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Abstract

Accurate density estimation is crucial for understanding complex high-dimensional
data, but it becomes challenging when the data lies on or near low-dimensional
manifolds. Random projections provide a natural way to reduce dimensionality
while approximately preserving geometric structure, enabling effective density
estimation in these settings. We introduce Random Projection Flows (RPFs), a
principled framework for injective normalizing flows that leverages tools from ran-
dom matrix theory and the geometry of random projections. RPFs employ random
semi-orthogonal matrices, drawn from Haar-distributed orthogonal ensembles via
QR decomposition of Gaussian matrices, to project data into lower-dimensional
latent spaces for the base distribution. Unlike principal component analysis flows
or learned injective maps, RPFs are plug-and-play, efficient, and yield closed-form
expressions for the Riemannian volume correction term. We demonstrate that
RPFs are both theoretically grounded and practically effective, providing a strong
baseline for generative modeling and a bridge between random projection theory
and normalizing flows.

1 Introduction

Normalizing flows [1, [2] are a class of generative models that provide exact likelihood evaluation

and flexible density estimation by transforming a simple base distribution (typically Gaussian) into a

complex data distribution via a sequence of invertible transformations. Formally, given a data sample

x € RP and an invertible transformation f, with parameters 6, the change-of-variables formula gives
the log-likelihood:

det M 1)

ox

where pz is the density of the base distribution and the second term is the log determinant of the
Jacobian.

log pg(x) = log pz(fo(x)) + log

Although fully invertible flows can be made arbitrarily flexible [3]], high-dimensional data often
motivate the use of injective flows, which map data into a lower-dimensional latent space d < D. For
injective flows [4} S]], the log-likelihood must account for the dimensionality reduction:

log py(x) = log pz(fo(x)) — %bg |det (Jo(fo(x)) " Jo(fo(x)))] )

where Jy(x) is the D x d Jacobian of the inverse of the injective transformation. A central difficulty
is computing the Riemannian volume element, as it involves determinants and matrix inverses.

Although dimensionality reduction for density estimation via random projections is a classic idea,
the design of random projections explicitly tailored for density estimation back in the ambient space,
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with guarantees of correctness and scalability, has not been deeply explored. Our approach makes
this explicit: rather than learning a subspace, we fix a Haar-random projection [6]]. Thanks to the
semi-orthogonal nature of the projection matrix, the corresponding Jacobian volume term has a closed
form. An optional constant scaling factor motivated by Johnson—Lindenstrauss (JL) theory [[7] can be
applied to make projected norms unbiased in expectation, but this is not required for correctness.

Importantly, the JL-inspired scaling is best viewed as a convenient add-on: one could omit it (yielding
a strictly isometric map onto the random subspace), or even replace it with a learned scale as part of
the model. We show empirically that including the JL-motivated constant often improves likelihood
calibration and density estimates compared to PCA flows, but the random projection flow itself
remains valid regardless.

Our contributions are:

1. We propose Random Projection Flows (RPFs), a class of injective flows using Haar-
distributed semi-orthogonal projections with a simple, optional JL-motivated volume correc-
tion.

2. We analyze this correction: although not necessary, it provides a constant closed-form
Jacobian term and can improve calibration; it could also be dropped or learned.

3. We position RPFs conceptually between two-stage density estimators (fixed encoder +
separate density model) and fully end-to-end latent-variable models, enjoying benefits of
both while avoiding manifold overfitting common in VAEs.

4. We demonstrate that RPFs are composable: they can be used standalone (e.g. with a GMM)
or as building blocks inside arbitrary normalizing flow or SurVAE [{8] architectures while
preserving exact likelihoods.

5. Empirically, RPFs outperform PCA-based injective flows on UC Irvine (UCI) benchmarks
and preserve manifold geometry in synthetic experiments.

2 Random Projections and Random Matrix Theory

2.1 Haar Orthogonal Matrices from Gaussian QR

A standard method to generate a Haar-distributed orthogonal matrix Q € RP*P is to sample a
Gaussian matrix G with i.i.d. (0, 1) entries and apply QR decomposition G = @QR. The orthogonal
factor () is Haar distributed [6]]. Taking the first d rows of () yields a semi-orthogonal matrix
V e R>*P with VV'T = I,;. This induces a uniform distribution over d-dimensional subspaces (the
Grassmannian).

2.2 The Johnson-Lindenstrauss (JL) Lemma

The JL lemma [7]] provides a theoretical foundation for dimension reduction via random linear
projections. It states that a set of N points {z;} C R can be embedded into R? with d =
O(e~2log N) such that all pairwise distances are approximately preserved:

(1= Ollws = z5lls < [|Rwi — Rajlla < (1 +e)llai — 252, Vi, . ©)
Gaussian and Haar-distributed semi-orthogonal matrices satisfy this property with high probability.

These embeddings are approximate isometries, with a scaling factor that concentrates tightly; this
underpins our choice of volume correction in RPFs.

2.3 Singular Value Concentration

The singular values of random rectangular Gaussian matrices follow the Marchenko—Pastur law
[9], implying concentration of || Rz||3 around its expectation. This explains both the JL distance-
preservation guarantees and why the Jacobian volume term in RPFs reduces to a simple constant.



3 Random Projection Flows

We introduce Random Projection Flows (RPF), an efficient class of injective flows that leverage
random linear projections to compress high-dimensional data into a lower-dimensional latent space,
followed by a tractable latent density model such as a Gaussian mixture model (GMM).

3.1 Random Linear Projection and Volume Element

Let x € RP and V € R¥P be Haar semi-orthogonal with VV' T = I;. We define a scaled

projection:
D
We=y[oV, a=wx @)

This JL-inspired scaling keeps norms approximately unbiased. The Jacobian is J = W and the
Riemannian metric is

D
J'I=WTw = EVTV. 3)

VTV projects onto a d-dimensional subspace with d eigenvalues 1 and D — d zeros. Hence

d d/2
det(JTJ):(é?) , det(JTJ):<§) , (6)

yielding a constant log-volume correction:

d D
log \/det(JTJ) = ilogg. @)

This constant appears with opposite signs when encoding versus decoding, reflecting the symmetry
of the change-of-variables formula. One could drop it (making the map strictly isometric) or even
learn the scale along with the shift, resulting in an injective analogue of the affine flow in RealNVP
[10] and Glow [[11]. We do not pursue the latter, leaving that for future work, but we do show that the
JL-derived constant can yield better results than the fully isometric model in certain scenarios (and
vice versa).

3.2 Latent Density Modeling and Positioning

In the latent space, we fit a tractable density such as a GMM:

K
pz(z) =Y TN (2 i, S).

k=1
Then, the data log-likelihood is

d D
log px (x) = logpz(Wx) + 3 log R 8)

RPFs thus sit conceptually between classic two-stage methods (PCA+GMM) and end-to-end latent-
variable models. Like the former, the projection is fixed; like the latter, the whole map is differentiable
with exact likelihood. RPFs avoid manifold overfitting [12]] and post-hoc density correction [[13]
often needed in variational autoencoders [14] and other maximum likelihood models with manifold
latent dimensionality.

Furthermore, because the projection has a closed-form volume element, RPF layers and their trainable
counterparts can be dropped into arbitrary normalizing flow or SurVAE [8]] architectures while
preserving exact likelihoods.

3.3 Properties
The key properties of RPFs are:

* Injectivity: W is injective almost surely.
* Constant volume term: additive constant, independent of x.



* JL guarantees: high-probability distance preservation; scaling matches expected norms.

* Haar invariance: rotationally unbiased.

Although having many benefits, RPFs do have a key disadvantage in being unable to scale to very
complex datasets, which we show in the CIFAR-10 experiment.

4 Related Works

Normalizing flows [} 2] provide invertible maps with tractable likelihoods. Injective extensions
[4.15] handle dimensionality reduction but incur expensive Riemannian volume terms. PCA flows
[L5] exploit semi-orthogonal projections learned from data. RPFs generalize these by using random
Haar projections: unbiased across subspaces and with closed-form volume correction.

Random projection theory underpins RPFs. The JL lemma [[7} 16, 17, [18]] shows Gaussian and sub-
Gaussian maps preserve distances. Haar matrices from Gaussian QR [[19] have well-characterized
spectra [20, [21]]. Concentration results [22] explain the near-isometry.

Structured orthogonal embeddings further motivate RPFs. Orthogonal Random Features [23]] reduce
kernel approximation variance using random orthogonal matrices. Felix et al. [24]] demonstrate the
“unreasonable effectiveness” of structured embeddings (e.g. Hadamard), achieving JL-like guarantees
at lower cost. These lines of work show random orthogonal maps are powerful primitives across ML;
RPFs leverage them for generative modeling with exact likelihoods.

5 Experiments

5.1 UCI Density Esimation

We evaluate RPFs on the UCI density estimation benchmarks introduced in [25], including POWER,
GAS, HEPMASS, and MINIBOONE. These datasets are widely used to assess the quality of density
estimators under moderate-dimensional structured data.

5.1.1 Setup

Following standard practice, we preprocess the datasets using the protocol of [25] and split them into
training, validation, and test sets.

We compare RPFs against flows constructed with PCA projections [[15], which serve as a strong
baseline for injective flow layers. Each method is combined with a Gaussian mixture model (GMM)
base density. For fair comparison, we train all models under identical optimization settings, including
the number of manifold dimensions and the number of Gaussian mixture components, and report test
log likelihoods. The results are shown in Table[T}

5.1.2 Results

Table [I] reports test log-likelihoods on the UCI benchmark datasets for three models: JL-scaled
Random Projection Flows (JL), isometric RPFs without the JL scaling factor (ISO), and PCA-based
injective flows.

Both RPF variants clearly outperform PCA across all datasets, often by several nats, despite using
data-independent random projections. This highlights their competitiveness as low-cost, data-agnostic
alternatives. The JL scaling offers a small, dataset-dependent benefit, but is not essential as ISO
performs similarly well. The key advantage is that even fixed random projections provide strong
density estimates without the need for learned projections as in PCA.

5.2 Projection Comparison

In addition to quantitative evaluation on synthetic 2D datasets, we investigated how RPFs and PCA
behave on higher-dimensional data. Specifically, we examined three benchmark 3D datasets from
scikit-learn [26]: the Swiss roll, the S-curve, and clustered blobs.



Table 1: Density estimation results (test log-likelihood) on UCI datasets. JL denotes RPFs with
Johnson—Lindenstrauss-inspired scaling, ISO denotes isometric RPFs (no scaling), and PCA denotes
PCA-based injective flows. Higher is better.

Model POWER GAS HEPMASS MINIBOONE
RPF (JL) —-1.724+0.14 —-1.57£0.37 —-20.08£0.14 —14.68+£0.30
RPF (ISO) —-199+£021 -1.40£0.04 —-19.97+0.20 -—-14.63+0.47

PCA Flow [13] -2.51+0.13 —2.324+0.04 —20.71+0.38 —20.66 +0.05

5.2.1 Setup

For each dataset, we first display the true distribution in 3D, with a color gradient assigned according
to one coordinate axis. This coloring allows us to track local structure after projection. We then
visualize the corresponding 2D embeddings produced by PCA and RPF. The results are shown in

Figure[T]
5.2.2 Results

Swiss roll PCA flattens the manifold into a nearly linear band, losing the roll’s spiral geometry. In
contrast, the RPF retains much of the nonlinear curvature, producing a projection that still resembles
the original manifold.

S-curve PCA reduces the manifold to a simple arc, obscuring the double-banded shape. RPF
better preserves the two-layered structure, suggesting a stronger correspondence with the underlying
geometry.

Blobs Both methods maintain separability between clusters, but PCA aligns the blobs along its
principal axes, while RPF introduces greater variability in density and orientation, highlighting
differences in local structure.

True density

Figure 1: Projections of 3D benchmark datasets. Left: true 3D density with color gradients. Middle:
PCA projection. Right: RPF projection.

Implications for density estimation. These projections illustrate why RPFs outperform PCA in
UCI data. PCA collapses nonlinear manifold features by aligning with global variance, as seen in
the Swiss roll and S-curve. Random orthogonal projections instead preserve local geometry more



uniformly in expectation, leading to embeddings that better respect intrinsic structure — crucial for
accurate likelihood estimation.

5.3 MNIST and CIFAR-10 Density Estimation

5.3.1 Setup

We perform unconditional density estimation on the MNIST and CIFAR-10 datasets, following the
preprocessing methodology of [25]. We report log-likelihoods in logit space and compare to the
results presented in [25].

We train a Random Projection Flow (RPF) with JL scaling, using a Gaussian Restricted Boltzmann
Machine (GRBM [27]) prior trained via persistent contrastive divergence (PCD [28]]). Log-likelihoods
are estimated using annealed importance sampling (AIS [29]) to approximate the partition function.

5.3.2 Results

As shown in Table2] the RPF model substantially outperforms MADE [30] on MNIST. On CIFAR-10,
however, RPF performs worse than MAF [25] and the Gaussian model. This may reflect the difficulty
of modeling projected densities with a GRBM for complex, high-dimensional natural images. While
MADE also underperforms the Gaussian model, it suggests that RPFs combined with GRBMs are
effective for simpler datasets like MNIST but face limitations on CIFAR-10, likely due to the need
for more expressive latent models or deeper architectures.

Table 2: Unconditional density estimation results (test log-likelihood) on MNIST and CIFAR-10.
RPF denotes RPFs with JL scaling. Higher is better; best-performing model is highlighted in bold.

Model MNIST CIFAR-10
RPF (ours) —149.7 —4885
Gaussian —1366.9 2367
MADE MoG —1038.5 —397
MAF (10) —-1313.1 3049

6 Conclusion

We introduced Random Projection Flows (RPFs), a simple and efficient class of injective normalizing
flows that leverage Haar-distributed semi-orthogonal projections to compress high-dimensional data
into a lower-dimensional latent space. By exploiting the constant volume element of these projections,
RPFs provide tractable likelihood evaluation without per-sample determinant computations.

Empirically, RPFs achieve competitive density estimation performance on UCI benchmarks and
synthetic manifolds, often outperforming PCA-based injective flows despite being entirely data-
independent. Our experiments highlight that the geometry preserved by random projections can
improve density estimation, though generation tasks—particularly on high-dimensional natural
images like CIFAR-10—remain challenging due to the limitations of simple latent models.

Overall, RPFs offer a low-cost, composable, and theoretically grounded alternative for injective
flow modeling, providing a promising building block for future latent-variable and hybrid generative
architectures. Future work could explore more expressive latent densities, deeper projections, or
hybrid methods to improve generation performance on complex datasets.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We derive theory and apply the proposed method with success.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The approach does not greatly improve over other density estimators in every
case, which we explain.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.



* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See paper for complete derivation.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, see paper for complete derivation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The datasets used are publicly available, and the methods described are straight
forward to implement.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: See Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Paper does not violate any of the Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: No particular societal impact besides those standard to generative models.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No models are released, and the datasets used are publicly available.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Benchmarks and datasets are properly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing was done.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects nor crowdsourcing involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs used for core research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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