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ABSTRACT

Randomized Smoothing (RS) is a prominent technique for certifying the robust-
ness of neural networks against adversarial perturbations. With RS, achieving high
accuracy at small radii requires a small noise variance, while achieving high accu-
racy at large radii requires a large noise variance. However, the global noise vari-
ance used in the standard RS formulation leads to a fundamental limitation: there
exists no global noise variance that simultaneously achieves strong performance
at both small and large radii. To break through the global variance limitation,
we propose a dual RS framework which enables input-dependent noise variances.
To achieve that, we first prove that RS remains valid with input-dependent noise
variances, provided the variance is locally constant around each input. Building
on this result, we introduce two components which form our dual RS framework:
(i) a variance estimator first predicts an optimal noise variance for each input, (ii)
this estimated variance is then used by a standard RS classifier. The variance esti-
mator is independently smoothed via RS to ensure local constancy, enabling flex-
ible design. We also introduce training strategies to iteratively optimize the two
components involved in the framework. Extensive experiments on the CIFAR-
10 dataset demonstrate that our dual RS method provides strong performance for
both small and large radii—unattainable with global noise variance—while incur-
ring only a 60% computational overhead at inference. Moreover, it consistently
outperforms prior input-dependent noise approaches across most radii, with par-
ticularly large gains at radii 0.5, 0.75, and 1.0, achieving relative improvements of
19.2%, 24.2%, and 20.6%, respectively. On IMAGENET, dual RS remains effec-
tive across all radii, with roughly 1.5x performance advantages at radii 0.5, 1.0 and
1.5. Additionally, the proposed dual RS framework naturally provides a routing
perspective for certified robustness, improving the accuracy-robustness trade-off
with off-the-shelf expert RS models.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse tasks but remain highly vul-
nerable to adversarial attacks—small, carefully crafted perturbations that can lead to incorrect or
unexpected predictions. This vulnerability has made adversarial robustness, which ensures con-
sistent model outputs under small perturbations, a critical research focus. As heuristic defenses
are often unreliable (Athalye et al., 2018; Croce & Hein, 2020), methods with provable robustness
guarantees have become increasingly important.

Randomized Smoothing (RS) is a prominent technique for certifying robustness against ℓ2-norm
adversarial perturbations. It constructs a smoothed classifier by adding Gaussian noise to the input
and taking the majority vote of predictions, thereby ensuring consistent outputs within a certified
neighborhood. Prior work has primarily focused on two directions: (1) training-based RS, which
improves robustness by explicitly training the base classifier on noisy inputs (Cohen et al., 2019;
Salman et al., 2019; Jeong & Shin, 2020; Zhai et al., 2020; Jeong et al., 2021; 2023), and (2) de-
noised smoothing, where noisy inputs are first denoised before classification (Salman et al., 2020;
Carlini et al., 2023). Recent advances in deep learning, particularly diffusion models, have sig-
nificantly enhanced denoised smoothing approaches, enabling state-of-the-art certified accuracy at
small perturbation radii (Carlini et al., 2023; Xiao et al., 2023; Zhang et al., 2023).
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Figure 1: Left: The distribution of the optimal σ on CIFAR-10 test set, where the base model is fixed to the
pretrained denoised smoothing model from Carlini et al. (2023). The optimal σ for each input is defined as the
σ that maximizes the certified radius under the standard RS certification. Right: The certified radii curve of five
independent samples against σ.

Table 1: Comparison of key features of the literature and the proposed Dual RS.

Literature Flexible σ No test-time memorization Flexible routing

Certified Routing Mueller et al. (2021) NA ✓ Restricted

Adaptive RS

Alfarra et al. (2022) ✓ ✗ NA
Wang et al. (2021) ✓ ✗ NA

Súkeník et al. (2022) Restricted ✓ NA
Jeong & Shin (2024) Biased ✓ NA

This work ✓ ✓ ✓

Despite recent advances, RS remains limited by a fundamental accuracy-robustness trade-off.
Achieving a larger certified radius requires increasing the noise variance, which often reduces cer-
tified accuracy at smaller radii. This trade-off arises because prior methods apply a global noise
variance shared across all inputs (Cohen et al., 2019). As illustrated in Fig. 1, the noise variance that
maximizes the certified radius varies substantially across samples. Recent work has explored input-
dependent RS to mitigate this issue, but existing approaches either rely on test-time memorization
(Alfarra et al., 2022; Wang et al., 2021), permit only limited adaptivity (Súkeník et al., 2022), or
systematically over-estimate the optimal variance (Jeong & Shin, 2024).

Motivated by these limitations, we propose Dual Randomized Smoothing (Dual RS), a novel frame-
work that enables RS certification with input-dependent noise variances. Our key insight is that RS
certification remains valid, with appropriate confidence adjustments, as long as the noise variance is
locally constant within the certified region rather than globally fixed across all inputs.

Main Contributions. Our key contributions are:

• A generalization of RS certification to locally constant noise variances, enabling flexible
models to predict an optimal variance for each input. This generalization expands the
applicability of RS and supports more favorable accuracy-robustness trade-offs.

• A dual RS framework consisting of a variance estimator and a standard RS classifier. The
variance estimator predicts the optimal σ for each input, which is then used by the clas-
sifier for RS inference. We develop an iterative training procedure that jointly optimizes
both components. An alternative routing perspective is also discussed, where the variance
estimator acts as a router that selects an appropriate off-the-shelf expert RS classifier based
on the input. Table 1 compares key features of prior works with our proposed method.

• An extensive experimental evaluation of Dual RS, showing that Dual RS achieves strong
performance across both small and large radii, outperforming prior input-dependent noise
methods at most radii while adding roughly 60% computational overhead at inference,
compared to standard RS. Comparing against prior works, relative improvements of 19.2%,
24.2%, and 20.6% are achieved at radii 0.5, 0.75, and 1.0 on CIFAR-10, respectively, and
roughly 1.5x performance is delivered on IMAGENET at radii 0.5, 1.0, and 1.5.

2 RELATED WORK

Provable Adversarial Robustness Empirical defenses against adversarial attacks are often un-
reliable (Athalye et al., 2018; Croce & Hein, 2020), motivating research on provable adversarial
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robustness. Existing approaches fall into two categories: deterministic and probabilistic. Determin-
istic methods provide exact guarantees but do not scale well to large models (Gowal et al., 2018;
Mirman et al., 2018; Shi et al., 2021; Mueller et al., 2023; De Palma et al., 2024; Mao et al., 2023;
2024; Balauca et al., 2024; Mao et al., 2025). Therefore, Randomized Smoothing (RS) (Lécuyer
et al., 2019; Cohen et al., 2019) becomes the most widely used probabilistic method due to its scala-
bility. Many works have improved RS by developing better training algorithms (Salman et al., 2019;
Jeong & Shin, 2020; Zhai et al., 2020; Jeong et al., 2021; 2023), leveraging pretrained models to
construct base classifiers (Salman et al., 2020; Carlini et al., 2023), extending RS to different norms
and noise distributions (Yang et al., 2020; Kumar et al., 2020), designing alternative certification
procedures (Xia et al., 2024; Cullen et al., 2022; Li et al., 2022), proposing new evaluation met-
rics (Sun et al., 2025), and exploring ensemble techniques (Horváth et al., 2022; Liu et al., 2021).
However, a common limitation of these works is the use of a global noise variance in the smoothing
distribution for all inputs, which leads to an inherent accuracy-robustness trade-off.

Input-dependent Randomized Smoothing To mitigate the accuracy-robustness trade-off, recent
works have explored adapting the noise variance per input. However, existing methods have notable
limitations. Some rely on test-time memorization and are computationally expensive (Wang et al.,
2021; Alfarra et al., 2022). Súkeník et al. (2022) provide theoretical guarantees for varying σ with
severely limited adaptivity. Jeong & Shin (2024) propose a multi-scale RS framework that cascades
models with fixed variances, yet it always selects the largest variance that certifies an input, which
often yields suboptimal results (Fig. 1). Finally, Lyu et al. (2024) introduce a two-stage framework
for ℓ∞ norm by splitting a fixed noise budget, but it lacks flexible per-input adaptiveness and fails
to generalize to ℓ2 norms.

3 BACKGROUND

This section introduces the key concepts of adversarial robustness and randomized smoothing (RS).

Adversarial Robustness. A model f is adversarially robust if it produces consistent outputs under
small perturbations. Given input x and label y with f(x) = y, f is robust (with regard to ℓ2 norm) if
f(x′) = f(x) for all x′ in S(x) = {x′ | ∥x′−x∥2 ≤ ϵ}, where ϵ defines the perturbation magnitude.

Randomized Smoothing. RS provides certified robustness by constructing a smoothed classifier
gc(x) = argmaxy∈Y Pδ∼N (0,σ2I)[f(x + δ) = y], where f is the base classifier. The classifier gc
is certifiably robust within an ℓ2 ball if the predicted class has probability greater than 0.5 (Cohen
et al., 2019). Improving the probability margin enhances the certified radius.

Denoised Smoothing. Denoised smoothing (Salman et al., 2020) applies a denoiser before classi-
fication, i.e., f(x + δ) = fcls(denoise(x + δ)), where denoise removes noise from the perturbed
input and fcls performs classification. This approach serves as a powerful paradigm for construct-
ing RS base classifiers. Diffusion models have proven to be highly effective denoisers (Carlini
et al., 2023), achieving state-of-the-art performance with off-the-shelf components. Following Car-
lini et al. (2023); Jeong & Shin (2024), we adopt diffusion-based denoised smoothing to build base
classifiers in our framework.

4 CERTIFICATION WITH LOCALLY CONSTANT NOISE VARIANCE

In this section, we formalize the main theoretical contribution of this work: we prove that RS cer-
tification remains valid when the noise variance is input-dependent, as long as it is constant within
the certified region. This result provides the theoretical foundation for our dual RS framework.

Let X ⊆ Rd be the input space, Y the output space, and fc : X → Y the base classi-
fier. The classifier smoothed with a Gaussian distribution N (0, σ2I) is defined as gc(x, σ) :=
argmaxy∈Y Pδ∼N (0,σ2I)(f(x + δ) = y). Let pσ be the probability of the most likely class, i.e.,
pσ := maxy∈Y Pδ∼N (0,σ2I)(f(x + δ) = y). Cohen et al. (2019) prove that with a global σ con-
stant in X , the smoothed classifier gc is certifiably robust within an ℓ2 ball B(x, R(x, σ)) of radius
R(x, σ) := σΦ−1(pσ) centered at the input x, where Φ is the cumulative distribution function
of the standard Gaussian distribution. We replace the global σ with an input-dependent function
σ : X → Σ, where Σ ⊂ R+ is the discrete set of allowed values, and denote the smoothed classifier
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with input-dependent noise variance as gc(x, σ(x)). Building on this setup, we present a certifi-
cation theorem that refines the result of Cohen et al. (2019) by relaxing the assumption on σ from
being globally constant to locally constant.

Theorem 4.1 (Certification with Locally Constant σ). Fix x0 ∈ X and fc. Assume σ(x) is constant
within the ℓ2 ball B(x0, Rσ). Then for all x such that ∥x − x0∥2 ≤ min(Rσ, R(x, σ(x0))), we
have gc(x, σ(x)) = gc(x0, σ(x0)).

The proof follows by carefully adapting the alternative argument of Salman et al. (2019) on the result
of Cohen et al. (2019), which leverages Lipschitz continuity, to remove the reliance on the global
constancy of σ. The detailed proof is deferred to App. B.1.

Practically, the assumption that σ is constant within a neighborhood of x0 can be satisfied in two
ways: (1) by designing σ(x) to be piecewise constant (Wang et al., 2021; Alfarra et al., 2022), or
(2) by certifying that σ(x) is locally constant using deterministic certification methods (Singh et al.,
2019; Wong & Kolter, 2018; Müller et al., 2022; Shi et al., 2024). Approaches in the former category
typically rely on test-time memorization, which is undesirable in practice. In contrast, approaches
in the latter category, though extensively developed, are usually computationally expensive and less
scalable. Therefore, in this work, we seek a certification of σ(x) that both scales well and eliminates
test-time memorization. To this end, we propose to use a separate RS model to learn effective σ(x)
and certify the local constancy. To achieve this, we need to extend Theorem 4.1 to a probabilistic
setting, since RS in practice only provides probabilistic guarantees.

Before presenting the theorem, we extend the notion of RS to the practical setting, where pσ is lower
bounded with uncertainty α. Given N trials of the event I(f(x+δ) = y) and a predefined threshold
α, we can derive a lower bound p̂σ such that P(pσ ≥ p̂σ) ≥ 1 − α (Cohen et al., 2019). Conse-
quently, the smoothed classifier gc(x, σ) is certifiably robust within the ℓ2 ball B(x, σΦ−1(p̂σ)) with
probability at least 1− α. Now we are ready to present the probabilistic version of Theorem 4.1.

Theorem 4.2 (Probabilistic Guarantee with Confidence Adjustment). Fix x0 ∈ X and fc. Assume
gc(x, σ(x0)) is certifiably robust within B(x0, Rc) with probability at least 1 − α, and σ(x) is
constant within B(x0, Rσ) with probability at least 1 − β. Then for all x such that ∥x − x0∥2 ≤
min(Rσ, Rc), we have gc(x, σ(x)) = gc(x0, σ(x0)) with probability at least 1− α− β.

The proof follows by applying union bound to upper bound the failure probability. The detailed
proof is deferred to App. B.2. Note that Theorem 4.2 does not assume independence between the
two failure events, and therefore remains valid even when the two failure events are correlated, e.g.,
correlated noise samples may be used in two certifications.

Comparison with Prior Work. Although not explicitly formalized, the idea of using a locally
constant σ has been explored in prior work (Wang et al., 2021; Alfarra et al., 2022). Wang et al.
(2021) partition X into a collection of ℓ2 balls, referred to as robust regions, and assign a constant σ
to each region. These regions are allocated and stored at test time, which prevents parallel inference
and leads to dependence on the prior test cases. Similar strategies are adopted by Alfarra et al.
(2022). Beyond formalization and rigorous proof, Theorem 4.1 further improves by eliminating
the need for test-time memorization and instead ensuring local constancy through certifying σ(x),
which can be any learned model or hand-crafted function.

Separately, Súkeník et al. (2022) also study RS with input-dependent σ(x) and show that proofs
based on Neyman-Pearson lemma cannot allow reasonably flexible σ(x). We circumvent this lim-
itation by leveraging a proof based on Lipschitz continuity, similar to Salman et al. (2019); Jeong
& Shin (2024), which enables much greater flexibility in defining σ(x). Note that our result does
not restrict the behavior of σ(x) outside the certified region, which can be arbitrarily complex. We
provide a comparison table of prior works in Table 1.

Despite these advantanges, Theorem 4.2 introduces a confidence penalty of β to account for the
probabilistic guarantee of σ(x) being locally constant. This cost is inevitable when using any cer-
tification method that is not deterministic. However, in practice, we find that this cost is negligible
when using RS to certify σ(x). We list a few numerical examples under different configurations in
Table 5 in App. D, confirming that β has minimal impact on the certified radius.
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x

ge(x;σe)
σc(x)
Rσ

gc(x;σc(x))
ŷ

Rc

Rfinal = min(Rσ, Rc)

Figure 2: The dual RS framework. First, a RS model ge smoothed with a global σe is deployed to estimate
σc(x) and return a certified radius for the estimation, Rσ . Second, another RS model is smoothed with σc(x),
and then perform a standard classification and return a certified radius for the classification, Rc. The final
prediction is the result of the second stage, with a final certified radius Rfinal = min(Rσ, Rc). The green
arrows indicate activated paths during inference.

5 THE DUAL RANDOMIZED SMOOTHING FRAMEWORK

In this section, we present the dual RS framework implementing RS with input-dependent noise
variances. We first give an overview of the framework, followed by details of the inference and
certification process. Then, we describe the training methods to optimize the performance. Finally,
we discuss an alternative routing perspective of the dual RS framework.

5.1 INFERENCE & CERTIFICATION

Fig. 2 illustrates the dual RS framework. Given an input x, a variance estimator predicts an ap-
propriate variance, σc, followed by a classifier smoothed with σc to perform the final classification.
Intuitively, the variance estimator partitions the input space into disjoint subsets associated with dif-
ferent values of σc, and assign the input (ideally also its neighborhood) to the corresponding subset.
This formulation exactly matches the definition of robustness, in the task of predicting the optimal
σc. Therefore, a separate RS model is applied, which uses a pre-defined global noise variance to
certify the estimated σc. With the estimated σc, another base model can be smoothed via RS with
σc to perform certified classification. The final certified radius is then guaranteed by Theorem 4.2.
Note that one needs to ensure σe ≥ maxx σc(x) to not limit the final certified radius inherently.

Unless otherwise noted, we use diffusion denoised smoothing to build both the variance estimator
and the RS classifier, for the simplicity and efficiency. Formally, we denote the two RS models as:

ge(x, σe) := argmax
σi∈Σ

Pδe∼N (0,σ2
eI)

(he(denoise(x+ δe)) = σi),

gc(x, σc) := argmax
ŷ∈Y

Pδc∼N (0,σ2
cI)

(hc(denoise(x+ δc)) = ŷ),

where denoise represents a single-step denoising using an off-the-shelf diffusion denoiser, and he

and hc are base models for variance estimation and classification, respectively.

At inference time, given an input x, we sample noise samples {δe} from N (0, σ2
eI), and use the

PREDICT function from Cohen et al. (2019) to predict the noise variance σc(x) with uncertainty α/2.
Then, we sample noise samples {δc} from N (0, σc(x)

2I), and use the PREDICT function again to
predict the class label ŷ with uncertainty α/2. The final prediction is ŷ, with a total uncertainty of α,
using the union bound again on the failure events, similar to the proof of Theorem 4.2. To certify the
prediction, we use the CERTIFY function from Cohen et al. (2019) to certify the local constancy of
σc(x) with uncertainty α/2, and certify the classification with uncertainty α/2. The final certified
radius is Rfinal = min(Rσ, Rc), where Rσ is the certified radius for the estimation of σc(x), and Rc

is the certified radius for the classification. The total uncertainty is α, as guaranteed by Theorem 4.2.
We note that for simplicity, we use the same uncertainty level α/2 for both certifications, but they
can be adjusted flexibly as long as the total uncertainty does not exceed α.

5.2 TRAINING METHODS

5.2.1 TRAINING THE VARIANCE ESTIMATOR

Building the Training Dataset. Training he requires ground-truth labels for the optimal noise
σc(x) of each input. Given a candidate set Σ and a fixed hc, we evaluate for each input the certified
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radius under each σi ∈ Σ. The label for the optimal noise σc(x) is then argmaxi Rc(x, σi).
This step is usually the most computationally expensive part of the training, as it requires multiple
certifications for each input. However, it only needs to be performed once before training he, and
can be parallelized across multiple devices. In practice, one may also use a smaller budget N than
required during certification to estimate Rc(x, σi) and train only on a subset of the train data, to
reduce the computational cost. In App. E.4, we conduct detailed studies on these two strategies to
show that they can significantly reduce the training cost with minimal performance degradation.

Training with Soft Labels. Estimating optimal variance is formulated as a classification task, but
it has certain special properties. Even if the estimated σc is not optimal, a non-zero certified radius is
still likely. For example, assume that given Σ = {0.25, 0.5, 1.0}, the certified radii of x1 are 0.0, 1.6
and 0.0, respectively, while those of x2 are 0.3, 0.4 and 0.3, respectively. Choosing the wrong σ for
x1 is more harmful than for x2 intuitively, as the latter still has a reasonably close certified radius.
Motivated by this, we propose to use soft labels introduced below to train the variance estimator.
Formally, the soft label for the variance estimation is defined as:

yi =
exp(Rc(x, σi))∑

σj∈Σ exp(Rc(x, σj))
.

A standard cross-entropy loss is then applied between the soft labels and the predicted class proba-
bilities to evaluate the estimation performance.

Consistency Regularization. Many strategies have been proposed to increase the certified radius
in the standard RS training. We choose one of them, consistency regularization (Jeong & Shin,
2020), to further improve the certified radius of the estimated σ. Formally,

Lcon(x) := λEδ

[
KL(f̂(x)∥f(x+ δ))

]
+ ηH(f̂(x)),

where f̂(x) = E(f(x + δ)), KL is the Kullback-Leibler divergence, H is the entropy, and λ and
η are hyperparameters controlling the trade-off between accuracy and robustness. We remark that
any other RS training strategies can be alternatively applied; we choose consistency because it is the
fastest while being competitive in performance (Jeong et al. (2023), Appendix E).

Overall Objective. The overall loss function to train the variance estimator is a weighted average
between the soft-label cross-entropy loss and the consistency loss:

Lσ = Ex [we(x) (LsoftCE(x) + wr(x)Lcon(x))] ,

where we(x) and wr(x) are two weighting functions. We introduce a balancing weight we(x)
because the distribution of optimal σc is usually skewed. Formally, assume the fraction of training
samples with optimal noise σi is qi, then we(x) = 1/qi if the optimal noise for x is σi. wr(x) :=
maxσi

Rc(x, σi)/C puts more consistency regularization for inputs with larger optimal certified
radii, rescaled to [0, 1] by a constant C.

5.2.2 ADAPTING THE CLASSIFIER TO THE VARIANCE ESTIMATOR

Prior work (Carlini et al., 2023) have shown that finetuning the off-the-shelf classifier with regard
to the RS framework can significantly improve the performance. In this section, we follow a similar
approach, showing how to adapt the classifier to the dual RS framework.

Given a fixed variance estimator ge, we finetune the classifier hc under the estimated noise variances.
Formally, given an input x, we first query the noise variance σc(x) from ge. Then, we sample noise
δc ∼ N (0, σc(x)

2I), and apply the denoising step to obtain x̃ = denoise(x + δc). Finally,
we apply a standard cross-entropy loss between the prediction hc(x̃) and the ground-truth label y.
This procedure follows Carlini et al. (2023) with only one difference: the noise variance is input-
dependent, estimated by ge, instead of being a global constant.

The described training process naturally leads to an alternating training scheme, where we itera-
tively train the variance estimator and finetune the classifier. In practice, we find that one round
of classifier finetuning is usually sufficient to achieve good performance, i.e., training the variance
estimator from scratch based on the off-the-shelf classifier, followed by one round of classifier fine-
tuning. More rounds of alternating training may lead to marginal improvements, but at a much
higher computational cost (c.f. App. E.2).
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5.3 ROUTING WITH EXPERT RS MODELS

Routing is to select the best model from a pool of expert models for each input. It has been widely
studied in the context of mixture-of-experts, especially for large language models (Varangot-Reille
et al., 2025). In this section, we present a novel perspective of the proposed dual RS framework as a
router among a pool of pretrained expert RS models.

§5.2.1 proposes strategies to train the variance estimator to predict the best σc for a fixed base
classifier hc. This naturally requires hc to perform well under all σi ∈ Σ, each for a subset of
inputs. However, as well-known in the RS literature (e.g., Sun et al. (2025)), no single model wins
uniformly across all noise levels. Luckily, Theorem 4.2 does not restrict hc to be the same model
under different σi. Therefore, we can define gc(x, σ(x)) to be the best expert among a pool of
models. Formally, let H := {Hσi} be the pool of the pretrained expert models where Hσi are
expert models performing well under σi. Define Xσi := {x | ge(x, σe) = σi} to be the subset of
inputs assigned to σi by the variance estimator. Then we define gc(x, σ(x)) := Hσi(x, σi) for all
x ∈ Xσi . In other words, the variance estimator ge serves not only as a predictor for the optimal
noise variance, but also as a router to select the best expert RS model for each input. The training
process of ge remains unchanged, except that the certified radius Rc(x, σi) is now evaluated using
the corresponding expert model Hσi

. Note that we do not evaluate the performance of the expert
models except with the corresponding variance, i.e., Hσi

is not evaluated with σj for j ̸= i.

The proposed routing perspective of dual RS has several advantages. First, it allows leveraging
existing expert models without the need for training a new base classifier that performs well under
all noise levels. This is particularly useful when the training cost is prohibitively high. Second,
it enables the use of specialized models that excel in specific noise regimes, potentially improving
overall performance. Third, it provides a flexible framework that can easily incorporate new expert
models, with the minimal effort of re-training the variance estimator. This is because certification
under dual RS has much smaller overhead given the certified radii of the expert models since the
variance estimator is usually lightweight. Fourth, assuming the expert models are trained indepen-
dently, improving expert models usually leads to a strict improvement in the overall performance, as
we will demonstrate in §6. However, due to the routing nature, the performance of dual RS is upper
bounded by the performance of the expert model Hσi within each Xσi .

As a final remark, the routing perspective of RS is not limited to the dual RS framework, and can be
extended to deterministic certification methods as well. Given a pool of expert models (potentially
trained with different algorithms and hyperparameters), offering different trade-offs between accu-
racy and robustness, one can train a standard RS model to route each input to the best expert model,
then certify the routing choice by RS. The final certified radius is the minimum between the certified
radius of the routing RS model and that of the selected expert model. This generalization opens
up new possibilities for combining the strengths of various certification methods within a unified
framework. We leave the exploration of this direction to future work.

Comparison with Prior Work. Mueller et al. (2021) presents a similar idea which routes among a
standard network and a robust network using a deterministically certified router. We generalize their
idea in the following ways: (i) they only considers routing between two models due to the design
of their router, while our framework allows routing among multiple models natively; (ii) they uses a
deterministic certification method to certify a heuristically trained router, while our framework uses
RS to train and certify the router, which is more scalable and flexible; (iii) they focus on improving
the accuracy-robustness trade-off under the given radii, while our objective is to optimize the overall
performance across all radii.

6 EXPERIMENTAL EVALUATION

In this section, we extensively evaluate the proposed dual RS method on CIFAR-10 and IMAGENET.
The results demonstrate that dual RS can achieve strong performance across different radii, which is
unattainable with a global noise variance. Further, it incurs only a modest computational overhead
compared to standard RS. We include all implementation details in App. C and only highlight key
experimental settings here.

Baselines. We compare our method against two baselines: (i) diffusion denoised smoothing with
global noise variances (Carlini et al., 2023), which we use as the base classifiers, and (ii) the state-of-
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Figure 3: Certified accuracy on CIFAR-10 across radii.

Table 2: Certified accuracy on CIFAR-10 across different certification radii. Bold entries indicate
whenever Dual RS outperforms Multiscale.

Method σ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Carlini et al.
0.25 86.61 73.90 57.02 35.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 73.49 62.23 49.46 38.20 28.58 19.54 11.22 0.00 0.00 0.00 0.00
1.0 47.98 39.85 32.17 25.16 19.34 14.49 10.30 7.32 4.89 3.35 2.15

Multiscale + finetuning {0.25, 0.5, 1.0} 76.51 54.78 39.15 28.46 21.33 15.95 11.40 7.91 5.31 3.63 2.34

Dual RS {0.25, 0.5, 1.0} 68.91 55.45 41.62 29.48 20.26 13.29 7.95 4.70 3.45 2.40 1.70
Dual RS + finetuning 71.12 58.93 46.55 35.42 25.75 18.35 12.22 8.20 6.18 4.35 2.96

the-art input-dependent RS method (Jeong & Shin, 2024), denoted as Multiscale. Unless otherwise
stated, all results are reported with N = 10,000 noise samples for certification with the overall
uncertainty level α = 0.001.

CIFAR-10 Setup. Unless otherwise stated, Σ is set to {0.25, 0.5, 1.0}. Following the baselines, we
employ a 50M-parameter diffusion model (Nichol & Dhariwal, 2021) as the denoiser, and a 87M-
parameter ViT model (Dosovitskiy et al., 2020) as the classifier. A ResNet-110 (He et al., 2016) is
used as the base model for the variance estimator, and N = 10,000 is used to estimate Rc(x;σi)
during training.

IMAGENET Setup. Unless otherwise stated, Σ is set to {0.5, 1.0}. Following Carlini et al., we
utilize a 552M-parameter class-unconditional diffusion model (Dhariwal & Nichol, 2021) as the de-
noiser and a 305M-parameter BEiT model (Bao et al., 2021) as the classifier. A ResNet-50 is used as
the variance estimator, and N = 100 is used to estimate Rc(x;σi) during training. We remark that
here the Multiscale results are cited from Jeong & Shin (2024) due to a repetitive exception thrown
by their public code, thus are based on a different classifier: a ViT-B/16 pre-trained via CLIP (Rad-
ford et al., 2021) and finetuned on ImageNet using FT-CLIP (Dong et al., 2022). Since performance
of classifiers on IMAGENET are weaker than on CIFAR-10, we adopt two additional modifications
in training the variance estimator on IMAGENET: (1) Failure case filtering: samples that cannot be
certified by any candidate noise variance are removed from training data, and (2) Weaker consistency
loss: instead of setting wr(x) := maxσi

Rc(x, σi)/C, we set wr(x) := Rc(x, σ̂)/C, where σ̂ is
the minimum variance predicted by the variance estimator among all noisy samples. The former
strategy prevents the variance estimator from being trained on extremely hard samples, while the
latter avoids over-regularizing the variance estimator towards the global optimal variance, which is
less frequently predicted on IMAGENET.

6.1 KEY RESULTS

Dual RS with Single Pretrained Classifier. We first evaluate the performance of dual RS with
a pretrained global classifier, as described in §5.2.1. Fig. 3a and Table 2 compare the pretrained
diffusion denoised smoothing model with different global noise variances and dual RS using the
same classifier on CIFAR-10. While the baseline models with a small global noise variance (e.g.,
σ = 0.25 or 0.5) achieve high certified accuracy at small radii, they fail to provide non-trivial
guarantees at larger radii. Conversely, the model with a large global noise variance (σ = 1.0) attains
a large certified radius but suffers from low accuracy at small radii. In contrast, dual RS has a strong
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Figure 4: Comparison between dual RS built on weak and strong experts, respectively, along with the experts.

Table 3: Certified accuracy on IMAGENET, structured in the same way as Table 2.

Method σ 0.0 0.5 1.0 1.5 2.0

Carlini at al.
0.25 80.4 70.6 0.0 0.0 0.0
0.5 74.4 64.4 52.4 34.8 0.0
1.0 56.0 47.8 37.4 29.4 24.0

Multiscale† {0.25, 0.5, 1.0} 69.0 42.4 26.6 19.0 14.6
Multiscale + finetuning† 72.5 44.0 27.5 19.9 14.1

Dual RS {0.5, 1.0} 67.8 54.6 40.4 28.0 15.6
Dual RS + finetuning 74.0 60.6 48.0 33.6 17.0

† Results cited from Jeong & Shin (2024), which use a different classifier.

performance across all radii, achieving a superior accuracy-robustness trade-off. This demonstrates
that dual RS can effectively leverage the pretrained classifier.

Dual RS with Single Classifier Finetuning. Fig. 3b and Table 2 compare dual RS with Multi-
scale (Jeong & Shin, 2024), the state-of-the-art input-dependent RS method. For a fair comparison,
we finetune the classifier in dual RS as described in §5.2.2, while Multiscale adopts the finetuned
diffusion denoiser described in Jeong & Shin (2024). The result shows that dual RS consistently
outperforms Multiscale across most radii, with especially strong improvements in the small-radius
region. At radii 0.5, 0.75, and 1.0, dual RS improves certified accuracy by 19.2%, 24.2%, and
20.6%, respectively. On a single NVIDIA RTX 4090 GPU with batch size 1000 and N = 10,000,
certifying with dual RS requires 22.58 seconds per input on average, compared to 14.07 seconds for
standard RS and 20.21 seconds for Multiscale. Thus, dual RS incurs only a modest computational
overhead relative to standard RS, while achieving significant performance gains. We remark that
Multiscale requires multiple rounds of certification for some inputs, leading to a higher worst-case
certification time (14.07, 28.14, and 42.21 seconds on average for 1, 2, and 3 rounds, respectively).

Dual RS with Multiple Pretrained Experts (Routing). We further evaluate the efficacy of dual RS
as a routing mechanism with multiple pretrained expert classifiers, as discussed in §5.3. Specifically,
we consider two experts: one specialized for σ = 0.25 and another specialized for σ = 1.0. For
σ = 0.25, we define the Weak Expert for Small to be an off-the-shelf denoised smoothing model, and
the Strong Expert for Small to be a finetuned denoised smoothing model by Carlini et al. (2023) on
σ = 0.25. For σ = 1.0, we define the Weak Expert for Large to be the same off-the-shelf model, and
the Strong Expert for Large to be another off-the-shelf model, pretrained by Sun et al. (2025), which
achieves the state-of-the-art performance for large radii. Fig. 4 compares these four experts and
dual RS built upon weak and strong experts, respectively. The results show that dual RS effectively
leverages the improved performance of the strong experts, achieving a better accuracy-robustness
trade-off than that of the weak experts. This demonstrates that dual RS can flexibly incorporate
different expert models to further enhance performance.

Dual RS on Large Datasets. We further evaluate dual RS on IMAGENET. As shown in Table 3,
Dual RS achieves strong certified accuracy across all radii, consistent to the improvements shown on
CIFAR-10. Compared to Multiscale, the state-of-the-art input-dependent RS, dual RS gets roughly
1.5x performance advantage at radii 0.5, 1.0 and 1.5. Overall, these results show that Dual RS scales
effectively to large datasets and high-dimensional input spaces.

We further conduct ablation studies on three aspects: (1) different choices of σ candidate sets,
(2) strategies for constructing the train set of the variance estimator, and (3) different architectures
of the variance estimator, detailed in App. E.3, App. E.4, and App. E.5, respectively. The key
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Figure 5: Comparison of dual RS models with different variance estimators.

findings are: (1) the candidate set Σ strongly affects the favored radii, similar to the observation in
the global variance methods; (2) the variance estimator can be trained with minimal performance
degradation on a much smaller N (up to 99% cost reduction) or a much smaller train set (up to
80% cost reduction); and (3) the performance of dual RS is robust to the architecture of the variance
estimator.

6.2 DELVING INTO DUAL RS

In this section, we conduct an in-depth study on dual RS on CIFAR-10. We use diffusion denoised
smoothing as the classifier with off-the-shelf models and Σ = {0.25, 0.5, 1.0}.

To evaluate the performance of the variance estimation, we define ∆Rc := R∗
c(x) − Rc(x), where

R∗
c(x) is the maximum classification certified radius among all candidate noise variances for input

x. This metric reflects how much Rc is reduced due to the suboptimal variance estimation. Fig. 5a
shows the empirical cumulative distribution function (ECDF) of this metric for variance estimators
trained with different loss functions and hyperparameters on CIFAR-10. The intercept at ∆Rc =
0 indicates the proportion of samples for which the variance estimator predicts the optimal noise
variance, and the area between the curve and the the perfect estimation (black dash line) reflects the
overall loss in the certified radius due to suboptimal variance estimation. We observe that using soft
cross-entropy (CE) loss instead of standard CE loss reduces the variance estimation accuracy, as it
encourages the model to predict a suboptimal noise variance that yields a similar certified radius
rather than the optimal one. However, fewer inputs are constrained significantly when using soft
CE loss, as the curve is closer to the perfect estimation line when ∆Rc is large. Further, adding
the consistency loss reduces the variance estimation accuracy in general, since it puts additional
regularization on the robustness of the variance estimator.

Since the final certified radius is the minimum between the classification certified radius and the
variance certified radius, the alignment between these two radii is of interest as well. We define
∆Rσ as ∆Rσ = Rσ − Rc. A negative ∆Rσ means that the final radius is constrained by the Rσ ,
while a positive ∆Rσ means it is constrained by Rc. Ideally, we want ∆Rσ to be positive for as
many samples as possible, so that the final certified radius is not constrained by Rσ . Fig. 5b shows
the ECDF of ∆Rσ . The intercept at ∆Rσ = 0 indicates the proportion of samples constrained by
Rσ . We observe that using soft CE loss decreases this ratio, and adding consistency loss further
decreases it significantly. This aligns with our intuition in the design.

As a reference, Fig. 5c shows the accuracy-radius curves for these models. Using soft CE loss almost
improves over the standard CE loss uniformly, while adding consistency loss slightly degrades the
performance at small radii but improves it at large radii. Overall, the model trained with soft CE
loss and consistency loss achieves the best accuracy-robustness trade-off.

7 CONCLUSION

In this work, we address the fundamental trade-off between certified accuracy and certified radius
in Randomized Smoothing (RS). We prove that RS remains valid under input-dependent noise vari-
ances, provided the variance is locally constant within the certified region. Building on this result,
we introduce a dual RS framework, which achieves strong performance across both small and large
radii, unattainable with fixed noise variance, while incurring modest computational overhead. Our
method consistently outperforms prior input-dependent noise approaches across most radii. Further,
the dual RS framework offers a novel routing perspective for certified robustness, enhancing the
accuracy-robustness trade-off using off-the-shelf expert RS models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. For theoretical results, we
provide precise definitions and formal statements in §4, with complete proofs given in App. B. For
the proposed framework, detailed descriptions of the inference, certification, and training procedures
are presented in §5. Experimental settings, including architectures, hyperparameters, and training
details, are reported in §6 and App. C. To further support reproducibility, we include our code in the
supplementary material, along with links to download the experiment checkpoints and data used in
this paper.
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Table 4: GPU hours on a single NVIDIA RTX 4090 for the main components of our training
pipeline. The costs of building the optimal-variance dataset, training variances estimator and fine-
tuning the classifier are reported as (number of parallel GPUs × wall-clock time in hours).

Component CIFAR-10 IMAGENET

Building optimal variances dataset 48 × 14.6 128 × 42.2
Training variance estimator 1 × 2.5 8 × 63

Generating estimated variances 1.5 9.9
Finetuning the classifier 1 × 1.0 8 × 0.7

A USAGE OF LARGE LANGUAGE MODELS

We used a large language model (GPT-5) solely to assist with polishing and grammar correction of
the paper. The LLM was not involved in other aspects of this paper.

B DEFERRED PROOFS

B.1 PROOF OF THEOREM 4.1

We first cite the following lemma from Salman et al. (2019), using the formulation as in Lemma D.1
of Jeong & Shin (2024). Note that we adapt the notation to be consistent with our paper. We slightly
abuse the notation and let pσ be the probability of a certain class, i.e., pσ(x) := Pδ∼N (0,σ2I)(f(x+
δ) = y) for some y.

Lemma B.1. hy(x) := σΦ−1(pσ(x)) is 1-Lipschitz with respect to the ℓ2 norm.

Lemma B.1 can be extended to locally constant σ(x) as follows.

Lemma B.2. Let X be partitioned into non-overlapping subsets
⋃

i∈I Xi ⊆ X , and assume σ(x) is
constant within each Xi. Let hy(x) := σ(x)Φ−1(pσ(x)(x)). Then for all i ∈ I , ∀x1,x2 ∈ Xi, we
have |hy(x1)− hy(x2)| ≤ ∥x1 − x2∥2.

Proof. For any i ∈ I , let σi be the constant value of σ(x) for x ∈ Xi. Then for any x1,x2 ∈ Xi,
we have

|hy(x1)− hy(x2)| = |σiΦ
−1(pσi

(x1))− σiΦ
−1(pσi

(x2))|
≤ ∥x1 − x2∥2,

where the last inequality follows from Lemma B.1.

Now we are ready to prove Theorem 4.1, restated below for convenience.

Theorem 4.1 (Certification with Locally Constant σ). Fix x0 ∈ X and fc. Assume σ(x) is constant
within the ℓ2 ball B(x0, Rσ). Then for all x such that ∥x − x0∥2 ≤ min(Rσ, R(x, σ(x0))), we
have gc(x, σ(x)) = gc(x0, σ(x0)).

Proof. Let Xi = {x|σ(x) = σi}, where σi are distinct values taken by σ(x). Then X =
⋃

i∈I Xi is
a partition of X into non-overlapping subsets. By Lemma B.2, for any i ∈ I , ∀x1,x2 ∈ Xi, we have
|hy(x1)−hy(x2)| ≤ ∥x1−x2∥2. Further, given x, there exists exactly one j ∈ I such that x ∈ Xj .
This implies B(x0, Rσ) ⊆ Xj . If there is no adversarial perturbation δ such that ∥δ∥2 ≤ Rσ and
gc(x0 + δ) ̸= gc(x0), then the claim holds trivially. In the following, we consider the case where
such adversarial perturbation δ exists.

Given the smoothing distribution N (0, σ2I) where σ = σj , let A be the most likely class at x0, and
B be any other class. Let pA(x) be the probability of class A at x under the smoothing distribution,
and pB(x) be the probability of class B at x. Therefore, ∀x0 + δ ∈ Xi, we have σΦ−1(pA(x0))−
σΦ−1(pA(x0+δ)) = hA(x0)−hA(x0+ δ) ≤ ∥δ∥2. Let δ be an adversarial perturbation such that

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

∥δ∥2 ≤ Rσ and let B be the most likely class at x0 + δ. Then, since pA(x0 + δ) ≤ pB(x0 + δ)
and Φ−1(t) is monotonically increasing in t, we have

σΦ−1(pA(x0))− σΦ−1(pB(x0 + δ)) ≤ σΦ−1(pA(x0))− σΦ−1(pA(x0 + δ))

≤ ∥δ∥2.
Further, applying Lemma B.2 again gives σΦ−1(pB(x0 + δ))− σΦ−1(pB(x0)) = hB(x0 + δ)−
hB(x0) ≤ ∥δ∥2. Combining the two inequalities gives

σΦ−1(pA(x0))− σΦ−1(pB(x0)) ≤ 2∥δ∥2.
Thus, we have

∥δ∥2 ≥ σ

2

(
Φ−1(pA(x0))− Φ−1(pB(x0))

)
≥ σ

2

(
Φ−1(pA(x0))− Φ−1(1− pA(x0))

)
= σΦ−1(pA(x0))

= R(x, σj)

= R(x, σ(x0)).

This completes the proof.

B.2 PROOF OF THEOREM 4.2

We restate Theorem 4.2 below for convenience.

Theorem 4.2 (Probabilistic Guarantee with Confidence Adjustment). Fix x0 ∈ X and fc. Assume
gc(x, σ(x0)) is certifiably robust within B(x0, Rc) with probability at least 1 − α, and σ(x) is
constant within B(x0, Rσ) with probability at least 1 − β. Then for all x such that ∥x − x0∥2 ≤
min(Rσ, Rc), we have gc(x, σ(x)) = gc(x0, σ(x0)) with probability at least 1− α− β.

Proof. Let F1 be the event that gc(x0 + δ) ̸= gc(x0) for some δ such that ∥δ∥2 ≤ Rc. Let F2 be
the event that σ(x0 + δ) ̸= σ(x0) for some δ such that ∥δ∥2 ≤ Rc. Then we have P(F1) ≤ α and
P(F2) ≤ β by the assumption. Let F = F1 ∪ F2. Then we have P(F ) ≤ P(F1) + P(F2) ≤ α+ β,
where the first inequality follows from the union bound. Applying Theorem 4.1, the complement of
F implies that gc(x0+δ) = gc(x0) for all δ such that ∥δ∥2 ≤ min(Rc, Rσ). The result follows.

C EXPERIMENT DETAILS

C.1 EXPERIMENT SETUP

CIFAR-10 In the main experiments, we use N = 104 to calculate the certified radius for each
sample and σ candidate to construct the optimal variances dataset. The variance estimator model
is trained from scratch for 90 epochs with a batch size of 256. We use the AdamW optimizer with
an initial learning rate of 0.01 and a weight decay of 0.01. The learning rate is decayed by a factor
of 0.5 every 30 epochs. Unless otherwise stated, we set λ = 40 and η = 0.5 for the consistency
loss, and use σe = 1.0 for variance estimation certification. To compute the consistency loss, we
always use two noise samples (m = 2) following Jeong & Shin (2020). For classifier finetuning, we
apply the Cross-Entropy loss on denoised images denoise(x+ δ). The classifier is finetuned for 15
epochs with a batch size of 128 using AdamW with a learning rate of 2× 10−5 and a weight decay
of 0.01.

IMAGENET We use N = 100 to calculate the approximate certified radii to construct the optimal
variances dataset. The detailed approach is described in App. E.4. The variance estimator model is
trained from scratch for 9 epochs with a batch size of 200. We use the AdamW optimizer with an
initial learning rate of 0.005 and a weight decay of 0.01. The learning rate is decayed by a factor of
0.5 every 3 epochs. Unless otherwise stated, we set λ = 10 and η = 0.5 for the consistency loss, and
use σe = 1.0 for variance estimation certification. For the classifier finetuning, we randomly choose
2% of the training set to finetune the classifier for 1 epoch with a batch size of 32 using AdamW
with a learning rate of 2 × 10−5 and a weight decay of 0.01. On IMAGENET, after finetuning the
classifier, we do not retrian the variance estimator due to the high computational cost.
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Table 5: Numerical examples of the confidence penalty β under the given uncertainty level. We
assume large enough Rσ , such that the final certified radius equals Rc. When α : β = 1 : 0, it
matches the standard RS setting. The budget is fixed to N = 105, σ is fixed to 1.0 and α+β is fixed
to 0.001, following the standard certification setting.

α : β p̂σ certified radius

1 : 0 0.99 2.2900
1 : 1 0.99 2.2877
1 : 4 0.99 2.2848

1 : 0 0.8 0.8277
1 : 1 0.8 0.8267
1 : 4 0.8 0.8256

1 : 0 0.6 0.2409
1 : 1 0.6 0.2401
1 : 4 0.6 0.2391
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Figure 6: Abaltion study on λ in the consistency loss. The figures are organized in the same way as Fig. 5.

C.2 TRAINING COST

We report the computational cost of training our dual RS framework. All experiments are conducted
on NVIDIA RTX 4090 GPUs.Table 4 summarizes the GPU hours required for each major com-
ponent of the training pipeline. The dominant cost arises from constructing the optimal variances
dataset, which involves performing classification certification on the full dataset under all three noise
variances. For the CIFAR-10 main experiments, two variance estimators are trained and one classi-
fier finetuning is performed, resulting in approximately 1517 GPU hours on a single RTX 4090.

In practice, on CIFAR-10 we parallelized the dataset construction step across 48 GPUs, reducing its
wall-clock time to 14.6 hours. Consequently, the overall training pipeline requires approximately
36.7 hours. On IMAGENET, we parallelized the dataset construction step across 128 GPUs. The
overall training pipeline requires approximately 115.8 hours.

D NUMERICAL EXAMPLES FOR THE CONFIDENCE PENALTY

We list numerical examples of the confidence penalty β under different uncertainty levels in Table 5.

E ADDITIONAL STUDIES

In this section, we present additional studies to further investigate different components of our dual
RS framework on CIFAR-10.

E.1 ABLATION ON CONSISTENCY LOSS HYPERPARAMETER λ

We employ the off-the-shelf diffusion denoiser and classifier in this study. Fig. 6 illustrates the
effect of λ in the consistency loss. As λ increases, the accuracy of variance estimation decreases and
fewer samples are constrained by Rσ . Beyond λ > 40.0, the impact of further increases becomes
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1 Estimator Training

1 Estimator Training + 1 Classifier Fine-tuning

2 Estimator Training + 1 Classifier Fine-tuning

Figure 7: Effect of training rounds for the variance estimator and the classifier. 1 Estimator Training trains the
variance estimator using the off-the-shelf classifier. 1 Estimator Training + 1 Classifier Finetuning finetunes the
classifier using the estimated variances by the trained variance estimator. 2 Estimator Training + 1 Classifier
Finetuning further re-train the variance estimator based on the finetuned classifier.
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Figure 8: Accuracy–Rfinal curves after 1 Estimator Training + 1 Classifier Finetuning with different λ in the
consistency loss.
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Figure 9: Certified accuracy Rfinal with different σ candidate sets.
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Table 6: Certified accuracy (%) at different radii with different σ candidate sets. The denoiser and
classifier are fixed (off-the-shelf), and only the variance estimator is trained. The best performance
at each radius is highlighted in bold, and the worst and second worst are grayed.

σ candidates set 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

{0.25, 0.5, 1.0} 68.91 55.45 41.62 29.48 20.26 13.29 7.95 4.70 3.45 2.40 1.70
{0.25, 1.0} 72.26 57.17 41.74 26.74 16.36 12.62 9.16 6.63 4.63 3.23 2.10
{0.5, 1.0} 67.31 53.37 39.29 27.59 18.99 12.77 8.13 5.40 3.90 2.78 1.90
{0.25, 0.5} 77.18 62.66 48.07 36.14 27.20 19.08 11.92 0.00 0.00 0.00 0.00

{0.5, 0.625} 69.71 56.91 43.64 32.78 24.24 17.11 11.96 7.75 0.00 0.00 0.00
{0.25, 0.5, 0.75, 1.0} 66.77 51.35 36.62 25.11 16.35 10.72 6.97 4.34 2.74 1.81 1.08

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Radius

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

N = 100

N = 1000

N = 10000

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Radius

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

20% training set

40% training set

60% training set

80% training set

Full training set

(b)

Figure 10: Study on reducing the training set construction cost. (a) Accuracy Rfinal curves with different
number of samples N when calculating the certified radius for each σ candidate. (b) Accuracy Rfinal curves
with different portion of training data used to train the variance estimator.
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Figure 11: Accuracy Rfinal curves with different σ estimator architectures.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

negligible. With a moderate value (e.g., λ = 40.0), dual RS achieves strong performance in the
medium-radius region, while incurring a slight performance drop in the small-radius region.

E.2 ITERATIVE TRAINING

Fig. 7 shows training the variance estimator and finetune the classifier for different number of times.
Finetuning the classifier with the estimated variances significantly improves the performance of dual
RS across all radii. Moreover, re-training the variance estimator after classifier finetuning yields
additional gains, particularly in the medium-radius region. Fig. 8 reports the Accuracy–Rfinal curves
after 1 Estimator Training + 1 Classifier Finetuning with different values of λ in the consistency
loss. Compared with Fig. 6c, which uses the off-the-shelf classifier, the influence of λ becomes
larger after finetuning. This occurs because larger λ induces larger Rσ , thereby constraining fewer
samples after finetuning, which amplifies the performance gap across different λ values.

E.3 CHOICE OF σ CANDIDATES

Dual RS requires selecting a set of candidate noise variances. We conduct an ablation study to
study how this choice affects certified accuracy on CIFAR-10. In this ablation study, we use the
off-the-shelf denoiser and classifier, and train the variance estimator only. In addition to the original
candidate set {0.25, 0.5, 1.0}, we evaluate five alternative candidate sets: {0.25, 0.5}, {0.5, 0.625},
{0.25, 1.0}, {0.5, 1.0}, and {0.25, 0.5, 0.75, 1.0}. For each set, we use the maximum of the candi-
dates as the estimator’s global noise level, σe. Fig. 9 shows the accuracy - Rfinal curves and Table 6
presents the numerical results.

Compared with {0.25, 0.5, 1.0}, using only two candidates ({0.25, 0.5}, {0.5, 0.625}, {0.25, 1.0},
or {0.5, 1.0}) leads to performance degradation at radii unfavored by the candidate set, but improv-
ing the performance at radii favored by the candidate set. Specifically, the candidate set {0.25, 0.5}
and {0.5, 0.625} cannot achieve non-trivial accuracy at radii larger than 2.0, but achieve stronger
performance at radii smaller than 2.0. The candidate set {0.25, 1.0} leads to reduced accuracy in
the medium-radii range (radii from 0.75 to 1.25), but improves at both small and large radii (radii
smaller than 0.75 or larger than 1.25).

Increasing the number of candidates, e.g., using {0.25, 0.5, 0.75, 1.0}, does not improve perfor-
mance over {0.25, 0.5, 1.0}, potentially due to the increased difficulty of accurately estimating the
optimal σ and obtaining a sufficiently large certified radius for the estimated σ.

E.4 REDUCING TRAINING COST

As shown in Table 4, constructing the optimal variance dataset contributes the majority of the train-
ing cost. To reduce this overhead, we explore two strategies: (1) using a smaller number of samples
N to calculate the certified radius when constructing the training dataset, and (2) using only a subset
of the training data to train the variance estimator. All experiments here use off-the-shelf denoiser
and classifier, on the CIFAR-10 dataset.

In the main CIFAR-10 experiments, we use N = 104 samples to estimate the radius used for
training. However, an approximated radius might be sufficient for training: a much smaller N can be
used to estimate p̂A, then this weaker estimation can be plugged into the radius formula to compute
an approximation of the certified radius. To see if reduction on N is possible, we additionally
explore N = 100 and N = 1000 in this paradigm. This reduces the dataset construction cost by
99% and 90%, respectively. As shown in Fig. 10a, reducing N has minimal effect on performance,
demonstrating that the train set of the variance estimator can be constructed much more efficiently.
For ImageNet, we adopt the same strategy, using N = 100 when building the training set, while still
achieving strong performance (see §6.1). We note that this cost then matches the cost of inference,
which typically also requires hundreds of queries to make a single prediction.

We also study whether the variance estimator can be trained only on a subset of the training data.
Specifically, we randomly sample {20%, 40%, 60%, 80%} of the training data and train the variance
estimator solely based on the sampled training subset, thereby cutting down the training cost respec-
tively. As shown in Fig. 10b, using a significantly smaller training set for the variance estimator has
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minimal effect on the performance. This shows that a relatively small portion of the training data is
sufficient to train a high-quality variance estimator.

In summary, both strategies substantially reduce the training cost while maintaining estimator per-
formance. Therefore, in practice, we suggest to start with a small subset of the training data and
estimate the radius based on small N , then progressively grow the size and the estimation quality
until the performance gain diminishes.

E.5 ARCHITECTURE OF THE VARIANCE ESTIMATOR

In the main CIFAR-10 experiments, we used a ResNet-110 estimator, which is a standard choice
in training-based RS. We additionally evaluate smaller architectures (ResNet-20 and ResNet-56)
while keeping the denoiser and classifier fixed. As shown in Fig. 11, using a smaller variance
estimator has minimal effect on the accuracy - Rfinal curves. This indicates that even though smaller
estimators have lower representational capacity, they remain sufficiently expressive to approximate
locally constant variance in practice.
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