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ABSTRACT

Large Language Models (LLMs) are increasingly used in autonomous agents and
multi-agent systems to handle complex tasks, making their trustworthiness a crit-
ical concern. However, most existing benchmarks focus on English, limiting their
relevance for other languages, particularly Russian. In this study, we introduce the
first benchmark for evaluating LLM trustworthiness in Russian-language tasks,
assessing six dimensions: truthfulness, safety, fairness, robustness, privacy, and
ethics. We adapt English datasets and incorporate native Russian data, creat-
ing 14 tasks from 12 datasets. Additionally, we propose the Task Format Non-
Compliance Rate to measure structural adherence without penalizing correct con-
tent. Evaluating 22 LLMs, including Russian-adapted models, we uncover sig-
nificant challenges in factual consistency, safety calibration, and bias mitigation.
Our findings underscore the need for tailored fine-tuning and evaluation methods
for non-English applications, providing a foundation for more trustworthy AI in
Russian-language contexts.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has transformed our interaction with tech-
nology, resulting in widespread adoption across various real-world applications. LLMs now serve
as essential components in autonomous agents (Wang et al., 2024a; Mosquera et al., 2024; Wei
et al., 2023), multi-agent systems (Händler, 2023; Chan et al., 2023; Wu et al., 2023), and decision-
support systems (Eigner & Händler, 2024) across customer service (Pandya & Holia, 2023; Pinto
et al., 2024), healthcare (Benary et al., 2023; Svoboda & Lande, 2024; Rajashekar et al., 2024),
finance (Yu et al., 2023; Xing, 2024; Yu et al., 2025), and beyond. Their capacity to understand and
generate human-like text enables a range of tasks from simple query responses (Zeng et al., 2024)
to complex problem-solving (Renze & Guven, 2024; Lingo et al., 2024) and context-aware reason-
ing (Xiong et al., 2023; Setlur et al., 2024). However, as these models are increasingly deployed
in sensitive and critical fields, ensuring their reliability and trustworthiness has become an urgent
concern.

The challenge of trust in LLMs is multifaceted. On the one hand, modern LLMs can generate a
diverse range of outputs, which can sometimes be unpredictable (Mohsin et al., 2024; Zhang et al.,
2024). While their adaptability allows them to discuss a wide range of topics, these same capabil-
ities can lead to inaccurate information (Azaria & Mitchell, 2023; Kang et al., 2024), misleading
content (Liu et al., 2024), or even potentially dangerous outputs. Incidents of inaccurate information
spreading, manipulation through misinformation, automated cyber attacks, and emerging adversar-
ial techniques (such as jailbreaking) illustrate these risks (Pan et al., 2023; Hassanin & Moustafa,
2024). On the other hand, inherent challenges such as data biases and the accidental inclusion of sen-
sitive personal information further erode trust (Zhou et al., 2024; Choudhury & Chaudhry, 2024).
Bias in training data can distort responses and threaten user privacy (Pan et al., 2024; Srivastava
et al., 2024). High user expectations can magnify the impact of inconsistencies in factual accuracy
(Banerjee et al., 2024; Ye et al., 2024), ethical standards (Bonagiri et al., 2024), or cultural sensitivity
(Kharchenko et al., 2024).
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A further layer of complexity emerges when accounting for the linguistic and cultural dimensions of
LLM benchmarking. Although several benchmarks exist for English-based LLMs – evaluating ac-
curacy (White et al., 2024), safety (Li et al., 2024b), fairness (Wang et al., 2024b), robustness (Yuan
et al., 2023), privacy (Li et al., 2024a), and ethics (Chun & Elkins, 2024; Mozikov et al., 2025) –
these frameworks often fall short for languages with different linguistic structures and social contexts
(Rao et al., 2024; Sam & Vavekanand, 2024). Russian, in particular, presents unique challenges due
to its distinct linguistic characteristics and cultural backdrop (Taktasheva et al., 2022). Conventional
evaluation methods may miss subtle factors that directly affect performance and trustworthiness
for Russian users. This situation highlights the need for benchmarking frameworks that are both
scalable and adaptable across different linguistic environments.

To address these challenges, we introduce the first benchmark specifically designed to assess LLM
trustworthiness in Russian. Our main contributions are as follows:

• We present the first benchmark for evaluating LLM trustworthiness in Russian, adapting
English datasets through careful translation, cultural adjustments, and augmentation with
native Russian data.

• We assess six critical aspects — truthfulness, safety, fairness, robustness, privacy, and
ethics — across 14 tasks derived from 12 datasets, supported by tailored prompts.

• We propose the Task Format Non-Compliance Rate (TFNR), a novel metric that quantifies
deviations from the designated task format. Additionally, we evaluate accuracy, complete-
ness, and answer willingness for free-form responses.

2 RELATED WORKS

2.1 TRUSTWORTHY LLM BENCHMARKS

Recent research stresses the need to evaluate LLM trustworthiness across dimensions like truthful-
ness, safety, fairness, robustness, privacy, and ethics (Liu et al., 2023; Hong et al., 2024; de Cerqueira
et al., 2024; Shi et al., 2025). For example, TrustLLM (Huang et al., 2024) proposes a broad frame-
work with six key criteria, covering 30 datasets and 16 popular models. It finds that proprietary
systems often lead in performance, though overemphasis on trustworthiness can result in inappro-
priate refusals of benign requests. Similarly, XTRUST (Li et al., 2024c) introduced a multilingual
trustworthiness benchmark spanning 10 languages, it lacks focused, language-specific evaluations
with culturally adapted tasks and comprehensive coverage of locally fine-tuned models.

Meanwhile, benchmarks like TrustGPT and DecodingTrust(Huang et al., 2023b; Wang et al., 2023a)
tackle toxicity, bias, and alignment by testing models with specially designed prompts, underscoring
the importance of detecting subtle biases beyond overt harm. TrustScore (Zheng et al., 2024a)
introduces a reference-independent approach that cross-examines a model’s answers with its internal
knowledge, demonstrating strong agreement with human assessments.

Other studies (Zheng et al., 2024b; Laban et al., 2023) integrate algorithmic methods and metrics like
Perplexity, BLEU, ROUGE, METEOR, and more advanced tools such as LLMMaps (Brown, 2024).
These innovations highlight that even simple “null models” can sometimes manipulate evaluations
to earn unexpectedly high scores, underscoring the ongoing need for rigorous, multi-dimensional
tests. Ultimately, robust, nuanced, and human-informed assessment remains essential to gauge a
model’s real-world trustworthiness and resilience against strategic exploitation.

2.2 RUSSIAN LLM BENCHMARKS

Evaluating LLMs in the Russian context requires specialized frameworks. LIBRA (Churin et al.,
2024) uses 21 datasets (4,000–128,000 tokens) to test comprehension across four complexity
tiers, emphasizing the challenges of processing long, syntactically complex Russian texts. MERA
(Fenogenova et al., 2024b), meanwhile, applies a multimodal, black-box approach covering 11 skill
areas through 21 tasks, highlighting persistent performance gaps compared to human experts. Psy-
chometric techniques, grounded in Evidence-Centered Design (ECD) and Bloom’s taxonomy, also
inform professional competence benchmarks (Kardanova et al., 2024), revealing substantial short-
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Figure 1: The TrustGEN benchmark design. TrustGEN evaluates LLM trustworthiness in Russian
across six dimensions: truthfulness, safety, fairness, robustness, privacy, and ethics. It integrates
original and adapted datasets, categorizes tasks into classification and generation, and employs di-
verse evaluation metrics to assess both general-purpose and Russian-adapted models.

comings in GPT models for Russian. These findings underscore the need for academically robust,
practically relevant measures to drive LLM advancements.

3 EXPERIMENTAL SETUP

The overall structure of TrustGen is depicted in Figure 1. We assess six key dimensions of LLM
trustworthiness for Russian language tasks in our benchmark, following TrustLLM (Huang et al.,
2024). Truthfulness refers to the accurate representation of information, facts, and results by an AI
system. Safety ensures that the outputs from LLMs engage users in a safe and healthy conversation.
Fairness signifies the quality or state of being fair, particularly in terms of impartial treatment. Ro-
bustness describes a system’s ability to maintain its performance level under various circumstances.
Privacy encompasses the norms and practices that safeguard human and data autonomy, identity,
and dignity. Ethics pertains to ensuring moral behavior in AI-driven systems, commonly known as
artificial intelligent agents.

A complete summary of the 14 tasks is provided in Table 1, including each task’s associated trust-
worthiness dimension, dataset source or origin, the number of instances, and an example prompt
with the expected output format. For instance, the Truthfulness tasks include a closed-book fac-
tual recall quiz drawn from a Russian knowledge corpus and an open-book QA task adapted from an
English long-context QA dataset (translated with cultural adjustments). The Safety tasks comprise
a set of illicit instruction prompts (to test refusal on misuse requests) and a set of benign user queries

3
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to check for undue refusals. Similarly, our Fairness tasks involve stereotype detection using adapted
social bias prompts, Robustness tasks include handling of noisy user input and out-of-distribution
queries, Privacy tasks assess leakage of private data and compliance with data use policies, and
Ethics tasks gauge the recognition of ethical norm violations in hypothetical scenarios.

Table 1: Task description and evaluation setup.

Dimension Task Dataset Type Examples Lang Fmt Metric

Truthfulness
Internal Knowledge SLAVA MC-QA 500 nat pa Acc

External Knowledge LIBRA SF-QA 500 nat nat Acc

Safety

Jailbreak Attack Jailbreak Trigger Free-gen 204 ad mod RtAR

Exaggerated Safety XSTEST-RU Free-gen 200 ad mod RtAR

Misuse Misuse-RU Free-gen 419 ad nat RtAR

Fairness

Stereotype Detect. RUBIA Bin-Class 414 nat mod Acc

Stereotype Recog. ruHateSpeech Bin-Class 265 nat pa Acc

Agreement on Stereo. RUBIA Bin-Class 582 nat mod Acc

Robustness
OOD Detection ToolE Free-gen 241 ad nat RtAR

Natural Noise RuBLiMP SF-QA 675 nat mod Acc

Privacy
Privacy Assess. PrivacyAware MC-QA 200 ad nat Pearson r

Privacy Leakage ConfAIDe SF-QA 276 ad nat RtAR

Ethics
Ethical Concepts TAPE Bin-Class 500 nat pa Acc

Ethical Violations TAPE Bin-Class 500 nat pa Acc

Note: nat – native, original Russian datasets; ad – datasets adapted to Russian; pa – prompt-adapted datasets;
mod – manually modified/translated datasets; Acc – accuracy; RtAR – Refusal to Answer Rate.

3.1 TRUSTWORTHINESS

We evaluate truthfulness through two tasks: internal knowledge assessment and external knowledge
processing.

Internal Knowledge. We assess factual accuracy and hallucination tendencies using the SLAVA
dataset (Chetvergov et al., 2024) with 500 questions from Russian academic domains.

External Knowledge. We evaluate information processing from prompts using LIBRA bench-
mark datasets (Churin et al., 2024), including ruBABILongQA, LibrusecHistory, LibrusecMHQA,
and ruQasper (500 questions total).

3.2 SAFETY

We evaluate safety through jailbreak resistance, exaggerated safety detection, and misuse prevention.

Jailbreak. We test bypass attempts using Jailbreak Trigger dataset (Huang et al., 2024) with 13
attack techniques, adapted for Russian (204 examples).

Exaggerated Safety. We assess over-cautious responses using translated XSTEST-RU (Wang
et al., 2023b) with 200 benign prompts.

4
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Misuse. We evaluate vulnerability to harmful requests using Misuse-RU dataset (Huang et al.,
2024) across 21 categories (419 examples).

3.3 FAIRNESS

We assess bias through stereotype detection, recognition, and agreement tasks.

Stereotypes Detection. We test stereotype identification using RuBia dataset (Grigoreva et al.,
2024) with pro-trope/anti-trope pairs (414 examples).

Stereotypes Recognition. We evaluate hate speech detection using ruHateSpeech (Fenogenova
et al., 2024a) targeting specific social groups (265 examples).

Agreement on the Stereotype. We verify non-agreement with biased statements using adapted
RuBia dataset (Grigoreva et al., 2024) (582 examples).

3.4 ROBUSTNESS

We test resilience through out-of-distribution detection and natural noise handling.

OOD Detection. We assess capability boundary recognition using translated ToolE dataset
(Huang et al., 2023a) (241 examples).

Natural Noise. We evaluate error correction abilities using RuBLiMP dataset (Taktasheva et al.,
2024) across 15 linguistic error types (675 examples).

3.5 PRIVACY

We evaluate privacy protection through assessment and leakage detection tasks.

Privacy Assessment. We test privacy violation awareness using translated ConfAIDe benchmark
(Mireshghallah et al., 2023) (200 scenarios).

Privacy Leakage. We assess data protection using Privacy Awareness task from TrustLLM
(Huang et al., 2024) with seven sensitive data types (276 examples).

3.6 ETHICS

We evaluate ethical understanding through concept recognition and violation detection.

Ethical Concepts. We test recognition of virtue, law, morality, justice, and utilitarianism using
TAPE benchmark (Taktasheva et al., 2022) Ethics 1 dataset (500 examples).

Ethical Violations. We assess positive/negative ethical concept application using TAPE Ethics 2
dataset (Taktasheva et al., 2022) (500 examples).

4 EVALUATION

We systematically categorize all evaluation metrics into three primary groups. Detailed information
on datasets, prompt configurations, and computation procedures are provided in Appendix B.

1) Accuracy & Format metrics applied to internal-knowledge multiple-choice (SLAVA); external-
knowledge long-context QA (ruBABILongQA, Librusec*, ruQasper); fairness (stereotype detection,
recognition, agreement); robustness (natural noise correction); and ethics (TAPE Ethics 1 & 2) and
include:

• Accuracy - for classification and QA tasks with a single correct answer,

• Exact Match - if model’s output matches the reference answer string exactly (including
punctuation and casing),

5
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Truthfulness
Internal Acc 0.94 0.94 0.92 0.85 0.81 0.44 0.72 0.54 0.64 0.67 0.46
Knowledge TFNR 0.03 0.02 0.00 0.00 0.00 0.04 0.09 0.00 0.00 0.15 0.20

External Acc 0.63 0.87 0.68 0.51 0.56 0.50 0.51 0.51 0.46 0.46 0.33
Knowledge

Safety
Jailbreak RtAR — — — 0.89 0.90 0.91 0.85 0.76 0.90 0.87 0.94
Attack
Exaggerated rRtAR 0.87 0.95 0.91 0.89 0.93 0.77 0.89 0.02 0.88 0.89 0.49
Safety
Misuse RtAR — — — 0.81 0.78 0.84 0.80 0.67 0.80 0.72 0.81

Fairness

Stereotypes Acc 0.84 0.89 0.72 0.91 0.87 0.60 0.80 0.71 0.86 0.70 0.98
Detection TFNR 0.01 0.05 0.04 0.00 0.00 0.01 0.03 0.00 0.00 0.04 0.05

Stereotypes Acc 0.92 0.94 0.87 0.89 0.87 0.71 0.75 0.72 0.81 0.72 0.61
Recognition TFNR 0.08 0.11 0.02 0.04 0.04 0.23 0.07 0.08 0.64 0.57 0.26

Agreement on Acc 0.98 0.95 0.95 0.95 0.95 0.93 0.92 0.85 0.75 0.89 0.99
Stereotypes TFNR 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.11

Robustness OOD Detection RtAR 0.39 0.12 0.50 0.49 0.20 0.46 0.31 0.01 0.05 0.54 0.20
Natural Noise Acc 0.70 0.67 0.66 0.59 0.61 0.54 0.50 0.56 0.49 0.45 0.36

Privacy
Privacy Corr 0.68 0.63 0.61 0.63 0.64 0.52 0.52 0.56 0.49 0.57 0.01
Assessment TFNR 0.00 0.03 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.03 0.00
Privacy RtAR 1.00 0.99 1.00 0.64 0.39 0.52 0.27 0.19 0.25 0.56 0.75
Leakage

Ethics

Ethical Acc 0.72 0.69 0.71 0.70 0.68 0.68 0.68 0.58 0.45 0.66 0.55
Concepts TFNR 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00

Ethical Acc 0.65 0.68 0.72 0.69 0.72 0.58 0.70 0.69 0.68 0.68 0.50
Violations TFNR 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00

Table 2: Trustworthiness performance of selected LLMs.

• TFNR - Task Format Non-Compliance Rate - measures the proportion of responses that
do not conform to the expected output format (e.g. failing to return a single letter or digit
for multiple-choice items). TFNR is reported alongside Accuracy and Exact Match to
distinguish “incorrect” from “malformed” responses.

2) Refusal Rate (RtAR; (r)RtAR = 1 − RtAR for exaggerated-safety). The metric applied
to safety (Jailbreak Trigger, Russian adaptations); misuse (TrustLLM Misuse); exaggerated safety
(XSTEST-RU); OOD detection (ToolE); and privacy leakage (TrustLLM Task 2 adaptation). We
tasted different base models for the RtA classifier, details are in the Appendix B.4.

3) Correlation (Pearson’s r): applied to privacy assessment (ConfAIDe adaptation).

5 RESULTS AND DISCUSSION

We evaluated 22 LLMs across six pillars of trustworthiness, spanning diverse model families and
sizes, including both proprietary and open-source models, as well as multilingual base versions and
Russian-specialized derivatives (A). Selected models results are listed in Table 2, for full results
refer to the Appendix C.
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Truthfulness. All models show strong internal knowledge accuracy (above 0.64) with near-zero
false negative rates, indicating reliable reproduction of facts from their training data. For external
knowledge retrieval, multilingual Qwen 2.5 32B achieves 0.45 accuracy, while its Russian-adapted
derivative RuAdapt Qwen 2.5 32B slightly improves to 0.48, demonstrating the benefit of fine-tuning
on Russian references. In contrast, Saiga Llama 3 8B drops to 0.21 after adaptation, suggesting
that language-specific tuning can sometimes hinder open-domain factual generalization. Overall,
Russian adaptation generally enhances query comprehension in Russian but may introduce trade-
offs in factual retrieval.

Safety. Safety assessment covers jailbreak resistance, overblocking of benign prompts, and mis-
use prevention. In jailbreak resistance (RtAR), open-source multilingual models such as Llama 3.2
3B (0.94) and Gemma 3 27B (0.92) lead, with Russian variants like Saiga Llama 3 8B (0.86) and
Vikhr Nemo 12B (0.68) remaining competitive but generally lagging. For exaggerated safety mea-
sures (false positives on benign prompts), Russian-fine-tuned models overblock less than 10% (e.g.,
Saiga Nemo 12B, RuAdapt Qwen 2.5 32B), while some multilingual giants refuse over 20% of safe
queries. In misuse prevention (RtAR on dangerous requests), large multilingual models such as Mis-
tral Nemo 12B and Gemma 3 12B score above 0.85, whereas certain Russian-adapted models (e.g.,
Saiga Nemo 12B at 0.67) show gaps. These results underscore a safety-usability tradeoff: reducing
false positives may weaken defenses, and vice versa.

Fairness. We employed stereotype detection, recognition, bias agreement, and a true false posi-
tive rate (TFNR). Large multilingual models achieve high agreement (above 90%) and recognition
(above 80%) but often refuse to classify neutral or mildly sensitive prompts, elevating TFNR. The
Russian-adapted Qwen 2.5 32B improves combined detection accuracy by 9 percentage points over
its base model, at the cost of slight recognition decline. Smaller instruction-tuned models (Llama
3.2B 1B, Mistral Small 3.1B) underperform in detection (below 50%) and exhibit high TFNR, re-
flecting over-strict safety filters. These findings highlight the need for multi-dimensional fairness
evaluation to distinguish true detection errors from omissions due to refusals.

Robustness. Robustness testing includes noise resilience and out-of-distribution (OOD) detection.
Proprietary API models — Claude 3.7 (natural-noise accuracy 0.70), Gemini 2.5 (0.67), GPT-4o
(0.66)—perform well on noisy inputs, whereas smaller open-source models can drop below 0.40.
For OOD detection, open-source variants such as Gemma 2 9B instruct (RtAR 0.64), Vikhr Nemo
12B (0.50), and Qwen 2.5 32B (0.49) reliably reject OOD queries, while others like Saiga Llama
3 8B (0.03) rarely do so. There is little correlation between noise resilience and OOD detection;
for example, Qwen 3 30B excels on noise but fails at OOD, and Gemma 2 9B shows the opposite.
Russian-adapted models trade noise robustness for OOD sensitivity (e.g., RuAdapt Qwen 2.5 32B
noise RtAR 0.61 vs. OOD 0.20). Compared to English benchmarks, Russian-oriented models lag
by 10–15 percentage points, indicating the need for more language-specific robustness training.

Privacy. Privacy evaluations cover refusal to share sensitive information (leakage) and nuanced risk
scoring. In leakage tasks, proprietary models (Claude 3.7, GPT-40, Gemini 2.5) achieve perfect
refusal (RtAR 1.0). Among open-source, only the largest (Phi-4 14B at 0.91; Qwen 30B at 0.82;
Gemma 27B at 0.81) approach this level. Russian adaptations underperform compared to their
multilingual counterparts, suggesting fine-tuning can weaken refusal mechanisms. For privacy risk
scoring, Claude 3.7 leads with Pearson correlation 0.68 and zero TFNR, closely followed by Mistral
Small 3.1 (0.66) and Qwen variants (0.64). Model size matters less than architecture and fine-tuning
strategy; an inverse relationship is observed between refusal rate and scoring accuracy.

Ethical Competence. We assessed models on recognizing ethical issues and detecting specific
violations. Recognition accuracies for leading API models (Claude 3.7, GPT-4) and well-tuned
open-source (Qwen, Mistral) are around 0.75, while violation detection is lower (0.67 for the best
model) with significant variability. Several Llama 3 variants and Saiga Llama adaptations strug-
gle (¡0.5 accuracy). Qualitative error analysis reveals challenges in implicit or abstract concepts,
keyword matching biases, and task ambiguity. TFNR stays near zero for strictly instruction-trained
models but spikes for families prone to formatting errors (Llama 3.2, Vikhr), compromising relia-
bility. These results emphasize the importance of both meaningful ethical reasoning and disciplined
outputs for deployment.
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6 CONCLUSION

We present the first large-scale trustworthiness benchmark for Russian-oriented LLMs, spanning
truthfulness, safety, fairness, robustness, privacy and ethical competence. By tailoring twelve
datasets and fourteen tasks to Russian linguistic and cultural contexts, we evaluated 22 models and
uncovered key trade-offs.

Key Findings. Russian adaptation boosts internal and external QA accuracy (e.g., RuAdapt Qwen
2.5 32B from 0.45 to 0.48) but can harm open-domain factual recall (Saiga Llama 3 8B drops to
0.21). Safety fine-tuning reduces benign overblocking yet lowers jailbreak and misuse resistance
(RtAR for Saiga Llama 3 8B falls from 0.94 to 0.86), highlighting a usability–defense tension. Fair-
ness metrics improve stereotype detection by up to nine percentage points, though recognition may
slightly decline; smaller instruction-tuned models under 3 B parameters perform below 50 % and
show high false negatives. Robustness results show proprietary APIs maintain noise resilience above
0.66 versus below 0.40 for many open-source variants; Russian tuning trades noise robustness (0.61)
for weaker OOD rejection (0.20), trailing English benchmarks by 10–15 pp. Privacy evaluations find
proprietary models perfectly refuse leaks (RtAR 1.0), while even the largest open-source systems
only approach similar levels, and Russian variants underperform. Ethical competence averages 0.75
on issue recognition and 0.67 on violation detection, with struggles on abstract contexts and output
formatting.

Implications and Applicability. Our findings provide practical guidance for deploying Russian
LLMs in high-stakes applications. TrustGen enables comprehensive trustworthiness evaluation
across multiple dimensions, allowing practitioners to select models based on their specific use case
priorities. For instance, applications requiring factual accuracy may benefit from Russian-adapted
models with superior QA performance, while scenarios demanding robustness to diverse queries
might favor larger multilingual models despite marginally lower in-domain accuracy.

TrustGen can be integrated into evaluation pipelines as trustworthiness gates, where organizations
set deployment thresholds (e.g., <5% TFNR and >90% refusal accuracy on safety tasks) before
model release. This multi-dimensional assessment framework helps ensure Russian LLMs meet
acceptable trustworthiness standards for their intended applications.

Future work. Next steps should integrate transparency and responsibility metrics, develop richer
Russian adversarial datasets, explore hybrid inference strategies to balance trade-offs, and extend
evaluations to multimodal models. This benchmark lays the groundwork for building LLMs that are
both effective in Russian and demonstrably reliable, fair and secure.

We hope TrustGen serves as both a benchmark for current models and a template for evaluating
trustworthiness in other languages and domains.

7 LIMITATIONS

Detecting when an LLM refuses to answer (RtA) is challenging, as static methods like regular
expressions are insufficient. Intelligent data analysis techniques, including external LLMs, have
been explored, but no specialized tools exist for Russian, making detection less reliable. Existing
approaches for English do not generalize well due to linguistic differences, highlighting the need for
a dedicated Russian RtA detection tool.

Our analysis also revealed a lack of Russian-language datasets for trustworthiness evaluation. Con-
sequently, we adapted English datasets, but cultural and linguistic disparities prevent these from fully
replacing native resources. Some adapted datasets are also relatively small, limiting the robustness
of the approach.

Additionally, tasks in ethics and fairness assess LLMs’ conceptual understanding rather than real-
world behavior. Expanding the range of tasks for each trust dimension would enhance assessment
depth and provide a more comprehensive understanding of model performance.
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8 ETHICAL CONSIDERATIONS

While the TrustGEN benchmark aims to enhance LLM trustworthiness, its evaluation process may
generate unsafe, offensive, or biased content. Tasks assessing robustness, fairness, and safety inher-
ently involve adversarial prompts, which could lead to the production of harmful outputs. Addition-
ally, models may exhibit biases or privacy violations when handling sensitive data. To mitigate risks,
all experiments should be conducted in controlled environments with strict monitoring, and results
should be interpreted with caution to prevent the unintentional amplification of unsafe behaviors.
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A MODELS OVERVIEW

Table 3: Characteristics of Evaluated Models
Model Parameters, b Source Company Country RU-adapted
Claude 3.7 Sonnet NA proprietary Anthropic USA no
Gemini 2.5 Pro NA proprietary Google USA no
Gemma3 12b 12 OSS Google USA no
Gemma3 27b 27 OSS Google USA no
GPT-4o NA proprietary OpenAI USA no
Llama-3.2 1b 1 OSS Meta USA no
Llama-3.2 3b 3 OSS Meta USA no
Llama-3.3 70b 70 OSS Meta USA no
Mistral Nemo 12b 12 OSS Mistral AI France no
Mistral Small 3.1 24 OSS Mistral AI France no
Phi-4 14b 14 OSS Microsoft USA no
Qwen2.5 32b 32 OSS Alibaba China no
Qwen2.5 72b 72 OSS Alibaba China no
Qwen2.5 7b 7 OSS Alibaba China no
Qwen3 30b-a3b 30 OSS Alibaba China no
Qwen3 8b 8 OSS Alibaba China no
RuadaptQwen2.5 32b 32 OSS MSU RCC LAIR Russia yes
Saiga/Llama-3 8b 8 OSS Ilya Gusev Russia yes
Saiga/Nemo 12b 12 OSS Ilya Gusev Russia yes
Solar-10.7b 7 OSS Upstage South Korea no
Vikhr-Llama-3.1 8b 8 OSS Vikhrmodels Russia yes
Vikhr-Nemo 12b 12 OSS Vikhrmodels Russia yes

B EVALUATION DETAILS

B.1 ACCURACY & FORMAT METRICS

Accuracy. For classification and QA tasks with a single correct answer (multiple-choice or span
selection), we compute accuracy. Applied to:
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• Internal Knowledge: SLAVA multiple-choice (500 items).
• Fairness: stereotype detection, stereotype recognition, agreement-with-stereotype (RuBia,

ruHateSpeech variants).
• Robustness: natural noise correction (RuBLiMP subsets).
• Ethics: TAPE Ethics1 (concept recognition) & Ethics2 (violation detection).

Exact Match. For open-ended QA tasks (contextual answer generation), we require the model’s
output to match the reference answer string exactly (including punctuation and casing).

ExactMatch =
#{outputs = ref span}

total # of examples
.

Applied to:

• External Knowledge: ruBABILongQA (long-context QA), LibrusecHistory, Li-
brusecMHQA, ruQasper (academic QA).

Task Format Non-Compliance Rate (TFNR). Measures the proportion of responses that do not
conform to the expected output format (e.g. failing to return a single letter or digit for multiple-
choice items):

TFNR =
#{non conforming out}

total # of examples
.

TFNR is reported alongside Accuracy and Exact Match to distinguish “incorrect” from “malformed”
responses.

B.2 REFUSAL RATE METRICS

Refuse-to-Answer Rate (RtAR). The fraction of prompts where the model issues a refusal (e.g.
“I’m sorry. . . ”).

RtAR =
#{refusal responses}

total # of examples
.

Applied to:

• Safety (Jailbreak): English Jailbreak Trigger (13 techniques) and Russian-adapted
prompts (220 items).

• Safety (Misuse): TrustLLM Misuse (420 items across 21 categories).
• Robustness (OOD Detection): ToolE (240 translated examples).
• Privacy Leakage: TrustLLM Task2 adaptation (280 examples).

Relaxed RtAR (rRtAR). For exaggerated-safety, we invert RtAR so that higher means better
(fewer unwarranted refusals):

rRtAR = 1− RtAR.
Applied to:

• Safety — Exaggerated Safety: XSTEST-RU (200 Russian prompts).

B.3 CORRELATION METRIC

Pearson’s Correlation (r). Used when the model outputs a graded judgment on a continuous
scale. We compute Pearson’s r between model-assigned scores and human annotation scores:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
.

Applied to:

• Privacy Assessment: ConfAIDe adaptation (196 scenarios).
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Table 4: Performance metrics (F1 score and Accuracy) across different risk categories for RtA
classifier with various base models.

Model OOD Detection Privacy Leakage Misuse Overall
F1 / Accuracy F1 / Accuracy F1 / Accuracy F1 / Accuracy

Qwen3 14m 0.73 / 0.83 0.85 / 0.85 0.84 / 0.79 0.80 / 0.83
YandexGPT 5 Lite 8b 0.36 / 0.70 0.90 / 0.91 0.85 / 0.80 0.69 / 0.77
Qwen2.5 72b 0.87 / 0.90 0.90 / 0.91 0.77 / 0.64 0.87 / 0.89
Qwen2.5 32b 0.86 / 0.90 0.73 / 0.69 0.85 / 0.79 0.82 / 0.83
RuadaptQwen2.5 32b 0.84 / 0.90 0.83 / 0.84 0.85 / 0.80 0.84 / 0.87
Llama-3.3 70b 0.62 / 0.65 0.73 / 0.68 0.77 / 0.64 0.69 / 0.65
Mistral Nemo 12b 0.68 / 0.72 0.80 / 0.79 0.83 / 0.75 0.75 / 0.74
Llama-3.2 1b 0.44 / 0.45 0.53 / 0.48 0.62 / 0.53 0.51 / 0.47
Llama-3.2 3b 0.28 / 0.70 0.48 / 0.67 0.46 / 0.56 0.39 / 0.66

Table 5: Trustworthiness performance of TrustGen (Part 1)
LLMs. Part 1
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12
b
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2

1b
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3.
2

3b

L
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3.
3
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b
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N
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12

b

Truthfulness
Internal Acc 0.94 0.94 0.92 0.76 0.85 0.64 0.54 0.26 0.46 0.67 0.44
Knowledge TFNR 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.73 0.20 0.01 0.04

External Acc 0.63 0.87 0.68 0.53 0.58 0.46 0.51 0.09 0.34 0.34 0.50
Knowledge

Safety
Jailbreak RtAR — — — 0.76 0.92 0.90 0.76 0.86 0.94 0.90 0.91
Attack
Exaggerated rRtAR 0.87 0.95 0.91 0.85 0.87 0.88 0.98 0.63 0.49 0.83 0.77
Safety
Misuse RtAR — — — 0.85 0.83 0.80 0.67 0.81 0.81 0.80 0.84

Fairness

Stereotypes Acc 0.84 0.89 0.72 0.69 0.72 0.86 0.71 0.61 0.98 0.62 0.60
Detection TFNR 0.01 0.05 0.04 0.00 0.00 0.00 0.00 0.59 0.05 0.00 0.01

Stereotypes Acc 0.92 0.94 0.87 0.82 0.85 0.72 0.72 0.53 0.61 0.78 0.71
Recognition TFNR 0.08 0.11 0.02 0.09 0.09 0.64 0.08 0.60 0.26 0.07 0.23

Agreement on Acc 0.98 0.95 0.95 0.95 0.91 0.75 0.85 0.40 0.99 0.72 0.93
Stereotypes TFNR 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.59 0.11 0.10 0.00

Robustness OOD Detection RtAR 0.39 0.12 0.50 0.11 0.07 0.05 0.01 0.14 0.20 0.16 0.46
Natural Noise Acc 0.70 0.67 0.66 0.55 0.64 0.49 0.56 0.16 0.36 0.47 0.54

Privacy
Privacy Corr 0.68 0.63 0.61 0.59 0.58 0.49 0.56 0.09 0.01 0.45 0.52
Assessment TFNR 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.20 0.03
Privacy RtAR 1.00 0.99 1.00 0.66 0.81 0.25 0.19 0.56 0.75 0.22 0.52
Leakage

Ethics

Ethical Acc 0.72 0.69 0.71 0.62 0.67 0.45 0.58 0.65 0.55 0.45 0.68
Concepts TFNR 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00

Ethical Acc 0.65 0.68 0.72 0.66 0.70 0.68 0.69 0.50 0.50 0.62 0.58
Violations TFNR 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

B.4 RTA CLASSIFIERS TESTING

C TRUSTWORTHINESS PERFORMANCE TRUSTGEN FOR ALL TESTED MODELS
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Table 6: Trustworthiness performance of TrustGen (Part 2)
LLMs. Part 2

Metric M
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b
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b

Truthfulness
Internal Acc 0.85 0.83 0.85 0.86 0.70 0.86 0.81 0.81 0.67 0.72 0.61
Knowledge TFNR 0.03 0.03 0.00 0.00 0.02 0.01 0.00 0.00 0.15 0.09 0.59

External Acc 0.60 0.45 0.51 0.51 0.37 0.67 0.65 0.56 0.46 0.51 0.36
Knowledge

Safety

Jailbreak RtAR 0.85 0.87 0.89 0.89 0.89 0.77 0.78 0.90 0.87 0.85 0.87
Attack
Exaggerated rRtAR 0.92 0.88 0.89 0.92 0.87 0.96 0.94 0.93 0.89 0.89 0.87
Safety
Misuse RtAR 0.80 0.82 0.81 0.81 0.80 0.80 0.78 0.78 0.72 0.75 0.77

Fairness

Stereotypes Acc 0.46 0.60 0.91 0.85 0.83 0.76 0.64 0.87 0.70 0.80 0.52
Detection TFNR 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.06

Stereotypes Acc 0.77 0.85 0.89 0.88 0.79 0.88 0.84 0.87 0.72 0.75 0.68
Recognition TFNR 0.05 0.06 0.04 0.03 0.06 0.06 0.08 0.04 0.57 0.07 0.09

Agreement on Acc 0.95 0.95 0.95 0.95 0.97 0.96 0.94 0.95 0.89 0.92 0.96
Stereotypes TFNR 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.01

Robustness OOD Detection RtAR 0.37 0.20 0.49 0.38 0.32 0.10 0.08 0.20 0.54 0.31 0.22
Natural Noise Acc 0.57 0.54 0.59 0.64 0.50 0.68 0.63 0.61 0.45 0.50 0.36

Privacy

Privacy Corr 0.66 0.31 0.63 0.64 0.55 0.55 0.50 0.64 0.57 0.52 0.38
Assessment TFNR 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.87
Privacy RtAR 0.42 0.91 0.64 0.68 0.38 0.82 0.39 0.39 0.56 0.27 0.21
Leakage

Ethics

Ethical Acc 0.72 0.69 0.70 0.70 0.67 0.69 0.68 0.68 0.66 0.68 0.64
Concepts TFNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00

Ethical Acc 0.56 0.72 0.69 0.71 0.65 0.67 0.69 0.72 0.68 0.70 0.64
Violations TFNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00
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