
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

You Only Train Once: Efficient Tokenizer Selection
for Arithmetic in Language Models

Anonymous Authors1

Abstract

Tokenization fundamentally shapes how language
models perceive and process input, with substan-
tial downstream effects—especially in tasks re-
quiring symbolic or numerical precision. Yet, se-
lecting an optimal tokenizer from a vast design
space remains computationally prohibitive, typi-
cally requiring full-scale model training for each
candidate. Focusing on arithmetic reasoning, we
propose You Only Train Once (YOTO), a uni-
fied training framework that jointly optimizes the
language model and a parameterized distribution
over candidate tokenizers. By training a single
model using a merged vocabulary and sampling
tokenizations adaptively, YOTO enables efficient
co-adaptation between model and tokenizer. Ap-
plied to arithmetic tasks, YOTO discovers high-
performing number tokenizers while dramatically
reducing evaluation cost. Our results highlight a
promising path toward jointly optimizing tokeniz-
ers and models in a principled, scalable manner.

1. Introduction
Large Language Models (LLMs) have demonstrated im-
pressive generalization across a range of tasks, yet their
performance is tightly coupled to tokenization—the pre-
processing step that converts raw input into discrete sym-
bols (Jurafsky and Martin, 2023). As the model’s first lens
on data, tokenization serves as a perceptual bottleneck, shap-
ing what patterns the model can recognize and learn. Subtle
choices here can significantly affect performance, particu-
larly on tasks demanding symbolic precision such as arith-
metic, spelling, and multilingual processing (Serrano et al.,
2022; Kaddour et al., 2023).

Most modern LMs rely on subword tokenizers like Byte Pair

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Encoding (BPE) (Sennrich et al., 2016; Kudo and Richard-
son, 2018), which are effective for natural language but
often brittle in structured domains. For example, numerical
inputs are frequently tokenized inconsistently, obscuring
magnitude information and hindering arithmetic generaliza-
tion (Nogueira et al., 2021; Nath et al., 2021).

The computational challenge of tokenizer selection.
While a wide range of tokenizers have been proposed, there
is little consensus on which design choices yield optimal
downstream performance. Naively evaluating each tok-
enizer requires training or significantly finetuning a lan-
guage model—an expensive process that must be repeated
for every candidate. For large-scale models trained from
scratch (Guo et al., 2025; Yang et al., 2024a; Grattafiori
et al., 2024), this approach becomes computationally infea-
sible. As a result, tokenizer selection remains intractable
at scale. Developing methods that can efficiently surface
high-performing tokenizers—without retraining full models
per candidate—would mark a significant step forward in
scalable model-tokenizer co-design.

Our contribution: You Only Train Once. To address the
computational bottleneck in tokenizer selection, we propose
You Only Train Once (YOTO), a unified framework that
jointly optimizes a language model and a distribution over
candidate tokenizers during pretraining. Rather than train-
ing a separate model for each tokenizer, YOTO constructs a
merged vocabulary spanning all candidates and trains a sin-
gle model. A learnable distribution governs which tokenizer
is applied to each training instance, allowing the model
and tokenizer to co-adapt dynamically. This framework en-
ables efficient discovery of high-performing tokenizations
in sublinear time.

Arithmetic reasoning as a testbed. While our method
is broadly applicable, we focus on arithmetic reasoning
as a testbed for evaluating tokenizer selection. Arith-
metic tasks present a challenging domain where tokeniza-
tion has a pronounced impact on performance. Standard
subword tokenizers frequently fragment numbers inconsis-
tently, obscure magnitude information, and impede gener-
alization (Nogueira et al., 2021; Nath et al., 2021). Prior

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

work has proposed digit-wise (Touvron et al., 2023), block-
wise (Yang et al., 2024c;b), and specialized schemes (Golkar
et al., 2023), but no consensus exists on a best strategy. Even
small differences—such as encoding 1000 as [100, 0] ver-
sus [1, 000] (Rando, 2024)—can lead to divergent behavior.
This makes arithmetic a well-scoped, high-sensitivity setting
for systematically evaluating tokenizer design.

Our contributions can be summarized as:

(1) Unified Framework for Tokenizer Optimization. We
propose YOTO, a novel training-time objective that jointly
optimizes a language model and a parameterized distribution
over tokenizers. By sharing a merged vocabulary across
candidates, YOTO enables efficient co-adaptation without
retraining separate models for each tokenizer.

(2) Empirical Validation on Arithmetic Reasoning. We
instantiate YOTO on arithmetic tasks, demonstrating that
it consistently discovers high-performing number tokeniz-
ers at a fraction of the compute cost required by naive ap-
proaches. Our results reveal insights into the interplay be-
tween tokenizer structure and numerical generalization (see
Section 4.2).

2. Related Work
2.1. Efficient Hyperparameter Optimization for LLM

Tokenizers

Optimizing Large Language Models involves tuning nu-
merous hyperparameters, optimizing these is known to be
computationally intensive. Research into efficient hyper-
parameter optimization for deep learning, particularly for
language models, can be viewed from several standpoints.
Firstly, early termination methods, multi-fidelity optimiza-
tion techniques like Successive Halving (SHA) (Jamieson
and Talwalkar, 2016) and HyperBand (Li et al., 2018) offer
principled ways to prune less promising configurations early
(Falkner et al., 2018; Wang et al., 2023), assuming reason-
able performance correlation across fidelities. Secondly,
proxy model transfer, Approaches like µTransfer (Yang and
Mahoney, 2022) aim to predict optimal hyperparameters for
large models from smaller ones, though transferring discrete
structural choices like tokenizers reliably is challenging
(Nguyen et al., 2023; Mahoney et al., 2024). Finally, sequen-
tial methods like multi-armed bandits (Audibert et al., 2010),
advanced Bayesian Optimization for combinatorial spaces
(Baptista and Poloczek, 2018; Oh et al., 2019), and gradient-
based methods using differentiable relaxations (Jang et al.,
2017; Lorraine et al., 2020; Liu et al., 2018) exist but face
scalability or applicability challenges for complex struc-
tures. Tokenizer selection can be viewed as a particularly
challenging instance of hyperparameter optimization due
to its discrete nature, vast combinatorial design space, and
fundamental impact on the model’s input data distribution

(Feurer and Hutter, 2019). The limitations across these gen-
eral optimization strategies highlight the need for methods
tailored specifically to the efficient optimization of LLM
tokenizers.

2.2. Number Tokenization Strategies in Prior Work

Representing numerical data effectively is crucial for LLM
quantitative reasoning (Nath et al., 2021). Various strategies
have emerged to address the shortcomings of standard tok-
enizers which broadly fit into two categories: changing the
segmentation of numbers in tokenization or changing the
formatting or positional information passed to the model.

Segmentation and Chunking. This concerns how num-
ber strings are divided into tokens. Key approaches include:
BPE, N-digit chunking or highly specialized schemes. Stan-
dard BPE leads to inconsistent segmentation of numbers and
hinders learning (Nogueira et al., 2021; Yang et al., 2024c).
Employing N-digit chunking (e.g., 1-, 2-, or 3-digits) which
trades off sequence length and vocabulary size (Yang et al.,
2024c;b). Golkar et al. (2023) propose xVal, which treats
numbers holistically via a single numerical token and de-
codes the value for this token using a separate head.

Formatting and Positional Representation. These tech-
niques modify the input string or embeddings to aid inter-
pretation. Notable strategies involve: reversal, padding, and
additional positional encodings. Addition and multiplica-
tion begin with the least significant digit; this conflicts with
the causal masking in decoder transformers, and reversing
the input numbers significantly aids arithmetic performance
(Singh et al., 2024; Lee et al., 2023). Moreover, aligning
digits of the same significance can be difficult task for trans-
formers. This can be addressed from two angles, firstly,
we can zero-pad to fixed length (Shen et al., 2023) or we
can pass additional information to the model to descibe this
information. For example, Index Hints (Zhou et al., 2023)
or Abacus Embeddings (McLeish et al., 2024; Cho et al.,
2024a;b), which explicitly encode place value or position.

This array of techniques underscores the complexity of num-
ber tokenization. While specific methods show promise, the
interactions between choices are intricate, and efficiently
finding the optimal combination remains an open challenge
(Yang et al., 2024b).

3. Experimental Setup
3.1. Tokenization for Arithmetic

To ground our investigation into tokenization for arithmetic
reasoning, we specify a structured design space for number
tokenization, focusing on arithmetic tasks. This space is
constructed by combining choices along three primary axes,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

1 2 3 4 5 6

12 34 56

123 456

654321

Reversal

123456000

Padding

a1b2c3d4de5f6

Index Hints

1-Digit:

2-Digit:

3-Digit:

Chunking

Formatting

6 5 4 3 2 1 1 2 3 4 5 6 0 0 0 a 1 b 2 c 3 d 4 e 5 f 6

65 43 21

654 321

12 34 56 00 0 a 12 b 34 c 56

123 456 000 a 321 b 654

Input number: 123456

Figure 1. Number Tokenization Strategies Explained. The 13 strategies analyzed comprise combinations of 3 chunking methods (1, 2,
3-Digit), 3 formatting techniques (Reversal, Padding, Index Hints), and the xVal approach. Their encoding of ‘123456’ is illustrated.

based on common strategies discussed previously:

(1) Representation: How the number itself is fundamen-
tally represented. We consider two options: standard posi-
tional Integer and Scientific Notation.

(2) Chunking: How the digit string (or mantissa/exponent)
is segmented. We include four options: fixed 1-digit, 2-
digit, or 3-digit chunks, and the specialized xVal approach
(Golkar et al., 2023) which treats the whole number as a
single token.

(3) Ordering/Formatting/Indexing: Additional tech-
niques applied to the segmented representation. We consider
four mutually exclusive options: None, most significant digit
first; Reverse, least significant digit; Padding, padding each
number with zeros to a fixed length, or Index Hints, special-
ized tokens/embeddings to represent the significance of a
digit. We assume at most one of these techniques is active
for any given tokenizer configuration.

We focus on integer addition and scientific notation of mul-
tiplication, considering the 3 chunking strategies and 4 for-
matting strategies we gain 12 experiments as we also run
each chunking strategy without any formatting additions.
We also analyze xVal totaling 13 distinct experiments to
analyze. This structured space (see Figure 1) allows for sys-
tematic evaluation and analysis of the interactions between
different design decisions.

We focus our experiments on addition and multiplication.
For each setting, we generate synthetic datasets consisting of
problems formatted as operand_1 operator operand_2 =
result (e.g., A+B = C or A×B = C), where operands
A and B are presented in the integers or in scientific nota-
tion. We follow Yang et al. (2024b) to generate datasets to

ensure controlled operand ranges and result distributions
suitable for evaluating numerical understanding. Balancing
computational feasibility and statistical significance, we use
datasets of 100k training samples and 10k test samples.

3.2. Models and Baselines

We employ Transformer-based architectures scaled sys-
tematically based on the Super Tiny LMs principles
(Hillier et al., 2024). We mainly use the 104M
sized model. While studying the scaling effects as
ablation studies, we may use LMs with sizes ranged
from approximately 10M up to 104M parameters (e.g.,
10M, 18M, 26M, 38M, 50M, 104M). Models are trained
from scratch for each experiment unless otherwise noted,
such as within the joint training framework which uses a
single shared model.

We evaluate model performance on the arithmetic tasks
using three primary metrics: exact match, mean absolute
error, and mean relative error. Exact match accuracy is the
percentage of problems where the models output exactly
matches the ground truth. Mean absolute error is the average
numerical difference between models output and ground
truth. Mean relative error is the mean absolute error divided
by the absolute value of the ground truth.

The primary baseline for comparison is the ground truth
evaluation. This involves independently training a dedi-
cated model from scratch for each candidate tokenizer. This
baseline represents the standard, computationally expen-
sive approach to tokenizer selection, establishing the target
performance ranking and a computational cost. We show
our efficient optimization method surpasses this baseline by

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

measuring the computational efficiency (number of Float-
ing Point Operations) required to find the best tokenization
and Spearman’s Rank Correlation Coefficient between the
tokenizer selected by YOTO and the baseline evaluations.

3.3. Method

YOTO introduces a novel framework for efficiently deter-
mining optimal tokenizer configurations by jointly optimiz-
ing tokenizer choices and language model parameters. This
approach, visualized in Figure 2, is built upon three core
principles:

(1) Unified Vocabulary and Shared LLM: We train a
single Large Language Model, parameterized by θ, whose
vocabulary is a comprehensive union of all tokens from all
candidate tokenizers. This significantly amortizes the com-
putational cost typically associated with training separate
models for each tokenizer configuration.

(2) Parameterized Exploration of Combinatorial Tok-
enizer Space: The selection of a tokenizer is governed by a
learnable categorical distribution, parameterized by φ. This
parameterization allows for efficient exploration of the often
vast and combinatorially structured design space of tokeniz-
ers, guiding the search towards optimal configurations.

(3) Resource-Aware Early Termination via Soft Succes-
sive Halving: To further enhance efficiency, YOTO inte-
grates a soft variant of the Successive Halving Algorithm.
This mechanism dynamically allocates training resources,
prioritizing promising tokenizer candidates and prematurely
terminating unpromising ones, thereby reducing the overall
computational budget.

The complete YOTO algorithm is summarized in Algo-
rithm 1.

Joint optimization of model and tokenizer distribution
parameters underpins our methodology. As illustrated
in Figure 2, the training process jointly optimizes LLM
parameters θ and tokenizer sampling distribution parameters
φ. Input data is processed in mini-batches. For each instance
x, a tokenizer S is sampled from p(S|φ) over the candidate
set T . Instance x is then tokenized by S into a token ID
sequence, which is fed to the LLM. The LLM’s embedding
layer, designed for the unified vocabulary, maps tokens
from any S to corresponding embeddings. The LLM then
performs its primary task (e.g., next-token prediction), and
a loss LLLM(x, S, θ) is computed.

The overall loss guides updates to both LLM and to-
kenizer distribution parameters. The mini-batch loss
L̂(θ, φ) empirically approximates the expected loss over

data and tokenizer distributions:

L̂(θ, φ) = 1

|B|
∑
xi∈B

LLLM(xi, Si, θ), where Si ∼ p(S|φ).

This loss depends on both θ and φ. During backpropaga-
tion, gradients update both parameter sets. LLM gradients
∇θL̂ are standard. To obtain gradients∇φL̂ for the discrete
tokenizer sampling, we use the Gumbel-Softmax reparam-
eterization (Jang et al., 2017; Maddison et al., 2017). This
technique enables differentiable sampling from p(S|φ) by
introducing Gumbel noise and a temperature τ , allowing gra-
dient backpropagation to update φ. Specifically, if φ param-
eterizes logits αS per tokenizer S ∈ T , Gumbel-Softmax
provides a continuous, differentiable approximation to dis-
crete sampling, facilitating gradient-based optimization of φ.
For smaller tokenizer design spaces, Bayesian optimization
can be an effective gradient-free alternative for optimizing
φ.

Efficient resource management is achieved via a soft
adaptation of Successive Halving. To enhance compu-
tational efficiency and expedite optimal tokenizer discov-
ery, YOTO incorporates a soft adaptation of the Successive
Halving Algorithm (SHA) (Jamieson and Talwalkar, 2016).
SHA iteratively allocates resources, progressively pruning
underperforming configurations—in our case, individual
tokenizers within the support of p(S|φ). Key SHA hyper-
parameters include the initial budget r0 per candidate, a
reduction factor η > 1, and the maximum budget Rmax per
tokenizer. SHA proceeds in rungs: in rung k, active can-
didates Tk are evaluated with an additional budget. Based
on performance (e.g., validation loss contribution), only the
top 1/η fraction advances to rung k + 1, receiving η times
more budget.

Our soft SHA implementation dynamically manages tok-
enizer participation through learned logits. Instead of a
hard set of active tokenizers, participation is managed via φ.
If SHA deems a tokenizer S pruned (i.e., budget exhausted
and not in the top fraction), its corresponding logit αS in
φ is set to −∞, making its sampling probability p(S|φ) ef-
fectively zero. The distribution p(S|φ) is then renormalized
over active candidates. Budgets are tracked by monitoring
processed data samples per tokenizer. This early termina-
tion of less promising designs significantly cuts cumulative
training costs by focusing resources on a diminishing set
of candidates, which is especially effective as performance
differences often emerge early.

Alternative optimization strategies and vocabulary reuse
enhance framework flexibility. While gradient-based
Gumbel-Softmax is the primary described mechanism for
optimizing φ, iterative methods like Bayesian optimization,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

Tokenizer 1

Tokenizer n

LLM (θ)
with a unified

vocab
Text
Data

Sampling
Parameterized

by φ

Data Tokenized by
Sampled Tokenizer S1

Data Tokenized by
Sampled Tokenizer S2

Loss as a
function of
θ and φ

Forward Pass

Data Tokenized by
Sampled Tokenizer Sm

(m<<n)

Backward Pass

Figure 2. Visualization of You Only Train Once. We jointly optimize the language model parameters and the parameters we use to
sample the tokenizers we are considering. During the forward pass we sample a tokenizer to use for each row of the batch according to the
tokenizer sampling distribution, we then pass these through the language model which has the joint vocabulary for all tokenizers. On the
backward pass we propagate the loss through both the language model and the tokenizer sampling distribution, updating both at every step.

Algorithm 1 YOTO: You Only Train Once
1: Input: Corpus D; initial LLM params θ0; initial tokenizer logits φ0 for candidates T ; SHA params (r0, η, Rmax);

Learning rates λθ, λφ; Gumbel temp τ .
2: Initialize: Unified vocab from T ; LLM θ ← θ0; tokenizer logits φ← φ0.
3: Initialize SHA: Tactive ← T ; budgets bS ← 0, performance mS ← 0 ∀S ∈ T ; rung budget rrung ← r0.
4: for training step t = 1, . . . , Tmax do
5: Sample batch B ⊂ D; Let Bproc ← ∅. ▷ Collects (tokenized sample, Sx)
6: for each sample x ∈ B do
7: Sample tokenizer Sx ∼ p(S|φ, Tactive). ▷ Sample from active distribution
8: Add (Tokenize(x, Sx), Sx) to Bproc; bSx

+= 1. ▷ Tokenize, and track Sx & its budget
9: L̂ ← 1

|B|
∑

(xtok,Sx)∈Bproc
LLLM(xtok, Sx, θ). ▷ Batch loss over sampled tokenizers

10: Compute gradients∇θL̂ and ∇φL̂. ▷ Compute∇φ via Gumbel-Softmax (τ)
11: θ ← θ − λθ∇θL̂; φ← φ− λφ∇φL̂. ▷ Update LLM & active tokenizer logits
12: Periodically update performance mS for S ∈ Tactive. ▷ Using validation data
13: if SHA rung evaluation triggered then ▷ Budget milestones met
14: Teval ← {S ∈ Tactive | bS ≥ rrung}. ▷ Candidates completing current rung
15: if |Teval| ≥ η then ▷ Sufficient candidates for SHA step
16: Sort Teval by mS ; Tpromoted ← top ⌈|Teval|/η⌉ from Teval.
17: for S ∈ Teval \ Tpromoted do
18: Set logit αS ← −∞ in φ; Tactive ← Tactive \ {S}. ▷ Mask logits & prune
19: rrung ← rrung · η. ▷ Increase budget for next rung
20: if rrung > Rmax or |Tactive| ≤ 1 then
21: break. ▷ Max budget or few candidates
22: Output: Optimized θ∗, final φ∗ (or best performing S∗).

informed by performance mS from SHA, offer a viable al-
ternative for manageable design spaces, potentially avoiding
direct gradient computation for φ and management of the
Gumbel-Softmax temperature τ . We also emphasize that al-
though YOTO uses a unified vocabulary larger than any sin-
gle tokenizer’s, many underlying token elements (common

digits chunks, subwords, characters) are naturally reused
across different tokenization strategies. This structure al-
lows for the principled discovery of the best-performing
tokenizer from diverse candidates within a single, integrated
training paradigm.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

4. Exploring Tokenization for Arithmetic
We now move to empirically exploring which tokeniza-
tion, formatting and indexing techniques are most effective
for arithmetic and empirically verifying the usefulness of
YOTO. In Section 4.1, we explore prior tokenization tech-
niques and tricks to ground our exploration of tokeniza-
tion methods for arithmetic. In Section 4.2, we show how
YOTO discovers the most efficient tokenization techniques
for arithmetic using our joint optimization objective. Imple-
mentation details and hyperparameter setups are discussed
in the Appendix.

4.1. Analysis of Ground Truth Tokenization Results

Prior work has extensively explored tokenization and for-
matting techniques for arithmetic; however, seldom do stud-
ies compare many of them in a controlled and equivalent
setting.

In Figure 3, we show the test results when training each
model from scratch with different tokenization and format-
ting techniques for addition. As xVal only assigns a single
token to all numbers, we cannot apply any formatting tech-
niques, hence the formatting columns are empty. On the
left of Figure 3, we present exact match accuracy, seeing
that smaller digit group tokenization is preferable, and xVal
performs as well as 2-digit tokenization strategies but strug-
gles to perform as well as single-digit tokenization tech-
niques. We see that reversing numbers and padding leads
to a performance increase for all tokenization schemes. For
single-digit tokenization, applying these techniques leads to
better performance than xVal. On the right of Figure 3, we
present the mean absolute error and see the same trend as
for exact match accuracy.

In Figure 4, we show the results from training each tokeniza-
tion and formatting strategy on multiplication in scientific
notation. We see the same general trend for the digit group
tokenization strategies as in Figure 3 for addition, with
single digit tokenization performing best. However, for mul-
tiplication we see xVal performs significantly better than any
other technique with a much lower residual error of only
0.1. Numerous studies have identified multiplication as a
particularly challenging task (Dziri et al., 2023; McLeish
et al., 2024), suggesting that techniques like YOTO may of-
fer greater utility in this context as the community continues
to explore the design space.

4.2. Joint Training: Effective and Efficient

Now we have a comprehensive set of baseline methods,
and we compare our joint training strategy to them. In

Section 4.2.1, we see our joint training method is capable of
recovering the trend as to which tokenizer is most efficient to
a good degree of accuracy. In Section 4.2.2, we emphasize
the gain from our method as it only requires training once to
find the optimal tokenizer, hence the name: You Only Train
Once!

4.2.1. EFFECTIVENESS

In Figure 5 we plot the ranking of the tokenization methods
by training a unique model from scratch (x axis) and the
ranking found by the YOTO training objective. For conve-
nience, we plot the perfect trend line (y = x) in red and
annotate Spearman’s rank coefficient ρ on each plot.

In Table 1, we show the Pearson correlation coefficient,
Spearman’s rank correlation coefficient, and Kendall’s tau
for each of the three settings we study. We see high positive
values for all of these coefficients, suggesting a good posi-
tive correlation between the best tokenization method found
by YOTO and the ground truth. Most importantly, we can
visually see in Figure 5 that the best tokenization method is
always within the top two found by YOTO. This means that
the worst case cost of YOTO is the amount to train YOTO
plus 2 runs from scratch, much lower than the naive method
of trying all combinations. We emphasize that it is more
important for YOTO to have higher fidelity at top rankings
than lower rankings, as we want to find optimal tokenization
strategies, which we visually see is true in Figure 5.

We see in Figure 5 and Table 1 that YOTO is better at
predicting correlations for addition than for multiplication.
We suggest this is due to more noise within the system than
for addition, as multiplication has been found to be a much
more difficult problem to solve than addition (McLeish et al.,
2024), and it has even been suggested that generalization
in multiplication may be beyond the limits of transformers
(Dziri et al., 2023).

4.2.2. EFFICIENCY

We train all models on Nvidia L40s GPUs, capable of 362.05
TFLOPs in bfloat16. However, due to the shared to-
kenization and early stopping used by the joint training
strategy, we achieve significant computational savings.

In Table 2, we show the number of Floating Point Operations
(FLOPs) required to train a single baseline model and the
number of FLOPs required to train our method.

Firstly, we see that this saving for one model run is very
large (> 80%). When we take into account that to thor-
oughly ablate tokenizer choice one must train a sweep of
models from scratch (13 in our case) this saving is many

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

None Reverse Padding IndexHints

1-
di

gi
t

2-
di

gi
t

3-
di

gi
t

xV
al

32.36 45.16 41.79 26.56

21.53 30.33 27.92 17.22

6.18 9.25 7.88 4.74

28.45

Exact Match Accuracy ()

None Reverse Padding IndexHints

1-
di

gi
t

2-
di

gi
t

3-
di

gi
t

xV
al

2.81 1.94 2.21 3.24

5.08 3.64 3.95 6.02

15.50 11.58 13.14 17.33

2.47

Mean Absolute Error ()

5

10

15

20

25

30

35

40

45

2

4

6

8

10

12

14

16

Figure 3. Exact Match Accuracy (left) and Mean Absolute Error (right) for integer addition. On the y axis we vary the tokenization
method used for numbers, on the x axis we vary any additional formatting methods used to aid addition. We see that single digit
tokenization performs best when chunking numbers during tokenization and reversing numbers leads to a large gain in performance.
Furthermore, we find xVal is able to perform approximately as well as a single digit tokenization scheme.

None Reverse Padding IndexHints

1-
di

gi
t

2-
di

gi
t

3-
di

gi
t

xV
al

1.14 0.65 0.72 1.92

1.62 0.97 1.10 2.44

2.24 1.53 1.67 3.05

0.10

Mean Relative Error

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4. Mean Relative Error for scientific notation multiplication. On the y axis, we vary the tokenization method used for numbers,
on the x axis, we vary any additional formatting methods used to aid multiplication. For the chunking tokenization strategies, smaller
chunks offer better performance; however, unlike for addition, we see xVal achieves by far the lowest error of all techniques. Relative
instead of absolute errors are reported for scientific notation multiplication tasks because of the long-tailed absolute error distribution.

Table 1. Correlation metrics between Ground Truth and Joint Training across all data points. We see a high correlation between YOTO
and the baseline runs, which are completed by training individual models from scratch.

Pearson Spearman Kendall

Addition EMA 0.899 0.912 0.769
Addition MAE 0.950 0.918 0.744
Multiplication MRE 0.709 0.714 0.538

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

0 2 4 6 8 10 12 14
Ground Truth Rank

0
2
4
6
8

10
12
14

Jo
in

t T
ra

in
in

g
Ra

nk

 = 0.912
Addition: Exact Match Accuracy

0 2 4 6 8 10 12 14
Ground Truth Rank

 = 0.918
Addition: Mean Absolute Error

y = x (Perfect Correlation)

0 2 4 6 8 10 12 14
Ground Truth Rank

 = 0.714
Multiplication: Mean Relative Error

Figure 5. Correlation between baselines and YOTO. On the y axis, we have the ranking of each tokenization and formatting method
according to YOTO, on the x axis, we plot the ground truth ranking, which we record in Section 4.1. We annotate the Spearman’s rank
correlation coefficient from Table 1 onto each plot, seeing high correlation. Most importantly, we see that the best performing ground
truth method is always within the top two found by YOTO.

Table 2. We record the number of FLOPs required to train a single baseline model compared to the number of FLOPs required to train
YOTO. We see the savings are significant and are amplified as practitioners are required to train many more baseline models if not using
YOTO.

Baseline Training (ExaFLOPs) Joint Training (ExaFLOPs) ExaFLOPs saved (%)

Addition 22.96 3.67 84.0
Multiplication 29.09 4.17 85.6

magnitudes larger in real terms. For example, to find the
optimal tokenizer in all cases for the tasks shown in this
paper, we would have to train at most two models and the
joint training objective model when using YOTO compared
to having to train 13 different models to brute force search
the space. Moreover, we want to highlight that this time
complexity saving increases as the tokenizer search space
becomes larger, because while the number of LLM trainings
to sweep all tokenizers increases, our YOTO only requires
one-time training.

5. Conclusion and Future Work
This paper addresses the underexplored but critical problem
of tokenizer selection in large language models (LLMs),
where vast design spaces and expensive evaluations hinder
practical optimization. We introduced YOTO, an efficient
framework that jointly learns language model parameters
and a distribution over candidate tokenizers. By training
a single model over a unified vocabulary and adaptively
sampling from tokenization strategies, YOTO eliminates the
need to train one model per tokenizer—dramatically reduc-
ing computational cost while preserving downstream perfor-
mance. Applied to arithmetic reasoning, YOTO identifies
high-performing number tokenizers and yields actionable

insights into how tokenization impacts generalization.

Our findings suggest several promising directions for future
work:
Scaling to broader tokenizer design spaces. While
this work focused on structured numeric tokenization,
our method is general. A natural next step is to extend
YOTO to explore larger, more diverse tokenizer search
spaces—including morphological, multilingual, or byte-
level schemes—where exhaustive comparisons (e.g., (Yang
et al., 2024b)) become prohibitively expensive. YOTO pro-
vides a scalable engine for accelerating such comparisons.
Application to larger models and varied modalities. Scal-
ing YOTO to frontier LLMs (e.g., 13B, 70B+) and applying
it beyond arithmetic to general natural language, code, cate-
gorical inputs, or even time-series data could unlock further
benefits. Different domains may exhibit distinct tokeniza-
tion sensitivities that co-adaptive training can reveal.

Together, these directions highlight YOTO as a foundational
step toward more adaptive and computationally efficient
co-design of tokenizers and language models.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

References
Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos.

Best arm identification in multi-armed bandits. In Pro-
ceedings of the 23rd Annual Conference on Learning
Theory (COLT), pages 41–53, 2010.

Ricardo Baptista and Matthias Poloczek. Bayesian optimiza-
tion of combinatorial structures. In Advances in Neural
Information Processing Systems 31, pages 6559–6568,
2018.

James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. In Journal of Ma-
chine Learning Research (JMLR), volume 13, pages
281–305, 2012. URL http://www.jmlr.org/
papers/v13/bergstra12a.html.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bho-
janapalli, Anupam Gupta, and Chulhee Yun. Position
coupling: Improving length generalization of arithmetic
transformers using task structure. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/
forum?id=5cIRdGM1uG.

Hanseul Cho, Jaeyoung Cha, Srinadh Bhojanapalli, and
Chulhee Yun. Arithmetic transformers can length-
generalize in both operand length and count. arXiv
preprint arXiv:2410.15787, 2024b.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith
and fate: Limits of transformers on compositionality. Ad-
vances in Neural Information Processing Systems, 36:
70293–70332, 2023.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB:
Robust and efficient hyperparameter optimization at scale.
In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1437–1446. PMLR, 2018.

Matthias Feurer and Frank Hutter. Hyperparameter opti-
mization: A survey. In Automated Machine Learning:
Methods, Systems, Challenges, 2019.

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Al-
berto Bietti, Miles Cranmer, Geraud Krawezik, Francois
Lanusse, Michael McCabe, Ruben Ohana, Liam Parker,
et al. xVal: A continuous number encoding for large lan-
guage models. arXiv preprint arXiv:2310.02989, 2023.
URL https://arxiv.org/abs/2310.02989.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhi-
nav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,

et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Neil Hillier, Jason Cheng, and Milan Nikolic. Super tiny
lms: Parameter-efficient task-specific language modeling.
arXiv preprint arXiv:2403.14426, 2024. URL https:
//arxiv.org/abs/2403.14426.

Kevin G. Jamieson and Ameet Talwalkar. Non-stochastic
best arm identification and hyperparameter optimization.
Proceedings of the 19th International Conference on Ar-
tificial Intelligence and Statistics, 51, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. In International
Conference on Learning Representations (ICLR), 2017.

Dan Jurafsky and James H. Martin. Speech and language
processing (3rd ed. draft), 2023.

Jean Kaddour, Xiangru Tang, Qian Liu, Wenjie Ding, and
Lingjuan Lyu. Challenges and opportunities in pipeline
llms: Service, security, and societal impacts. In NeurIPS
2023 Workshop on Regulation, Ethics, and Governance
of AI, 2023.

Taku Kudo and John Richardson. Sentencepiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226, 2018. URL https://arxiv.
org/abs/1808.06226.

Sanghyeok Lee, Youngwoon Lee, Sungdong Kim, and Hy-
oungwook Kim. Teaching arithmetic to small trans-
formers. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=0M0N5FjF2E.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet V. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
In Journal of Machine Learning Research, volume 18,
pages 1–52, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Opti-
mizing millions of hyperparameters by implicit differenti-
ation. Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS), 108:
1540–1552, 2020.

9

http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
https://openreview.net/forum?id=5cIRdGM1uG
https://openreview.net/forum?id=5cIRdGM1uG
https://arxiv.org/abs/2310.02989
https://arxiv.org/abs/2403.14426
https://arxiv.org/abs/2403.14426
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://openreview.net/forum?id=0M0N5FjF2E
https://openreview.net/forum?id=0M0N5FjF2E

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations (ICLR), 2019. URL https:
//openreview.net/forum?id=Bkg6RiCqY7.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In International Conference on Learn-
ing Representations (ICLR), 2017.

Michael W. Mahoney, Trong Nghia Nguyen, Joseph E. Gon-
zalez, and Greg Yang. Understanding µ-transfer: Training
large language models with smaller ones. arXiv preprint
arXiv:2405.00846, 2024.

Thomas McLeish, Thomas D. Barrett, Spyridon Te
Voundoukis, Andrew Jaegle, Matthew J. Kusner, Kevin P.
Murphy, and Razvan Pascanu. Abacus embeddings: A
numerically correct representation for language mod-
els. arXiv preprint arXiv:2404.08663, 2024. URL
https://arxiv.org/abs/2404.08663.

Arkadeep Nath, Arnav Thawani, Jiaqing Lian, and Ming
Li. Numeracy enhances the reasoning capabilities of
language models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing,
2021. URL https://aclanthology.org/2021.
emnlp-main.689.

Trong Nghia Nguyen, Alexandra H. Lobel, Michael W. Ma-
honey, Joseph E. Gonzalez, and Greg Yang. Do hyper-
parameter transfer methods transfer... hyperparameters?
arXiv preprint arXiv:2307.15801, 2023.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. In-
vestigating the limitations of transformers with simple
arithmetic tasks. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing,
2021. URL https://aclanthology.org/2021.
emnlp-main.61.

ChangYong Oh, Jakub M. Tomczak, Efstratios Gavves, and
Max Welling. Combinatorial bayesian optimization us-
ing the graph cartesian product. In Advances in Neural
Information Processing Systems 32, pages 10851–10861,
2019.

Javier Rando. Just finished reading an incredible article
on ai advancements in healthcare. the future is promis-
ing!, March 2024. URL https://twitter.com/
javirandor/status/1768616042224374133.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
machine translation of rare words with subword units. In
Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-
pers), 2016. URL https://aclanthology.org/
P16-1162.

Sofia Serrano, Jesse Dodge, Andreas Stuhlmüller, Noah A.
Smith, Hanna Hajishirzi, and Sewon Min. Reducing
troublesome tokenization issues. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2022,
2022. URL https://aclanthology.org/2022.
findings-emnlp.383.

Sheng Shen, Alan Zheng, Zhen Qin, and Noah A. Smith.
Padding is powerful: Rethinking pretrained model eval-
uation. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), 2023. URL https://aclanthology.
org/2023.acl-long.113.

Shashank Singh, Kyunghyun Cho, and Andrew M. Saxe.
Right-to-left models are better at arithmetic. arXiv
preprint arXiv:2404.12278, 2024. URL https://
arxiv.org/abs/2404.12278.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learn-
ing algorithms. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
25 (NIPS 2012), pages 2951–2959. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.
neurips.cc/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.
pdf.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Daniel M. Bikel, Lukas Blecher, Cristian Cantón
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel M. Kloumann, Artem V. Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog,
Yixin Nie, Andrew Poulton, Jeremy Michael Posner, Russ
Howes, Ruan Silva, Eric Michael Smith, Ranjan Subra-
manian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kam-
badur, Sharan Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=Wnk2274nVO.

10

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2404.08663
https://aclanthology.org/2021.emnlp-main.689
https://aclanthology.org/2021.emnlp-main.689
https://aclanthology.org/2021.emnlp-main.61
https://aclanthology.org/2021.emnlp-main.61
https://twitter.com/javirandor/status/1768616042224374133
https://twitter.com/javirandor/status/1768616042224374133
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/2022.findings-emnlp.383
https://aclanthology.org/2022.findings-emnlp.383
https://aclanthology.org/2023.acl-long.113
https://aclanthology.org/2023.acl-long.113
https://arxiv.org/abs/2404.12278
https://arxiv.org/abs/2404.12278
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://openreview.net/forum?id=Wnk2274nVO
https://openreview.net/forum?id=Wnk2274nVO

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

Lichuan Wang, Yuanchun Li, Yunfei Teng, Saravanaku-
mar Murugesan, Chengming Zhang, Kun Wang, and
Yu Zhang. Hyperparameter optimization: A sur-
vey of state-of-the-art algorithms. arXiv preprint
arXiv:2303.01248, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen2. 5 technical report.
arXiv preprint arXiv:2412.15115, 2024a.

Greg Yang and Michael W. Mahoney. Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv
preprint arXiv:2205.00903, 2022. URL https://
arxiv.org/abs/2205.00903.

Haotong Yang, Yi Hu, Shijia Kang, Zhouchen Lin, and
Muhan Zhang. Number cookbook: Number understand-
ing of language models and how to improve it. arXiv
preprint arXiv:2411.03766, 2024b.

Junwei Yang, Zhaofeng He, and Hongyuan Mei. What’s
the best number tokenizer for large language models?
arXiv preprint arXiv:2404.08047, 2024c. URL https:
//arxiv.org/abs/2404.08047.

Zhixuan Zhou, Xingwei Qu, Jianxiang Huang, Kerui Zhu,
Jiaqing Liang, Wenqiang Lei, Yunshi Lan, and Yanghua
Xiao. Index hints are helpful in arithmetic reasoning.
arXiv preprint arXiv:2310.16597, 2023. URL https:
//arxiv.org/abs/2310.16597.

11

https://arxiv.org/abs/2205.00903
https://arxiv.org/abs/2205.00903
https://arxiv.org/abs/2404.08047
https://arxiv.org/abs/2404.08047
https://arxiv.org/abs/2310.16597
https://arxiv.org/abs/2310.16597

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

Appendices
A. Limitations
YOTO offers a novel framework for efficient tokenizer selection, showing significant computational savings and strong
performance in identifying optimal arithmetic tokenizers. While promising for model-tokenizer co-design, its current scope
has limitations that suggest avenues for future work.

Focused Application to Arithmetic Tokenization. Our empirical validation centers on arithmetic tasks and number
representations. This focus, while potentially seen as niche, was deliberate. It stems not from avoiding general language
complexities but from the current state of tokenizer design research. The arithmetic domain provides a uniquely rich,
structured landscape of tokenization strategies (e.g., digit-wise, xVal, various formatting), essential for rigorously testing
YOTO within a well-defined search space. Extending YOTO to general language tokenization requires developing similar
structured design spaces for broader vocabulary elements, a substantial research challenge.

Model Scale and Training from Scratch. Our experiments use models up to 100M parameters, smaller than many state-of-
the-art LLMs. This scale was chosen because fair tokenizer evaluation necessitates from-scratch training or co-adaptation,
as fine-tuning larger models introduces biases. Furthermore, models of this size are sufficient for the arithmetic tasks and
datasets used, effectively demonstrating YOTO’s algorithmic efficiency in tokenizer selection. While scaling YOTO to
larger models is future work, the current scale balances rigorous evaluation with computational feasibility for from-scratch
training.

Scope of Explored Optimization Techniques. YOTO uses a soft Successive Halving (SHA) variant and Gumbel-Softmax
for tokenizer sampling. While effective, exploring broader hyperparameter optimization algorithms for the tokenizer
distribution and advanced early-termination methods could yield improvements. The interplay between merged vocabulary
size, candidate number, and the optimization strategy for φ particularly warrants deeper investigation for larger candidate
sets.

B. Broader Impacts
The YOTO framework, primarily an academic contribution improving a fundamental aspect of LLM pipelines, offers several
positive broader impacts. By making tokenizer selection significantly more resource-efficient, it can enhance development
efficiency and accessibility; potentially lowering entry barriers for creating custom LLMs, especially for those with limited
compute, and fostering innovation. This efficiency also facilitates advancing model performance on specialized tasks;
better tokenizers, crucial for areas like arithmetic, code, or scientific analysis, can lead to more accurate and reliable LLMs
in these fields. Furthermore, YOTO may stimulate research into model-input co-design; highlighting the benefits of
co-adapting tokenizers and models and encouraging more integrated approaches. While YOTO itself is an optimization
algorithm, any resulting improved models should be developed responsibly, considering ethical implications common to
powerful AI.

C. Formal Definition of Efficient Tokenization Optimization
Let T = {T1, . . . , TC} be a finite set of C candidate tokenizer configurations derived from a design space. Given a fixed
model architecture M , a set of training hyperparameters H , a training dataset Dtrain, and a validation dataset Dval, the goal
is to identify the optimal tokenizer T ∗ ∈ T . Training the model M with a specific tokenizer Ti ∈ T under hyperparameters
H on Dtrain yields optimal parameters θ∗(Ti). Due to stochastic elements in training (e.g., initialization, data shuffling),
performance varies. Let P(Mθ, D) denote a performance metric (e.g., accuracy) on dataset D with model parameters θ. We
seek the tokenizer T ∗ that maximizes the expected validation performance:

T ∗ = argmax
T∈T

E
[
P(Mθ∗(T), Dval)

]
(1)

where the expectation E[·] is taken over the sources of training randomness. The naive approach involves independently
training the model for each T ∈ T and selecting the best based on validation performance. Let E[Timetrain(M,Dtrain, H)]
be the expected wall-clock time for a single training run. The naive evaluation cost is Timenaive = C × E[Timetrain]. The
core challenge is to develop an optimization algorithm A to find T ∗ (or a top-k set) such that its total runtime, Time(A),

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

satisfies the efficiency constraint:
Time(A)≪ Timenaive (2)

Ideally, Time(A) should scale sub-linearly with C.

D. Rationale for Tokenizer Design Space
The design of an effective tokenizer, particularly for tasks requiring numerical precision like arithmetic, involves navigating
a vast space of potential strategies. This section details the rationale and methodology for arriving at the 13 distinct number
tokenization configurations evaluated in this work (see main paper, Section 3.1), focusing on the mutual compatibility and
interplay of various considered techniques. Our goal was to establish a structured and diverse design space that allows for
systematic analysis of model-tokenizer co-adaptation.

We began by identifying several promising low-level design choices for number tokenization, drawing from existing literature
and common practices. These initial candidate techniques can be broadly categorized as:

• Segmentation/Chunking Strategies:

– N-Digit Chunking: Segmenting number strings into fixed-size chunks of 1, 2, or 3 digits. This is a common
baseline approach for number representation (Yang et al., 2024c).

– xVal (Golkar et al., 2023): Treating the entire number as a single, holistic token, with its numerical value decoded
by a specialized mechanism.

• Ordering, Formatting, and Indexing Strategies: These techniques modify the number string or its representation to
aid model interpretation.

– Reverse Digits: Reversing the order of digits in the number string (e.g., "123" becomes "321"). This aligns
processing with the least significant digit first, which can be beneficial for arithmetic operations (Singh et al.,
2024; Lee et al., 2023).

– Zero Padding: Padding numbers with leading zeros to a fixed maximum length before tokenization (Shen et al.,
2023). This can help models align digits of similar significance across different numbers.

– Length Prefix (Considered but not in final 13): Prepending a special token or sequence indicating the length of the
number. This is an alternative to Zero Padding for explicitly providing length information.

– Index Hints (Zhou et al., 2023): Employing specialized tokens or embeddings to explicitly indicate the significance
or place value of each digit or chunk.

– Abacus Embeddings (Considered but not in final 13) (McLeish et al., 2024): Using learned embeddings that
represent each digit’s place value, which are then typically summed to form the number’s representation.

These techniques are generally applicable to both integer and scientific notation representations. For scientific notation (e.g.,
M × 10E), string-based operations like Reverse Digits or Zero Padding are typically applied to the mantissa M , while the
exponent E might be handled separately or as part of the overall strategy (e.g., also reversed or padded). Index Hints can be
adapted to signify digit positions within both the mantissa and the exponent.

A critical step in defining a practical design space is to assess the mutual compatibility of these techniques. Not all
combinations are sensible or offer unique advantages. Table 3 summarizes the pairwise compatibility of these fine-grained
design choices.

From this compatibility analysis (detailed in Table 3), we made several key decisions to arrive at the final 13 configurations
explored in the main paper:

1. xVal as a Standalone Strategy: As xVal tokenizes the entire number into a single conceptual unit, it is fundamentally
incompatible with techniques that operate on individual digits or sub-digit chunks (e.g., Reverse Digits, N-Digit
Chunking, Index Hints). Thus, xVal forms one distinct branch in our design space, used without other formatting or
indexing augmentations.

2. N-Digit Chunking as a Base: For more granular tokenization, we selected N-Digit Chunking (with N=1, 2, or 3) as the
foundational segmentation approach. The remaining formatting and indexing techniques are considered as potential
augmentations to these chunking strategies.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

Table 3. Mutual Compatibility of Number Tokenization Design Choices. (✓ denotes Compatible; × denotes Incompatible or highly
redundant/conflicting; △ denotes Conditionally compatible, may require non-trivial adaptation, or offers overlapping functionality that
might be better addressed by one technique alone.) N/A indicates self-comparison or inherent redundancy within a conceptual pairing.

Technique/Type N-Digit Chunking xVal Reverse Digits Zero Padding Length Prefix Index Hints Abacus Emb.

N-Digit Chunking N/A N/A ✓ ✓ ✓ ✓ ✓
xVal N/A N/A × × × × ×
Reverse Digits ✓ × N/A ✓ ✓ ✓ △
Zero Padding ✓ × ✓ N/A N/A ✓ ✓
Length Prefix ✓ × ✓ N/A N/A × ×
Index Hints ✓ × ✓ ✓ × N/A N/A
Abacus Emb. ✓ × △ ✓ × N/A N/A

3. Selection of Formatting/Indexing Augmentations:

• Reverse Digits was retained as it is broadly compatible with N-Digit Chunking and directly addresses a known
challenge for sequential models in arithmetic tasks, by processing numbers from least-significant to most-
significant digit (Singh et al., 2024).

• Zero Padding vs. Length Prefix: Both techniques aim to provide information about number length or facilitate
alignment across numbers of varying lengths. Zero Padding achieves this by pre-pending actual ’0’ digits to a
fixed length before chunking, leveraging existing digit tokens. Length Prefix would involve new special tokens or
a fixed-format prefix. As indicated in Table 3 by N/A (for their direct pairing, implying one subsumes or makes
the other redundant) and × (for Length Prefix with Index Hints/Abacus, where explicit length tokens conflict with
more granular positional encodings), these offer overlapping functionalities. We selected Zero Padding for its
conceptual simplicity and direct integration with digit-based vocabularies.

• Index Hints vs. Abacus Embeddings: Both techniques aim to explicitly encode the positional significance of digits
or chunks. Index Hints achieve this by associating specialized tokens or modifying embeddings based on a digit’s
(or chunk’s) position. Abacus Embeddings are a specific type of learned positional embedding summed across
digits. Table 3 marks their direct pairing as N/A as they serve the same fundamental purpose. We opted for the
more general concept of Index Hints as it can be implemented flexibly and is readily combined with N-Digit
Chunking.

This systematic filtering process, guided by logical compatibility and the goal of exploring diverse yet non-redundant
strategies, led to our final set of tokenizer configurations for evaluation:

• Three N-Digit Chunking strategies (1-digit, 2-digit, 3-digit).

• Each of these chunking strategies is combined with four formatting/indexing options:

1. None (i.e., only N-Digit Chunking is applied).
2. Reverse Digits (applied to the number string before N-Digit Chunking).
3. Zero Padding (applied to the number string before N-Digit Chunking).
4. Index Hints (applied in conjunction with N-Digit Chunking).

This yields 3 (chunking types)× 4 (formatting options) = 12 configurations.

• The standalone xVal configuration.

In total, this gives 12 + 1 = 13 distinct tokenizer designs, forming a structured space for investigating the impact of
tokenization on arithmetic reasoning, as detailed in the main paper (Section 3.1, Figure 1).

E. Hyperparameter Optimization Strategies in YOTO
The selection of an optimal tokenizer for a Large Language Model (LLM) can be framed as a complex hyperparameter
optimization (HPO) problem. The design space of tokenizers is vast, often combinatorial, and evaluating each candidate

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

typically requires expensive model training or significant fine-tuning (Feurer and Hutter, 2019). This section outlines the
general landscape of HPO techniques, analyzes their applicability to the specific challenge of LLM tokenizer optimization,
and details the reasoning that led to the HPO strategies integrated into our You Only Train Once (YOTO) framework.

E.1. Overview of General Hyperparameter Optimization Techniques

HPO methods aim to find a set of hyperparameters that optimize a learning algorithm’s performance. These techniques can
be broadly categorized:

• Model-Free Methods: These approaches do not build an explicit model of the relationship between hyperparameters
and performance.

– Grid Search: Exhaustively evaluates all hyperparameter combinations on a predefined grid. While simple, it
suffers from the curse of dimensionality.

– Random Search: Samples hyperparameter configurations randomly from their respective distributions. Often more
efficient than grid search, particularly when some hyperparameters are more influential than others (Bergstra and
Bengio, 2012).

• Model-Based Sequential Optimization (MBSO): These methods iteratively build a surrogate model (e.g., Gaussian
Processes in Bayesian Optimization) to approximate the objective function and use an acquisition function to select the
next hyperparameters to evaluate.

– Bayesian Optimization (Snoek et al., 2012): Particularly effective for expensive black-box functions. Adaptations
exist for combinatorial spaces (Baptista and Poloczek, 2018; Oh et al., 2019), relevant for discrete choices like
tokenizers.

– Evolutionary Algorithms: Employ principles of biological evolution, such as mutation, crossover, and selection, to
iteratively refine a population of hyperparameter configurations.

• Early Termination and Multi-Fidelity Optimization: These techniques aim to reduce computational cost by quickly
discarding unpromising configurations or by using cheaper, lower-fidelity approximations of the true evaluation.

– Successive Halving (SHA) (Jamieson and Talwalkar, 2016): Allocates an initial budget to all configurations,
evaluates them, and promotes only the top fraction (e.g., half) to the next round with an increased budget.

– HyperBand (Li et al., 2018): Extends SHA by adaptively managing the number of configurations and the budget
allocated at each stage, aiming for a good trade-off between exploration and exploitation. BOHB (Falkner et al.,
2018) combines HyperBand with Bayesian Optimization.

• Gradient-Based Methods for Differentiable Hyperparameters: If hyperparameters are continuous and the objective
function is differentiable with respect to them, gradient-based optimization can be used. For discrete hyperparameters,
differentiable relaxations (e.g., Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)) or implicit differentiation
(Lorraine et al., 2020) can sometimes be applied.

• Transfer Learning and Meta-Learning for HPO: These approaches leverage knowledge from previous HPO tasks or
related datasets/models to warm-start or guide the current optimization process (Feurer and Hutter, 2019). Predicting
optimal hyperparameters for large models from smaller ones (e.g., µTransfer (Yang and Mahoney, 2022; Mahoney
et al., 2024)) falls into this category.

E.2. Challenges and Promising Directions for LLM Tokenizer HPO

Optimizing tokenizer choices for LLMs presents unique challenges:

1. Discrete and Combinatorial Search Space: Tokenizer design involves discrete choices (e.g., chunk size, vocabulary
selection algorithm, formatting rules), leading to a vast and often non-ordered combinatorial space.

2. Expensive Evaluations: The primary bottleneck is the computational cost of training or extensively fine-tuning an
LLM for each candidate tokenizer to assess its downstream performance.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

3. Interdependent Effects: Tokenizer choices have a fundamental impact on the model’s input data distribution and,
consequently, on learned representations and task performance (Kaddour et al., 2023).

Given these challenges, several general HPO techniques face limitations:

• Naive Grid/Random Search: Becomes computationally intractable due to the high cost per evaluation and the size of
the tokenizer search space.

• Standard Gradient-Based Methods: Not directly applicable for discrete, non-differentiable tokenizer choices, unless
suitable differentiable relaxations of the tokenizer design space itself can be formulated, which is non-trivial.

• Transfer Learning for Discrete Structures: While promising for continuous hyperparameters (Yang and Mahoney,
2022), transferring discrete structural choices like tokenizers reliably across model scales or tasks is known to be
difficult (Nguyen et al., 2023). Proxy models based on smaller model evaluations may not perfectly predict the ranking
of tokenizers for larger models.

This analysis points towards HPO strategies that prioritize drastically reducing the evaluation cost per candidate or
intelligently navigating the search space with fewer evaluations. Key promising directions include:

1. Massive Reduction in Per-Candidate Evaluation Cost:

• Shared Model Training / Resource Sharing: If a single model can be trained in a way that allows evaluation or
co-adaptation of multiple tokenizers simultaneously, the cost can be amortized. This involves designing a model
architecture and training paradigm that can accommodate a diverse set of tokenization schemes. This is the central
idea behind YOTO’s unified vocabulary and shared LLM.

2. Efficient Search and Early Pruning of Unpromising Candidates:

• Early Termination Strategies: Techniques like Successive Halving (SHA) are highly relevant. By allocating
resources incrementally and discarding underperforming tokenizers early, the total computational budget can be
significantly reduced.

• Model-Based Optimization for Parameterized Search: If the choice among candidate tokenizers can be controlled
by a learnable distribution (parameterized by ϕ, as in YOTO), then techniques can be used to optimize these
parameters. This transforms the discrete search problem into a potentially continuous optimization problem for
the distribution’s parameters.

E.3. HPO in the YOTO Framework

The design of YOTO’s optimization algorithm directly incorporates the insights discussed above, aiming to create an efficient
and effective method for tokenizer selection:

1. Unified Vocabulary and Shared LLM (??, Line 2): This is the cornerstone of YOTO’s efficiency. Instead of training
C separate models for C tokenizer candidates, YOTO trains a single LLM with a merged vocabulary encompassing
tokens from all candidates. This drastically reduces the core model training cost, sharing the bulk of parameter updates
across all considered tokenizers.

2. Parameterized Exploration and Soft Successive Halving (??, Lines 3, 7, 13-21): YOTO manages a learnable
categorical distribution, p(S|ϕ), over the candidate tokenizers S ∈ T .

• The parameters ϕ (logits for each tokenizer) are optimized during training, allowing the framework to learn which
tokenizers contribute to better performance. The Gumbel-Softmax trick (Jang et al., 2017; Maddison et al., 2017)
is employed to allow gradient flow back to ϕ despite the discrete sampling of a tokenizer Sx for each training
instance.

• This learnable distribution is coupled with a "soft" variant of Successive Halving. Instead of rigidly discarding
tokenizers, SHA in YOTO influences the logits ϕ: tokenizers deemed unpromising by SHA (i.e., not in the top
fraction after a rung evaluation) have their logits set to −∞, effectively removing them from the sampling pool
(p(S|ϕ) ≈ 0). This dynamically allocates training resources (data samples processed per tokenizer) towards more
promising candidates.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

3. Alternative for ϕ Optimization (Mentioned in Main Paper): While the main paper focuses on Gumbel-Softmax for
optimizing ϕ, it also notes that for smaller, manageable design spaces, iterative methods like Bayesian Optimization,
informed by the performance metrics (mS) gathered during the SHA-like process, could offer a gradient-free alternative
to update ϕ or directly select promising tokenizers.

By combining shared training with a resource-aware, adaptive exploration strategy based on soft SHA and parameterized
tokenizer sampling, YOTO aims to discover high-performing tokenizers in sublinear time with respect to the number of
candidates. This approach circumvents the prohibitive costs of naive evaluation while allowing the model and the tokenizer
selection mechanism to co-adapt dynamically. The exclusion of direct proxy model transfer for tokenizer choice was due to
its noted unreliability for discrete structural changes (Nguyen et al., 2023), favoring instead a joint optimization within a
single, adaptable system.

F. Synthetic Arithmetic Datasets and YOTO Training Setup
This section provides further details on the synthetic datasets generated for our arithmetic experiments and the hyperparameter
configurations used for training the YOTO framework.

F.1. Synthetic Dataset Generation for Arithmetic Tasks

For our experiments focusing on integer addition and scientific notation multiplication, we generated synthetic datasets
to ensure controlled operand ranges and result distributions, facilitating a clear evaluation of tokenizer performance. The
problem format is consistently operand_1 operator operand_2 = result (e.g., A + B = C or A ∗ B = C). Each dataset
comprises 100,000 training samples and 10,000 test samples, as detailed in the main paper (Section 3.1).

The generation process for these datasets draws inspiration from the principles outlined in the Number Cookbook benchmark
(Yang et al., 2024b), which aims for a comprehensive assessment of numerical understanding and processing abilities (NUPA)
in LLMs. The Number Cookbook proposes a wide array of numerical tasks (41 combinations across 4 representations
and 17 tasks) derived from educational curricula. Our work, while focused on demonstrating the YOTO framework’s
efficiency for tokenizer selection, uses a simplified subset of these tasks—specifically integer addition and scientific notation
multiplication—as sensitive testbeds where tokenization choices have a pronounced impact.

While Number Cookbook strives for exhaustive coverage of numerical reasoning facets (e.g., various digit lengths, specific
number properties, multi-step reasoning in some of its complex tasks), our synthetic datasets for YOTO experiments are
tailored to clearly isolate the effects of tokenization on fundamental arithmetic operations. For instance:

• Operand Characteristics: We control operand lengths and ensure a diverse distribution of values, following similar
principles to Number Cookbook to avoid trivial cases or biases. For problems with two operands, their lengths are
varied to test alignment capabilities, as described in the main paper.

• Task Simplification: Our ‘A op B = C‘ format directly tests the model’s capacity to process the input numbers
according to the specified operator and produce the correct output. This contrasts with some Number Cookbook tasks
that might be embedded in more complex natural language instructions or require intermediate reasoning steps. This
simplification is intentional: YOTO’s primary contribution is an efficient tokenizer selection methodology, not a new
state-of-the-art in broad numerical reasoning. The chosen tasks provide a clear signal for tokenization performance
without confounding factors from more complex reasoning.

• Focus on Core Arithmetic: Integer addition is a foundational arithmetic skill, while scientific notation multiplication
tests handling of more structured numerical formats (mantissa, exponent) and can be sensitive to how numbers are
segmented and represented. These serve as representative tasks where different tokenization strategies (e.g., digit-wise,
xVal, formatting) can lead to significantly different model performances.

The streamlined dataset design for YOTO is thus sufficient and appropriate for its objective: to demonstrate that YOTO can
efficiently identify high-performing tokenizers for tasks where tokenization is critical, without the need for the full breadth
of a comprehensive NUPA benchmark during the HPO process itself.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

You Only Train Once: Efficient Tokenizer Selection for Arithmetic in Language Models

F.2. YOTO Experimental Hyperparameter Setup

The YOTO framework (Algorithm 1 in the main paper) involves several key hyperparameters for both the shared LLM
training and the Successive Halving Algorithm (SHA) based tokenizer selection process. The primary model architecture used
for demonstrating YOTO is a Transformer-based model with 104M parameters, adhering to the principles of SuperTinyLMs
(Hillier et al., 2024). All models are trained from scratch on NVIDIA L40s GPUs using bfloat16 precision.

Shared LLM Training Hyperparameters:

• Optimizer: AdamW (Loshchilov and Hutter, 2019) with β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

• Learning Rate for LLM parameters (λθ): 3× 10−4, with a cosine decay schedule and a linear warmup of 2,000
steps.

• Learning Rate for Tokenizer Logits (λϕ): 1× 10−4, also with a cosine decay schedule and linear warmup.

• Batch Size: A global batch size of 1024 sequences.

• Total Training Steps (Tmax for YOTO): The YOTO framework is trained for a total of 100,000 steps. This number is
chosen to be comparable to the training duration of a single baseline model, allowing for substantial computational
savings as detailed in Table 2 of the main paper.

• Vocabulary: A unified vocabulary is constructed from the union of all tokens across the 13 candidate tokenizers.
Duplicate tokens are merged.

• Gumbel Temperature (τ): For the Gumbel-Softmax reparameterization used to sample tokenizers, the temperature τ
is annealed from an initial value of 2.0 down to 0.5 over the first 50% of the total training steps, and then kept constant.

Soft Successive Halving (SHA) Hyperparameters for Tokenizer Pruning: The SHA mechanism within YOTO dynami-
cally manages the set of active tokenizers (Tactive) by periodically evaluating and pruning less promising candidates based on
their validation performance (mS , typically validation loss contribution or exact match accuracy on a held-out set).

• Candidate Tokenizers (T): 13 distinct tokenizer configurations as described in Section 3.1 of the main paper.

• Initial Logits (ϕ0): Uniformly initialized for all 13 candidates, ensuring equal sampling probability at the start.

• Reduction Factor (η): η = 3. In each SHA rung, roughly 1/η of the currently active tokenizers are promoted.

• Number of Rungs: With C = 13 candidates and η = 3, there are ⌈logη C⌉ = ⌈log3 13⌉ = 3 rungs (or pruning stages).

• Initial Budget per Candidate (r0 for first rung evaluation): The first SHA evaluation and potential pruning occur
after each active tokenizer has processed an average of approximately 15,000 training samples (tracked by bS). This
budget rrung increases by a factor of η for subsequent rungs. (r0 ≈ 15k, r1 ≈ 45k, r2 ≈ 135k cumulative samples per
surviving tokenizer before next evaluation, though total training is capped by Tmax).

• Performance Metric for Pruning (mS): Primarily validation exact match accuracy on a dedicated validation set,
updated periodically (e.g., every 5,000 training steps).

• Pruning Mechanism: When a SHA rung evaluation is triggered (i.e., surviving tokenizers in Tactive have their
bS ≥ rrung), the corresponding logits αS for pruned tokenizers are set to −∞, effectively removing them from being
sampled by p(S|ϕ).

This setup ensures that YOTO efficiently explores the tokenizer design space, focusing computational resources on promising
candidates while leveraging a shared model to co-adapt model parameters and tokenizer selection.

18

	1 Introduction
	2 Related Work
	2.1 Efficient Hyperparameter Optimization for LLM Tokenizers
	2.2 Number Tokenization Strategies in Prior Work

	3 Experimental Setup
	3.1 Tokenization for Arithmetic
	3.2 Models and Baselines
	3.3 Method

	4 Exploring Tokenization for Arithmetic
	4.1 Analysis of Ground Truth Tokenization Results
	4.2 Joint Training: Effective and Efficient
	4.2.1 Effectiveness
	4.2.2 Efficiency

	5 Conclusion and Future Work
	A Limitations
	B Broader Impacts
	C Formal Definition of Efficient Tokenization Optimization
	D Rationale for Tokenizer Design Space
	E Hyperparameter Optimization Strategies in YOTO
	E.1 Overview of General Hyperparameter Optimization Techniques
	E.2 Challenges and Promising Directions for LLM Tokenizer HPO
	E.3 HPO in the YOTO Framework

	F Synthetic Arithmetic Datasets and YOTO Training Setup
	F.1 Synthetic Dataset Generation for Arithmetic Tasks
	F.2 YOTO Experimental Hyperparameter Setup

