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You Only Train Once: Efficient Tokenizer Selection
for Arithmetic in Language Models

Anonymous Authors1

Abstract

Tokenization fundamentally shapes how language
models perceive and process input, with substan-
tial downstream effects—especially in tasks re-
quiring symbolic or numerical precision. Yet, se-
lecting an optimal tokenizer from a vast design
space remains computationally prohibitive, typi-
cally requiring full-scale model training for each
candidate. Focusing on arithmetic reasoning, we
propose You Only Train Once (YOTO), a uni-
fied training framework that jointly optimizes the
language model and a parameterized distribution
over candidate tokenizers. By training a single
model using a merged vocabulary and sampling
tokenizations adaptively, YOTO enables efficient
co-adaptation between model and tokenizer. Ap-
plied to arithmetic tasks, YOTO discovers high-
performing number tokenizers while dramatically
reducing evaluation cost. Our results highlight a
promising path toward jointly optimizing tokeniz-
ers and models in a principled, scalable manner.

1. Introduction
Large Language Models (LLMs) have demonstrated im-
pressive generalization across a range of tasks, yet their
performance is tightly coupled to tokenization—the pre-
processing step that converts raw input into discrete sym-
bols (Jurafsky and Martin, 2023). As the model’s first lens
on data, tokenization serves as a perceptual bottleneck, shap-
ing what patterns the model can recognize and learn. Subtle
choices here can significantly affect performance, particu-
larly on tasks demanding symbolic precision such as arith-
metic, spelling, and multilingual processing (Serrano et al.,
2022; Kaddour et al., 2023).

Most modern LMs rely on subword tokenizers like Byte Pair
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Encoding (BPE) (Sennrich et al., 2016; Kudo and Richard-
son, 2018), which are effective for natural language but
often brittle in structured domains. For example, numerical
inputs are frequently tokenized inconsistently, obscuring
magnitude information and hindering arithmetic generaliza-
tion (Nogueira et al., 2021; Nath et al., 2021).

The computational challenge of tokenizer selection.
While a wide range of tokenizers have been proposed, there
is little consensus on which design choices yield optimal
downstream performance. Naively evaluating each tok-
enizer requires training or significantly finetuning a lan-
guage model—an expensive process that must be repeated
for every candidate. For large-scale models trained from
scratch (Guo et al., 2025; Yang et al., 2024a; Grattafiori
et al., 2024), this approach becomes computationally infea-
sible. As a result, tokenizer selection remains intractable
at scale. Developing methods that can efficiently surface
high-performing tokenizers—without retraining full models
per candidate—would mark a significant step forward in
scalable model-tokenizer co-design.

Our contribution: You Only Train Once. To address the
computational bottleneck in tokenizer selection, we propose
You Only Train Once (YOTO), a unified framework that
jointly optimizes a language model and a distribution over
candidate tokenizers during pretraining. Rather than train-
ing a separate model for each tokenizer, YOTO constructs a
merged vocabulary spanning all candidates and trains a sin-
gle model. A learnable distribution governs which tokenizer
is applied to each training instance, allowing the model
and tokenizer to co-adapt dynamically. This framework en-
ables efficient discovery of high-performing tokenizations
in sublinear time.

Arithmetic reasoning as a testbed. While our method
is broadly applicable, we focus on arithmetic reasoning
as a testbed for evaluating tokenizer selection. Arith-
metic tasks present a challenging domain where tokeniza-
tion has a pronounced impact on performance. Standard
subword tokenizers frequently fragment numbers inconsis-
tently, obscure magnitude information, and impede gener-
alization (Nogueira et al., 2021; Nath et al., 2021). Prior
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work has proposed digit-wise (Touvron et al., 2023), block-
wise (Yang et al., 2024c;b), and specialized schemes (Golkar
et al., 2023), but no consensus exists on a best strategy. Even
small differences—such as encoding 1000 as [100, 0] ver-
sus [1, 000] (Rando, 2024)—can lead to divergent behavior.
This makes arithmetic a well-scoped, high-sensitivity setting
for systematically evaluating tokenizer design.

Our contributions can be summarized as:

(1) Unified Framework for Tokenizer Optimization. We
propose YOTO, a novel training-time objective that jointly
optimizes a language model and a parameterized distribution
over tokenizers. By sharing a merged vocabulary across
candidates, YOTO enables efficient co-adaptation without
retraining separate models for each tokenizer.

(2) Empirical Validation on Arithmetic Reasoning. We
instantiate YOTO on arithmetic tasks, demonstrating that
it consistently discovers high-performing number tokeniz-
ers at a fraction of the compute cost required by naive ap-
proaches. Our results reveal insights into the interplay be-
tween tokenizer structure and numerical generalization (see
Section 4.2).

2. Related Work
2.1. Efficient Hyperparameter Optimization for LLM

Tokenizers

Optimizing Large Language Models involves tuning nu-
merous hyperparameters, optimizing these is known to be
computationally intensive. Research into efficient hyper-
parameter optimization for deep learning, particularly for
language models, can be viewed from several standpoints.
Firstly, early termination methods, multi-fidelity optimiza-
tion techniques like Successive Halving (SHA) (Jamieson
and Talwalkar, 2016) and HyperBand (Li et al., 2018) offer
principled ways to prune less promising configurations early
(Falkner et al., 2018; Wang et al., 2023), assuming reason-
able performance correlation across fidelities. Secondly,
proxy model transfer, Approaches like µTransfer (Yang and
Mahoney, 2022) aim to predict optimal hyperparameters for
large models from smaller ones, though transferring discrete
structural choices like tokenizers reliably is challenging
(Nguyen et al., 2023; Mahoney et al., 2024). Finally, sequen-
tial methods like multi-armed bandits (Audibert et al., 2010),
advanced Bayesian Optimization for combinatorial spaces
(Baptista and Poloczek, 2018; Oh et al., 2019), and gradient-
based methods using differentiable relaxations (Jang et al.,
2017; Lorraine et al., 2020; Liu et al., 2018) exist but face
scalability or applicability challenges for complex struc-
tures. Tokenizer selection can be viewed as a particularly
challenging instance of hyperparameter optimization due
to its discrete nature, vast combinatorial design space, and
fundamental impact on the model’s input data distribution

(Feurer and Hutter, 2019). The limitations across these gen-
eral optimization strategies highlight the need for methods
tailored specifically to the efficient optimization of LLM
tokenizers.

2.2. Number Tokenization Strategies in Prior Work

Representing numerical data effectively is crucial for LLM
quantitative reasoning (Nath et al., 2021). Various strategies
have emerged to address the shortcomings of standard tok-
enizers which broadly fit into two categories: changing the
segmentation of numbers in tokenization or changing the
formatting or positional information passed to the model.

Segmentation and Chunking. This concerns how num-
ber strings are divided into tokens. Key approaches include:
BPE, N-digit chunking or highly specialized schemes. Stan-
dard BPE leads to inconsistent segmentation of numbers and
hinders learning (Nogueira et al., 2021; Yang et al., 2024c).
Employing N-digit chunking (e.g., 1-, 2-, or 3-digits) which
trades off sequence length and vocabulary size (Yang et al.,
2024c;b). Golkar et al. (2023) propose xVal, which treats
numbers holistically via a single numerical token and de-
codes the value for this token using a separate head.

Formatting and Positional Representation. These tech-
niques modify the input string or embeddings to aid inter-
pretation. Notable strategies involve: reversal, padding, and
additional positional encodings. Addition and multiplica-
tion begin with the least significant digit; this conflicts with
the causal masking in decoder transformers, and reversing
the input numbers significantly aids arithmetic performance
(Singh et al., 2024; Lee et al., 2023). Moreover, aligning
digits of the same significance can be difficult task for trans-
formers. This can be addressed from two angles, firstly,
we can zero-pad to fixed length (Shen et al., 2023) or we
can pass additional information to the model to descibe this
information. For example, Index Hints (Zhou et al., 2023)
or Abacus Embeddings (McLeish et al., 2024; Cho et al.,
2024a;b), which explicitly encode place value or position.

This array of techniques underscores the complexity of num-
ber tokenization. While specific methods show promise, the
interactions between choices are intricate, and efficiently
finding the optimal combination remains an open challenge
(Yang et al., 2024b).

3. Experimental Setup
3.1. Tokenization for Arithmetic

To ground our investigation into tokenization for arithmetic
reasoning, we specify a structured design space for number
tokenization, focusing on arithmetic tasks. This space is
constructed by combining choices along three primary axes,

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models
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Index Hints

1-Digit:

2-Digit:

3-Digit:

Chunking

Formatting

6 5 4 3 2 1 1 2 3 4 5 6 0 0 0 a 1 b 2 c 3 d 4 e 5 f 6

65 43 21

654 321

12 34 56 00 0 a 12 b 34 c 56

123 456 000 a 321 b 654

Input number: 123456

Figure 1. Number Tokenization Strategies Explained. The 13 strategies analyzed comprise combinations of 3 chunking methods (1, 2,
3-Digit), 3 formatting techniques (Reversal, Padding, Index Hints), and the xVal approach. Their encoding of ‘123456’ is illustrated.

based on common strategies discussed previously:

(1) Representation: How the number itself is fundamen-
tally represented. We consider two options: standard posi-
tional Integer and Scientific Notation.

(2) Chunking: How the digit string (or mantissa/exponent)
is segmented. We include four options: fixed 1-digit, 2-
digit, or 3-digit chunks, and the specialized xVal approach
(Golkar et al., 2023) which treats the whole number as a
single token.

(3) Ordering/Formatting/Indexing: Additional tech-
niques applied to the segmented representation. We consider
four mutually exclusive options: None, most significant digit
first; Reverse, least significant digit; Padding, padding each
number with zeros to a fixed length, or Index Hints, special-
ized tokens/embeddings to represent the significance of a
digit. We assume at most one of these techniques is active
for any given tokenizer configuration.

We focus on integer addition and scientific notation of mul-
tiplication, considering the 3 chunking strategies and 4 for-
matting strategies we gain 12 experiments as we also run
each chunking strategy without any formatting additions.
We also analyze xVal totaling 13 distinct experiments to
analyze. This structured space (see Figure 1) allows for sys-
tematic evaluation and analysis of the interactions between
different design decisions.

We focus our experiments on addition and multiplication.
For each setting, we generate synthetic datasets consisting of
problems formatted as operand_1 operator operand_2 =
result (e.g., A+B = C or A×B = C), where operands
A and B are presented in the integers or in scientific nota-
tion. We follow Yang et al. (2024b) to generate datasets to

ensure controlled operand ranges and result distributions
suitable for evaluating numerical understanding. Balancing
computational feasibility and statistical significance, we use
datasets of 100k training samples and 10k test samples.

3.2. Models and Baselines

We employ Transformer-based architectures scaled sys-
tematically based on the Super Tiny LMs principles
(Hillier et al., 2024). We mainly use the 104M
sized model. While studying the scaling effects as
ablation studies, we may use LMs with sizes ranged
from approximately 10M up to 104M parameters (e.g.,
10M, 18M, 26M, 38M, 50M, 104M ). Models are trained
from scratch for each experiment unless otherwise noted,
such as within the joint training framework which uses a
single shared model.

We evaluate model performance on the arithmetic tasks
using three primary metrics: exact match, mean absolute
error, and mean relative error. Exact match accuracy is the
percentage of problems where the models output exactly
matches the ground truth. Mean absolute error is the average
numerical difference between models output and ground
truth. Mean relative error is the mean absolute error divided
by the absolute value of the ground truth.

The primary baseline for comparison is the ground truth
evaluation. This involves independently training a dedi-
cated model from scratch for each candidate tokenizer. This
baseline represents the standard, computationally expen-
sive approach to tokenizer selection, establishing the target
performance ranking and a computational cost. We show
our efficient optimization method surpasses this baseline by
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measuring the computational efficiency (number of Float-
ing Point Operations) required to find the best tokenization
and Spearman’s Rank Correlation Coefficient between the
tokenizer selected by YOTO and the baseline evaluations.

3.3. Method

YOTO introduces a novel framework for efficiently deter-
mining optimal tokenizer configurations by jointly optimiz-
ing tokenizer choices and language model parameters. This
approach, visualized in Figure 2, is built upon three core
principles:

(1) Unified Vocabulary and Shared LLM: We train a
single Large Language Model, parameterized by θ, whose
vocabulary is a comprehensive union of all tokens from all
candidate tokenizers. This significantly amortizes the com-
putational cost typically associated with training separate
models for each tokenizer configuration.

(2) Parameterized Exploration of Combinatorial Tok-
enizer Space: The selection of a tokenizer is governed by a
learnable categorical distribution, parameterized by φ. This
parameterization allows for efficient exploration of the often
vast and combinatorially structured design space of tokeniz-
ers, guiding the search towards optimal configurations.

(3) Resource-Aware Early Termination via Soft Succes-
sive Halving: To further enhance efficiency, YOTO inte-
grates a soft variant of the Successive Halving Algorithm.
This mechanism dynamically allocates training resources,
prioritizing promising tokenizer candidates and prematurely
terminating unpromising ones, thereby reducing the overall
computational budget.

The complete YOTO algorithm is summarized in Algo-
rithm 1.

Joint optimization of model and tokenizer distribution
parameters underpins our methodology. As illustrated
in Figure 2, the training process jointly optimizes LLM
parameters θ and tokenizer sampling distribution parameters
φ. Input data is processed in mini-batches. For each instance
x, a tokenizer S is sampled from p(S|φ) over the candidate
set T . Instance x is then tokenized by S into a token ID
sequence, which is fed to the LLM. The LLM’s embedding
layer, designed for the unified vocabulary, maps tokens
from any S to corresponding embeddings. The LLM then
performs its primary task (e.g., next-token prediction), and
a loss LLLM(x, S, θ) is computed.

The overall loss guides updates to both LLM and to-
kenizer distribution parameters. The mini-batch loss
L̂(θ, φ) empirically approximates the expected loss over

data and tokenizer distributions:

L̂(θ, φ) = 1

|B|
∑
xi∈B

LLLM(xi, Si, θ), where Si ∼ p(S|φ).

This loss depends on both θ and φ. During backpropaga-
tion, gradients update both parameter sets. LLM gradients
∇θL̂ are standard. To obtain gradients∇φL̂ for the discrete
tokenizer sampling, we use the Gumbel-Softmax reparam-
eterization (Jang et al., 2017; Maddison et al., 2017). This
technique enables differentiable sampling from p(S|φ) by
introducing Gumbel noise and a temperature τ , allowing gra-
dient backpropagation to update φ. Specifically, if φ param-
eterizes logits αS per tokenizer S ∈ T , Gumbel-Softmax
provides a continuous, differentiable approximation to dis-
crete sampling, facilitating gradient-based optimization of φ.
For smaller tokenizer design spaces, Bayesian optimization
can be an effective gradient-free alternative for optimizing
φ.

Efficient resource management is achieved via a soft
adaptation of Successive Halving. To enhance compu-
tational efficiency and expedite optimal tokenizer discov-
ery, YOTO incorporates a soft adaptation of the Successive
Halving Algorithm (SHA) (Jamieson and Talwalkar, 2016).
SHA iteratively allocates resources, progressively pruning
underperforming configurations—in our case, individual
tokenizers within the support of p(S|φ). Key SHA hyper-
parameters include the initial budget r0 per candidate, a
reduction factor η > 1, and the maximum budget Rmax per
tokenizer. SHA proceeds in rungs: in rung k, active can-
didates Tk are evaluated with an additional budget. Based
on performance (e.g., validation loss contribution), only the
top 1/η fraction advances to rung k + 1, receiving η times
more budget.

Our soft SHA implementation dynamically manages tok-
enizer participation through learned logits. Instead of a
hard set of active tokenizers, participation is managed via φ.
If SHA deems a tokenizer S pruned (i.e., budget exhausted
and not in the top fraction), its corresponding logit αS in
φ is set to −∞, making its sampling probability p(S|φ) ef-
fectively zero. The distribution p(S|φ) is then renormalized
over active candidates. Budgets are tracked by monitoring
processed data samples per tokenizer. This early termina-
tion of less promising designs significantly cuts cumulative
training costs by focusing resources on a diminishing set
of candidates, which is especially effective as performance
differences often emerge early.

Alternative optimization strategies and vocabulary reuse
enhance framework flexibility. While gradient-based
Gumbel-Softmax is the primary described mechanism for
optimizing φ, iterative methods like Bayesian optimization,
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Tokenizer 1
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LLM (θ)
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by φ

Data Tokenized by 
Sampled Tokenizer S1

Data Tokenized by 
Sampled Tokenizer S2
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θ and φ

Forward Pass
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Figure 2. Visualization of You Only Train Once. We jointly optimize the language model parameters and the parameters we use to
sample the tokenizers we are considering. During the forward pass we sample a tokenizer to use for each row of the batch according to the
tokenizer sampling distribution, we then pass these through the language model which has the joint vocabulary for all tokenizers. On the
backward pass we propagate the loss through both the language model and the tokenizer sampling distribution, updating both at every step.

Algorithm 1 YOTO: You Only Train Once
1: Input: Corpus D; initial LLM params θ0; initial tokenizer logits φ0 for candidates T ; SHA params (r0, η, Rmax);

Learning rates λθ, λφ; Gumbel temp τ .
2: Initialize: Unified vocab from T ; LLM θ ← θ0; tokenizer logits φ← φ0.
3: Initialize SHA: Tactive ← T ; budgets bS ← 0, performance mS ← 0 ∀S ∈ T ; rung budget rrung ← r0.
4: for training step t = 1, . . . , Tmax do
5: Sample batch B ⊂ D; Let Bproc ← ∅. ▷ Collects (tokenized sample, Sx)
6: for each sample x ∈ B do
7: Sample tokenizer Sx ∼ p(S|φ, Tactive). ▷ Sample from active distribution
8: Add (Tokenize(x, Sx), Sx) to Bproc; bSx

+= 1. ▷ Tokenize, and track Sx & its budget
9: L̂ ← 1

|B|
∑

(xtok,Sx)∈Bproc
LLLM(xtok, Sx, θ). ▷ Batch loss over sampled tokenizers

10: Compute gradients∇θL̂ and ∇φL̂. ▷ Compute∇φ via Gumbel-Softmax (τ )
11: θ ← θ − λθ∇θL̂; φ← φ− λφ∇φL̂. ▷ Update LLM & active tokenizer logits
12: Periodically update performance mS for S ∈ Tactive. ▷ Using validation data
13: if SHA rung evaluation triggered then ▷ Budget milestones met
14: Teval ← {S ∈ Tactive | bS ≥ rrung}. ▷ Candidates completing current rung
15: if |Teval| ≥ η then ▷ Sufficient candidates for SHA step
16: Sort Teval by mS ; Tpromoted ← top ⌈|Teval|/η⌉ from Teval.
17: for S ∈ Teval \ Tpromoted do
18: Set logit αS ← −∞ in φ; Tactive ← Tactive \ {S}. ▷ Mask logits & prune
19: rrung ← rrung · η. ▷ Increase budget for next rung
20: if rrung > Rmax or |Tactive| ≤ 1 then
21: break. ▷ Max budget or few candidates
22: Output: Optimized θ∗, final φ∗ (or best performing S∗).

informed by performance mS from SHA, offer a viable al-
ternative for manageable design spaces, potentially avoiding
direct gradient computation for φ and management of the
Gumbel-Softmax temperature τ . We also emphasize that al-
though YOTO uses a unified vocabulary larger than any sin-
gle tokenizer’s, many underlying token elements (common

digits chunks, subwords, characters) are naturally reused
across different tokenization strategies. This structure al-
lows for the principled discovery of the best-performing
tokenizer from diverse candidates within a single, integrated
training paradigm.
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4. Exploring Tokenization for Arithmetic
We now move to empirically exploring which tokeniza-
tion, formatting and indexing techniques are most effective
for arithmetic and empirically verifying the usefulness of
YOTO. In Section 4.1, we explore prior tokenization tech-
niques and tricks to ground our exploration of tokeniza-
tion methods for arithmetic. In Section 4.2, we show how
YOTO discovers the most efficient tokenization techniques
for arithmetic using our joint optimization objective. Imple-
mentation details and hyperparameter setups are discussed
in the Appendix.

4.1. Analysis of Ground Truth Tokenization Results

Prior work has extensively explored tokenization and for-
matting techniques for arithmetic; however, seldom do stud-
ies compare many of them in a controlled and equivalent
setting.

In Figure 3, we show the test results when training each
model from scratch with different tokenization and format-
ting techniques for addition. As xVal only assigns a single
token to all numbers, we cannot apply any formatting tech-
niques, hence the formatting columns are empty. On the
left of Figure 3, we present exact match accuracy, seeing
that smaller digit group tokenization is preferable, and xVal
performs as well as 2-digit tokenization strategies but strug-
gles to perform as well as single-digit tokenization tech-
niques. We see that reversing numbers and padding leads
to a performance increase for all tokenization schemes. For
single-digit tokenization, applying these techniques leads to
better performance than xVal. On the right of Figure 3, we
present the mean absolute error and see the same trend as
for exact match accuracy.

In Figure 4, we show the results from training each tokeniza-
tion and formatting strategy on multiplication in scientific
notation. We see the same general trend for the digit group
tokenization strategies as in Figure 3 for addition, with
single digit tokenization performing best. However, for mul-
tiplication we see xVal performs significantly better than any
other technique with a much lower residual error of only
0.1. Numerous studies have identified multiplication as a
particularly challenging task (Dziri et al., 2023; McLeish
et al., 2024), suggesting that techniques like YOTO may of-
fer greater utility in this context as the community continues
to explore the design space.

4.2. Joint Training: Effective and Efficient

Now we have a comprehensive set of baseline methods,
and we compare our joint training strategy to them. In

Section 4.2.1, we see our joint training method is capable of
recovering the trend as to which tokenizer is most efficient to
a good degree of accuracy. In Section 4.2.2, we emphasize
the gain from our method as it only requires training once to
find the optimal tokenizer, hence the name: You Only Train
Once!

4.2.1. EFFECTIVENESS

In Figure 5 we plot the ranking of the tokenization methods
by training a unique model from scratch (x axis) and the
ranking found by the YOTO training objective. For conve-
nience, we plot the perfect trend line (y = x) in red and
annotate Spearman’s rank coefficient ρ on each plot.

In Table 1, we show the Pearson correlation coefficient,
Spearman’s rank correlation coefficient, and Kendall’s tau
for each of the three settings we study. We see high positive
values for all of these coefficients, suggesting a good posi-
tive correlation between the best tokenization method found
by YOTO and the ground truth. Most importantly, we can
visually see in Figure 5 that the best tokenization method is
always within the top two found by YOTO. This means that
the worst case cost of YOTO is the amount to train YOTO
plus 2 runs from scratch, much lower than the naive method
of trying all combinations. We emphasize that it is more
important for YOTO to have higher fidelity at top rankings
than lower rankings, as we want to find optimal tokenization
strategies, which we visually see is true in Figure 5.

We see in Figure 5 and Table 1 that YOTO is better at
predicting correlations for addition than for multiplication.
We suggest this is due to more noise within the system than
for addition, as multiplication has been found to be a much
more difficult problem to solve than addition (McLeish et al.,
2024), and it has even been suggested that generalization
in multiplication may be beyond the limits of transformers
(Dziri et al., 2023).

4.2.2. EFFICIENCY

We train all models on Nvidia L40s GPUs, capable of 362.05
TFLOPs in bfloat16. However, due to the shared to-
kenization and early stopping used by the joint training
strategy, we achieve significant computational savings.

In Table 2, we show the number of Floating Point Operations
(FLOPs) required to train a single baseline model and the
number of FLOPs required to train our method.

Firstly, we see that this saving for one model run is very
large (> 80%). When we take into account that to thor-
oughly ablate tokenizer choice one must train a sweep of
models from scratch (13 in our case) this saving is many
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Figure 3. Exact Match Accuracy (left) and Mean Absolute Error (right) for integer addition. On the y axis we vary the tokenization
method used for numbers, on the x axis we vary any additional formatting methods used to aid addition. We see that single digit
tokenization performs best when chunking numbers during tokenization and reversing numbers leads to a large gain in performance.
Furthermore, we find xVal is able to perform approximately as well as a single digit tokenization scheme.
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Figure 4. Mean Relative Error for scientific notation multiplication. On the y axis, we vary the tokenization method used for numbers,
on the x axis, we vary any additional formatting methods used to aid multiplication. For the chunking tokenization strategies, smaller
chunks offer better performance; however, unlike for addition, we see xVal achieves by far the lowest error of all techniques. Relative
instead of absolute errors are reported for scientific notation multiplication tasks because of the long-tailed absolute error distribution.

Table 1. Correlation metrics between Ground Truth and Joint Training across all data points. We see a high correlation between YOTO
and the baseline runs, which are completed by training individual models from scratch.

Pearson Spearman Kendall

Addition EMA 0.899 0.912 0.769
Addition MAE 0.950 0.918 0.744
Multiplication MRE 0.709 0.714 0.538

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

0 2 4 6 8 10 12 14
Ground Truth Rank

0
2
4
6
8

10
12
14

Jo
in

t T
ra

in
in

g 
Ra

nk

 = 0.912
Addition: Exact Match Accuracy

0 2 4 6 8 10 12 14
Ground Truth Rank

 = 0.918
Addition: Mean Absolute Error

y = x (Perfect Correlation)

0 2 4 6 8 10 12 14
Ground Truth Rank

 = 0.714
Multiplication: Mean Relative Error

Figure 5. Correlation between baselines and YOTO. On the y axis, we have the ranking of each tokenization and formatting method
according to YOTO, on the x axis, we plot the ground truth ranking, which we record in Section 4.1. We annotate the Spearman’s rank
correlation coefficient from Table 1 onto each plot, seeing high correlation. Most importantly, we see that the best performing ground
truth method is always within the top two found by YOTO.

Table 2. We record the number of FLOPs required to train a single baseline model compared to the number of FLOPs required to train
YOTO. We see the savings are significant and are amplified as practitioners are required to train many more baseline models if not using
YOTO.

Baseline Training (ExaFLOPs) Joint Training (ExaFLOPs) ExaFLOPs saved (%)

Addition 22.96 3.67 84.0
Multiplication 29.09 4.17 85.6

magnitudes larger in real terms. For example, to find the
optimal tokenizer in all cases for the tasks shown in this
paper, we would have to train at most two models and the
joint training objective model when using YOTO compared
to having to train 13 different models to brute force search
the space. Moreover, we want to highlight that this time
complexity saving increases as the tokenizer search space
becomes larger, because while the number of LLM trainings
to sweep all tokenizers increases, our YOTO only requires
one-time training.

5. Conclusion and Future Work
This paper addresses the underexplored but critical problem
of tokenizer selection in large language models (LLMs),
where vast design spaces and expensive evaluations hinder
practical optimization. We introduced YOTO, an efficient
framework that jointly learns language model parameters
and a distribution over candidate tokenizers. By training
a single model over a unified vocabulary and adaptively
sampling from tokenization strategies, YOTO eliminates the
need to train one model per tokenizer—dramatically reduc-
ing computational cost while preserving downstream perfor-
mance. Applied to arithmetic reasoning, YOTO identifies
high-performing number tokenizers and yields actionable

insights into how tokenization impacts generalization.

Our findings suggest several promising directions for future
work:
Scaling to broader tokenizer design spaces. While
this work focused on structured numeric tokenization,
our method is general. A natural next step is to extend
YOTO to explore larger, more diverse tokenizer search
spaces—including morphological, multilingual, or byte-
level schemes—where exhaustive comparisons (e.g., (Yang
et al., 2024b)) become prohibitively expensive. YOTO pro-
vides a scalable engine for accelerating such comparisons.
Application to larger models and varied modalities. Scal-
ing YOTO to frontier LLMs (e.g., 13B, 70B+) and applying
it beyond arithmetic to general natural language, code, cate-
gorical inputs, or even time-series data could unlock further
benefits. Different domains may exhibit distinct tokeniza-
tion sensitivities that co-adaptive training can reveal.

Together, these directions highlight YOTO as a foundational
step toward more adaptive and computationally efficient
co-design of tokenizers and language models.
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Appendices
A. Limitations
YOTO offers a novel framework for efficient tokenizer selection, showing significant computational savings and strong
performance in identifying optimal arithmetic tokenizers. While promising for model-tokenizer co-design, its current scope
has limitations that suggest avenues for future work.

Focused Application to Arithmetic Tokenization. Our empirical validation centers on arithmetic tasks and number
representations. This focus, while potentially seen as niche, was deliberate. It stems not from avoiding general language
complexities but from the current state of tokenizer design research. The arithmetic domain provides a uniquely rich,
structured landscape of tokenization strategies (e.g., digit-wise, xVal, various formatting), essential for rigorously testing
YOTO within a well-defined search space. Extending YOTO to general language tokenization requires developing similar
structured design spaces for broader vocabulary elements, a substantial research challenge.

Model Scale and Training from Scratch. Our experiments use models up to 100M parameters, smaller than many state-of-
the-art LLMs. This scale was chosen because fair tokenizer evaluation necessitates from-scratch training or co-adaptation,
as fine-tuning larger models introduces biases. Furthermore, models of this size are sufficient for the arithmetic tasks and
datasets used, effectively demonstrating YOTO’s algorithmic efficiency in tokenizer selection. While scaling YOTO to
larger models is future work, the current scale balances rigorous evaluation with computational feasibility for from-scratch
training.

Scope of Explored Optimization Techniques. YOTO uses a soft Successive Halving (SHA) variant and Gumbel-Softmax
for tokenizer sampling. While effective, exploring broader hyperparameter optimization algorithms for the tokenizer
distribution and advanced early-termination methods could yield improvements. The interplay between merged vocabulary
size, candidate number, and the optimization strategy for φ particularly warrants deeper investigation for larger candidate
sets.

B. Broader Impacts
The YOTO framework, primarily an academic contribution improving a fundamental aspect of LLM pipelines, offers several
positive broader impacts. By making tokenizer selection significantly more resource-efficient, it can enhance development
efficiency and accessibility; potentially lowering entry barriers for creating custom LLMs, especially for those with limited
compute, and fostering innovation. This efficiency also facilitates advancing model performance on specialized tasks;
better tokenizers, crucial for areas like arithmetic, code, or scientific analysis, can lead to more accurate and reliable LLMs
in these fields. Furthermore, YOTO may stimulate research into model-input co-design; highlighting the benefits of
co-adapting tokenizers and models and encouraging more integrated approaches. While YOTO itself is an optimization
algorithm, any resulting improved models should be developed responsibly, considering ethical implications common to
powerful AI.

C. Formal Definition of Efficient Tokenization Optimization
Let T = {T1, . . . , TC} be a finite set of C candidate tokenizer configurations derived from a design space. Given a fixed
model architecture M , a set of training hyperparameters H , a training dataset Dtrain, and a validation dataset Dval, the goal
is to identify the optimal tokenizer T ∗ ∈ T . Training the model M with a specific tokenizer Ti ∈ T under hyperparameters
H on Dtrain yields optimal parameters θ∗(Ti). Due to stochastic elements in training (e.g., initialization, data shuffling),
performance varies. Let P(Mθ, D) denote a performance metric (e.g., accuracy) on dataset D with model parameters θ. We
seek the tokenizer T ∗ that maximizes the expected validation performance:

T ∗ = argmax
T∈T

E
[
P(Mθ∗(T ), Dval)

]
(1)

where the expectation E[·] is taken over the sources of training randomness. The naive approach involves independently
training the model for each T ∈ T and selecting the best based on validation performance. Let E[Timetrain(M,Dtrain, H)]
be the expected wall-clock time for a single training run. The naive evaluation cost is Timenaive = C × E[Timetrain]. The
core challenge is to develop an optimization algorithm A to find T ∗ (or a top-k set) such that its total runtime, Time(A),
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satisfies the efficiency constraint:
Time(A)≪ Timenaive (2)

Ideally, Time(A) should scale sub-linearly with C.

D. Rationale for Tokenizer Design Space
The design of an effective tokenizer, particularly for tasks requiring numerical precision like arithmetic, involves navigating
a vast space of potential strategies. This section details the rationale and methodology for arriving at the 13 distinct number
tokenization configurations evaluated in this work (see main paper, Section 3.1), focusing on the mutual compatibility and
interplay of various considered techniques. Our goal was to establish a structured and diverse design space that allows for
systematic analysis of model-tokenizer co-adaptation.

We began by identifying several promising low-level design choices for number tokenization, drawing from existing literature
and common practices. These initial candidate techniques can be broadly categorized as:

• Segmentation/Chunking Strategies:

– N-Digit Chunking: Segmenting number strings into fixed-size chunks of 1, 2, or 3 digits. This is a common
baseline approach for number representation (Yang et al., 2024c).

– xVal (Golkar et al., 2023): Treating the entire number as a single, holistic token, with its numerical value decoded
by a specialized mechanism.

• Ordering, Formatting, and Indexing Strategies: These techniques modify the number string or its representation to
aid model interpretation.

– Reverse Digits: Reversing the order of digits in the number string (e.g., "123" becomes "321"). This aligns
processing with the least significant digit first, which can be beneficial for arithmetic operations (Singh et al.,
2024; Lee et al., 2023).

– Zero Padding: Padding numbers with leading zeros to a fixed maximum length before tokenization (Shen et al.,
2023). This can help models align digits of similar significance across different numbers.

– Length Prefix (Considered but not in final 13): Prepending a special token or sequence indicating the length of the
number. This is an alternative to Zero Padding for explicitly providing length information.

– Index Hints (Zhou et al., 2023): Employing specialized tokens or embeddings to explicitly indicate the significance
or place value of each digit or chunk.

– Abacus Embeddings (Considered but not in final 13) (McLeish et al., 2024): Using learned embeddings that
represent each digit’s place value, which are then typically summed to form the number’s representation.

These techniques are generally applicable to both integer and scientific notation representations. For scientific notation (e.g.,
M × 10E), string-based operations like Reverse Digits or Zero Padding are typically applied to the mantissa M , while the
exponent E might be handled separately or as part of the overall strategy (e.g., also reversed or padded). Index Hints can be
adapted to signify digit positions within both the mantissa and the exponent.

A critical step in defining a practical design space is to assess the mutual compatibility of these techniques. Not all
combinations are sensible or offer unique advantages. Table 3 summarizes the pairwise compatibility of these fine-grained
design choices.

From this compatibility analysis (detailed in Table 3), we made several key decisions to arrive at the final 13 configurations
explored in the main paper:

1. xVal as a Standalone Strategy: As xVal tokenizes the entire number into a single conceptual unit, it is fundamentally
incompatible with techniques that operate on individual digits or sub-digit chunks (e.g., Reverse Digits, N-Digit
Chunking, Index Hints). Thus, xVal forms one distinct branch in our design space, used without other formatting or
indexing augmentations.

2. N-Digit Chunking as a Base: For more granular tokenization, we selected N-Digit Chunking (with N=1, 2, or 3) as the
foundational segmentation approach. The remaining formatting and indexing techniques are considered as potential
augmentations to these chunking strategies.
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Table 3. Mutual Compatibility of Number Tokenization Design Choices. (✓ denotes Compatible; × denotes Incompatible or highly
redundant/conflicting; △ denotes Conditionally compatible, may require non-trivial adaptation, or offers overlapping functionality that
might be better addressed by one technique alone.) N/A indicates self-comparison or inherent redundancy within a conceptual pairing.

Technique/Type N-Digit Chunking xVal Reverse Digits Zero Padding Length Prefix Index Hints Abacus Emb.

N-Digit Chunking N/A N/A ✓ ✓ ✓ ✓ ✓
xVal N/A N/A × × × × ×
Reverse Digits ✓ × N/A ✓ ✓ ✓ △
Zero Padding ✓ × ✓ N/A N/A ✓ ✓
Length Prefix ✓ × ✓ N/A N/A × ×
Index Hints ✓ × ✓ ✓ × N/A N/A
Abacus Emb. ✓ × △ ✓ × N/A N/A

3. Selection of Formatting/Indexing Augmentations:

• Reverse Digits was retained as it is broadly compatible with N-Digit Chunking and directly addresses a known
challenge for sequential models in arithmetic tasks, by processing numbers from least-significant to most-
significant digit (Singh et al., 2024).

• Zero Padding vs. Length Prefix: Both techniques aim to provide information about number length or facilitate
alignment across numbers of varying lengths. Zero Padding achieves this by pre-pending actual ’0’ digits to a
fixed length before chunking, leveraging existing digit tokens. Length Prefix would involve new special tokens or
a fixed-format prefix. As indicated in Table 3 by N/A (for their direct pairing, implying one subsumes or makes
the other redundant) and × (for Length Prefix with Index Hints/Abacus, where explicit length tokens conflict with
more granular positional encodings), these offer overlapping functionalities. We selected Zero Padding for its
conceptual simplicity and direct integration with digit-based vocabularies.

• Index Hints vs. Abacus Embeddings: Both techniques aim to explicitly encode the positional significance of digits
or chunks. Index Hints achieve this by associating specialized tokens or modifying embeddings based on a digit’s
(or chunk’s) position. Abacus Embeddings are a specific type of learned positional embedding summed across
digits. Table 3 marks their direct pairing as N/A as they serve the same fundamental purpose. We opted for the
more general concept of Index Hints as it can be implemented flexibly and is readily combined with N-Digit
Chunking.

This systematic filtering process, guided by logical compatibility and the goal of exploring diverse yet non-redundant
strategies, led to our final set of tokenizer configurations for evaluation:

• Three N-Digit Chunking strategies (1-digit, 2-digit, 3-digit).

• Each of these chunking strategies is combined with four formatting/indexing options:

1. None (i.e., only N-Digit Chunking is applied).
2. Reverse Digits (applied to the number string before N-Digit Chunking).
3. Zero Padding (applied to the number string before N-Digit Chunking).
4. Index Hints (applied in conjunction with N-Digit Chunking).

This yields 3 (chunking types)× 4 (formatting options) = 12 configurations.

• The standalone xVal configuration.

In total, this gives 12 + 1 = 13 distinct tokenizer designs, forming a structured space for investigating the impact of
tokenization on arithmetic reasoning, as detailed in the main paper (Section 3.1, Figure 1).

E. Hyperparameter Optimization Strategies in YOTO
The selection of an optimal tokenizer for a Large Language Model (LLM) can be framed as a complex hyperparameter
optimization (HPO) problem. The design space of tokenizers is vast, often combinatorial, and evaluating each candidate
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typically requires expensive model training or significant fine-tuning (Feurer and Hutter, 2019). This section outlines the
general landscape of HPO techniques, analyzes their applicability to the specific challenge of LLM tokenizer optimization,
and details the reasoning that led to the HPO strategies integrated into our You Only Train Once (YOTO) framework.

E.1. Overview of General Hyperparameter Optimization Techniques

HPO methods aim to find a set of hyperparameters that optimize a learning algorithm’s performance. These techniques can
be broadly categorized:

• Model-Free Methods: These approaches do not build an explicit model of the relationship between hyperparameters
and performance.

– Grid Search: Exhaustively evaluates all hyperparameter combinations on a predefined grid. While simple, it
suffers from the curse of dimensionality.

– Random Search: Samples hyperparameter configurations randomly from their respective distributions. Often more
efficient than grid search, particularly when some hyperparameters are more influential than others (Bergstra and
Bengio, 2012).

• Model-Based Sequential Optimization (MBSO): These methods iteratively build a surrogate model (e.g., Gaussian
Processes in Bayesian Optimization) to approximate the objective function and use an acquisition function to select the
next hyperparameters to evaluate.

– Bayesian Optimization (Snoek et al., 2012): Particularly effective for expensive black-box functions. Adaptations
exist for combinatorial spaces (Baptista and Poloczek, 2018; Oh et al., 2019), relevant for discrete choices like
tokenizers.

– Evolutionary Algorithms: Employ principles of biological evolution, such as mutation, crossover, and selection, to
iteratively refine a population of hyperparameter configurations.

• Early Termination and Multi-Fidelity Optimization: These techniques aim to reduce computational cost by quickly
discarding unpromising configurations or by using cheaper, lower-fidelity approximations of the true evaluation.

– Successive Halving (SHA) (Jamieson and Talwalkar, 2016): Allocates an initial budget to all configurations,
evaluates them, and promotes only the top fraction (e.g., half) to the next round with an increased budget.

– HyperBand (Li et al., 2018): Extends SHA by adaptively managing the number of configurations and the budget
allocated at each stage, aiming for a good trade-off between exploration and exploitation. BOHB (Falkner et al.,
2018) combines HyperBand with Bayesian Optimization.

• Gradient-Based Methods for Differentiable Hyperparameters: If hyperparameters are continuous and the objective
function is differentiable with respect to them, gradient-based optimization can be used. For discrete hyperparameters,
differentiable relaxations (e.g., Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)) or implicit differentiation
(Lorraine et al., 2020) can sometimes be applied.

• Transfer Learning and Meta-Learning for HPO: These approaches leverage knowledge from previous HPO tasks or
related datasets/models to warm-start or guide the current optimization process (Feurer and Hutter, 2019). Predicting
optimal hyperparameters for large models from smaller ones (e.g., µTransfer (Yang and Mahoney, 2022; Mahoney
et al., 2024)) falls into this category.

E.2. Challenges and Promising Directions for LLM Tokenizer HPO

Optimizing tokenizer choices for LLMs presents unique challenges:

1. Discrete and Combinatorial Search Space: Tokenizer design involves discrete choices (e.g., chunk size, vocabulary
selection algorithm, formatting rules), leading to a vast and often non-ordered combinatorial space.

2. Expensive Evaluations: The primary bottleneck is the computational cost of training or extensively fine-tuning an
LLM for each candidate tokenizer to assess its downstream performance.
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3. Interdependent Effects: Tokenizer choices have a fundamental impact on the model’s input data distribution and,
consequently, on learned representations and task performance (Kaddour et al., 2023).

Given these challenges, several general HPO techniques face limitations:

• Naive Grid/Random Search: Becomes computationally intractable due to the high cost per evaluation and the size of
the tokenizer search space.

• Standard Gradient-Based Methods: Not directly applicable for discrete, non-differentiable tokenizer choices, unless
suitable differentiable relaxations of the tokenizer design space itself can be formulated, which is non-trivial.

• Transfer Learning for Discrete Structures: While promising for continuous hyperparameters (Yang and Mahoney,
2022), transferring discrete structural choices like tokenizers reliably across model scales or tasks is known to be
difficult (Nguyen et al., 2023). Proxy models based on smaller model evaluations may not perfectly predict the ranking
of tokenizers for larger models.

This analysis points towards HPO strategies that prioritize drastically reducing the evaluation cost per candidate or
intelligently navigating the search space with fewer evaluations. Key promising directions include:

1. Massive Reduction in Per-Candidate Evaluation Cost:

• Shared Model Training / Resource Sharing: If a single model can be trained in a way that allows evaluation or
co-adaptation of multiple tokenizers simultaneously, the cost can be amortized. This involves designing a model
architecture and training paradigm that can accommodate a diverse set of tokenization schemes. This is the central
idea behind YOTO’s unified vocabulary and shared LLM.

2. Efficient Search and Early Pruning of Unpromising Candidates:

• Early Termination Strategies: Techniques like Successive Halving (SHA) are highly relevant. By allocating
resources incrementally and discarding underperforming tokenizers early, the total computational budget can be
significantly reduced.

• Model-Based Optimization for Parameterized Search: If the choice among candidate tokenizers can be controlled
by a learnable distribution (parameterized by ϕ, as in YOTO), then techniques can be used to optimize these
parameters. This transforms the discrete search problem into a potentially continuous optimization problem for
the distribution’s parameters.

E.3. HPO in the YOTO Framework

The design of YOTO’s optimization algorithm directly incorporates the insights discussed above, aiming to create an efficient
and effective method for tokenizer selection:

1. Unified Vocabulary and Shared LLM (??, Line 2): This is the cornerstone of YOTO’s efficiency. Instead of training
C separate models for C tokenizer candidates, YOTO trains a single LLM with a merged vocabulary encompassing
tokens from all candidates. This drastically reduces the core model training cost, sharing the bulk of parameter updates
across all considered tokenizers.

2. Parameterized Exploration and Soft Successive Halving (??, Lines 3, 7, 13-21): YOTO manages a learnable
categorical distribution, p(S|ϕ), over the candidate tokenizers S ∈ T .

• The parameters ϕ (logits for each tokenizer) are optimized during training, allowing the framework to learn which
tokenizers contribute to better performance. The Gumbel-Softmax trick (Jang et al., 2017; Maddison et al., 2017)
is employed to allow gradient flow back to ϕ despite the discrete sampling of a tokenizer Sx for each training
instance.

• This learnable distribution is coupled with a "soft" variant of Successive Halving. Instead of rigidly discarding
tokenizers, SHA in YOTO influences the logits ϕ: tokenizers deemed unpromising by SHA (i.e., not in the top
fraction after a rung evaluation) have their logits set to −∞, effectively removing them from the sampling pool
(p(S|ϕ) ≈ 0). This dynamically allocates training resources (data samples processed per tokenizer) towards more
promising candidates.
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3. Alternative for ϕ Optimization (Mentioned in Main Paper): While the main paper focuses on Gumbel-Softmax for
optimizing ϕ, it also notes that for smaller, manageable design spaces, iterative methods like Bayesian Optimization,
informed by the performance metrics (mS) gathered during the SHA-like process, could offer a gradient-free alternative
to update ϕ or directly select promising tokenizers.

By combining shared training with a resource-aware, adaptive exploration strategy based on soft SHA and parameterized
tokenizer sampling, YOTO aims to discover high-performing tokenizers in sublinear time with respect to the number of
candidates. This approach circumvents the prohibitive costs of naive evaluation while allowing the model and the tokenizer
selection mechanism to co-adapt dynamically. The exclusion of direct proxy model transfer for tokenizer choice was due to
its noted unreliability for discrete structural changes (Nguyen et al., 2023), favoring instead a joint optimization within a
single, adaptable system.

F. Synthetic Arithmetic Datasets and YOTO Training Setup
This section provides further details on the synthetic datasets generated for our arithmetic experiments and the hyperparameter
configurations used for training the YOTO framework.

F.1. Synthetic Dataset Generation for Arithmetic Tasks

For our experiments focusing on integer addition and scientific notation multiplication, we generated synthetic datasets
to ensure controlled operand ranges and result distributions, facilitating a clear evaluation of tokenizer performance. The
problem format is consistently operand_1 operator operand_2 = result (e.g., A + B = C or A ∗ B = C). Each dataset
comprises 100,000 training samples and 10,000 test samples, as detailed in the main paper (Section 3.1).

The generation process for these datasets draws inspiration from the principles outlined in the Number Cookbook benchmark
(Yang et al., 2024b), which aims for a comprehensive assessment of numerical understanding and processing abilities (NUPA)
in LLMs. The Number Cookbook proposes a wide array of numerical tasks (41 combinations across 4 representations
and 17 tasks) derived from educational curricula. Our work, while focused on demonstrating the YOTO framework’s
efficiency for tokenizer selection, uses a simplified subset of these tasks—specifically integer addition and scientific notation
multiplication—as sensitive testbeds where tokenization choices have a pronounced impact.

While Number Cookbook strives for exhaustive coverage of numerical reasoning facets (e.g., various digit lengths, specific
number properties, multi-step reasoning in some of its complex tasks), our synthetic datasets for YOTO experiments are
tailored to clearly isolate the effects of tokenization on fundamental arithmetic operations. For instance:

• Operand Characteristics: We control operand lengths and ensure a diverse distribution of values, following similar
principles to Number Cookbook to avoid trivial cases or biases. For problems with two operands, their lengths are
varied to test alignment capabilities, as described in the main paper.

• Task Simplification: Our ‘A op B = C‘ format directly tests the model’s capacity to process the input numbers
according to the specified operator and produce the correct output. This contrasts with some Number Cookbook tasks
that might be embedded in more complex natural language instructions or require intermediate reasoning steps. This
simplification is intentional: YOTO’s primary contribution is an efficient tokenizer selection methodology, not a new
state-of-the-art in broad numerical reasoning. The chosen tasks provide a clear signal for tokenization performance
without confounding factors from more complex reasoning.

• Focus on Core Arithmetic: Integer addition is a foundational arithmetic skill, while scientific notation multiplication
tests handling of more structured numerical formats (mantissa, exponent) and can be sensitive to how numbers are
segmented and represented. These serve as representative tasks where different tokenization strategies (e.g., digit-wise,
xVal, formatting) can lead to significantly different model performances.

The streamlined dataset design for YOTO is thus sufficient and appropriate for its objective: to demonstrate that YOTO can
efficiently identify high-performing tokenizers for tasks where tokenization is critical, without the need for the full breadth
of a comprehensive NUPA benchmark during the HPO process itself.
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F.2. YOTO Experimental Hyperparameter Setup

The YOTO framework (Algorithm 1 in the main paper) involves several key hyperparameters for both the shared LLM
training and the Successive Halving Algorithm (SHA) based tokenizer selection process. The primary model architecture used
for demonstrating YOTO is a Transformer-based model with 104M parameters, adhering to the principles of SuperTinyLMs
(Hillier et al., 2024). All models are trained from scratch on NVIDIA L40s GPUs using bfloat16 precision.

Shared LLM Training Hyperparameters:

• Optimizer: AdamW (Loshchilov and Hutter, 2019) with β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

• Learning Rate for LLM parameters (λθ): 3× 10−4, with a cosine decay schedule and a linear warmup of 2,000
steps.

• Learning Rate for Tokenizer Logits (λϕ): 1× 10−4, also with a cosine decay schedule and linear warmup.

• Batch Size: A global batch size of 1024 sequences.

• Total Training Steps (Tmax for YOTO): The YOTO framework is trained for a total of 100,000 steps. This number is
chosen to be comparable to the training duration of a single baseline model, allowing for substantial computational
savings as detailed in Table 2 of the main paper.

• Vocabulary: A unified vocabulary is constructed from the union of all tokens across the 13 candidate tokenizers.
Duplicate tokens are merged.

• Gumbel Temperature (τ ): For the Gumbel-Softmax reparameterization used to sample tokenizers, the temperature τ
is annealed from an initial value of 2.0 down to 0.5 over the first 50% of the total training steps, and then kept constant.

Soft Successive Halving (SHA) Hyperparameters for Tokenizer Pruning: The SHA mechanism within YOTO dynami-
cally manages the set of active tokenizers (Tactive) by periodically evaluating and pruning less promising candidates based on
their validation performance (mS , typically validation loss contribution or exact match accuracy on a held-out set).

• Candidate Tokenizers (T ): 13 distinct tokenizer configurations as described in Section 3.1 of the main paper.

• Initial Logits (ϕ0): Uniformly initialized for all 13 candidates, ensuring equal sampling probability at the start.

• Reduction Factor (η): η = 3. In each SHA rung, roughly 1/η of the currently active tokenizers are promoted.

• Number of Rungs: With C = 13 candidates and η = 3, there are ⌈logη C⌉ = ⌈log3 13⌉ = 3 rungs (or pruning stages).

• Initial Budget per Candidate (r0 for first rung evaluation): The first SHA evaluation and potential pruning occur
after each active tokenizer has processed an average of approximately 15,000 training samples (tracked by bS). This
budget rrung increases by a factor of η for subsequent rungs. (r0 ≈ 15k, r1 ≈ 45k, r2 ≈ 135k cumulative samples per
surviving tokenizer before next evaluation, though total training is capped by Tmax).

• Performance Metric for Pruning (mS): Primarily validation exact match accuracy on a dedicated validation set,
updated periodically (e.g., every 5,000 training steps).

• Pruning Mechanism: When a SHA rung evaluation is triggered (i.e., surviving tokenizers in Tactive have their
bS ≥ rrung), the corresponding logits αS for pruned tokenizers are set to −∞, effectively removing them from being
sampled by p(S|ϕ).

This setup ensures that YOTO efficiently explores the tokenizer design space, focusing computational resources on promising
candidates while leveraging a shared model to co-adapt model parameters and tokenizer selection.
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