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ABSTRACT

Informative representations enhance model performance and generalisability in
downstream tasks. However, learning self-supervised representations for spatially
characterised time series, like traffic interactions, poses challenges as it requires
maintaining fine-grained similarity relations in the latent space. In this study, we
incorporate two structure-preserving regularisers for the contrastive learning of
spatial time series: one regulariser preserves the topology of similarities between
instances, and the other preserves the graph geometry of similarities across spatial
and temporal dimensions. To balance contrastive learning and structure preserva-
tion, we propose a dynamic mechanism that adaptively weighs the trade-off and
stabilises training. We conduct experiments on multivariate time series classifica-
tion, as well as macroscopic and microscopic traffic prediction. For all three tasks,
our approach preserves the structures of similarity relations more effectively and
improves state-of-the-art task performances. This approach can be applied to an
arbitrary encoder and is particularly beneficial for time series with spatial or geo-
graphical features. Our code is attached as supplementary material, which will be
made openly available with all resulting data after review.

1 INTRODUCTION

Self-supervised representation learning (SSRL) theoretically can learn latent embeddings that fa-
cilitate downstream tasks (Saunshi et al., 2019; HaoChen et al., 2021; Ge et al., 2024). Also, it is
practically shown to improve model generalisability (Tendle & Hasan, 2021; Zhou et al., 2022). The
latter is particularly valuable for real-world applications, where both measurements and labels are
often uncertain and unreliable. In fact, SSRL has been widely applied across fields such as com-
puter vision, natural language processing, and recommendation systems (there are many literature
reviews, to name a few, Schiappa et al., 2023; Liu et al., 2023; Yu et al., 2024).

Contrastive learning has become the mainstay technique in SSRL of time series. Lafabregue et al.
(2022) conducted an extensive experimental comparison over 300 combinations of network archi-
tectures and loss functions to evaluate the performance of time series representation learning for
clustering. One of their key findings is that the reconstruction loss used by traditional autoencoders
does not sufficiently fit temporal patterns. Instead, contrastive learning has emerged as a more effec-
tive approach, which embeds similar samples closer together while dissimilar samples farther apart
in the latent space (Wu et al., 2023; Yang et al., 2024).

Unique challenges arise when learning contrastive representations for spatial time series. First, data
with both temporal and spatial characteristics demand more fine-grained similarity comparisons,
which underpins contrastive learning. Financial time series may be considered similar even if some
variables show significant divergence, while movement traces with very different spatial features
can be anything but similar. Second, effective representation of spatial time series needs to capture
spatio-temporal patterns at the certain scale required by a practical task. For example, traffic interac-
tions involve two different spatial scales: at the macroscopic scale, traffic flow measures collective
road usage evolving over the road network; at the microscopic scale, trajectories describe the motion
dynamics of individual road users (e.g., car drivers, cyclists, pedestrians) in local road space.

To address the challenges, we incorporate two regularisers at different scales to preserve the orig-
inal similarity structure in the latent space for time series contrastive learning. One is a topology-
preserving regulariser for the global scale, and the other is a graph-geometry-preserving regulariser
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for the local scale. This incorporation can be simplified as a weighted loss L = ηCLT · ℓCLT + ηSP ·
ℓSP + rη , where we propose a mechanism to dynamically balance the weights ηCLT and ηSP during
training. Within this mechanism, the adaptive trade-off between contrastive learning and structure
preservation is based on the uncertainties of their corresponding terms ℓCLT and ℓSP; meanwhile, the
term rη adds regularisation against overfitting of the dynamic weights.

The proposed approach is applicable to spatial time series in general, and we consider traffic interac-
tion as a specific case. To validate the approach, we conduct experiments on tasks of 1) multivariate
time series classification, where we benchmark against the current state-of-the-art (SOTA) models,
i.e., TS2Vec Yue et al. (2022) and Lee et al. (2024); and 2) traffic prediction, where we use Li et al.
(2024a) for macroscopic benchmark and Li et al. (2024b) for microscopic. In addition, the effi-
ciency of this approach is evaluated with various model architectures. Below we summarise the key
contributions of this study:

• We introduce an approach that incorporates structure-preserving regularisation in contrastive
learning of multivariate time series, to maintain finer-grained similarity relations in the latent
space of sample representations. We propose a dynamic weighing mechanism to adaptively
balance contrastive learning and structure preservation during training.

• Preserving similarity structure can enhance SOTA performance on various downstream tasks.
The relative improvement on spatial datasets in the UEA archive is 2.96% in average classifica-
tion accuracy; on macroscopic traffic prediction task is 0.72% in flow speed RMSE and 0.27%
in explained variance; on microscopic trajectory prediction task is 3.72% and 8.10% in missing
rates under radii of 0.5m and 1m, respectively.

• This approach can be applied to an arbitrary encoder for self-supervised representation learning.
Preserving the structure of similarity relations is particularly beneficial for time series data with
spatial or geographical characteristics, such as in robotics, meteorology, remote sensing, urban
planning, etc.

2 RELATED WORK

2.1 TIME SERIES CONTRASTIVE LEARNING

Contrastive learning for time series data is a relatively young niche and is rapidly developing. The
development has been dominantly focused on defining positive and negative samples. Early ap-
proaches construct positive and negative samples with subseries within time series (e.g., Franceschi
et al., 2019) and temporal neighbourhoods (e.g., Tonekaboni et al., 2021); and later methods cre-
ate augmentations by transforming original series (e.g., Eldele et al., 2021; 2023). More recently,
Yue et al. (2022) generates random masks to enable both instance-wise and time-wise contextual
representations at flexible hierarchical levels, which exceeds previous state-of-the-art performances
(SOTAs). Given that not all negatives may be useful (Cai et al., 2020; Jeon et al., 2021), Liu & Chen
(2024) makes hard negatives to boost performance, while Lee et al. (2024) utilises soft contrastive
learning to weigh sample pairs of varying similarities, both of which reach new SOTAs.

The preceding paragraph outlines a brief summary, and we refer the readers to Section 2 in Lee et al.
(2024) and Section 5.3 in Trirat et al. (2024) for a detailed overview of the methods proposed in the
past 6 years. These advances have led to increasingly sophisticated methods that mine the contextual
information embedded in time series by contrasting similarities. However, the structural details of
similarity relations between samples remain to be explored.

2.2 STRUCTURE-PRESERVING SSRL

Preserving the original structure of data when mapping into a latent space has been widely and
actively researched in manifold learning (for a literature review, Meilă & Zhang, 2024) and graph
representation learning (Ju et al., 2024; Khoshraftar & An, 2024). In manifold learning, which is also
known as nonlinear dimension reduction, the focus is on revealing the geometric shape of data point
clouds for visualisation, denoising, and interpretation. In graph representation learning, the focus is
on maintaining the connectivity of nodes in the graph while compressing the data space required for
large-scale graphs. Structure-preserving has not yet attracted much dedication to time series data.
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Ashraf et al. (2023) provides a literature review on time series data dimensionality reduction, where
none of the methods are specifically tailored for time series.

Zooming in within structure-preserving SSRL, there are two major branches respectively focusing
on topology and geometry. Topology-preserving SSRL aims to maintain global properties such
as clusters, loops, and voids in the latent space; representative models include Moor et al. (2020)
and Trofimov et al. (2023) using autoencoders, as well as Madhu & Chepuri (2023) and Chen et al.
(2024) with contrastive learning. The other branch is geometry-preserving and focuses more on local
shapes such as relative distances, angles, and areas. Geometry-preserving autoencoders include
Nazari et al. (2023) and Lim et al. (2024), while Li et al. (2022) and Koishekenov et al. (2023)
use contrastive learning. The aforementioned topology and geometry preserving autoencoders are
all developed for dimensionality reduction; whereas the combination of contrastive learning and
structure-preserving has been explored majorly with graphs.

2.3 TRAFFIC INTERACTION SSRL

In line with the conclusions in previous subsections, existing exploration in the context of traffic
interaction data and tasks also predominantly relies on autoencoders and graphs. For instance, using
a transformer-based multivariate time series autoencoder (Zerveas et al., 2021), Lu et al. (2022)
cluster traffic scenarios with trajectories of pairwise vehicles. Then a series of studies investigate
masking strategies with autoencoders for individual trajectories and road networks, including Cheng
et al. (2023); Chen et al. (2023); Lan et al. (2024).

Leveraging data augmentation, Mao et al. (2022) utilise graphs and contrastive learning to jointly
learn representations for vehicle trajectories and road networks. They design road segment positive
samples as neighbours in the graph, and trajectory positive samples by replacing a random part with
another path having the same origin and destination. Similarly, Zipfl et al. (2023) use a graph-based
contrastive learning approach to learn traffic scene similarity. They randomly modify the position
and velocity of individual traffic participants in a scene to construct positive samples, with negative
samples drawn uniformly from the rest of a training batch. Also using augmentation, Zheng et al.
(2024) focuses on capturing seasonal and holiday information for traffic prediction.

3 METHODS

This section begins by defining the problem of structure-preserving contrastive learning for spatial
time series. Following that, we explain the overall loss function to be optimised, where we propose
a dynamic weighing mechanism to balance contrastive learning and structure preservation during
training. Then we present the contrastive learning loss for time series, unifying both hard and soft
versions in a consistent format. Lastly, we introduce two structure-preserving regularisers, which
are respectively adapted to maintain the global and local structure of similarity relations.

3.1 PROBLEM DEFINITION

We define the problem for general spatial time series, with traffic interaction as a specific case.
Learning the representations of a set of samples {x1,x2, · · · ,xN} aims to obtain a nonlinear func-
tion fθ : x → z that encodes each x into z in a latent space. Let T denote the sequence length of a
time series and D the feature dimension at each timestamp t. The original space of x can have the
form RT×D, where spatial features are among the D dimensions; or RT×S×D, where S represents
spatially distributed objects (e.g., sensors or road users). The latent space of z can also be structured
in different forms, such as RP , RT×P , or RT×S×P , where P is the dimension of encoded features.

By contrastive learning, (dis)similar samples in the original space should remain close (far) in the
latent space. Meanwhile, by structure preservation, the distance/similarity relations between samples
should maintain certain features after mapping into the latent space. We use d(xi,xj) to denote the
distance between two samples i and j, and this also applies to their encoded representations zi and
zj . Various distance measures can be used to define d, such as cosine distance (COS), Euclidean
distance (EUC), and dynamic time warping (DTW). The smaller the distance between two samples,
the more similar they are. Considering the limitation of storage efficiency, similarity comparison is
performed in each mini-batch, where B samples are randomly selected.

3
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3.2 TRADE-OFF BETWEEN CONTRASTIVE LEARNING AND STRUCTURE PRESERVATION

We define the complete loss function for optimising fθ as shown in Equation (1). Referring to the
simplified loss in Section 1, i.e., L = ηCLT ·ℓCLT+ηSP ·ℓSP+rη , the contrastive learning loss for time
series (LCLT) and structure-preserving loss (LSP) are modified using the function x(1 − exp(−x))
and correspond to ℓCLT and ℓSP; ηCLT, ηSP, and rη depend on two deviation terms σCLT and σSP,
which dynamically change during training.

L =
1

2σ2
CLT

LCLT (1− exp(−LCLT)) +
1

2σ2
SP
LSP (1− exp(−LSP)) + log σCLTσSP (1)

The modification by x(1− exp(−x)) serves two purposes: it penalises negative values of LSP, and
stabilises training when either LCLT or LSP approaches its optimal value. While in computation
the value of LSP sometimes is below zero, the losses used as LCLT and LSP in this study all have
their theoretical optimal values of zero1. As LCLT decreases and approaches its optimum zero, the
modified term ℓCLT has a slower decreasing rate when LCLT < 1. More specifically, the derivative of
x(1− exp(−x)) is x′(1− exp(−x)(1−x)), where x′ denotes the derivative of x and the multiplier
in parentheses decreases from 1 to 0 while x decreases from 1 to 0. This thus stabilises the training
when LCLT approaches zero, and works the same for LSP.

Inspired by Kendall et al. (2018), we then weigh the two modified losses by considering their un-
certainties. The magnitudes of LCLT and LSP may vary with different datasets and hyperparameter
settings. This variation precludes fixed weights for contrastive learning and structure preservation.
We consider the loss values (denoted by ℓ) as deviations from their optimal values, and learn adap-
tive weights according to the deviations. Given the optimal value of 0, we assume a Gaussian
distribution of ℓ with standard deviation σ, i.e., p(ℓ) = N (0, σ2). Then we can maximise the log
likelihood

∑
log p(ℓ) = 1

2

∑
(− log 2π−log σ2− 1

σ2 ℓ
2) to learn σ. This is equivalent to minimising∑(

1
2σ2 ℓ

2 + log σ
)
. When balancing between two losses ℓCLT and ℓSP that have deviations σCLT and

σSP, respectively, we need to use Equation (2).

argmax−
∑

log p(ℓCLT)p(ℓSP) ⇔ argmin
∑(

1

2σ2
CLT

ℓCLT +
1

2σ2
SP
ℓSP + log σCLTσSP

)
(2)

Replacing ℓCLT in Equation (2) with LCLT (1− exp(−LCLT)) and ℓSP with LSP (1− exp(−LSP)),
Equation (1) is then derived to be the overall loss. The training process trades-off between LCLT and
LSP, as well as between the weight regulariser rη = log σCLTσSP and the rest of Equation (1). When
LCLT is small and LSP is large, σCLT becomes small and σSP becomes large, which then increases the
weight for LCLT while reduces the weight for LSP. The reverse occurs when LCLT is large and LSP is
small. As the weighted sum of LCLT and LSP increases by larger weights, log σCLTσSP decreases and
discourages the increase from being too much. Similarly, if the weighted sum decreases by smaller
weights, log σCLTσSP also regularises the decrease.

3.3 CONTRASTIVE LEARNING LOSS

In this study, we use the time series contrastive learning loss introduced in TS2Vec (Yue et al., 2022)
and its succeeder SoftCLT (Lee et al., 2024) that utilises soft weights for similarity comparison2.
For each sample xi, two augmentations are created by timestamp masking and random cropping,
and then encoded as two representations z′

i and z′′
i . TS2Vec and SoftCLT losses consider the same

sum of similarities for a sample i at a timestamp t, as shown in Equations (3) and (4). Equation (3)
is used for instance-wise contrasting, which we denote by the subscript inst; Equation (4) is used for
time-wise contrasting, denoted by the subscript temp.

Sinst(i, t) =

B∑
j=1

(
exp(z′

i,t · z′′
j,t) + exp(z′′

i,t · z′
j,t)

)
+

B∑
j=1
j ̸=i

(
exp(z′

i,t · z′
j,t) + exp(z′′

i,t · z′′
j,t)

)
(3)

Stemp(i, t) =

T∑
s=1

(
exp(z′

i,t · z′′
i,s) + exp(z′′

i,t · z′
i,s)

)
+

T∑
s=1
s ̸=t

(
exp(z′

i,t · z′
i,s) + exp(z′′

i,t · z′′
i,s)

)
(4)

1We offer a more detailed analysis in Appendix A.1.
2The loss function equations in this subsection follow the original papers as closely as possible with minor

adjustments based on their open-sourced code.
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Equation (5) then shows the TS2Vec loss. We refer the readers to Yue et al. (2022) for more details
about the hierarchical contrasting method.

LTS2Vec =
1

NT

∑
i

∑
t

(
ℓ
(i,t)

inst
TS2Vec

+ ℓ
(i,t)

temp
TS2Vec

)
,

where


ℓ
(i,t)

inst
TS2Vec

= − log
exp(z′

i,t · z′′
i,t) + exp(z′′

i,t · z′
i,t)

Sinst(i, t)

ℓ
(i,t)

temp
TS2Vec

= − log
exp(z′

i,t · z′′
i,t) + exp(z′′

i,t · z′
i,t)

Stemp(i, t)

(5)

Similarity comparison in TS2Vec is between two different augmentations for the same sample. This
is expanded by SoftCLT to also involve other samples in the same mini-batch. Varying instance-
wise and time-wise weights are assigned to different comparison pairs as soft assignments, with
Equations (6) and (7). This introduces four hyperparameters, i.e., τinst, τtemp, α, and m. We use DTW
to compute d(xi,xj) and set α = 0.5, as recommended in the original paper; the other parameters
need to be tuned for different datasets. Specifically, m controls the sharpness of time hierarchical
contrasting. TS2Vec uses m = 1 (constant) and SoftCLT uses m(k) = 2k (exponential), where k is
the depth of pooling layers when computing temporal loss. In this study, we add one more option
m(k) = k + 1 (linear), and will tune the best way for different datasets.

winst(i, j) =
2α

1 + exp(τinst · d(xi,xj)))
+

{
1− α, if i = j

0, if i ̸= j
(6)

wtemp(t, s) =
2

1 + exp(τtemp ·m · |t− s|) (7)

Then Equation (8) shows the SoftCLT loss, where we let λ be 0.5 as recommended in the original
paper. For a more detailed explanation and analysis, we refer the readers to Lee et al. (2024).

LSoftCLT =
1

NT

∑
i

∑
t

(
λℓ

(i,t)
inst

SoftCLT
+ (1− λ)ℓ

(i,t)
temp

SoftCLT

)
,

where



ℓ
(i,t)

inst
SoftCLT

= −
B∑

j=1

winst(i, j) log
exp(z′

i,t · z′′
j,t) + exp(z′′

i,t · z′
j,t)

Sinst(i, t)

−
B∑

j=1
j ̸=i

winst(i, j) log
exp(z′

i,t · z′
j,t) + exp(z′′

i,t · z′′
j,t)

Sinst(i, t)

ℓ
(i,t)

temp
SoftCLT

= −
T∑

s=1

wtemp(t, s) log
exp(z′

i,t · z′′
i,s) + exp(z′′

i,t · z′
i,s)

Stemp(i, t)

−
T∑

s=1
s ̸=t

wtemp(t, s) log
exp(z′

i,t · z′
i,s) + exp(z′′

i,t · z′′
i,s)

Stemp(i, t)

(8)

3.4 STRUCTURE-PRESERVING REGULARISERS

We use the topology-preserving loss proposed in (Moor et al., 2020) and the graph-geometry-
preserving loss proposed in (Lim et al., 2024) as two structure-preserving regularisers, respectively
focusing on the global and local structure of similarity relations. The global structure is preserved
for instance-wise comparison, and the local structure is preserved for comparison across temporal
or spatial features. In the following, we briefly describe the two losses, and the readers are referred
to the original papers for more details.

Equation (9) presents the topology-preserving loss computed in each mini-batch. Here A is a B×B
distance (EUC) matrix between the samples in a batch, and is used to construct the Vietoris-Rips
complex; π represents the persistence pairing indices of simplices that are considered topologically
significant. The superscripts X and Z indicate original data space and latent space, respectively.

Ltopo =
1

2

∥∥∥AX
[
πX

]
−AZ

[
πX

]∥∥∥2

+
1

2

∥∥∥AZ
[
πZ

]
−AX

[
πZ

]∥∥∥2

(9)

The graph-geometry-preserving loss is also computed per mini-batch, as is shown in Equation (10).
This loss measures geometry distortion, i.e., how much fθ deviates from being an isometry that

5
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preserves distances and angles. The geometry to be preserved of the original data manifold is implied
by a similarity graph. To represent temporal and spatial characteristics, instead of using an instance
as a node in the graph, we consider the nodes as timestamps or in a spatial dimension such as sensors
or road users. Then the edges in the graph are defined by pairwise geodesic distances between nodes.

Lggeo =
1

B

B∑
i=1

Tr
[
H̃i

(
L, f̃θ(xi)

)2

− 2H̃i

(
L, f̃θ(xi)

)]
, (10)

where H̃i represents an approximation of the Jacobian matrix of fθ. Note that f̃θ(xi) as the latent
representation of xi needs to maintain the node dimension. For example, if the nodes are considered
as timestamps, f̃θ(xi) ∈ RT×P ; if the nodes are spatial objects, f̃θ(xi) ∈ RS×P . With a similarity
graph defined, then L is the graph Laplacian that is approximated using a kernel matrix with width
hyperparameter h, which requires tuning for different datasets.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETUP

We compare 6 losses for self-supervised representation learning (SSRL) of time series: TS2Vec,
SoftCLT, Topo-TS2Vec, GGeo-TS2Vec, Topo-SoftCLT, and GGeo-SoftCLT. Among the losses,
TS2Vec (Yue et al., 2022) and SoftCLT (Lee et al., 2024) are baselines, and the others extend these
two with a topology-preserving or a graph-geometry-preserving regulariser. The comparison is then
evaluated by downstream task performances using these differently encoded representations. Con-
sequently, the comparison and evaluation serve as an extensive ablation study focusing on the effects
of structure-preserving regularisers. Our experiments are conducted with an NVIDIA A100 GPU
with 80GB RAM and 5 Intel Xeon CPUs. For fair comparisons, we control the following condi-
tions during experiments: random seed, the space and strategy for hyperparameter search, maximum
training epochs, early stopping criteria, and samples used for evaluating local structure preservation.

4.1.1 BASELINES AND DATASETS

The evaluation of performance improvement is on 3 downstream tasks: multivariate time series clas-
sification, macroscopic traffic prediction, and microscopic traffic prediction. For every downstream
task, we split training/(validation)/test sets following the baseline study and make sure the same data
are used across models. Each experiment for a task has two stages, of which the first is SSRL and the
second uses the encoded representations to perform classification/prediction. Only the split training
set is used in the first stage, with 25% separated as an internal validation set to schedule the learning
rate for SSRL.

The classification task is on 28 datasets3 retrieved from the UEA archive (Bagnall et al., 2018).
For each dataset, we set the representation dimension to 320 as used in the TS2Vec and SoftCLT
studies, train 6 encoders with the 6 losses, and then classify the encoded representations with an
RBF-kernel SVM. For traffic prediction, we use the dataset and model in (Li et al., 2024a) for the
macroscopic baseline, and those in (Li et al., 2024b) for the microscopic baseline. The macroscopic
traffic prediction uses 40 minutes (2-minute intervals) of historical data in 193 consecutive road
segments to predict for all segments in the next 30 minutes. The microscopic traffic prediction
forecasts the trajectory of an ego vehicle in 3 seconds, based on the history of up to 26 surrounding
road users in the past 1 second (0.1-second intervals). Both traffic prediction baselines use encoder-
decoder structures. We first pretrain the encoder with the 6 different losses for SSRL, and then
fine-tune the complete model for prediction. The baseline trained from scratch is also compared.

To facilitate clearer analyses when presenting results, we divide the datasets included in the UEA
archive into those with spatial features and those without. According to data descriptions in (Bagnall
et al., 2018), the UEA datasets are grouped into 6 categories: human activity recognition, motion
classification, ECG classification, EEG/MEG classification, audio spectra classification, and other
problems. The human activity and motion categories, along with the PEMS-SF and LSST datasets
that are categorised as other problems, contain spatial features. We thus consider these as spatial,
and the remaining datasets as non-spatial. As a result, each division includes 14 datasets.

3The UEA archive collects 30 datasets in total. We omitted the two largest, InsectWingbeat and PenDigits,
due to limited computation resources.
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4.1.2 HYPERPARAMETERS

For each dataset, we perform a grid search to find the parameters that minimise LCLT after a certain
number of iterations, where we set a constant learning rate of 0.001. Table 1 shows search spaces
of hyperparameters, where bs is abbreviated for batch size and lrη is a separate learning rate for
dynamic weights. When searching for best-suited parameters, we first set them as default values,
and then follow the search strategy presented in Table 2.

Table 1: Hyperparameter search space.
Default Search space

bs 8 [8, 16, 32, 64] a

lrη 0.05 [0.01, 0.05]
h 1 [0.25, 1, 9, 25, 49]
τtemp 0 [0.5, 1, 1.5, 2, 2.5]
m constant [constant, linear, exponential]
τinst 0 [1, 3, 5, 10, 20]
bs: batch size; lrη: learning rate for dynamic weights.

aMaximum bs does not exceed train size.

Table 2: Hyperparameter search strategy.

Stage bs lrη h τtemp m τinst

TS2Vec △
Topo-TS2Vec □ △
GGeo-TS2Vec □ △ △
SoftCLT Phase 1 ⃝ △ △ ⃝
SofrCLT Phase 2 △ □ □ △
Topo-SoftCLT □ △ □ □ □
GGeo-SoftCLT □ △ △ □ □ □
⃝: default; □: inherited; △: tuned.

The search spaces and strategy can result in up to 63 runs for one dataset. To save searching time,
we adjust the number of iterations to be adequate to reflect the progress of loss reduction but limited
to prevent overfitting, as our goal is to identify suitable parameters rather than fully train the models.
The number of iterations is scaled according to the number of training samples, with larger datasets
receiving more iterations.

4.1.3 EVALUATION METRICS

Our performance evaluation uses both task-specific metrics and structure-preserving metrics. The
former serves to validate performance improvements, while the latter serves to verify the effective-
ness of preserving similarity structures. These metrics differ in whether a higher or lower value
signifies better performance. To consistently indicate the best method, in the tables presented in the
following subsections, the best values are both bold and underlined; the second-best values are bold.

For classification, we use accuracy (Acc.) and the area under the precision-recall curve (AUPRC).
To evaluate macroscopic traffic prediction, we use mean absolute error (MAE), root mean squared
error (RMSE), the standard deviation of prediction errors (SDEP), and the explained variance by
prediction (EVar). Dealing with microscopic traffic, we predict vehicle trajectories and assess the
minimum final displacement error (min. FDE) as well as missing rates under radius thresholds of
0.5m, 1m, and 2m (MR0.5, MR1, MR2).

As for metrics to evaluate structure preservation, we adopt a combination of those used in (Moor
et al., 2020) and (Lim et al., 2024). More specifically, we consider 1) kNN, the proportion of shared
k-nearest neighbours according to distance matrices in the latent space and in the original space; 2)
continuity (Cont.), one minus the proportion of neighbours in the original space that are no longer
neighbours in the latent space; 3) trustworthiness (Trust.), the counterpart of continuity, measuring
the proportion of neighbours in the latent space but not in the original space; 4) MRRE, the averaged
error in the relative ranks of sample distances between in the latent and original space; and 5) dis-
tance matrix RMSE (dRMSE), the root mean squared difference between sample distance matrices
in the latent and original space. We calculate these metrics at two scales to evaluate global and local
structure preservation. For global evaluation, our calculation is based on EUC distances between
samples; for local evaluation, the calculation is based on EUC distances between timestamps for at
most 500 samples in a test set.

4.2 MULTIVARIATE TIME SERIES CLASSIFICATION

The classification performance on spatial and non-spatial datasets is presented in Table 3. Next
to the averaged accuracy, we also include the loss values on test sets to offer more information.
More detailed results can be found in Tables A1 and A2 in the Appendix A.2, where we present
the classification accuracy with different representation learning losses for each dataset. Then we
use Table 4 to more specifically compare the relative improvements induced by adding a topology
or graph-geometry preserving regulariser. The relative improvement is the percentage of accuracy
difference from the corresponding baseline performance.
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Tables 3 and 4 clearly show that structure-preserving improves classification accuracy, not only when
time series data involves spatial features, but also when it does not. The relative improvements in
Table 4 are higher for non-spatial datasets than for spatial datasets, which is because the datasets
without spatial features are more difficult to learn in the UEA archive. As is shown in Table 3, the
loss of contrastive learning decreases when a structure-preserving regulariser is added for spatial
datasets, while increases for non-spatial datasets. This implies that preserving similarity structure is
well aligned with contrastive learning for spatial datasts, and can even enhance contrastive learning.

Table 3: UEA classification evaluation.
Datasets Method Acc. AUPRC LCLT LSP

With
spatial

features
(14)

TS2Vec 0.848 0.872 2.943
Topo-TS2Vec 0.851 0.876 2.264 0.085
GGeo-TS2Vec 0.856 0.881 2.200 186.9
SoftCLT 0.852 0.876 7.943
Topo-SoftCLT 0.862 0.882 4.900 0.087
GGeo-SoftCLT 0.864 0.883 2.316 221.1

Without
spatial

features
(14)

TS2Vec 0.523 0.555 8.417
Topo-TS2Vec 0.553 0.561 11.12 0.122
GGeo-TS2Vec 0.536 0.564 15.58 957.0
SoftCLT 0.508 0.532 4.714
Topo-SoftCLT 0.496 0.534 7.328 0.124
GGeo-SoftCLT 0.537 0.549 10.09 144.7

Table 4: Classification accuracy improved by
Topo/GGeo regulariser. Comparison is made
with corresponding baseline performance.

Datasets Improvement
by method

Persentage in Acc. (%)

min. mean max.

With
spatial

features
(14)

Topo-TS2Vec -4.403 0.800 16.54
GGeo-TS2Vec -3.783 1.143 10.44
Topo-SoftCLT -4.375 2.121 25.94
GGeo-SoftCLT -5.674 2.959 28.55

Without
spatial

features
(14)

Topo-TS2Vec -5.263 8.852 50.00
GGeo-TS2Vec -33.33 2.083 44.44
Topo-SoftCLT -33.33 -0.815 50.00
GGeo-SoftCLT -20.83 18.49 166.7

Table 5: Structure preservation evaluation over datasets with and without spatial features in the UEA archive.

Datasets Method Local mean between timestamps Global mean between all samples

kNN Trust. Cont. MRRE dRMSE kNN Trust. Cont. MRRE dRMSE

With
spatial

features
(14)

TS2Vec 0.563 0.868 0.875 0.117 0.346 0.419 0.784 0.765 0.189 0.150
Topo-TS2Vec 0.569 0.873 0.878 0.114 0.344 0.418 0.783 0.764 0.190 0.154
GGeo-TS2Vec 0.569 0.873 0.881 0.114 0.341 0.418 0.781 0.762 0.190 0.157
SoftCLT 0.562 0.866 0.875 0.117 0.348 0.420 0.788 0.765 0.187 0.171
Topo-SoftCLT 0.564 0.869 0.877 0.115 0.344 0.421 0.784 0.767 0.188 0.153
GGeo-SoftCLT 0.571 0.875 0.883 0.111 0.337 0.425 0.790 0.768 0.185 0.149

Without
spatial

features
(14)

TS2Vec 0.423 0.820 0.835 0.150 0.304 0.362 0.767 0.767 0.252 0.197
Topo-TS2Vec 0.424 0.820 0.831 0.151 0.308 0.356 0.763 0.767 0.254 0.191
GGeo-TS2Vec 0.420 0.820 0.832 0.151 0.310 0.365 0.769 0.771 0.253 0.189
SoftCLT 0.432 0.820 0.835 0.148 0.312 0.354 0.763 0.764 0.252 0.197
Topo-SoftCLT 0.426 0.818 0.834 0.148 0.312 0.361 0.768 0.768 0.254 0.205
GGeo-SoftCLT 0.430 0.822 0.835 0.147 0.315 0.355 0.761 0.762 0.257 0.203

Note: the best values are both bold and underlined; the second-best values are bold.

The assessment of similarity preservation is presented in Table 5 at both local and global scales.
Consistent with the task-specific evaluation, Table 5 shows that structure-preserving regularisation
preserves more complete information on similarity relations. The improvements are generally more
significant on datasets with spatial features, which makes it more evident that our proposed preser-
vation suits spatial time series data better. Although the comparisons in these tables indicate more
notable improvements by preserving graph geometry than preserving topology, we have to note that
this does not demonstrate any superiority of one over the other. Different datasets have different
characteristics that benefit from preserving global or local structure, and domain knowledge is nec-
essary to determine which could be more effective.

4.3 MACROSCOPIC AND MICROSCOPIC TRAFFIC PREDICTION

In Table 6, we present the performance evaluation for both macroscopic and microscopic traffic
prediction. This table shows consistent improvements by pretraining encoders with our methods.
Notably, single contrastive learning (i.e., TS2Vec and SoftCLT) does not necessarily improve down-
stream prediction, whereas it does when used together with preserving certain similarity structures.
Given that our comparisons are conducted through controlling random conditions, this result effec-
tively shows the necessity of preserving structure when learning traffic interaction representations.

Table 7 then displays the corresponding evaluation on similarity structure preservation, which is
obtained by assessing the encoders after fine-tuning for traffic prediction. The results show that
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the better performing methods in macro-traffic prediction preserve more global similarity relations
between samples; those in micro-traffic prediction, in contrast, preserve more local relations.

Table 6: Macroscopic and microscopic traffic prediction performance evaluation.

Method
Macroscopic Traffic Microscopic Traffic

MAE
(km/h)

RMSE
(km/h)

SDEP
(km/h)

EVar
(%)

min. FDE
(m)

MR0.5
(%)

MR1

(%)
MR2

(%)

No pretraining 2.851 5.912 5.911 84.786 0.640 59.253 12.161 0.744
TS2Vec 2.888 5.950 5.949 84.589 0.623 57.048 11.175 0.696
Topo-TS2Vec 2.915 5.987 5.983 84.410 0.634 58.633 11.727 0.675
GGeo-TS2Vec 2.898 5.955 5.953 84.566 0.630 58.254 11.685 0.696
SoftCLT 2.901 5.921 5.918 84.748 0.634 58.109 11.899 0.710
Topo-SoftCLT 2.879 5.869 5.867 85.012 0.643 59.639 12.367 0.751
GGeo-SoftCLT 2.882 5.926 5.924 84.716 0.635 58.702 11.747 0.744

Best improvement (%) 0.000 0.715 0.745 0.266 2.644 3.721 8.102 9.259
Note: the best values are both bold and underlined; the second-best values are bold.

Table 7: Structure preservation evaluation of encoders after the fine-tuning in traffic prediction tasks.

Method Macroscopic Traffic Microscopic Traffic

kNN Cont. Trust. MRRE dRMSE kNN Cont. Trust. MRRE dRMSE

Local mean between timestamps for at most 500 samples

No pretraining 0.125 0.524 0.526 0.496 0.224 0.373 0.742 0.552 0.426 0.478
TS2Vec 0.130 0.534 0.533 0.491 0.249 0.398 0.755 0.590 0.401 0.503
Topo-TS2Vec 0.128 0.533 0.524 0.495 0.247 0.398 0.756 0.590 0.402 0.493
GGeo-TS2Vec 0.123 0.522 0.525 0.503 0.241 0.394 0.755 0.587 0.397 0.516
SoftCLT 0.127 0.526 0.525 0.497 0.243 0.398 0.753 0.589 0.406 0.480
Topo-SoftCLT 0.127 0.526 0.531 0.497 0.252 0.398 0.750 0.589 0.408 0.490
GGeo-SoftCLT 0.126 0.529 0.525 0.499 0.238 0.396 0.757 0.588 0.399 0.496

Global mean between all samples

No pretraining 0.316 0.949 0.969 0.031 0.364 0.218 0.937 0.920 0.049 0.141
TS2Vec 0.268 0.936 0.959 0.040 0.406 0.234 0.954 0.927 0.042 0.142
Topo-TS2Vec 0.265 0.941 0.959 0.039 0.430 0.238 0.948 0.929 0.042 0.141
GGeo-TS2Vec 0.268 0.940 0.958 0.040 0.405 0.239 0.963 0.922 0.040 0.140
SoftCLT 0.293 0.943 0.964 0.035 0.386 0.215 0.907 0.901 0.066 0.147
Topo-SoftCLT 0.296 0.941 0.966 0.035 0.367 0.228 0.931 0.921 0.050 0.145
GGeo-SoftCLT 0.286 0.941 0.963 0.037 0.365 0.243 0.945 0.927 0.044 0.140

Note: the best values are both bold and underlined; the second-best values are bold.

Notably, in macroscopic traffic prediction, fine-tuning from scratch maintains the best global simi-
larities. This implies that the specific model architecture might allow for learning similarity structure
without pretraining. However, this is not crystal clear with the final evaluation only. In the second
part of the next section, we will add two other model architectures for macro-traffic prediction tasks,
and visualise the fine-tuning progress to further understand the contribution of structure preservation
to downstream task performance.

4.4 TRAINING EFFICIENCY

Incorporating structure-preserving regularisation increases computational complexity, and conse-
quently, training time. The magnitude of this increase depends on the data and model that are
applied on. With Table 8, we quantify the additional time required for structure preservation and
evaluate its impact across diverse model architectures. In prior experiments, we used Convolutional
Neural Network (CNN) encoders for the classification on UEA datasets, Dynamic Graph Convolu-
tion Network (DGCN, Li et al., 2021) encoder for macroscopic traffic prediction, and VectorNet (Gu
et al., 2021) encoder for microscopic traffic prediction. To obtain a more comprehensive evaluation,
we include two more Recurrent Neural Network (RNN) models for macroscopic traffic prediction:
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) encoders, paired with simple
linear decoders. Results in Table 8 show that preserving structure increases training time by less than
50% in most cases, and suits DGCN particularly well. However, when time sequences are very long
(e.g., more than 1,500 steps), the computation of graph-geometry preserving loss becomes intense.
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Table 8: Training time per epoch in the stage of self-supervised representation learning.

Task/data Encoder Base (sec/epoch) TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

Avg. UEAa CNN 11.94 1.00× 1.46× 2.35× 1.00× 1.46× 2.36×
MicroTraffic VectorNet 128.68 1.00× 1.40× 1.15× 1.14× 1.64× 1.28×

MacroTraffic
DGCN 72.50 1.00× 1.17× 1.09× 1.01× 1.20× 1.13×
LSTM 17.66 1.00× 1.50× 1.16× 1.11× 1.59× 1.26×
GRU 15.86 1.00× 1.55× 1.16× 1.13× 1.65× 1.28×

a Detailed results are referred to Appendix A.2.

Furthermore, we evaluate the fine-tuning efficiency in macroscopic traffic prediction by comparing
the convergence speed of methods with and without pretraining. Figure 1 illustrates the influence
of structure-preserving pretraining on the fine-tuning progress of different model architectures. For
LSTM and GRU, structure preservation consistently enhances prediction performance compared to
training from scratch. For DGCN, which is a more sophisticated model tailored for the task, training
from scratch is already very effective and only Topo-SoftCLT brings minor improvement.
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Figure 1: Fine-tuning progress of models pretrained with different losses in macroscopic traffic prediction.
Values of the final performance are referred to Table 6 for DGCN, to Tables A5 and A6 for LSTM and GRU.

5 CONCLUSION

This paper presents an approach to structure-preserving contrastive learning for spatial time series,
where a dynamic mechanism is proposed to adaptively balance contrastive learning and structure
preservation. Our methods are experimentally demonstrated to improve the SOTA performance,
including for multivariate time series classification in various contexts and for traffic prediction at
both macroscopic and microscopic scales. In general, adding structure-preserving regularisation has
a limited impact on representation learning efficiency. It can be computationally intensive when the
time sequence is long; however, evident performance improvement makes it an acceptable price to
pay for utilising the information embedded in time series data. Our experiments (albeit preliminary)
also suggest that preserving certain similarity structures may be crucial for downstream task perfor-
mance, highlighting that the structural information of similarities in spatio-temporal data remains
yet to be exploited. Given that many real-world practices involve spatial time series, this study and
future research based on it can be applied not only to traffic interactions, but also to any that can
benefit from preserving specific structures in similarity relations.
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A APPENDIX

A.1 THEORETICAL OPTIMAL VALUES OF THE LOSSES

For LTS2Vec, a value of 0 is reached when z′
i,t and z′′

i,t are identical. Similarly, the optimal case of
LSoftCLT is when the samples with soft assignments close to 1 are identical, while dissimilar samples
have soft assignments close to 0. The topology-preserving loss Ltopo is 0 when the topologically
relevant distances remain the same in the latent space as in the original space, i.e., AX

[
πX

]
=

AZ
[
πX

]
and AX

[
πZ

]
= AZ

[
πZ

]
. Finally, Lggeo approximates the distortion measure of isometry

and is ideally 0, but can be negative when Tr(H̃i) < 2, as the approximation of H̃i is kernel-based
depending on a hyperparameter h.

A.2 DETAILED RESULTS ON UEA DATASETS

This section provides detailed comparisons of evaluation results for the used 28 datasets in the UEA
archive. Tables A1 and A2 present the results of classification accuracy. Tables A3 and A4 present
the training time for self-supervised representation learning.

Table A1: Detailed evaluation of classification accuracy on spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

ArticularyWordRecognition 0.980 0.987 0.983 0.987 0.977 0.987
BasicMotions 1.000 1.000 1.000 1.000 1.000 1.000
CharacterTrajectories 0.971 0.985 0.972 0.980 0.977 0.986
Cricket 0.944 0.944 0.972 0.972 0.972 0.986
ERing 0.867 0.874 0.881 0.893 0.878 0.863
EigenWorms 0.809 0.817 0.863 0.817 0.901 0.840
Epilepsy 0.957 0.957 0.949 0.964 0.957 0.949
Handwriting 0.498 0.499 0.479 0.487 0.478 0.580
LSST 0.485 0.566 0.536 0.452 0.569 0.581
Libras 0.883 0.844 0.850 0.889 0.850 0.867
NATOPS 0.917 0.917 0.933 0.922 0.917 0.944
PEMS-SF 0.792 0.775 0.815 0.751 0.803 0.740
RacketSports 0.908 0.914 0.914 0.928 0.908 0.875
UWaveGestureLibrary 0.862 0.831 0.834 0.888 0.881 0.897
Avg. over spatial datasets 0.848 0.851 0.856 0.852 0.862 0.864

Table A2: Detailed evaluation of classification accuracy on non-spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

AtrialFibrillation 0.200 0.267 0.133 0.133 0.200 0.267
DuckDuckGeese 0.360 0.540 0.520 0.400 0.420 0.400
EthanolConcentration 0.289 0.274 0.297 0.243 0.308 0.308
FaceDetection 0.510 0.508 0.505 0.516 0.497 0.505
FingerMovements 0.480 0.480 0.480 0.530 0.470 0.540
HandMovementDirection 0.324 0.405 0.257 0.324 0.230 0.257
Heartbeat 0.751 0.761 0.717 0.756 0.737 0.732
JapaneseVowels 0.978 0.986 0.978 0.970 0.978 0.978
MotorImagery 0.480 0.500 0.500 0.520 0.500 0.500
PhonemeSpectra 0.263 0.258 0.269 0.269 0.260 0.257
SelfRegulationSCP1 0.778 0.768 0.788 0.761 0.730 0.771
SelfRegulationSCP2 0.467 0.550 0.561 0.528 0.511 0.511
SpokenArabicDigits 0.973 0.976 0.966 0.964 0.968 0.957
StandWalkJump 0.467 0.467 0.533 0.200 0.133 0.533
Avg. over non-spatial datasets 0.523 0.553 0.536 0.508 0.496 0.537
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Table A3: Detailed representation training time per epoch (unit: s) on spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

ArticularyWordRecognition 3.799 (1.00×) 5.61 (1.48×) 5.863 (1.54×) 3.772 (0.99×) 5.77 (1.52×) 5.983 (1.57×)
BasicMotions 0.475 (1.00×) 0.685 (1.44×) 0.709 (1.49×) 0.457 (0.96×) 0.687 (1.45×) 0.711 (1.50×)
CharacterTrajectories 20.640 (1.00×) 30.863 (1.50×) 33.32 (1.61×) 20.652 (1.00×) 30.948 (1.50×) 33.18 (1.61×)
Cricket 1.903 (1.00×) 2.653 (1.39×) 5.437 (2.86×) 1.904 (1.00×) 2.655 (1.40×) 5.436 (2.86×)
ERing 0.319 (1.00×) 0.482 (1.51×) 0.487 (1.53×) 0.316 (0.99×) 0.483 (1.51×) 0.49 (1.54×)
EigenWorms 19.862 (1.00×) 23.823 (1.20×) 149.05 (7.50×) 20.224 (1.02×) 24.856 (1.25×) 150.7 (7.59×)
Epilepsy 1.737 (1.00×) 2.49 (1.43×) 2.753 (1.58×) 1.686 (0.97×) 2.506 (1.44×) 2.755 (1.59×)
Handwriting 1.875 (1.00×) 2.771 (1.48×) 2.959 (1.58×) 1.88 (1.00×) 2.775 (1.48×) 2.987 (1.59×)
LSST 29.786 (1.00×) 45.273 (1.52×) 45.162 (1.52×) 29.859 (1.00×) 45.216 (1.52×) 45.154 (1.52×)
Libras 2.081 (1.00×) 3.142 (1.51×) 3.142 (1.51×) 2.085 (1.00×) 3.135 (1.51×) 3.141 (1.51×)
NATOPS 1.953 (1.00×) 2.989 (1.53×) 2.949 (1.51×) 2.085 (1.07×) 3.147 (1.61×) 3.159 (1.62×)
PEMS-SF 3.413 (1.00×) 5.069 (1.49×) 5.38 (1.58×) 3.415 (1.00×) 5.064 (1.48×) 5.399 (1.58×)
RacketSports 1.781 (1.00×) 2.685 (1.51×) 2.664 (1.50×) 1.771 (0.99×) 2.711 (1.52×) 2.665 (1.50×)
UWaveGestureLibrary 1.699 (1.00×) 2.395 (1.41×) 2.788 (1.64×) 1.776 (1.05×) 2.595 (1.53×) 2.99 (1.76×)

Avg. over spatial datasets 6.523 1.46× 2.12× 1.00× 1.48× 2.15×

Table A4: Detailed representation training time per epoch (unit: s) on non-spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

AtrialFibrillation 0.182 (1.00×) 0.258 (1.42×) 0.369 (2.03×) 0.177 (0.97×) 0.259 (1.42×) 0.366 (2.01×)
DuckDuckGeese 0.617 (1.00×) 0.973 (1.58×) 1.059 (1.72×) 0.621 (1.01×) 0.968 (1.57×) 1.104 (1.79×)
EthanolConcentration 4.939 (1.00×) 6.655 (1.35×) 20.128 (4.08×) 4.89 (0.99×) 6.664 (1.35×) 20.182 (4.09×)
FaceDetection 70.709 (1.00×) 109.6 (1.55×) 108.83 (1.54×) 71.104 (1.01×) 107.523 (1.52×) 107.092 (1.51×)
FingerMovements 3.826 (1.00×) 5.67 (1.48×) 5.706 (1.49×) 3.779 (0.99×) 5.671 (1.48×) 5.716 (1.49×)
HandMovementDirection 2.221 (1.00×) 3.353 (1.51×) 4.151 (1.87×) 2.226 (1.00×) 3.334 (1.50×) 4.142 (1.86×)
Heartbeat 2.811 (1.00×) 4.218 (1.50×) 5.22 (1.86×) 2.818 (1.00×) 4.216 (1.50×) 5.221 (1.86×)
JapaneseVowels 3.211 (1.00×) 4.871 (1.52×) 4.821 (1.50×) 3.199 (1.00×) 4.846 (1.51×) 4.83 (1.50×)
MotorImagery 7.450 (1.00×) 9.637 (1.29×) 51.0 (6.85×) 7.475 (1.00×) 9.659 (1.30×) 50.881 (6.83×)
PhonemeSpectra 42.956 (1.00×) 63.801 (1.49×) 70.578 (1.64×) 43.015 (1.00×) 63.807 (1.49×) 70.806 (1.65×)
SelfRegulationSCP1 4.178 (1.00×) 6.042 (1.45×) 10.446 (2.50×) 4.237 (1.01×) 6.094 (1.46×) 10.415 (2.49×)
SelfRegulationSCP2 3.295 (1.00×) 4.67 (1.42×) 9.391 (2.85×) 3.269 (0.99×) 4.629 (1.40×) 9.376 (2.85×)
SpokenArabicDigits 96.299 (1.00×) 143.411 (1.49×) 131.577 (1.37×) 86.495 (0.90×) 125.916 (1.31×) 129.073 (1.34×)
StandWalkJump 0.304 (1.00×) 0.404 (1.33×) 1.68 (5.53×) 0.31 (1.02×) 0.4 (1.32×) 1.7 (5.59×)

Avg. over non-spatial datasets 17.357 1.46× 2.57× 0.99× 1.44× 2.57×

In addition, to visually show the effect of differently regularised contrastive learning losses on rep-
resentation, we apply t-SNE to compress the encoded representations into 3 dimensions, as plotted
in Figure A1 for the dataset Epilepsy, and Figure A2 for RacketSports. The classes are indicated by
colours. We use these two datasets because they are visualisation-friendly, with 4 classes and around
150 test samples.

TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

Figure A1: Encoded representations after training with different losses on the test set of Epilepsy.

TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

Figure A2: Encoded representations after training with different losses on the test set of RacketSports.
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A.3 DETAILED RESULTS OF MACROSCOPIC PREDICTION WITH LSTM AND GRU

This section provides additional tables presenting the evaluation of the final results using LSTM
and GRU in macroscopic traffic prediction. Table A5 shows the task-specific metrics and Table A6
shows the metrics for global structure preservation.

Table A5: Macroscopic traffic prediction evaluation with LSTM and GRU encoders.

Method LSTM GRU

MAE
(km/h)

RMSE
(km/h)

SDEP
(km/h)

EVar
(%)

MAE
(km/h)

RMSE
(km/h)

SDEP
(km/h)

EVar
(%)

No pretraining 3.134 6.163 6.163 83.461 3.541 7.215 7.215 77.329
TS2Vec 3.135 6.107 6.107 83.759 3.506 7.001 7.001 78.654
Topo-TS2Vec 3.172 6.266 6.266 82.901 3.495 7.022 7.022 78.528
GGeo-TS2Vec 3.162 6.255 6.255 82.961 3.527 7.118 7.118 77.937
SoftCLT 3.217 6.382 6.382 82.264 3.452 6.887 6.887 79.344
Topo-SoftCLT 3.176 6.214 6.214 83.183 3.410 6.703 6.702 80.438
GGeo-SoftCLT 3.183 6.299 6.299 82.721 3.330 6.600 6.600 81.032
Best improvement (%) 0.000 0.907 0.906 0.358 5.976 8.532 8.530 4.788

Note: the best values are both bold and underlined; the second-best values are bold.

Table A6: Global structure preservation of LSTM and GRU encoders in macroscopic traffic prediction task.

Method LSTM GRU

kNN Cont. Trust. MRRE dRMSE kNN Cont. Trust. MRRE dRMSE

No pretraining 0.174 0.834 0.915 0.099 0.458 0.151 0.871 0.902 0.091 0.424
TS2Vec 0.113 0.894 0.874 0.098 0.468 0.134 0.908 0.909 0.077 0.469
Topo-TS2Vec 0.107 0.888 0.862 0.105 0.486 0.141 0.921 0.914 0.068 0.433
GGeo-TS2Vec 0.124 0.908 0.898 0.083 0.441 0.138 0.921 0.911 0.071 0.443
SoftCLT 0.118 0.923 0.884 0.079 0.469 0.154 0.940 0.924 0.055 0.419
Topo-SoftCLT 0.139 0.931 0.893 0.071 0.428 0.165 0.949 0.930 0.050 0.460
GGeo-SoftCLT 0.146 0.944 0.920 0.057 0.420 0.165 0.942 0.930 0.051 0.429

Note: the best values are both bold and underlined; the second-best values are bold.
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