (or n-gram) in other 495

baselines. Actually when the number of kernels 496

decrease to 1, MultiResCNN degrades to CAML. 497

It performs better on macro metrics which indi- 498

cates that MultiResCNN is unsuitable for MCDA 499

framework. 500

In addition, we also try Transformer (Vaswani 501

et al., 2017) and pre-trained BERT (Devlin et al., 502

2018) as backbone encoder. However, no Trans- 503

former based models work well in this task mainly 504

due to excessively long text. This conclusion is 505

also reported in (Li and Yu, 2020), (Ji et al., 2020) 506

and (Pascual et al., 2021). 507

4.6 Ablation Study 508

To further evaluate the effectiveness of each com- 509

ponent, we conduct some ablation experiments on 510

LAAT+MCDAM. The ablation results are shown 511

in Table 3. It can be observed that: 512

Effectiveness of Medical Concept Without medi- 513

cal concept (w/o medical concept in Table 3), med- 514

ical concept-driven attention degrades to the label 515

attention mechanism proposed in LAAT. The per- 516

formance drops on all metrics, especially on macro 517

metrics, indicating a significant reduction in the 518

ability to predict rare codes. 519

Effectiveness of Label-Specific Concept-Driven 520

Attention When discarding the label-specific 521

concept-driven attention (w/o label-specific in Ta- 522

ble 3), the performance drops dramatically on all 523

metrics, especially on F1 metric. It shows the effec- 524

tiveness of label-specific concept driven attention 525

in capturing desired labels’ relevant information in 526

lengthy and noisy clinical notes. 527

Effectiveness of Note-Specific Concept-Driven 528

Attention When discarding the note-specific 529

concept-driven attention (w/o note-specific in Ta- 530

ble 3), the performance drops obviously. To further 531

investigate the contribution of note-concept distri- 532

bution pj and labels-concept distribution matrix W , 533

we remove them separately. Both the performances 534

drop slightly. It can be concluded that they both are 535

complementary for note-specific concept-driven at- 536

tention. 537
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Figure 4: Word clouds of some medical concepts.

Figure 5: The attention distribution visualization over a
clinical note with two medical codes for LAAT and its
counterparts under KSI and MCDA framework. Regard-
ing LAAT, the words in bold represent highly weighted
ones by its label attention. Regarding KSI, the bold
words are extracted keywords in the intersection with
high attention weights. Regarding MCDA, the words
in bold represent highly weighted ones by note-specific
attention, while the words with underlines are highly
weighted ones by label-specific attention.

5 Discussion538

Medical Concept Visualization539

We randomly select two medical concepts with540

their top-20 weighted words. The corresponding541

word clouds are shown in Figure 4, where the size542

of a word is proportional to its assigned weight.543

Concept (a) is a medical concept about disease544

‘diarrhea’ accompanied with symptoms including545

‘vomiting’, ‘nausea’, ‘chills’, ‘pain’, etc. Concept546

(b) is diseases of ‘biliary and pancreatic’ which also547

includes ‘pancreatitis’, ‘ercp’ (a medical test tech-548

nique), ‘bile duct’ (organ), etc. These medical con-549

cepts can aggregate medical information including550

diseases, symptoms, diseased organs, treatments551

and so on, which can be used to describe clinical552

notes concisely and provide interpretability.553

Case Study of Interpretability554

To further explore interpretability of the proposed555

approach, the attention distribution visualization556

over a clinical note for LAAT and its counterparts 557

under KSI and our MCDA is shown in Figure 5. 558

It can be observed that LAAT (Vu et al., 2020) 559

with customized label attention mechanism only 560

captures scattered label-related words like ‘stone’ 561

and ‘cholecystectomy’ for inferring ‘gallstone’, 562

while it fails to find valid relevant evidence for in- 563

ferring ‘anemia’. KSI (Bai and Vucetic, 2019) can 564

additionally aid LAAT to find out keywords rele- 565

vant to the medical codes in the intersection of the 566

corresponding Wikipedia document and the clini- 567

cal note. However, KSI represents the intersection 568

as a binary vector encoding the presence of words, 569

which inevitably causes a great loss of information 570

in the clinical note, and is unable to aid LAAT lo- 571

cate evidence in the context of the clinical notes for 572

predicting corresponding medical code. 573

In contrast, MCDA’s label-specific concept- 574

driven attention guides LAAT discover the sign 575

‘stone’ in ‘bile duct’ which directly leads to ‘gall- 576

stone’. Moreover, based on note-specific concept- 577

driven attention, some important medical concepts 578

are retrieved and focused, such as ‘ERCP’ (a med- 579

ical test technique) and ‘sphincterotomy’ (a spe- 580

cific surgery) which are strongly related to ‘gall- 581

stone’. Regarding medical code ‘anemia’, based 582

on label-specific concept-driven attention, medical 583

concepts ‘bleed’ and ‘hematocrit’ related to ‘ane- 584

mia’ are captured, and the medical sign ‘hema- 585

tocrit fell’ and treatment ‘transfusion’ which 586

can infer disease ‘anemia’ are found based on 587

note-specific concept-driven attention. Therefore, 588

through medical concept-driven attention mecha- 589

nism, different kinds of medical concepts are fo- 590

cused which provide more interpretability. 591

6 Conclusions 592

We have presented a novel framework based on 593

medical concept driven attention for explainable 594

medical code prediction from clinical notes. To the 595

best of our knowledge, our work is the first attempt 596

to uncover and explore latent medical concepts 597

guided by the external knowledge while medical 598

concept-indicative words serve as the evidences 599

for explainable medical code prediction. Experi- 600

mental results show that MCDA improves signifi- 601

cantly several state-of-the-art models in most eval- 602

uation metrics on the benchmark dataset. In future, 603

more Wikipedia documents will be incorporated 604

and other ways of incorporating will be explored 605

to promote medical code prediction task. 606
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