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ABSTRACT

For traffic routing platforms, the choice of which route to recommend to a user de-
pends on the congestion on these routes – indeed, an individual’s utility depends
on the number of people using the recommended route at that instance. Moti-
vated by this, we introduce the problem of Congested Bandits where each arm’s
reward is allowed to depend on the number of times it was played in the past ∆
timesteps. This dependence on past history of actions leads to a dynamical system
where an algorithm’s present choices also affect its future pay-offs, and requires
an algorithm to plan for this. We study the congestion aware formulation in the
multi-armed bandit (MAB) setup and in the contextual bandit setup with linear
rewards. For the multi-armed setup, we propose a UCB style algorithm and show
that its policy regret scales as Õ(

√
K∆T ). For the linear contextual bandit setup,

our algorithm, based on an iterative least squares planner, achieves policy regret
Õ(
√
dT + ∆). From an experimental standpoint, we corroborate the no-regret

properties of our algorithms via a simulation study.

1 INTRODUCTION

The online multi-armed bandit (MAB) problem and its extensions have been widely studied and used
to model many real world scenarios (Robbins, 1952; Auer et al., 2002; 2001). In the basic MAB
setup there are K arms with either stochastic or adversarially chosen reward profiles. The goal is
to design an algorithm that achieves a cumulative reward that is as good as that of the best arm in
hindsight. This is quantified in terms of the regret achieved by the algorithm over T time steps (see
Section 2 for formal definitions). In many real world scenarios the MAB setup as described above
is not suitable as the reward obtained by playing an arm/action at a given time step may depend on
the algorithm’s choices in the previous time steps. In particular, we are motivated by online routing
problems where the reward of suggesting a particular edge to traverse along a path from source
to destination often depends on the congestion on that edge. This congestion is a function of the
number of times the particular edge has been recommended earlier (potentially in a time window).
In such scenarios, one would desire algorithms that can compete with the best policy, i.e., the best
sequence of actions, in hindsight as compared to a fixed best action.

Classical multi-armed bandit formulation and associated no-regret algorithms (Slivkins, 2019), or
their extensions to routing problems (Kalai & Vempala, 2005; Awerbuch & Kleinberg, 2008) do not
suffice for the above scenario as they only guarantee competitiveness with respect to the best fixed
arm in hindsight. To overcome these limitations, we propose a new model, viz., congested bandits
which captures the above scenario. In our proposed model the reward of a given arm at each time
step depends on how many times the arm has been played within a given time window of size ∆.
Hence over time, an arm’s expected reward may decay and reset dynamically. While our model
is motivated by online routing problems, our proposed formulation is very general. As another
example, consider a digital music platform that recommends artists to its end users. In order to
maximize profit the recommendation algorithm may prefer to recommend popular artists, and at the
same time the platform may want to promote equity and diversity by highlighting new and emerging
artists as well. This scenario can be model via congested bandits where each artist is an arm and the
reward for suggesting an artist is a function of how many times the artist has been recommended in
the past time window of length ∆. In both the scenarios above, the ability to reset the congestion
cost (by simply not playing an arm for ∆ time steps) is a crucial part of the problem formulation.
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Figure 1. Our proposed Congested Bandits framework. (a) A route recommendation scenario where
an algorithm can recommend one of two routes to the incoming vehicle. (b) The reward for each
route depends on whether there is congestion on the route or not. (c) Traditional multi-armed bandit
algorithms learn to recommend the best route, Route 1 for every incoming vehicle. This is clearly
suboptimal. Our algorithm, CARMAB, adapts to the congestion and achieves better performance.

Our contributions. We propose and study the congested bandits model with short term resets under
a variety of settings and design no-regret algorithms. In the most basic setup we consider aK-armed
stochastic bandit problem where each arm a has a mean reward µa, and the mean reward obtained
by playing arm a at time t equals fcong(a, ht)µa. Here ht denotes the history of the algorithm’s
choices within the last ∆ time steps and fcong is a non-increasing congestion function. Recall that
the algorithm’s goal in this setup is to compete with the best policy in hindsight. While the above
setting can be formulated as a Markov Decision Process (MDP), existing no regret algorithms for
MDPs will incur a regret bound that scales exponential in the parameters (scaling as K∆) (Auer
et al., 2009; Jaksch et al., 2010). Instead, we carefully exploit the problem structure to design an
algorithm with near-optimal regret scaling as Õ(

√
K∆T ). Next, we extend our model to the case

of online routing with congested edge rewards, again presenting near optimal no-regret algorithms
that avoid exponential dependence on the size of the graph in the regret bounds.

We then extend the multi-armed and the congested online routing formulations to a contextual setting
where the mean reward for each arm/edge at a given time step equals fcong(a, ht)〈θ∗, φ(xt, a))〉,
where xt ∈ Rd is a context vector and θ∗ is an unknown parameter. This extension is inspired from
classical work in contextual bandits (Li et al., 2010; Chu et al., 2011) and captures scenarios where
users may have different preferences over actions/arms (e.g., a user who wants to avoid routes with
tolls). Solving the contextual case poses significant hurdles as a priori it is not even clear whether
the setting can be captured via an MDP. By exploiting the structure of the problem, we present a
novel epoch based algorithm that, at each time step, plays a near optimal policy by planning for the
next epoch. Showing that such planning can be done when only given access to the distribution of
the contexts is a key technical step in establishing the correctness of the algorithm. As a result, we
obtain algorithms that achieve Õ(

√
dT + ∆) regret in the contextual MAB setting. Finally, using

simulations, we perform an empirical evaluation of the effectiveness of our proposed algorithms.

Related work. Closest to our work are studies on multi-armed bandits with decaying and/or im-
proving costs. The work of (Levine et al., 2017) proposes the rotting bandits model that has been
further studied in (Seznec et al., 2019). In this model the mean reward of each arm decays in a
monotonic way as a function of the number of times the arm has been played in the past. There is
no notion of a short-term reset as in our setting. As a result it can be shown that a simply greedy
policy is optimal in hindsight. In contrast, in our setting greedy approaches can fail miserably as
highlighted in Figure 1. The work of Heidari et al. (2016) considers a setting where the mean reward
of an arm can either improve or decay as a function of the number of times it has been played. How-
ever, similar to the rotting bandits setup there is no notion of a reset. Pike-Burke & Grünewälder
(2019) considers a notion of reset/improvement by allowing the mean reward to depend on the num-
ber of time steps since an arm was last played. Their work considers a Bayesian setup where the
mean reward function is modelled by a draw from a Gaussian process. On the other hand, in our
work, the reward is a function of the number of times an arm was played in the past ∆ time steps.
However their regret bounds are either with respect to the instantaneous regret, or with respect to a
weaker policy class of d-step look ahead policies. The notion of instantaneous regret only compares
with the class of greedy policies at each timestep as compared to the globally optimal policy.
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There also exist works studying the design of online learning algorithms againstm-bounded memory
adversaries. The assumption here is that the reward of an action at each time step depends only on
the previous m actions. While this is also true for our setting, in general the regret bounds provided
for bounded-memory adversaries are either with respect to a fixed action or a policy class containing
policies that do no switch often (Arora et al., 2012; Anava et al., 2015). Our problem formulation for
the contextual setup is reminiscent of the recent line of works on contextual MDPs (Azizzadenesheli
et al., 2016; Krishnamurthy et al., 2016; Hallak et al., 2015; Modi & Tewari, 2020). However these
works either assume that the context vector is fixed for a given episode (allowing for easier planning),
or make strong realizability assumptions on the optimal Q-function. Finally, our congested bandits
formulation of the routing problem is a natural extension of classical work on the online shortest
path problem Kalai & Vempala (2005); Awerbuch & Kleinberg (2008); Dani et al. (2007).

2 CONGESTED MULTI-ARMED BANDIT

In this section, we model the congestion problem in a multi-armed bandit (MAB) framework.Our
setup for congested multi-armed bandits models the congestion phenomenon by allowing the re-
wards of an arm to depend on the number of times it was played in the past.

Let us consider a MAB setup with K arms, where each arm may represent a possible route. Let
us denote by ∆ the size of the window which affects the reward at the current time step. For any
time t, let ht ∈ H∆ : = [K]∆ denote the history of the actions taken by an algorithm1 in the past
∆ time steps, that is, ht = [at−∆, . . . , at−1] where aτ is the action chosen by the algorithm at time
τ . In order to model congestion arising from repeated plays of a single arm, we consider a function
fcong : [K] × [∆]+ → (0, 1]. This congestion function takes in two arguments: an arm a and the
number of times this arm was played in the past ∆ time steps, and outputs a value indicating the
decay in the reward of arm a arising from congestion.

Protocol for congestion in bandits. We consider the following online learning protocol for a
learner in our congested MAB framework: At each round t, the learner picks an arm at ∈ [K] and
observes reward

r̃(ht, at) = fcong(at,#(ht, at)) · µat + εt where εt ∼ N (0, 1)).

Finally, the history changes to ht+1 = [ht,2:∆, at] where we have used the notation ht,i:j to denote
the vector [ht(i), . . . , ht(j)] and #(h, a) to denote the number of times the action a was played in
history h.

Each arm a is associated with a mean reward vector µa and the congestion function multiplicatively
decreases the reward of that arm. We assume that the learner does not know the exact form of the
function fcong as well as the the mean vector µ = {µa}[K]. The objective of the learner is to select
the actions at which minimizes a notion of policy regret, which we define next.

Policy regret for congested MAB. In the standard MAB setup, regret compares the cumulative
reward of the algorithm to the benchmark of playing the arm with the highest mean reward at all
time steps. However, as described in Section 1, this benchmark is not suitable for our setup. Indeed,
the asymptotically optimal algorithm is one which maximizes the average cumulative reward ρ∗ : =

maxalg limT→∞
1
T

∑T
t=1 r(ht, at), where the action at is the one chosen by the algorithm alg and

history ht is the sequence of actions in the past ∆ time steps.

This asymptotically algorithm corresponds to a stationary policy π∗ whose selection at only de-
pends on the history ht. Accordingly, we consider the following class of stationary policies as the
comparator for our regret Π = {π : H∆ → [K]} , with size |Π| = KK∆

. Denote by hπt the history
at time t by running policy π up to time t, we define the policy regret for any algorithm

RT (alg; Π, fcong) : = sup
π∈Π

T∑
t=1

r(hπt , π(hπt ))−
T∑
t=1

r̃(halgt , at) , (1)

1We usually suppress the dependence of this history on the algorithm, but make it explicit whenever it is not
clear from context.
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Algorithm 1: CARMAB: Congestion Aware Routing via Multi-Armed Bandits
Input: Congestion window ∆, confidence parameter δ ∈ (0, 1), action set [K], time horizon T .
Initialize: Set t = 1
for episodes e = 1, . . . , E do

Initialize episode
Set start time of episode te = t.
For all actions a and historical count j, set ne(a, j) = 0 and Ne(a, j) =

∑
s<e ns(a, j).

Set empirical reward estimate for each arm and historical count

r̂e(a, j) =

∑te−1
τ=1 rτ · I[aτ = a, jτ = j]

max{1, Ne(a, j)}
.

Compute optimistic policy
Set the feasible rewards

Re =

{
r ∈ [0, 1]A×(∆+1) | for all (a, j), |r(a, j)− r̂e(a, j)| ≤ 10

√
log(A∆te/δ)

max{1, Ne(a, j)}

}
Find optimistic policy π̃e = arg maxπ∈Π,r∈Re

ρ(π, r)
Execute optimistic policy
while ne(a, j) < max{1, Ne(a, j)} do

Select arm at = π̃e(st), obtain reward r̂t.
Update ne(a,#(st, a)) = ne(a,#(st, a)) + 1.

where at is the action chosen by alg at time t and r(ht, at) = fcong(ht, ) · µat . This notion of regret
is called policy regret (Arora et al., 2012) because the history sequence observed by the algorithm
π∗ and the algorithm alg can be different from each other – this leads to a situation where choosing
the same action a at time t can lead to different rewards for the algorithm and the comparator.

2.1 CARMAB: CONGESTED MAB ALGORITHM

We now describe our learning algorithm for the congested MAB problem. At a high level,
CARMAB, detailed in Algorithm 1, is based on a reduction of this problem to a reinforcement
learning problem with state space S = H∆ and action space A = [K], where the underlying dy-
namics are known to the learner. With this reduction, CARMAB deploys an epoch-based strategy
which plays a optimistic policy π̃e computed from optimistic estimates of the reward function.

Reduction to MDP. Our congested MAB setup can be viewed as a learning problem in a Markov
decision process (MDP) with finite state and action spaces. This MDPMmab comprises state space
S = H∆ and action space A = [K]. The reward function for this MDP is given by r(s, a) =
fcong(a,#(s, a)) · µa and the deterministic state transitions are given P (s′|s, a) = I[s′ = [s2:∆, a]].

Algorithm details. Our learning algorithm in this MDP is an upper confidence bound (UCB) style
algorithm, adapted from the classical UCRL2 (Jaksch et al., 2010) for learning in finite MDPs. It
splits the time horizon T into a total of E epochs, each of which can be of varying length. In each
episode, for every pair (a, j) of action a and historical count j ∈ [∆]+, the algorithm computes
the empirical estimate of the rewards r̂e(a, j) from observations in the past epoch and maintains a
feasible set Re of rewards. This set is constructed such that with high probability, the true reward r
belong to this set for each epoch. Given this set, our algorithm computes the optimistic policy

π̃e = arg max
π∈Π,r∈Re

ρπ(r) where ρπ : = lim
T→∞

1

T

T∑
t=1

r(hπt , π(hπt )) , (2)

that is, the policy which achieves the best average expected reward with respect to the optimistic set
Re. The optimistic policy πe is then deployed in the congested MAB setup till one of the (a, j) pair
doubles in the number of times it is played and this determines the size of any epoch.

Computing optimistic policy. In the MDP described above, each deterministic policy π follows
a cyclical path since the transition dynamics are deterministic and the state space is finite. With
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this insight, this problem of finding the optimal policy with highest average reward is equivalent to
finding the maximum mean cycle in a weighted directed graph. In our simulations, we use Karp’s
algorithm (Karp, 1978) for finding these optimistic policy. This algorithm runs in time O(K∆+1).

2.2 REGRET ANALYSIS FOR CARMAB

In this section, we obtain a bound on the policy regret of the proposed algorithm CARMAB. Our
overall proof strategy is to first establish that the MDP Mmab has a low diameter (the time taken
to move from one state to another in the MDP), then bounding the regret in each episode e of the
process and finally establishing that the total number of episodes E can be at most logarithmic in the
time horizon T . Combining these elements, we establish in the following theorem that the regret of
CARMAB scales as Õ(

√
K∆T ) with high probability.2

Theorem 1 (Regret bound for CARMAB). For any confidence δ ∈ (0, 1), congestion window
∆ > 0 and time horizon T > ∆K, the policy regret (1), of CARMAB is

RT (CARMAB; Π, fcong) ≤ c ·∆2K log

(
T

∆K

)
+ c

√
K∆T log

(
∆KT

δ

)
+ c

√
T log

(
1

δ

)
with probability at least 1− δ.

A few comments on the theorem are in order. Observe that the dominating term in the above re-
gret bound scales as Õ(

√
K∆T ) in contrast to the classical regret bounds for MAB which have

a Õ(
√
KT ) dependence. This additional factor of

√
∆ comes from the fact the stronger notion

of policy regret as well as the non-stationary nature of the arm rewards. Additionally, a naı̈ve ap-
plication of the UCRL2 regret bound to the constructed MDP scales linearly with state space and
would correspond to an additional factor of O(K∆). The CARMAB algorithm is able to avoid
this exponential dependence by exploiting the underlying structure in the congested MAB problem.
Our regret bound are also minimax optimal – observe that for any constant value of ∆, the lower
bounds from the classical MAB setup immediately imply that the regret of any learner should scale
as Ω(

√
KT ), which matches the upper bound in Theorem 1.

We defer the complete proof of this to Appendix A but provide a high-level sketch of the important
arguments.

MDP Mmab has bounded diameter. The diameter D of an MDP M measures the number of
steps it takes to reach a state s′ from a state s using an appropriately chosen policy. The diameter is
a measure of the connectedness of the underlying MDP and is commonly studied in the literature on
reinforcement learning (Puterman, 2014).

Definition 1 (Diameter of MDP.). Consider the stochastic process induced by the policy π on an
MDPM. Let τ(s′|s,M, π) represent the first time the policy reaches state s′ starting from s. The
diameter D of the MDP is D : = maxs6=s′ minπ E[τ(s′|s,M, π)].

Recall from Section 2.1 that the MDPMmab has deterministic dynamics and state space given by
the set of historiesH∆. Proposition 2 in Appendix A establishes that the diameter of this MDP is at
most the window size ∆. With this bound on the diameter, we then show in Lemma 4 that the total
regret of the algorithm can be decomposed into a sum of regret terms, one for each episode.

RT ≤ sup
π∈Π

E∑
e=1

re + c

√
T log

(
T

δ

)
with re : =

∑
a,j

ne(a, j)(ρπ − fcong(a, j)µa) , (3)

which holds with probability at least 1 − δ. We have used ne(a, j) to denote the number of times
action a was played by the algorithm when it had a count j in the history and ρπ the average reward
of policy π. Our analysis then proceeds to bound the per-episode regret re.

2For clarity purposes, through out the paper we denote by c an absolute constant whose value is independent
of any problem parameter. We allow this value of c to change from line to line.
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Regret for episode e. In episode e, the set of feasible rewards Re is chosen to ensure that with
high probability, the true reward r∗(a, j) = fcong(a, j) · µj belongs to this set. Conditioning on this
event, we show that the regret in each episode is upper bounded by the window size ∆ and a scaled
ratio of the number of times each action-history (a, j) is played, that is,

re ≤ ∆ + c

√
log

(
∆Kte
δ

)∑
a,j

ne(a, j)√
max(1, Ne(a, j))

. (4)

where te is the time at which episode e starts and Ne(a, j) =
∑
i<e ni(a, j). Theorem 1 follows

from combining the above with a bound on the total number of episodes E ≤ c ·∆K log
(
T

∆K

)
.

2.3 ROUTING WITH CONGESTED BANDITS

We now study an extension of the congested MAB setup where the arms correspond to edges on
graph G = (V,E) with a pre-defined start state sG and goal state tG. In this setup, at each
round t the learner selects an sG-tG path pt on the graph G and receives reward r̃(ht, ei,t) =
fcong(ei,t,#(ht, ei,t)) ·µei,t +εt for each ei,t on path pt. The history changes to ht+1 = [ht,2:∆, pt].

In comparison to the multi-armed bandit protocol, the learner here selects an sG-tG path on the graph
G, the history at any time t consists of the entire set of paths {pt−∆, . . . , pt−1}, and we assume that
the congestion function on each edge fcong(h, e) depends on the number of times this edge has been
used in the past ∆ time steps. The following theorem generalizes the result from Theorem 1 and
shows that a variant of CARMAB has regret Õ(

√
T ) for the above sG-tG online problem.

Theorem 2 (Regret bound for CARMAB-st). For any confidence δ ∈ (0, 1), congestion window
∆ > 0 and time horizon T , the policy regret, of CARMAB-st is

RT (CARMAB-st; Π, fcong) ≤ c ·∆2V E log

(
V T

∆E

)
+ c

√
V E∆T log

(
V E∆T

δ

)
+ c

√
V T log

(
1

δ

)
with probability at least 1− δ.

The proof of the above theorem is detailed in Appendix A.3.

3 LINEAR CONTEXTUAL BANDITS WITH CONGESTION

We now consider the contextual version of the congested bandit problem, where the reward function
depends on the choice of arm a as well as an underlying context x ∈ X .While most of our notation
stays the same from the multi-armed bandit setup in Section 2, we introduce the modifications
required to account for the context vectors xt. We consider the linear contextual bandit problem
where the reward function is parameterized as a linear function of a parameter θ∗ and context-action
features φ(xt, at), that is, r(ht, at, xt; θ∗) : = 〈θ∗, φ(xt, at)〉fcong(at,#(ht, at)), where we assume
that the context-action features φ(xt, at) ⊂ Rd satisfy ‖φ(xt, at)‖2 ≤ 1 and the true parameter
‖θ∗‖2 ≤ 1. In contrast to the bandit setup, we expand our policy class to be dependent on the
context as well with ΠX : = {π : H∆ ×X 7→ [K]}.
In each round of the linear contextual bandits with congestion game, the learner observes con-
text vectors {φ(xt, ai)}[K] and selects action at. The learner then observes reward r̃(ht, xt, at) =
r(ht, at, xt; θ∗) + εt and the history changes to ht+1 = [ht,2:∆, at]. The objective of the learner in
the above contextual bandit game is to output a sequence of actions which are competitive with the
best policy π ∈ ΠX . Formally, the regret of an algorithm alg is defined to be

RT (alg; ΠX , fcong, θ∗) : = sup
π∈ΠX

T∑
t=1

r(hπt , π(hπt , xt), xt; θ∗)−
T∑
t=1

r̃(halgt , at, xt; θ∗) . (5)

In order to provide some intuition about the algorithm, we start with a simple case where all the
contexts are known to the learner in advance and later generalize the results to stochastic contexts.

3.1 WARM-UP: KNOWN CONTEXTS

In the known context setup, the learner is provided access to a set of contexts {xt} at the start of the
online learning game. Algorithm 2 details our proposed algorithm, CARCB, for this setup.
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Algorithm 2: CARCB: Congested linear contextual bandits with known contexts
Input: Congestion window ∆, congestion function fcong, action set [K], time horizon T ,

contexts {xt}Tt=1
Initialize: Set t = 1, θ1 ∼ unif(Bd)
for episodes e = 1, . . . , E do

Initialize episode
Set start time of episode te = t.
Let the steps in this epoch Ie = [te, . . . , te + 2e∆].
Set the episode policy π̃e = arg maxπ∈ΠX

∑
t∈Ie\{te,...,te+∆} r(h

π
t , π(hπt , xt), xt; θe)

Execute estimated policy
for t = te, . . . , te + 2e∆ do

Select arm at = π̃e(ht, xt) and observe reward r̂t.

Update θe via OLS update θe+1 = arg minθ
∑
τ (rτ − 〈θ, φ(xτ , aτ )〉fcong(aτ ,#(hτ , aτ ))2

Algorithm details. We again divide the total time T into E episodes, where the length of each
episode e = 2e∆. Unlike CARMAB, the algorithm does not maintain any optimistic estimate of
the reward parameter θ∗ but simply updates it via an ordinary least squares (OLS) procedure and
executes the policy π̃e which maximizes this estimated reward function. The core idea underlying
this algorithm is that as we observe more samples, our estimate θe converges to θ∗ and our planner
is then able to execute the optimal sequence of actions.

Regret analysis. To analyze the regret for CARCB, we study the error incurred in estimating the
parameter θe from the reward samples. To do so, we begin by making the following assumption on
the minimum eigenvalue of the sample covariance matrix obtained at any time te.
Assumption 1. For t > cd and for any sequence of actions {a1, . . . , aT }, we have

λmin

(
1
t

∑
τ≤t φ(xt, at)φ(xt, at)

>
)
≥ γ , for some value γ > 0.

Our bound on the regret RT will depend on this minimum eigenvalue γ. Later when we generalize
our setup to the unknown setup, we will show that this assumption holds with high probability for a
large class of distributions. The following theorem shows that the regret bound for CARCB scales
as Õ(

√
dT + ∆) with high probability.

Proposition 1 (Regret bound; known contexts). For any confidence δ ∈ (0, 1), congestion window
∆ > 0 and time horizon T > cd, suppose that the sample covariance Σt satisfies Assumption 1.
Then, the policy regret, defined in eq. (5), of CARCB with respect to the set Π is

RT (CARCB; ΠX , fcong) ≤
c

γ · cmin
·
√
d(T + ∆) · log

log(T )

δ
+ ∆ log(T ) + c

√
T log

(
K

δ

)
with probability at least 1− δ where cmin = mina,j fcong(a, j).

The proof of the above theorem is deferred to Appendix B. At a high level, the proof proceeds in
two steps where first it upper bounds the error ‖θe − θ∗‖2 for every epoch e and then uses this to
bound the deviation of the policy π̃e from the optimal choice of policy π∗. In the next section, we
generalize this result to the unknown context setup.

3.2 UNKNOWN STOCHASTIC CONTEXTS

Our stochastic setup assumes that the context vectors {φ(xt, at)} at each time step are sampled i.i.d.
from a known distribution. We formally state this assumption3 next.
Assumption 2 (Stochastic contexts from known distribution.). At each time instance t, the features
φ(xt, a) for every action a ∈ [K] are assumed to be sampled i.i.d. from the Gaussian distribution
N (x̄a,Σa), such that αlI � Σa � αuI and ‖x̄a‖2 ≤ 1.

3While our results are stated in terms of the multivariate Gaussian distribution, these can be generalized to
sub-Gaussian distribution.
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For large-scale recommendation systems for traffic routing which interact with million of users daily,
the above assumption on known distributions is not restrictive at all. Indeed these systems have a
fair understanding of the demographics of the population which interact with it on a daily basis and
the real uncertainty is on which person from this population will be using the system at any time.

The algorithm for this setup is similar to the known context scenario where instead of planning with
the exact contexts in the optimistic policy computation step, we obtain the episode policy as

π̃e = arg max
π∈Π

E[
∑

t∈Ie\{te,...,te+∆}

r(hπt , π(hπt , xt), xt; θe)] ,

where the expectation is taken with respect to the sampling of context. Our regret bound for this
modified algorithm depends on the mixing time of the policy set ΠX in an appropriately defined
Markov chain.
Definition 2 (Mixing-time of Markov chain). For an ergodic discrete time Markov chain M , let d
represent an arbitrary starting state distribution and let d∗ denote the stationary distribution. The
ε-mixing time τmix(ε) is defined as τmix(ε) = min{t : maxd ‖dM t − d∗‖TV ≤ ε}.

The mixing time of the policy set ΠX is given by τ∗mix : = maxπ∈ΠX maxh τmix,π(h). The following
theorem establishes the regret bound for the modified CARCB algorithm, showing that not knowing
the context can increase the regret by an additive factor of Õ(

√
∆τ∗mix · T ).

Theorem 3 (Regret bound; unknown contexts). For any confidence δ ∈ (0, 1), congestion window
∆ > 0 and time horizon T , suppose that the context sampling distributions satisfy Assumption 2.
Then, with probability at least 1− δ, the policy regret of CARCB satisfies

RT (CARCB; ΠX , fcong) ≤ c ·

√
αuT log

(
K

δ

)
+ c ·

√
∆τ∗mixT log

(
K log(T )

δ

)

+
cαu
cminαl

·
√
d(T + ∆) · log

log(T )

δ
+ ∆ log(T ) . (6)

A detailed proof of this result is deferred to Appendix B. Observe that the above bound can be seen
as a sum of two terms: RT .

√
dT +

√
∆τ∗mixT . The first term is a standard regret bound in the d

dimensional contextual bandit setup. The second term, particular to our setup, arises because of the
interaction of the congestion window with the unknown stochastic contexts. In comparison to the
bound in Theorem 1, the window size ∆ interacts only additively in the regret bound surprisingly.
The reason for this additive deterioration of regret is that the shared parameter θ∗ allows us to use
data across time steps in our estimation procedure – thus, in effect, the congestion only slows the
estimation by a factor of cmin which shows up due to the dependence on the minimum eigenvalue.

In order to go from the regret bound in the known context case, Proposition 1, we need to address
two key technical challenges: 1) bound the deviation of the reward of policy π̃e from the policy
which plans with the known sampled contexts, and 2) the context vectors selected by the algorithm
φ(xt, at) satisfy the minimum eigenvalue condition in Assumption 1.

Deviation from known contexts. One way to get around this difficulty is to reduce the above
problem to the multi-armed bandit on from Section 2. This simple reduction would lead to a regret
bound which scales with the size of the context space |X | which is exponentially large in the di-
mension d. Instead of this, we show that the reward obtained by the distribution maximizer π̃e are
close to those obtained by the sample maximizer via a concentration argument for random walks on
the induced Markov chains. The key to our analysis is the construction of this random walk using
policy π̃e and then using the following concentration bound from .
Lemma 1 (Theorem 3.1 in Chung et al. (2012)). Let M be an ergodic Markov chain with state
space [n] and stationary distribution d∗. Let (V1, ..., Vt) denote a t-step random walk on M starting
from an initial distribution d on [n]. Let µ = EV∼d∗ [f(V )] denote the expected reward over the
stationary distribution and X =

∑
i f(Vi) denote the sum of function on the random walk. There

exists a universal constant c > 0 such that

Pr(|X − µt| ≥ δµt) ≤ c‖d‖d∗ exp

(
−δ2µt

72τmix

)
for 0 ≤ δ < 1 , (7)
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where the norm ‖d‖2d∗ : =
∑
i
d2
i

d∗i
.

This concentration bound is not directly applicable to our setup because of two reasons: 1) the
constructed Markov chainMπ̃e

might not be ergodic, and 2) the norm ‖d‖d∗ might be unbounded
in our setup. By using the fact that the diameter of the MDP Mπ̃e

is bounded by ∆, we use an
intermediate policy in the time steps {te : te + ∆} in each episode reach a state starting from which
the MDP is shown to be ergodic and have bounded norm ‖d‖d∗ . See Appendix B for details.

Minimum eigenvalue bound. In order to obtain a regret bound for the stochastic setup, we need to
establish that the covariance matrix formed by these context-action features satisfies the minimum
eigenvalue assumption. The challenge here is that the the features φ(xt, at) are not independent
across time – they are correlated since the algorithm’s choice at time t depends on the history ht
which in turn depends on the past features. In Appendix B we get around this difficulty by de-
coupling these dependencies and showing that even after this decoupling, the random variables still
satisfy a sub-exponential moment inequality.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate both our proposed algorithms, CARMAB and CARCB, in the congested
bandit framework and exhibit their no-regret properties.

We generate K arms and assign a base reward of r̂j ∈ (0, 1) to each j ∈ [K]. We draw a noise
parameter εt,j for every action j and time step t. We set fcong(at,#(ht, at)) = 1/#(ht, at). We
also set the parameter ∆, which controls the length of the history ht at time t. Then, the observed
reward is r̃(ht, at) =

r̂at
#(ht,at)

+ εt,at . We set parameter δ of algorithm CARMAB to 0.1. In terms
of distributions, we draw r̂j uniformly in (0, 1) and εt,j from N (0, 0.1). In Figure 2, we present
how the average regret of the algorithm changes as time progresses for K = 4 and different values
of the window size ∆ during which congestion occurs.

Figure 2. (Left) No-regret property of CARMAB. CARMAB is able to learn optimal sequence of arms
to play and enjoys a no-regret property. Increasing the size of history window ∆ makes the problem
more challenging and requires larger number of time steps. (Right) No-regret property of CARCB.

For evaluating CARCB, again we generateK arms. For each arm i ∈ [K] and each time step t ∈ [T ],
we draw a random context. A context xa,t is a vector of 10 numbers which are drawn uniformly in
(0, 1) and then normalized so that the Euclidean norm of the vector is unit. We also draw the true
parameter θ∗ in the same way. We assume each arm’s context is available to the algorithm at each
time step. We use the same noise and congestion function as in the previous section. The observed
reward in this setting is:

r̃(ht, at, xa,t, θ∗) =
xTa,tθ∗

#(ht, at)
+ εt,at

In Figure 2 we present how the average regret of CARCB changes over time, in a setting with similar
K and ∆ (K = ∆ = 4) and a setting with a number of actions larger than the congestion window
(K = 10 and ∆ = 2).
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Our contributions in this work are theoretical in nature and we do not see any ethics related issue
arising from this work in the foreseeable future.

REPRODUCIBILITY STATEMENT

On the theoretical side, we provide detailed proofs for all our theoretical results in the appendix. For
the experimental aspect, we have attached our python code as a supplementary file. Furthermore,
we have described all necessary hyper parameters and algorithmic details required to reproduce the
experiments.
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