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Abstract

Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities
and tail-sensitivity risks with asymmetric misprediction costs. Recent attempts have used
re-balancing loss and ensemble methods, but they are largely heuristic and depend heavily on
empirical results, lacking theoretical explanation. Furthermore, existing methods overlook
the decision loss, which characterizes different costs associated with tailed classes. This paper
presents a general and principled framework from a Bayesian-decision-theory perspective,
which unifies existing techniques including re-balancing and ensemble methods, and provides
theoretical justifications for their effectiveness. From this perspective, we derive a novel
objective based on the integrated risk and a Bayesian deep-ensemble approach to improve the
accuracy of all classes, especially the “tail”. Besides, our framework allows for task-adaptive
decision loss which provides provably optimal decisions in varying task scenarios, along with
the capability to quantify uncertainty. Finally, We conduct comprehensive experiments,
including standard classification, tail-sensitive classification with a new False Head Rate
metric, calibration, and ablation studies. Our framework significantly improves the current
SOTA even on large-scale real-world datasets like ImageNet.

1. Introduction

Machine learning methods usually assume that training and testing data are both i.i.d.
sampled from the same data distribution. However, this is not always true for real-world
scenarios (Hand, 2006). One example is long-tailed classification (Liu et al., 2019b; Li et al.,
2022), where the training data is biased towards a few “head” classes, while the “tailed”
classes have fewer samples, resulting in a “long-tailed” distribution of class probabilities.
The long-tailed problem is mainly due to the process of collecting data, which is unavoidably
biased. Conventional models trained on long-tailed data often report significant performance
drops compared with the results obtained on balanced training data (Wang et al., 2022).
Besides, for some real-world applications, the risk of classifying tailed samples as head
(more common) is obviously more severe than that of classifying head samples as tail (less
common) (Rahman et al., 2021; Yang et al., 2022).

Existing works usually re-balance the loss function to promote the accuracy of tail
classes (Cao et al., 2019; Cui et al., 2019). Their re-weighting strategy compensates for the
lack of training samples in tailed classes, but suffers from sub-optimal head class accuracies.
Other attempts on ensemble models try to reduce the model variance to promote the head
and tail accuracies at the same time (Wang et al., 2020). Despite the effectiveness of existing
works, they suffer from significant limitations: i) they are largely based on empirical results
without adequate theoretical explanation; ii) they ignore the decision loss, which represents

© B. Li & R. Zhang.



Li Zhang

the application-related risks (e.g., the tail-sensitivity risk) in the real world and thus their
models are not applicable to tasks with different metrics other than standard classification
task; iii) most methods do not quantify uncertainty, which reduces their reliability.

In this paper, we propose a unified framework for long-tailed classification, rooted in
Bayesian Decision Theory (Berger, 1985; Robert et al., 2007). Our framework unifies existing
methods and provides theoretical justifications for their effectiveness, including re-balancing
loss and ensemble methods, which have been shown to achieve promising results. To derive
our framework, we first introduce a new objective based on the integrated risk which unifies
three crucial components in long-tailed problems: data distribution, decision loss, and
posterior inference. To minimize this objective, we then derive a tractable lower bound
based on variational EM (Lacoste-Julien et al., 2011) and approximate the posterior by a
particle-based ensemble model (D’Angelo and Fortuin, 2021). Furthermore, we design two
kinds of utility functions for the standard and tail-sensitive classifications respectively, which
enables real-world applications with tail-sensitivity risks. Finally, we conduct comprehensive
experiments to demonstrate the superiority of our method in general settings.

We summarize our contributions as follows: i) Long-tailed Bayesian Decision (LBD)
is the first to formulate long-tailed classification under Bayesian Decision Theory; ii) for
real-world applications, we take the decision loss into account, extending our method to
more realistic long-tailed problems where the risk of wrong predictions varies and depends on
the type of classes (e.g., head or tail); iii) we conduct comprehensive experiments including
a newly designed False Head Rate (FHR) to show the effectiveness of our method.

2. Background

2.1. Long-tailed Distribution

Long-tailed distributed data is a special case of dataset shift (Quinonero-Candela et al.,
2008), in which the common assumption is violated that the training and testing data
follow the same distribution (Moreno-Torres et al., 2012). For the long-tailed scenario
studied in this paper, the training data Dtrain is distributed in a descending manner over
categories in terms of class probability: p(x1, y1 = k1) ≥ p(x2, y2 = k2), if k1 ≤ k2 for
all (x1, y1), (x2, y2) ∈ Dtrain. While the testing data Dtest is assumed to be distributed
uniformly over categories: p(x1, y1 = k1) = p(x2, y2 = k2) for all (x1, y1), (x2, y2) ∈ Dtest.
One important feature of long-tailed distribution is that both training and testing data are
semantically identical, and the only difference lies in class probabilities.

2.2. Bayesian Decision Theory

Bayesian Decision Theory is a general statistical approach and can be applied to the task of
pattern classification (Berger, 1985; Robert et al., 2007). The Bayesian Decision Theory
considers the utility of making different decisions and the data distribution, which bridges
posterior inference, data distribution and decision-making in a unified manner. For example,
posterior risk is defined by the decision losses averaged over the posterior, and integrated risk
further considers the data distribution. Bayesian Decision Theory has theoretical guarantees
on the results and is provable to provide a desirable decision. Models following Bayesian
Decision Theory are expected to have smaller risks than models trained in other ways.
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3. Long-tailed Bayesian Decision

For conventional long-tailed classification, inference (how to infer model parameters), deci-
sion (model’s actions in the presence of application-related risks), and data distribution
(long-tailed distribution) are independent from each other in the training phase (Lacoste-
Julien et al., 2011). To the best of our knowledge, none of previous methods can simulta-
neously consider these three aspects. In order to address this drawback, we introduce the
integrated risk from Bayesian Decision Theory, which is computed over the posterior p(θ|D)
and the data distribution p(x, y):

R(d) := E(xi,yi)∼p(x,y)Eθ∼p(θ|D)l(θ, d(xi)), (1)

where l(θ, d(xi)) is the loss of making decision d(xi) for xi when the environment is θ
(model’s parameters). The decision estimator d that minimizes the integrated risk is proved
to give the optimal decisions in terms of the decision loss (Robert et al., 2007).

In order to exploit Eq. 1 as the objective, we need to determine the posterior and the
optimal decision at the same time, which is notoriously hard because they depend on each
other. Inspired by the EM algorithm (Lacoste-Julien et al., 2011), which alternately conducts
the integration and optimization steps, we propose a long-tailed version of variational EM
algorithm to alternately update a variational distribution and a classification decision on long-
tailed data. To use EM, we convert the minimization problem to a maximization problem.
Specifically, we define the decision gain: g(θ, d(xi)) ∝ −l(θ, d(xi)) =

∏
y′ p(y

′|xi,θ)
u(y′,d(xi))

to represent what we gain from making decision d(xi) given the environment θ (Appendix A).
Here, u(y′, d) is a fixed utility function that gives the utility of making decision d when the
true label is y′. Then our goal becomes maximizing the integrated gain:

G(d) := E(xi,yi)∼p(x,y)Eθ∼p(θ|D)g(θ, d(xi)). (2)

3.1. Task-adaptive Utility Functions
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Figure 1: Two examples of utility matrices, de-
signed for (a) standard and (b) tail-
sensitive classifications respectively.

We first discuss the design of the utility
function: u(y, d), where y is the ground
truth and d is the decision. The utility
function defines the gain of making differ-
ent decisions and can encode our prefer-
ence for specific metrics in various tasks.
The utility function is a standard compo-
nent in Decision Theory and its design
has been comprehensively studied in the
literature. For example, Chapter 2.2 of
Robert et al. (2007) guarantees the ex-
istence of utility functions with rational
decision-makers. Generally, the values of
the utility function over all class labels are
stored in a form of utility matrix U , where Uij = u(y = i, d = j).

In a standard classification setting, the overall accuracy is the most decisive metric
in evaluation. It only matters whether the decision is consistent with the ground truth
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(i.e., y = d). Therefore, as shown in Fig. 1(a), a simple one-hot utility can be defined by
u(y, d) = 1{y = d}, which is corresponding to the standard accuracy metric.

In modern applications of long-tailed classification, the semantic importance of “tailed”
data often implies more penalty in the circumstance of predicting tailed samples as head (Sen-
gupta et al., 2016; Yang et al., 2022). Besides, the lack of training samples in tailed classes
has been empirically proved to be the bottleneck of classification performance (Li et al.,
2022). Therefore, the ratio of false head samples in evaluation would reflect the potential
of a model in real-world applications (Section 4.3). To this end, a tail-sensitive utility can
be defined by adding an extra penalty on those false head samples, as shown in Fig. 1(b).
The tail-sensitive utility encourages the model to predict any uncertain sample as tail rather
than head, while not affecting the predictions of the true class when the model is confident.

3.2. Inference Step

Due to the discrepancy between training (long-tailed) and testing (uniform) data distributions,
we propose to compute the integrated gain with the posterior of testing data p(θ|Dtest) to
target at evaluation, where Dtest = {(xi, yi)}Ni=1 with (xi, yi) ∼ ptest(x, y). To infer the
posterior p(θ|Dtest), we use the variational method where a variational distribution q(θ) is
introduced to the lower bound of the integrated gain in Eq. 2:

L(q, d) := logG(d) = logE(xi,yi)∼ptest(x,y)Eθ∼p(θ|Dtest)g(θ, d(xi))

≥ E(xi,yi)∼ptrain(x,y)Eθ∼q(θ)
ptest(xi, yi)

ptrain(xi, yi)

log p(yi|xi,θ) +
∑
y′

u(y′, d) log p(y′|xi,θ)


−KL(q(θ)||p(θ)) + C,

(3)

where (xi, yi) is training data but we forcefully compute its probability on testing
distribution, and C is a constant. Eq. 3 is proved in Appendix C. The lower bound L(q, d)
is our training objective and it provides a cross-entropy-like way to update the variational
distribution q(θ), and most importantly, converts the data distribution from ptest(x, y)
(uniform) to ptrain(x, y) (long-tailed) to make the computation during training possible.

Moreover, the variational distribution q(θ) is guaranteed to be an approximation of the
posterior p(θ|Dtest), because Eq. 3 contains Bayesian inference on the posterior of testing
data. To support this, we look into the KL divergence between q(θ) and p(θ|Dtest):

KL(q(θ)||p(θ|Dtest))

= −E(xi,yi)∼ptrain(x,y)Eθ∼q(θ)
ptest(xi, yi)

ptrain(xi, yi)
· log p(yi|xi,θ) +KL(q(θ)||p(θ))− C,

(4)

where C is a constant. Eq. 4 is proved in Appendix D. Comparing Eq. 3 and Eq. 4, it is
clear that part of the objective at inference step is Bayesian inference on the posterior of
testing data, with q(θ) approaching p(θ|Dtest).

In summary, L(q, d) enables the framework to simultaneously consider inference, decision
(utility), and data distribution (ptest(x, y)/ptrain(x, y), further discussed in Section B.1).
The detailed computation process of L(q, d) is discussed in Appendix B.
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3.3. Decision Step

To optimize L(q, d) w.r.t the decision d, one way is to select the decision d⋆ that maximizes
the gain respectively for each input xi given the current variational distribution:

d⋆ = argmax
d

Eθ∼q(θ)

∑
y′

u(y′, d) log p(y′|xi,θ). (5)

Notably, for symmetric utility functions (e.g., one-hot utility), Eq. 5 can be further simplified:
d⋆ = argmaxd Eθ∼q(θ) log p(d|x,θ), equivalent to the maximum of the predictive distribution.

However, during training, we essentially know that the optimal decisions for training
data are their true labels. Therefore, we can utilize this knowledge and simply set d(xi) = yi.
We can also view this as selecting the optimal decisions under a well-estimated q(θ) in Eq. 5
instead of the current distribution, since we expect d⋆ approach the true labels as q(θ) keeps
updating. Then the objective can be further simplified to be:

L(q) := L(q, d = y)

= E(xi,yi)∼ptrain(x,y)Eθ∼q(θ)
ptest(xi, yi)

ptrain(xi, yi)

log p(yi|xi,θ) +
∑
y′

u(y′, yi) log p(y
′|xi,θ)


−KL(q(θ)||p(θ)) + C.

(6)

During testing, we use Eq. 5 to select the decision for testing data xi.

4. Experiments

4.1. Experimental Settings

Datasets. We use three long-tailed image datasets. CIFAR-10-LT and CIFAR-100-LT (Cui
et al., 2019) are sampled from the original CIFAR dataset (Krizhevsky and Hinton, 2009).
ImageNet-LT (Liu et al., 2019b) is sampled from the the dataset of ILSVRC 2012 competi-
tion (Deng et al., 2009), and contains 115.8K images in 1,000 classes.

Evaluation. The evaluation protocol consists of standard classification accuracy, a newly
designed experiment on the False Head Rate (FHR), and calibration with predictive un-
certainty. Besides, we conduct several ablation studies to evaluate different choices of
implementation and the effectiveness of components in our method. For all quantitative and
visual results, we repeatedly run the experiments five times with random initialization to
obtain the averaged results and standard deviations to eliminate random error.

Compared Baselines. We compare our method (LBD) with cross entropy baseline, re-
balancing methods (CB Loss (Cui et al., 2019) and LDAM (Cao et al., 2019)), and ensemble
methods (RIDE (Wang et al., 2020) and TLC (Li et al., 2022)). The numbers of classifiers
in all ensemble models are set to be 3. We also compare the Bayesian predictive uncertainty
with other uncertainty algorithms (Appendix F.2). We use f(ny) = ny unless otherwise
specified. More implementation details are in Appendix E.
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4.2. Standard Classification

Classification accuracy is the most standard benchmark for long-tailed data, where the overall
accuracy (Table 1) and accuracies for three class regions (Appendix F.1) are evaluated. We
apply the one-hot utility to accord with standard accuracy metric. Our method consistently
outperforms all other compared methods in terms of overall accuracy. For regional accuracies,
our method achieves the best performances on all class regions in most cases. In particular,
our method significantly outperforms previous methods on the crucial tailed data, while
being comparable or even better on med and head classes. These results demonstrate the
effectiveness of taking a Bayesian-decision-theory perspective on the long-tailed problem.

4.3. Tail-sensitive Classification with False Head Rate

Table 1: Quantitative results of overall classifica-
tion accuracy (in percentage). Our method
(LBD) performs the best on all datasets.

Method CIFAR-10-LT CIFAR-100-LT ImageNet-LT
CE 73.65±0.39 38.82±0.52 47.80±0.15

CB Loss 77.62±0.69 42.24±0.41 51.70±0.25
LDAM 80.63±0.69 43.13±0.67 51.04±0.21
RIDE 83.11±0.52 48.99±0.44 54.32±0.54
TLC 79.70±0.65 48.75±0.16 55.03±0.34
LBD 83.75±0.17 50.24±0.70 55.73±0.17

Classifying tailed samples into head
classes would often induce negative conse-
quences in real-world applications. There-
fore, we are interested in quantifying how
likely it will happen, and further evalu-
ating the tail sensitivity of the compared
methods. Inspired by the false positive
rate, we define the False Head Rate (FHR)
as: FHR = TH/(TT + TH), where TH
is the number of samples that are labeled
as tail but predicted as head, and TT is
the number of samples that are labeled
and predicted as tail. We also consider different settings of tail region, and select the last
25%, 50% and 75% classes as tail. We apply the tail-sensitive utility in Fig. 1(b) to our
method. From Table 3, we observe significant improvements of LBD over previous methods
under all settings, especially on the relatively small CIFAR datasets, which means that the
“false head risk” is more severe on smaller datasets with scarce tailed samples. This shows
the importance of taking the decision loss into account and also demonstrates the flexibility
of our framework which is compatible with different utilities, leading to better performance
for different types of tasks.

5. Conclusion

In this paper, we propose Long-tailed Bayesian Decision (LBD), a principled framework
to solve long-tailed problems, with both theoretical explanation and strong empirical per-
formance. Based on Bayesian Decision Theory, LBD unifies data distribution, posterior
inference, and decision-making and further provides theoretical justification for existing
techniques such as re-balancing and ensemble. In LBD, we introduce the integrated risk as
the objective, find a tractable variational lower bound to optimize this objective, and apply
particle optimization to efficiently estimate the complex posterior. For the real-world scenario
with tail sensitivity risk, we design a tail-sensitive utility to pursue a better False Head Rate.
In experiments, our framework outperforms the current SOTA even on large-scale real-world
datasets like ImageNet.
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Appendix A. Decision Gain

As mentioned in the paper, we design the decision gain to be the following:

g(θ, d(x)) ∝ −l(θ, d(x)) :=
∏
y′

p(y′|x,θ)u(y
′,d(x)). (7)

Our design is different from previous work (Cobb et al., 2018), which uses

g(θ, d(x)) :=
∑
y′

p(y′|x,θ)u(y′, d(x)). (8)

Both definitions achieve the goal of averaging the utility over the label distribution p(y|x,θ).
However, our design has two advantages: i) Eq. 7 is more stable for training. After taking
the log, Eq. 7 becomes

∑
y′ u(y

′, d(x)) log p(y′|x,θ) which is a weighted average of the
logarithm of probabilities, while Eq. 8 becomes log

∑
y′ u(y

′, d(x))p(y′|x,θ), which is a
weighted average of the probabilities. ii) Eq. 7 allows for more general and flexible utility
functions whereas Eq. 8 requires utility u to be positive (otherwise we may not be able to
compute the logarithm of Eq. 8). Due to these reasons, we use Eq. 7 in this paper.

Appendix B. On Computation of Inference Step

B.1. Train-test Discrepancy

At the inference step, we exploit the importance sampling to convert p(Dtest) to p(Dtrain)
and obtain a discrepancy ratio ptest(x, y)/ptrain(x, y). Recall that in long-tailed distribution,
the training and testing data are semantically identical, and thus the model prediction
must be the same for an input regardless of being in the training or testing set (i.e.,
ptrain(y|x,θ) = ptest(y|x,θ)). Therefore, the discrepancy ratio can be further simplified by:

ptest(x, y)

ptrain(x, y)
=

ptest(y)ptest(x|y)
ptrain(y)ptrain(x|y)

=
ptest(y)

ptrain(y)
, (9)

which only depends on the class probabilities of training and testing data. Since we assume
a uniform distribution for the testing set in long-tailed data, the probability ptest(y) would
be a constant for all x, and thus the discrepancy ratio is equivalent to:

ptest(y)

ptrain(y)
∝ 1

ptrain(y)
∝ 1

f(ny)
, (10)

where f is an increasing function and ny refers to the number of samples in the class y. We
introduce the notation of f(ny) because the class probability only depend on the number of
samples in this class.

The choices of f can determine different strategies used by previous re-balancing methods
in long-tailed classification. For example, f(ny) = nγy is the most conventional choice with
a sensitivity factor γ to control the importance of head classes (Huang et al., 2016; Wang
et al., 2017; Pan et al., 2021); f(ny) = (1 − βny)/(1 − β) is the effective number which
considers data overlap (Cui et al., 2019). A detailed analysis on the choice of discrepancy
ratios will be conducted in Section F.3. Notably, our framework is compatible with all
previous re-balancing methods as long as they can be expressed in the form of 1/f(ny).
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B.2. Particle-based Variational Distribution

To pursue the efficiency of model architecture, we use particle optimization (Liu and
Wang, 2016; D’Angelo and Fortuin, 2021) to obtain the variational distribution: q(θ) =∑M

j=1wj · δ(θ − θj), where {wj}Mj=1 are normalized weights which hold
∑M

j=1wj = 1, and

δ(·) is the Dirac delta function. The “particles” {θj}Mj=1 are implemented by ensemble
model, which has been empirically explored on the long-tailed data (Wang et al., 2020;
Li et al., 2022). Our formulation gives theoretical justification to ensemble approaches in
long-tailed problems: Due to the scarcity of tailed data, there is not enough evidence to
support a single solution, leading to many equally good solutions (which give complementary
predictions) in the loss landscape. Thus, estimating the full posterior is essential to provide a
comprehensive characterization of the solution space. Particle optimization reduces the cost
of Bayesian inference and is more efficient than variational inference and Markov chain Monte
Carlo (MCMC), especially on high-dimensional and multimodal distributions. Besides, the
computational cost of our method can be further reduced by leveraging recent techniques,
such as partially being Bayesian in model architectures (Kristiadi et al., 2020).

B.3. Repulsive Regularization

In Eq. 3, the regularization term KL(q(θ)||p(θ)) guarantees the variational distribution to
approach the posterior as training proceeds. If we assume the prior p(θ) to be Gaussian,
the regularization can be extended to:

KL(q(θ)||p(θ)) = λ

∫
Θ

||θ||2 · q(θ)dθ +

∫
Θ

q(θ) log q(θ)dθ =
λ

M

M∑
j=1

||θj ||2 −H(θ), (11)

where λ is a constant, Θ is the parameter space, and H(θ) is the entropy of θ. The
L2-regularization prevents the model from over-fitting and the entropy term applies a
repulsive force to the particles to promote their diversity, pushing the particles to the target
posterior (D’Angelo and Fortuin, 2021). A simple approximation for the entropy is used in
this paper:

H(θ) ∝ 1

2
log |Σ̂θ|, (12)

where Σ̂θ is the covariance matrix estimated by those particles. Other entropy approximations
can also be used. By the technique of SWAG-diagonal covariance (Maddox et al., 2019), the

covariance matrix can then be directly computed by: Σ̂θ = diag(θ2 − θ
2
).

Overall, the regularization term is a combination of L2 weight decay and repulsive force,
and is computed by:

KL(q(θ)||p(θ)) ∝ λ

M

M∑
j=1

||θj ||2 −
1

2

∑
k

log (θ2 − θ
2
)k. (13)

Our regularization is different from existing diversity regularization (Wang et al., 2020), and
is more principled and naturally derived from the integrated gain.

In summary, our method, with principled design and theoretical justification, is essentially
cheap and easy to implement and can be used as a drop-in replacement for existing re-
balancing and ensemble methods in general long-tailed problems.
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Appendix C. Inference Step

Proof. We denote the training and testing sets as Dtrain = {Xtrain,Ytrain} and Dtest =
{Xtest,Ytest} respectively. The maximization objective would be:

logG(d) = logE(x,y)∼ptest(x,y)Eθ∼p(θ|Dtest)g(θ, d(x))

(a)

≥ E(x,y)∼ptest(x,y) logEθ∼p(θ|Dtest)g(θ, d(x))

= E(x,y)∼ptest(x,y) log

∫
Θ

q(θ)g(θ, d(x))
p(θ|Dtest)

q(θ)
dθ

(b)

≥ E(x,y)∼ptest(x,y)

∫
Θ

q(θ) log

[
g(θ, d(x))

p(θ|Dtest)

q(θ)

]
dθ.

(14)

Here, (a) and (b) are by Jensen’s inequality (Jensen, 1906). We will separately discuss the
components in RHS of Eq. 14 below. First, by importance sampling (Kloek and Van Dijk,
1978), the outer expectation over data distribution would be:

E(x,y)∼ptest(x,y)ψ(x, y) =

∫
D
ψ(x, y)ptest(x, y)d(x, y)

=

∫
D

ptest(x, y)

ptrain(x, y)
ψ(x, y)ptrain(x, y)d(x, y)

= E(x,y)∼ptrain(x,y)
ptest(x, y)

ptrain(x, y)
ψ(x, y),

(15)

where ψ(x, y) denotes any expression with respect to (x, y). Second, for the part inside the
integral, we have:∫

Θ

q(θ) log

[
g(θ, d(x))

p(θ|Dtest)

q(θ)

]
dθ

=

∫
Θ

q(θ) log

[
g(θ, d(x)) · p(θ)

q(θ)
· p(Ytest|Xtest,θ)

p(Ytest|Xtest)

]
dθ

=

∫
Θ

q(θ)

[
log g(θ, d(x))− log

q(θ)

p(θ)
+ log

∏
t

p(yt|xt,θ)− log p(Ytest|Xtest)

]
dθ

= Eθ∼q(θ) log g(θ, d(x))−KL(q(θ)||p(θ)) +
∑
t

Eθ∼q(θ) log p(yt|xt,θ)− log p(Ytest|Xtest)

= Eθ∼q(θ)

∑
y′

u(y′, d) log p(y′|x,θ)−KL(q(θ)||p(θ)) + E(x,y)∼p(Dtest)Eθ∼q(θ) log p(y|x,θ)

− log p(Ytest|Xtest).

(16)

Third, combining Eq. 15 and Eq. 16, we have:

logG(d) ≥ E(x,y)∼ptrain(x,y)Eθ∼q(θ)
ptest(x, y)

ptrain(x, y)

log p(y|x,θ) +∑
y′

u(y′, d) log p(y′|x,θ)


−KL(q(θ)||p(θ)) + C,

(17)

where C = − log p(Ytest|Xtest), as desired.
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Appendix D. Relationship between Variational Distribution and the
Testing Posterior

Proof. We show the relationship between q(θ) and p(θ|Dtest) by computing the KL divergence
between them:

KL(q(θ)||p(θ|Dtest)) =

∫
Θ

q(θ) log
q(θ)

p(θ|Xtest,Ytest)
dθ

=

∫
Θ

q(θ) log
q(θ)p(Ytest|Xtest)

p(θ)p(Ytest|Xtest,θ)
dθ

=

∫
Θ

q(θ)

[
log

q(θ)

p(θ)
−
∑
t

log p(yt|xt,θ) + log p(Ytest|Xtest)

]
dθ

= KL(q(θ)||p(θ))− E(x,y)∼ptest(x,y)Eθ∼q(θ) log p(y|x,θ) + log p(Ytest|Xtest)

(c)
= KL(q(θ)||p(θ))− E(x,y)∼ptrain(x,y)Eθ∼q(θ)

ptest(x, y)

ptrain(x, y)
log p(y|x,θ)− C.

(18)

Here, (c) is by importance sampling (see Eq. 15) and C = − log p(Ytest|Xtest).

Appendix E. Implementation Details

Due to practical reasons, we slightly modify the training objective of our framework in
experiments.

Table 2: Hyper-parameter configurations.

Dataset
Base
model

Optimizer
Batch
size

Learning
rate

Training
epochs

Discrepancy
ratio

λ τ α

CIFAR-10-LT ResNet32 SGD 128 0.1 200 linear 5e-4 40 0.002
CIFAR-100-LT ResNet32 SGD 128 0.1 200 linear 5e-4 40 0.3
ImageNet-LT ResNet50 SGD 256 0.1 100 linear 2e-4 20 50

Repulsive force. We find in experiments that although applying repulsive force can
promote the diversity of particles, it will certainly disturb the fine-tuning stage in training,
which consequently results in sub-optimal performances by the end of training. To address
this issue, we apply an annealing weight to the repulsive force to reduce its effect as the
training proceeds:

exp{−epoch/τ} · 1
2

∑
j

log (θ2 − θ
2
)j , (19)

where τ is a stride factor which controls the decay of annealing weight. With the annealing
weight, the repulsive force will push particles away at the beginning of training, and gradually
become negligible at the end of training.

Tail-sensitive utility. Although the tail-sensitive utility matrix in Fig. 1 is designed to
address the problem of classifying too many tailed samples into head classes, it will also
affect the accuracy of classification task. Therefore, the utility term in Eq. 3 needs re-scaling
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Table 3: Quantitative results of False Head Rates under three different tail ratios and their averaged
results. LBD consistently achieves the lowest rates under different scenarios.

D Method
FHR (%) @tail ratio ↓

25% 50% 75% avg

C
IF
A
R
-1
0
-L
T CE 21.10±0.43 37.87±0.57 48.75±1.39 35.91±0.54

CB Loss 14.84±0.93 27.98±1.44 33.93±1.60 25.58±1.27
LDAM 10.05±1.01 19.64±1.66 21.37±2.10 17.02±1.56
RIDE 8.94±0.66 17.80±1.39 19.77±3.20 15.50±1.68
TLC 10.42±0.64 20.27±0.77 22.24±1.53 17.64±0.93
LBD 4.99±0.32 11.76±0.29 11.01±1.28 9.25±0.49

C
IF
A
R
-1
0
0
-L
T CE 45.53±1.54 73.03±1.59 91.30±1.24 69.95±1.40

CB Loss 24.88±0.34 48.41±1.24 74.38±1.47 49.22±0.83
LDAM 21.22±0.99 43.04±1.18 65.62±1.31 43.29±1.04
RIDE 18.83±0.70 39.50±1.53 62.01±2.70 40.11±1.62
TLC 21.18±0.54 41.15±0.55 61.34±1.03 41.22±0.55
LBD 15.39±0.57 31.34±0.55 49.51±1.45 32.08±0.78

Im
ag
eN

et
-L
T CE 3.99±0.08 12.77±0.29 30.99±0.40 15.92±0.17

CB Loss 3.66±0.17 11.80±0.12 29.39±0.28 14.95±0.15
LDAM 4.17±0.19 12.73±0.28 29.90±0.41 15.60±0.21
RIDE 3.62±0.18 11.42±0.27 26.92±0.33 13.99±0.24
TLC 3.47±0.13 11.49±0.13 27.12±0.13 14.03±0.09
LBD 2.70±0.09 9.68±0.25 24.42±0.19 12.27±0.08

so that its negative effect on the accuracy is controllable:

log p(y|x,θ) + 1

α
·
∑
y′

u(y′, d) log p(y′|x,θ), (20)

where α is the scaling factor. We can adjust the value of α to carefully control the effect of
the tail-sensitive utility term, which will bring to us significant improvement on the False
Head Rate with acceptable accuracy drop.

Computational cost. The model architecture follows RIDE (Wang et al., 2020) and
TLC (Li et al., 2022), in which the first few layers in neural networks are shared among all
particles. Therefore, the computational cost of LBD is comparable to previous ensemble
models. Besides, compared with gradient-flow-based BNN like (D’Angelo and Fortuin, 2021),
which typically uses 20 particles, our model is far more efficient with no more than 5 particles.

Other settings and hyper-parameters are concluded in Table 2. We use stepwise decaying
learning rate and data augmentation for all compared baselines. The optimal values of those
hyper-parameters are determined by grid search. The code is publicly available1.
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Table 4: Quantitative results of classification accuracies on three class regions. LBD outperforms
previous methods in all class regions in most cases, especially on tailed data.

D Method
ACC (%) ↑

head med tail

C
IF
A
R
-1
0-
L
T CE 93.22±0.26 74.27±0.42 58.51±0.62

CB Loss 91.70±0.57 75.41±0.76 68.73±1.52
LDAM 90.03±0.47 75.88±0.81 77.14±1.61
RIDE 91.49±0.40 79.39±0.61 79.62±1.56
TLC 89.47±0.33 74.33±0.96 76.39±0.98
LBD 90.49±0.60 78.89±0.87 82.33±1.16

C
IF
A
R
-1
0
0-
L
T CE 68.30±0.61 38.39±0.49 10.62±1.23

CB Loss 62.53±0.44 44.36±0.96 20.50±0.51
LDAM 63.58±0.93 42.90±1.03 23.50±1.28
RIDE 69.11±0.54 49.70±0.59 28.78±1.52
TLC 69.43±0.36 49.02±0.94 28.40±0.72
LBD 69.92±0.77 51.07±0.82 30.34±1.49

Im
ag
eN

et
-L
T CE 53.46±0.36 45.92±0.19 44.03±0.24

CB Loss 57.62±0.46 49.19±0.21 48.29±0.41
LDAM 57.66±0.40 48.26±0.19 47.21±0.22
RIDE 60.88±0.71 51.35±0.44 50.74±0.62
TLC 61.19±0.53 52.35±0.31 51.56±0.35
LBD 62.18±0.28 53.06±0.22 51.98±0.40

Appendix F. Additional Experimental Results

F.1. Classification on Different Class Regions

Classes are equally split into three class regions (head, med and tail). For example, there
are 33, 33 and 34 classes respectively in the head, med and tail regions of CIFAR-100-LT.

F.2. Calibration

In our method, the predictive uncertainty can be naturally obtained by the entropy of
predictive distribution (Malinin and Gales, 2018). For the compared uncertainty algorithms,
MCP is a trivial baseline which obtains uncertainty scores from the maximum value of
softmax distribution, which is added to the RIDE (Wang et al., 2020) backbone; evidential
uncertainty is rooted in the subjective logic (Audun, 2018), and is introduced to long-
tailed classification by TLC (Li et al., 2022). We evaluate the uncertainty algorithms with
AUC (McClish, 1989) and ECE (Naeini et al., 2015), which are shown in Table 5. Our
Bayesian predictive uncertainty outperforms the other two counterparts and has a remarkable
advantage on the ECE metric, demonstrating the superiority of using principled Bayesian
uncertainty quantification.

1. https://github.com/lblaoke/LBD
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Table 5: Quantitative results of calibration of different uncertainty algorithms. LBD outperforms
previous methods remarkably on both metrics and all datasets.

Dataset Algorithm AUC (%) ↑ ECE (%) ↓

CIFAR-10-LT
MCP 79.98±0.10 14.33±0.37

evidential 83.20±0.59 13.24±0.55
Bayesian 86.83±0.68 9.84±0.17

CIFAR-100-LT
MCP 80.48±0.51 23.75±0.51

evidential 77.37±0.33 21.64±0.47
Bayesian 81.24±0.25 10.35±0.28

ImageNet-LT
MCP 84.02±0.24 18.35±0.12

evidential 81.45±0.13 15.29±0.12
Bayesian 84.45±0.09 8.72±0.13

Table 6: Ablation study on the choice of utility function, compared by False Head Rates and
classification accuracy on CIFAR-100-LT.

Utility
FHR (%) @tail ratio ↓

Better (%) ACC (%) ↑ Worse (%)
25% 50% 75% avg

one-hot 18.55±0.38 38.62±0.62 60.17±1.48 39.12±0.72
18.00

49.91±0.33
0.04

tail-sensitive 15.39±0.57 31.34±0.55 49.51±1.45 32.08±0.78 49.89±0.19

F.3. Ablation Studies

Utility Function. The effectiveness of tail-sensitive utility is shown in Table 6, where we
compare the one-hot and tail-sensitive utilities in terms of False Head Rate and classification
accuracy. By applying the tail-sensitive utility, the performances on False Head Rate can be
significantly improved (18.00%) with negligible drop on the classification accuracy (0.04%).

Train-test Discrepancy. We compare five different forms of discrepancy ratio in terms
of classification accuracy in Table 7 and Fig. 2. We also analyze the properties of the
compared discrepancy ratios. The differences of f(ny) show up when ny is large, and it
can be measured by the growth rate of weight values (i.e., 1/f(ny)) between the first and

Table 7: Ablation study on the choice of discrepancy ratio, compared by classification accuracies on
CIFAR-100-LT.

Discrepancy ratio
Weight value

ACC (%) ↑
first class last class growth (%)

linear (Wang et al., 2017)

f(ny) =

ny 0.0020 0.1667 8250 50.17±0.25

effective (Cui et al., 2019) 1−βny

1−β
0.0023 0.1669 7297 49.90±0.36

sqrt (Pan et al., 2021)
√
ny 0.0447 0.4082 814 47.03±0.30

log logny 0.1609 0.5581 247 45.26±0.51
plain constant 1.0000 1.0000 0 43.27±0.30
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Table 8: Ablation study on repulsive force, compared by uncertainty calibration on CIFAR-100-LT.

Repulsive
force

AUC (%) ↑ ECE (%) ↓ ACC (%) ↑

✓ 81.24±0.25 10.35±0.28 50.24±0.70
× 75.94±0.56 13.40±0.80 50.15±0.41
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Figure 2: Visual results of classification with respect to the choice of discrepancy ratio on CIFAR-
100-LT.

the last class. We find that as the growth rate becomes larger, the overall accuracy will be
better accordingly, which shows the severity of class imbalance.

For the classification accuracies of three class regions, Fig. 2 shows similar results on the
relationship between growth rate and the tail accuracy. As the growth rate becomes larger,
the tail and med ACC will both become significantly better despite the slight drop on head
ACC, which is consistent with the overall improvement. Based on these results, we suggest
using f(ny) = ny in general.

Repulsive Force. We evaluate the effectiveness of repulsive force in Table 8. The repulsive
force effectively pushes the particles to the target posterior and avoids collapsing into the
same solution. Therefore, with the repulsive force, better predictive distributions can be
learned, and thus better predictive uncertainty can be obtained. Besides, the repulsive force
can also improve the accuracy by promoting the diversity of particles.

Number of Particles. Generally, using more classifiers in ensembles will induce better
performances. However, we also need to balance the performance with the computational
cost. We visualize the classification accuracies under different numbers of particles in
Fig. 3. The error bars are scaled to be 2σ, where σ is the standard deviation from repeated
experiments. The accuracy curves are all logarithm-like and the accuracy improvement is
hardly noticeable for more than six particles. However, the computational cost is increasing
in a linear speed. Therefore, we recommend using no more than six particles in practice for
a desirable performance-cost trade-off.
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Figure 3: Visual results of classification with respect to the number of particles on CIFAR-100-LT.

Appendix G. Related Works

Long-tailed Classification. To overcome long-tailed class distributions, over-sampling (Han
et al., 2005) uses generated data to compensate the tailed classes, under-sampling (Liu et al.,
2008) splits the imbalanced dataset into multiple balanced subsets, and data augmenta-
tion (Chu et al., 2020; Kim et al., 2020; Liu et al., 2020) introduces random noise to promote
model’s robustness. Recent advances focus on improving training loss functions and model
architectures. For example, re-weighting methods (Cao et al., 2019; Cui et al., 2019; Lin
et al., 2017; Menon et al., 2020; Wu et al., 2020; Mahajan et al., 2018) adjust the loss function
by class probabilities in the training data, OLTR (Liu et al., 2019b) transfers the knowledge
learned from head classes to the learning of tailed classes, LFME (Xiang et al., 2020) uses
multiple teacher models to learn relatively balanced subsets of training data, RIDE (Wang
et al., 2020) develops a multi-expert framework to promote the overall performances with
ensemble model, and TLC (Li et al., 2022) exploits the evidential uncertainty to optimize
the multi-expert framework. Besides, SRepr (Nam et al., 2023) explores Gaussian noise in
stochastic weight averaging to obtain stochastic representation, and SADE (Zhang et al.,
2022) considers the case of non-uniform testing distributions in long-tailed problems. These
methods are largely designed based on empirical heuristics, and thus their performances are
not explainable and guaranteed. In contrast, our method is rooted in Bayesian principle and
decision theory, inheriting their theoretical guarantees and explanation.

Bayesian Decision Theory. Bayesian Decision Theory is introduced in Robert et al.
(2007); Berger (1985). It provides a bridge which connects posterior inference, decision, and
data distribution. Loss-calibrated EM (Lacoste-Julien et al., 2011) exploits the posterior
risk (Schervish, 2012) to simultaneously consider inference and decision. Cobb et al. (2018)
further extends this method using dropout-based Bayesian neural networks. Loss-EP (Morais
and Pillow, 2022) applies the technique of loss calibration in expectation propagation. Post-
hoc Loss-calibration (Vadera et al., 2021) develop an inference-agnostic way to learn the
high-utility decisions. These methods all use the notion of utility to represent their prior
knowledge about the application-related risks, and exploit the posterior risk. While they
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show great advantages in some applications, none of them consider the data distribution,
which prevents their applications on long-tailed data. Our method overcomes this limitation
by introducing the integrated risk, which unifies data distributions, inference, and decision-
making.

Ensemble and Particle Optimization. Ensemble models combine several individual
deep models to obtain better generalization performances (Lakshminarayanan et al., 2017;
Ganaie et al., 2021), which is inspired by the observation that multiple i.i.d. initializations
are less likely to generate averagely “bad” models (Dietterich, 2000). Ensemble models
can also be used to approximate the posterior with the technique of particle optimization,
which is first studied in Stein variational gradient descent (SVGD, Liu and Wang (2016))
and then explored by Liu et al. (2019a); Korba et al. (2020); D’Angelo and Fortuin (2020).
Liu (2017) analyzes SVGD in a gradient-flow perspective. Wang et al. (2018) performs the
particle optimization directly in the function space. Chen et al. (2018); Liu et al. (2018)
put the particle optimization in the 2-Wasserstein space. D’Angelo and Fortuin (2021)
implements particles by introducing a repulsive force in the gradient flow. Instead of directly
modeling the gradient flow, our framework optimizes the particles through stochastic gradient
descent (SGD, Bottou (1998)), with repulsive force induced by the integrated risk objective.
Compared to existing particle optimization, our method is easy and cheap to implement,
which is especially beneficial for large deep models.

Appendix H. Future Directions

Our method is simple to use in general long-tailed problems, providing superior accuracy on
all types of classes and uncertainty estimation. We believe there is considerable space for
future developments that build upon our method and we list a few below:

Long-tailed Regression. Long-tail problem also exists in regression, where the distribu-
tion of targets can be heavily imbalanced. With some adjustments on the decision gain, our
framework might also be adapted to regression.

Utility Function. Beyond long-tailed classification, there are other tasks which also need
specific utility functions. For example, we might have to separately deal with the relationship
between categories due to their semantic connections. In this case, all of the values in the
utility matrix will need re-calculating.

Dataset Shift. In more general dataset shift scenarios like out-of-distribution data, the
assumption about semantically identical training and testing sets will be no longer valid.
Another example is about the distribution of testing data. If it is assumed to be not uniform,
the discrepancy ratio ptest(y)/ptrain(y) will no longer be expressed in the form 1/f(ny), but
a more general form.
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