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Abstract

Text watermarking has emerged as an impor-001
tant technique for detecting machine-generated002
text. However, existing methods generally use003
arbitrary vocabulary partitioning during decod-004
ing, which results in the absence of appropri-005
ate words during the response generation and006
disrupts the language model’s expressiveness,007
thus severely degrading the quality of text re-008
sponse. To address these issues, we introduce009
a novel approach, Watermarking with Mutual010
Exclusion (WatME). Specifically, by leverag-011
ing linguistic prior knowledge of inherent lex-012
ical redundancy, WatME can dynamically op-013
timize the usage of available vocabulary dur-014
ing the decoding process of language models.015
It employs a mutually exclusive rule to man-016
age this redundancy, avoiding situations where017
appropriate words are unavailable and main-018
taining the expressive power of large language019
models (LLMs). We present theoretical analy-020
sis and empirical evidence demonstrating that021
WatME substantially preserves the text genera-022
tion ability of LLMs while maintaining water-023
mark detectability. Specifically, we investigate024
watermarking’s impact on the emergent abili-025
ties of LLMs, including knowledge recall and026
logical reasoning. Our comprehensive exper-027
iments confirm that WatME consistently out-028
performs existing methods in retaining these029
crucial capabilities of LLMs. Our code will030
be released to facilitate future research via031
https://github.com/anonymous.032

1 Introduction033

The advent of large language models (Ouyang034

et al., 2022; OpenAI, 2023a) with human-level035

generative capabilities presents tremendous op-036

portunities across diverse domains. However,037

their ability to synthesize high-quality text also038

raises widespread concerns about potential mis-039

use, including the dissemination of misinformation040

(Zellers et al., 2019) and the facilitation of aca-041

demic dishonesty (Stokel-Walker, 2022). This042

Figure 1: An illustration of WatME’s advantage for loss-
less watermarking. The left panel depicts a vanilla LM
with all words available during generation. The middle
panel exposes the flaw in vanilla watermarking, which
may assign all suitable tokens (e.g., ’ocean’ and ’sea’)
to the red list, diminishing text quality. The right panel
underlines how WatME exploits lexical redundancy by
applying a mutual exclusion rule between such words,
ensuring at least one suitable word remains on the green
list, thereby improving text quality.

necessitates developing techniques to reliably at- 043

tribute generated text to AI systems. 044

Existing approaches typically fall into two main 045

paradigms. The first type attempts to distinguish 046

machine-generated text by hunting for inductive 047

statistical or linguistic patterns (Gehrmann et al., 048

2019; Mitchell et al., 2023; Zellers et al., 2019; 049

OpenAI, 2023b), employing methods that span 050

from basic manual feature engineering to the in- 051

tricate training of complex classifiers. However, 052

as generative models continue improving, their 053

outputs increasingly resemble the pattern of hu- 054

man writing, rendering statistical detectors inef- 055

fective (Dou et al., 2022; Sadasivan et al., 2023; 056

Chakraborty et al., 2023). The second paradigm 057

promotes a more proactive approach, advocating 058

for direct intervention in the generative process 059
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to actively watermark model outputs (Kirchen-060

bauer et al., 2023; Christ et al., 2023; Zhao et al.,061

2023). This strategy embeds identifiable finger-062

prints within machine-generated text, enabling063

provenance verification. As LLMs’ capabilities064

continue to grow, this approach is more effective065

in detecting LLM-generated text (Sadasivan et al.,066

2023). However, introducing watermarks during067

text generation can significantly impact output qual-068

ity, which has been a consistent challenge for model069

developers - how to effectively watermark while070

preserving text quality.071

Recent studies have attempted to improve text072

quality by ensuring unbiased output distributions073

in watermarking (Kuditipudi et al., 2023; Hu et al.,074

2024), while employing pseudorandomness-guided075

perturbations or reweighting to adjust the original076

output distributions of LLMs. However, an unbi-077

ased distribution in expectation does not guarantee078

high text quality, and the use of these techniques079

reduces the effectiveness of watermark detection,080

especially in models that have undergone alignment081

training (Kuditipudi et al., 2023), thereby diminish-082

ing the practical utility of these methods.083

In this paper, we introduce a novel approach to084

text watermarking by leveraging engineered lexi-085

cal redundancy during the decoding phase of lan-086

guage generation. Our method utilizes the com-087

prehensive set of tokens available to a language088

model, clustering them based on overlapping se-089

mantic or syntactic functionalities to create sets090

of interchangeable tokens. This process simulates091

redundancy within the lexical space, akin to the092

surplus pixels in images that facilitate watermark-093

ing in multimodal data (Nikolaidis and Pitas, 1999;094

Samuel and Penzhorn, 2004). The motivation for095

this strategy arises from the challenge of applying096

traditional watermarking techniques to textual data.097

In contrast to the inherent redundancy found in098

images, the discrete and succinct nature of textual099

data offers little to no native redundancy, making100

it challenging to exploit redundancy in the textual101

space (Zhou et al., 2021; He et al., 2022). By en-102

gineering lexical redundancy, our method not only103

surmounts the limitations imposed by the inherent104

properties of natural language but also paves the105

way for secure and efficient text watermarking.106

After exploring these redundancies, we exploit107

them via our novel algorithm, WatME, which en-108

hances text quality by integrating a mutual exclu-109

sivity rule within the context of lexical redundancy110

during the watermarking process. Specifically, 111

WatME refines the decoding process by explicitly 112

assigning words within each redundant cluster to 113

distinct ’green’ or ’red’ teams, ensuring that no sin- 114

gle cluster is wholly allocated to one team. Our 115

approach confers two main advantages: (1) it en- 116

ables the ’green’ team to capture a broader array 117

of semantics, thereby boosting the model’s expres- 118

sive power; and (2) it increases the probability that 119

the LLM selects the most appropriate word at each 120

decoding step, e.g., in Figure 1, vanilla watermark- 121

ing can assign all suitable words to the ’red’ list, 122

thus severely impairing performance. In contrast, 123

our approach guarantees the presence of at least 124

one appropriate word, thus preserving the model’s 125

expressiveness. Building on these methodologi- 126

cal advances, extensive theoretical and empirical 127

evidence supports their effectiveness without com- 128

promising detection capabilities. These improve- 129

ments significantly bolster the emergent abilities 130

of large models under watermarks, surpassing the 131

performance of baseline methods. 132

Our main contributions are as follows: 133

• Motivated by multimedia data’s inherent redun- 134

dancy and the precise conciseness of text, we 135

propose two distinct approaches for mining lexi- 136

cal redundancy. 137

• We develop the WatME algorithm, which em- 138

beds mutual exclusion rules within the lexical 139

space for text watermarking. Theoretical anal- 140

ysis is presented to validate its effectiveness in 141

preserving the quality of text responses. 142

• Experimental results show that WatME effec- 143

tively outperforms existing methods in retain- 144

ing the emergent capabilities of LLMs, notably 145

knowledge recall and logical reasoning, within 146

the conceptual framework of Cattell’s cognitive 147

theory, without compromising detectability. 148

2 Related Work 149

Early works on AI-generated text detection develop 150

post-hoc detection methods to analyze machine- 151

generated text by treating the problem as a binary 152

classification task (OpenAI, 2019; Jawahar et al., 153

2020; Mitchell et al., 2023). For instance, Ope- 154

nAI has fine-tuned RoBERTa (Liu et al., 2019) to 155

distinguish between human and GPT-2 generated 156

texts (OpenAI, 2019). However, existing detectors 157

are found to be fragile against adversarial attacks 158

(Wolff, 2020) and biased towards non-native En- 159

glish writers (Liang et al., 2023). Moreover, as 160
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LLMs continue to advance, their generated outputs161

more closely resemble human-written text, render-162

ing these methods progressively less effective.163

On the other side, watermarking, traditionally164

a copyright marking method (Adi et al., 2018;165

Rouhani et al., 2018), involves developers, users,166

and regulatory entities. Developers choose an al-167

gorithm to subtly embed hidden modifications into168

data, which can be altered during user transmission.169

Regulatory bodies can later extract this information170

to trace and regulate AI-generated content (Atal-171

lah et al., 2001; Wilson et al., 2014; Hacker et al.,172

2023). In the context of natural languages, water-173

marking typically involves modifying content or174

structure. For example, rule-based methods (Stefan175

et al., 2000) or carefully designed neural encoders176

(Yang et al., 2022; Ueoka et al., 2021) encrypt mes-177

sages into text, which are then extracted using the178

corresponding rules and neural decoder. The dis-179

crete nature of natural language, however, presents180

a considerable challenge to this approach, as mod-181

ifications can unintentionally degrade text quality182

or alter its intended meaning.183

For the detection of LLM-generated texts, a pi-184

oneering watermarking technique (Kirchenbauer185

et al., 2023) partitions tokens into ’green’ and ’red’186

lists, biases output distribution towards ’green’ to-187

kens, and creates patterns that are detectable yet im-188

perceptible to humans. Nevertheless, while yield-189

ing promising detection results, these methods may190

still degrade textual quality and be vulnerable to191

the paraphrase attack. Current efforts (Christ et al.,192

2023; Fernandez et al., 2023; Zhao et al., 2023) in193

this field aim to develop more robust watermarking194

methods capable of defending various user attacks.195

Apart from improving robustness, a few studies196

have recognized the importance of enhancing the197

quality of text produced by watermarked LLMs.198

(Kuditipudi et al., 2023) utilizes Gumbel softmax199

to incorporate pseudorandomness-based random-200

ness into the output distribution of language mod-201

els. While this technique alters the probability202

distribution, the Gumbel softmax ensures that the203

expected distribution remains approximately un-204

changed, thus rendering the watermarking process205

unbiased. Recent work (Hu et al., 2024) also shares206

a similar philosophy of employing reweighting207

technology for unbiased output distribution trans-208

formations, preserving the expected distribution209

unbiased. However, unbiased distribution can not210

guarantee unaffected text quality. Furthermore,211

these methodologies have shown a marked de- 212

crease in detection performance, particularly for 213

aligned LLMs (Kuditipudi et al., 2023). Address- 214

ing these shortcomings, our research introduces a 215

novel paradigm that exploits the intrinsic redun- 216

dancy in the text generation process of LLMs to 217

create more lossless watermarks, with a special 218

emphasis on LLMs’ emergent capabilities, thereby 219

offering a watermarking solution that is both loss- 220

less and consistently detectable. 221

3 Method 222

In this section, we begin by providing a summary 223

of the preliminaries related to text watermarking. 224

Subsequently, we delve into an investigation of 225

redundancy in the lexical space and demonstrate 226

how this redundancy can be leveraged to develop a 227

watermark algorithm that achieves a higher degree 228

of losslessness for large language models. Finally, 229

we employ mathematical analysis to elucidate the 230

benefits of our proposed method. 231

3.1 Preliminary 232

The watermarking process is composed of two fun- 233

damental procedures: watermark encoding and wa- 234

termark detection. The encoding procedure is car- 235

ried out by developers to insert a watermark into an 236

output natural language sequence y, generated by a 237

LLM M for a given prompt x. While the detection 238

procedure, performed by regulators, involves the 239

extraction and identification of the watermark from 240

the sequence y for the purpose of monitoring the 241

output from model M. The algorithms that detail 242

these procedures are described in the Appendix A. 243

The watermark encoding process is guided by 244

two parameters: γ and δ. At each decoding step t, 245

it uses a hash key, which could be the index of the 246

previous token, to partition the vocabulary V into 247

two subsets: a green list Gt which encourages us- 248

age, and a red list Rt which discourages usage. The 249

parameter γ determines the size of the green list, 250

while δ specifies the degree of encouragement for 251

the green list, the increase in current logits ℓt before 252

performing softmax, as Eq.1. As δ rises, the water- 253

mark becomes more detectable in the subsequent 254

detection process, but it may also compromise the 255

quality of the generation. In real-world regulatory 256

scenarios, where high detectability is required, a 257

large δ value is generally preferred. 258

ℓ̂t[i] := ℓt[i] + δ, i ∈ Gt

p̂t = softmax(ℓ̂t)
(1) 259
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The watermark detection process counts the260

number of green list tokens within y, denoted by261

|y|G, using Eq.2. This process begins with the262

null hypothesis H0: The text sequence is gener-263

ated without adherence to the green list rule. A264

z-statistic is then computed by Eq.3. If the z-score265

surpasses a pre-specified threshold, the null hypoth-266

esis is rejected, and the watermark is identified.267

|y|G =
∑n

t=1
1(yt ∈ Gt), (2)268

zy = (|y|G − γ|V|) /
√

|V|γ(1− γ). (3)269

3.2 Explore the Redundancy in Lexical Space270

Concept of Lexical Redundancy Inspired by the271

success of image watermarking, we hypothesize272

that identifying redundancy within data can enable273

watermarking that doesn’t compromise text qual-274

ity. We thus explore the same opportunities within275

textual data, a challenging task given the discrete276

nature of natural language.277

To address this challenge, we introduce a related278

concept in NLP: lexical redundancy. This phe-279

nomenon arises during text generation when the280

most appropriate word is selected from a large, pre-281

constructed vocabulary. Often, this vast vocabulary282

includes numerous words with similar semantic283

and syntactic functions — a feature that makes284

these words interchangeable, thereby resulting in285

the inherent redundancy in the lexical space.286

Our interest in exploring lexical redundancy is287

grounded in the understanding that interchangeable288

synonyms, even when used in varied contexts, can289

deliver similar or identical semantic or syntactic290

functions. This insight assists in preserving the291

quality of text generation through an optimized292

watermark encoding method. For instance, if a suit-293

able word is allocated to the red list, while its syn-294

onym is placed in the green list, then the language295

model can still express the intended semantics or296

accomplish the necessary syntactic functions. This297

understanding forms the primary motivation for298

investigating lexical redundancy.299

Constructing Redundant Lexical Clusters To300

this end, we now focus on the construction of lex-301

ical redundancy. This process involves automati-302

cally grouping tokens—each with similar semantic303

or syntactic functions—from the language model’s304

vocabulary into clusters. Each cluster, made up of305

interchangeable tokens, is designed to express a306

specific semantic or syntactic unit.307

To obtain high-quality redundant lexical clusters,308

we propose the following two different methods:309

the dictionary-based method, and the prompting- 310

based method: 311

• Dictionary-Based Method: Utilize external dic- 312

tionaries, such as WordNet (Miller, 1992) and 313

Youdao Dictionary, to discover synonyms within 314

the vocabulary. These synonyms often can be 315

substituted for each other, although there are in- 316

evitably some cases where they cannot be in- 317

terchanged due to polysemy. This method is 318

beneficial for exploiting established synonym re- 319

lationships but is limited to complete words due 320

to its dependency on external resources. 321

• Prompting-based Method: We prompt large 322

language models, such as LLaMA2 (Touvron 323

et al., 2023), to infer synonyms for a given to- 324

ken by utilizing in-context learning techniques 325

(Brown et al., 2020a), with the demonstrations be- 326

ing annotated manually by us. Detailed prompts 327

are deferred to Appendix B. 328

To acquire higher-quality clusters with fully in- 329

terchangeable tokens, we employed two strategies 330

during the mining process: 331

Handling Subword Tokenization Subword to- 332

kenization blends word and character-based ap- 333

proaches (Sennrich et al., 2016; Schuster and Naka- 334

jima, 2012; Kudo and Richardson, 2018), chal- 335

lenges the mining of redundant lexical clusters in 336

neural text processing. This technique typically re- 337

tains common words as full units and decomposes 338

rare words into subunits. Our research mitigates 339

these challenges by concentrating on intact, fre- 340

quently used words during preprocessing, thereby 341

diminishing noise and simplifying the algorithm. 342

Incorporating Grammatical Factors In the con- 343

text of English, the identification of interchange- 344

able words demands consideration of grammatical 345

factors—tense, voice, and number—alongside se- 346

mantic similarity. For instance, ’car’ and ’vehicles’ 347

differ in number, affecting interchangeability. Our 348

method addresses these issues by implementing 349

a rule set that screens for grammatical inconsis- 350

tencies, ensuring the generation of coherent and 351

high-quality lexical clusters for subsequent use. 352

These strategies yield lexical clusters, with each 353

row in Figure 1’s bottom right panel representing a 354

cluster of interchangeable tokens. Cluster quality 355

is manually evaluated in Section 6.1. 356

3.3 WatME: Exploit the Lexical Redundancy 357

Having constructed redundant clusters within the 358

lexical space, we now turn to exploit these for a 359

lossless watermark algorithm. 360
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To facilitate the description of our algorithm,361

we provide some definitions: A subset S ⊆ V362

is defined within the vocabulary V of a language363

model M. This subset specifically comprises com-364

plete tokens that share synonyms within the vocab-365

ulary. We then denote a collection of redundant366

lexical clusters we mined as C = {Ci | i = 1..n}367

such that
⋃n

i=1Ci = S. Each cluster, Ci, is rep-368

resented as a token collection Ci = {sij | j =369

1..mi, sij ∈ S} for i = 1..n, and any pair of to-370

kens sij , sik ∈ Ci are interchangeable. We propose371

to implement our understanding of lossless wa-372

termarks by introducing a mutual exclusion rule373

building on the identified lexical clusters: inter-374

changeable tokens are mutually exclusive during375

partitioning. In other words, if a fraction of to-376

kens A, representing a certain semantic or syntac-377

tic function, is assigned to the red list, then their378

remaining synonyms B should be placed on the379

green list, and vice versa.380

We then detail the WatME encoding process,381

outlined in Alg. 1, which employs a two-step par-382

titioning process to form a green and red list. The383

first partition occurs within the redundant lexical384

clusters C that we have identified within S, while385

the second takes place among the remaining part386

in the vocabulary denoted as V \ S. We use γ to387

determine the number of tokens from the mined388

clusters that are allocated to the green list G′
t in389

the first partition. The remaining tokens, based on390

the principle of mutual exclusivity, are assigned to391

the red team R′
t. The second partition continues392

to allocate words to the green list Gt from the re-393

maining vocabulary until the combined size of the394

green teams from both steps reaches the predefined395

limit, γ. The rest of the process follows the steps396

outlined in the vanilla watemarking of Alg. 2.397

The WatME detection algorithm is unchanged,398

except the green list calculation now uses Alg. 2.399

3.4 Theoretical Analysis400

We provide a mathematical analysis demonstrating401

how WatME outperforms the conventional method,402

focusing on the ’green’ team’s expressiveness and403

the probability of high-quality sampling.404

Definition 3.1 (Semantic Entropy) Let V repre-405

sent the vocabulary of a language model. We define406

the semantic entropy of V , denoted by Hsem(V),407

as the entropy of the semantic distribution across408

V . This entropy quantifies the diversity and rich-409

ness of meanings expressible by V . Consequently,410

Algorithm 1 WatME Encoding
Input: prompt x1 · · ·xm, green list size γ ∈ (0, 1), water-
mark strength δ > 0.
for t = 0, 1, · · · , T − 1 do

1. Get the logit ℓt ∈ R|V| from M.

2. Use seed from the last token, split each cluster Ci

in parallel into green list G′
it (of size |Ci|γ) and

red list R′
it (of size (1−γ)|Ci|) . Let G′

t = ∪iG
′
it

and R′
t = ∪iR

′
it.

3. Partition the remaining part V \ S into a green list
Gt of size γ|V | − |G′

t| and a red list Rt of size
(1− γ)|V | − |R′

t|.
4. Merge lists from the previous two steps: Gt =

Gt ∪G′
t and Rt = Rt ∪R′

t.

5. Add δ to the elements of logit ℓt corresponding to
the green list, then softmax.

p̂t = softmax(ℓt[i] + δ), i ∈ Gt

6. Sample the next token yt+1 from p̂t.
end for
Output: watermarked text y1 · · · yT .

a higher value of Hsem(V) signifies a vocabulary 411

with greater semantic richness. 412

Definition 3.2 (Intrinsic Expressiveness) It is 413

assumed that a language model M, with a vocab- 414

ulary V characterized by high semantic entropy 415

as indicated by Hsem(V), possesses an enhanced 416

intrinsic expressive capacity. This capacity is 417

unaffected by the output distribution of M and 418

is due to the extensive semantic capabilities of V , 419

which endow M with the potential for stronger 420

expressive abilities. 421

Assumption 3.3 We consider practical scenarios 422

that require high detectability, and thus a large 423

value of δ. In such a strong watermarking scenario, 424

tokens from the green list are more probable to be 425

used than those from the red list. 426

Note: Assumption 3.3 establishes the founda- 427

tional premise of text watermarking’s effectiveness. 428

Building upon the Definitions and Assumption, 429

we derive the following theorem. 430

Theorem 3.4 Consider that pt ∈ R|V| represents 431

the predicted distribution of the model M at de- 432

coding time t. Let wi denote the token with the ith 433

highest probability in pt. The higher the rank of 434

a token (i.e., the smaller i is), the more suitable it 435

is to be selected. Under the conditions of Assump- 436

tion 3.3, the WatME watermarking method is more 437

likely to select a suitable token compared to the 438

vanilla watermarking method. 439

Theorem 3.5 Given a fixed proportion γ of the 440

green team, the expressive power of a language 441
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model M employing the WatME exceeds that of442

one utilizing a vanilla watermarking approach.443

These theorems highlight two advantages of444

WatME; their proofs are in the Appendix C.445

4 Impact on Emergent Abilities446

The majority of research on text watermarking uti-447

lizes the C4 dataset (Dodge et al., 2021) as a basis448

for testing perplexity (PPL). However, watermark-449

ing not only impacts the fluency of text generation450

but also holds the potential to influence LLMs on451

a broader scale, such as emergent abilities. These452

unique abilities intrinsic to LLMs garner significant453

interest from users and stimulate curiosity within454

the research community. However, they are often455

overlooked in the field of text watermarking.456

Although a consensus definition is lacking, emer-457

gent abilities are typically characterized in many458

studies (Brown et al., 2020b; Wei et al., 2022; Yu459

et al., 2023) as a model’s capacity to perform spe-460

cific tasks without training. In light of this, we461

propose to test and compare the performance of462

WatME and Vanilla watermark algorithms on dif-463

ferent tasks using prompting technologies.464

To comprehensively test the impact of water-465

marking on these abilities, we attempt to catego-466

rize it into different scenarios for a more exhaus-467

tive examination. Specifically, we draw upon Cat-468

tell’s cognitive theory (Cattell, 1963), which bifur-469

cates intelligence into crystallized and fluid intel-470

ligence. Crystallized intelligence corresponds to471

the model’s utilization of learned knowledge and472

experience, while fluid intelligence involves logical473

thinking and solving problems. Correspondingly,474

we propose to examine crystallized intelligence475

through an assessment of the model’s knowledge476

capabilities, and fluid intelligence through its abil-477

ity to reason and solve mathematical problems.478

Knowledge Capability. To evaluate the model’s479

mastery of world knowledge, we employ Truth-480

fulQA (Lin et al., 2022), a benchmark designed to481

test if LLMs can generate truthful and informative482

answers. We select the generation setting.483

Reasoning Capability. We employ the GSM8K484

dataset to assess the model’s chain-of-thought rea-485

soning. Comprising 8K arithmetic and math prob-486

lems, it provides a platform for evaluating rea-487

soning performance. Aligned with the CoT Hub488

prompt (Fu et al., 2023), our evaluations include489

few-shot scenarios that prompt the model to demon-490

strate reasoning and generate thought chains.491

5 Experiments 492

5.1 Experimental Setups 493

Evaluation Metrics To evaluate detection perfor- 494

mance, following previous work, we use the Area 495

Under the Receiver Operating Characteristic curve 496

(AUROC), a well-established metric for binary clas- 497

sifiers. For mathematical reasoning tasks, we use 498

Accuracy to assess the correctness of the model’s 499

solutions. In our evaluation of the TruthfulQA 500

dataset, following Lin et al. (2022), we use the 501

trained GPT-Truth and GPT-Info scorers, assessing 502

the model’s capacity to generate both truthful and 503

informative responses. Given the potential trade- 504

off between these two perspectives, the product of 505

Truth and Information (Truth.*Info.) is commonly 506

used as an overall measure of performance. On the 507

C4 dataset, we report Perplexity (PPL). 508

Baselines We compared our model with four es- 509

tablished baselines. First, KGW-Mark (Kirchen- 510

bauer et al., 2023), which categorizes teams into 511

’red’ and ’green’ to facilitate detection. Second, 512

Gumbel-Mark (Kuditipudi et al., 2023), which em- 513

ploys a Gumbel-Softmax distribution to introduce 514

stochasticity into the watermarking process. Third, 515

Unbiased-Mark (Hu et al., 2024), which imple- 516

ments reweighting techniques to maintain the ex- 517

pected output distribution of the LLM during water- 518

marking. Lastly, Provable-Mark (Zhao et al., 2023), 519

which uses a fixed hash key during watermarking 520

to achieve provably better performance. 521

Models We utilized two distinct types of LLMs 522

for experimentation: the non-aligned Llama2 523

model (Touvron et al., 2023), and the aligned Vi- 524

cuna v1.5 model (Chiang et al., 2023). The ma- 525

jority of the results reported in this paper were 526

obtained using the 7B version of the models. 527

Further setup details are in Appendix E. 528

5.2 Main Results 529

Greater Impact on Emergent Abilities than Flu- 530

ency The experimental evidence suggests that 531

watermarking notably hinders the emergent abili- 532

ties of LLMs much more than fluency (see Table 1). 533

Specifically, the non-aligned Llama2 model experi- 534

enced a decline in performance exceeding 50% on 535

both the GSM8K and TruthfulQA benchmarks. In 536

contrast, the aligned model, Vicuna, demonstrated 537

relative resilience but still incurred performance 538

reductions greater than 20% on these benchmarks. 539

This demonstrates the adverse impact of Vanilla 540

Watermarking on the knowledge and reasoning 541
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Model GSM8K TruthfulQA C4

Acc. AUROC True. Info. True.*Info. AUROC PPL AUROC

LLAMA2-7B 11.22 - 95.10 92.78 88.23 - 4.77 -

+ KGW-MARK 5.61−50.0% 0.8886 57.16−39.9% 84.33−9.1% 48.20−45.4% 0.8416 7.00 0.9724
+ GUMBEL-MARK 7.28−35.1% 0.9121 45.90−51.7% 92.78−0.0% 42.59−51.7% 0.4931 39.93 0.9422
+ UNBIASED-MARK 10.24−8.7% 0.5478 44.06−53.7% 93.76+1.1% 41.43−53.0% 0.5051 15.62 0.5451
+ PROVABLE-MARK 5.16−54.01% 0.9052 64.14−32.6% 91.68−1.2% 58.80−33.4% 0.9555 10.21 0.9623

+ WATMEdictionary 9.17−18.3% 0.8995 69.28−27.2% 88.25−4.9% 61.14−30.7% 0.8848 5.32 0.9804
+ WATMEprompting 5.84−48.0% 0.9128 55.83−41.3% 95.10+2.5% 50.39−42.9% 0.8659 6.89 0.9724

VICUNA-V1.5-7B 17.51 - 93.88 87.27 81.92 - 10.77 -

+ KGW-MARK 13.87−20.8% 0.7870 74.05−21.1% 87.52+0.3% 64.81−20.1% 0.7417 11.62 0.9679
+ GUMBEL-MARK 9.02−48.5% 0.7077 68.30−27.2% 87.27−0.0% 59.61−27.2% 0.4647 48.93 0.8617
+ UNBIASED-MARK 17.89+2.2% 0.5508 70.38−25.0% 88.86+1.8% 62.54−23.7% 0.4855 19.93 0.5000
+ PROVABLE-MARK 12.21−30.27% 0.8020 74.42−20.7% 96.70+10.8% 71.96−12.2% 0.8796 10.21 0.9582

+ WATMEdictionary 14.78−15.6% 0.8044 78.95−15.9% 97.43+11.6% 76.92−6.1% 0.7897 10.96 0.9582
+ WATMEprompting 16.22−7.4% 0.7843 69.65−25.8% 97.45−11.5% 67.87−17.2% 0.7396 11.54 0.9519

Table 1: Performance comparison of Llama2-7B and Vicuna-v1.5-7B under different watermarking algorithms.

capabilities of LLMs, with reasoning showing a542

marginally greater susceptibility.543

Superiority of WatME over baselines in Preserv-544

ing Emergent Abilities Across all models and545

benchmarks, the WatME consistently outperformed546

baseline watermarking methods. For the Llama2547

model, WatME mitigated performance degradation548

by 16.8% on GSM8K and by 14.7% on TruthfulQA549

compared to the strongest baseline. Similarly, for550

the Vicuna model, the reductions were 13.4% and551

14.0%, respectively. These outcomes underscore552

WatME’s significant effectiveness in preserving the553

emergent capabilities of LLMs without compromis-554

ing performance as significantly as other methods.555

556

Comparable Detection Performance of WatME557

Despite the trade-off between text quality and558

detection performance, WatME’s detection effi-559

cacy matched that of the Vanilla Watermark while560

also enhancing model capabilities, as evidenced561

by similar AUROC scores—suggesting our algo-562

rithm attained a better equilibrium than the baseline.563

In contrast, the Gumbel-Mark method noticeably564

compromised detection performance, particularly565

in aligned models and when generating short re-566

sponses (TruthfulQA). Additionally, more perfor-567

mance results under different watermark strength568

are presented in Discussion 6.3.569

Distinct Advantages of WatME Variations It570

is evident that different WatME variations exhibit571

unique strengths; The ’dictionary’ variant outper-572

formed in the Accuracy and Truthfulness scores,573

while the ’prompting’ variant excelled in the Infor-574

Figure 2: (a) Human evaluation for the quality of clus-
ters mined by varied methods and (b) testing detection
robustness against substitution attacks.

mativeness. The integration of these variants may 575

offer a fruitful avenue for future research. For a 576

comprehensive understanding, a manual analysis 577

of lexical clusters derived from these methods is 578

presented in the Discussion 6.1. 579

Alignment Diminishes Watermark Effectiveness 580

Surprisingly, aligned models showed significantly 581

greater resistance to watermarking effects than non- 582

aligned models. Specifically, Vicuna 1.5’s perfor- 583

mance dipped 30% less than Llama2’s across all 584

benchmarks, coupled with a 10% lower watermark 585

detection performance. To understand the underly- 586

ing reasons for these differences, we analyzed the 587

output distribution discrepancies between aligned 588

and unaligned models in the Discussion 6.4. 589

6 Discussion 590

6.1 Analysis of Clustering Methods 591

To analyse redundant clusters from diverse meth- 592

ods, we set evaluation criteria to ensure analytical 593

rigour. These criteria spanned semantic consis- 594
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tency, contextual appropriateness, and grammat-595

ical consistency, which are essential aspects for596

cluster quality. Two annotators used a rating scale597

of 0, 1, 2 to annotate the clusters. A score of ’2’598

indicated high or ideal consistency, ’1’ denoted599

moderate or usable consistency, and ’0’ identified600

low or unusable consistency within a cluster. The601

kappa value for the annotations is 0.657. Figure602

2(a) shows both methods met usability, but fell603

short of ideal effectiveness. The dictionary ap-604

proach was superior in semantic coherence due605

to its utilization of lexical databases. Conversely,606

the prompting method outperformed in contextual607

and grammatical consistency, reflecting the varied608

linguistic corpus training of LLMs. This suggests609

the potential benefits of a combined approach, a610

topic reserved for future research.611

6.2 Robustness Against Attacks612

Within the scope of watermark robustness against613

common rewriting attacks, our study evaluated614

the resilience of the proposed WatME method615

compared to baseline watermarking techniques.616

In a simulated black-box attack scenario, where617

attackers were blind to the watermark encryp-618

tion algorithm, we assessed the integrity of wa-619

termarks after random substitutions of text to-620

kens. Utilizing a sample of 200 examples from the621

GSM8k dataset, the analysis, illustrated in Figure622

2(b), demonstrated that WatME consistently out-623

performed vanilla method in detection robustness624

across a spectrum of replacement ratios.625

6.3 Performance Trade-offs at different Delta626

The efficacy of Watermark is influenced by the627

hyperparameter, Delta, which controls the water-628

mark strength. An increase in Delta facilitates629

easier watermark detection but at the cost of sev-630

erer impact on the LLMs. We analyse on the631

TruthfulQA and GSM8K datasets. Figure 3 shows632

WatME consistently achieved a more favorable bal-633

ance between watermark robustness and LLM per-634

formance across various Delta settings, surpass-635

ing Vanilla Watermark. Notably, the performance636

curves of WatME are strictly better than that of637

Vanilla, indicating that at equivalent watermark638

strengths, WatME always maintains superior per-639

formance compared to Vanilla Watermark.640

6.4 Aligned vs Unaligned Models641

Our examination of the response sensitivity to wa-642

termarking in aligned and unaligned models in-643

Figure 3: Performance trade-offs comparison between
WatME and Vanilla Watermark on TruthfulQA and
GSM8K at different Delta (∆) values.

Figure 4: Token-level entropy distributions for aligned
(green) and unaligned (blue) models on GSM8K and
TruthfulQA benchmarks.

volved analyzing their output distributions on the 644

TruthfulQA and GSM8K datasets. We computed 645

the average entropy for token in the generated 646

answers and found that aligned models exhibit 647

markedly lower entropy, suggesting more deter- 648

ministic response patterns, as illustrated in Figure 649

4. This pronounced certainty in aligned models’ 650

outputs presents a challenge for watermarking be- 651

cause of the limited variability that is essential for 652

effective watermark encoding. 653

7 Conclusion 654

This study explores the impact of watermarking 655

on the emergent abilities of LLMs—an aspect of- 656

ten neglected in the field. Our findings highlight 657

the considerable adverse effects of traditional wa- 658

termarking methods on LLMs’ emergent abilities, 659

including knowledge recall and logical reasoning. 660

In response, we introduced WatME—a novel 661

watermarking approach that leverages lexical re- 662

dundancy. Theoretical analysis and comprehen- 663

sive empirical results indicate WatME consistently 664

preserves the expressive power of LLMs without 665

compromising detection performance, enabling de- 666

velopers to encode watermarks with less disruption 667

to user experience. 668
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Limitations669

In this section, we discuss the limitations of this670

work from two perspectives.671

Firstly, although WatME represents a step to-672

ward lossless watermarking, it is not entirely loss-673

free. The introduction of a controlled bias, inherent674

to watermarking methods, subtly alters the gen-675

erated data. This compromise is a critical conse-676

quence as it diverges from the ideal of a completely677

lossless system. This deviation poses a dilemma for678

developers weighing the benefits of watermarking679

against potential user experience and regulatory680

trade-offs. Future work aims to bridge this gap,681

enhancing the WatME method to maintain output682

integrity and broaden its appeal for practical imple-683

mentation.684

Secondly, while our method is designed to be685

language-agnostic, the empirical validation pre-686

sented in this work is limited to models process-687

ing the English language. We acknowledge that688

the applicability of watermarking across various689

linguistic contexts is critically important. Future690

investigations will endeavour to broaden the scope691

to include more languages, ensuring the general-692

izability and effectiveness of our approach in a693

multilingual context.694

Thirdly, the challenge of watermarking in low-695

entropy scenarios remains an open problem. Our696

dataset encompasses a range of scenarios, includ-697

ing low-entropy situations where outcomes are698

more predictable and our methodology remains699

effective. However, embedding watermarks in text700

with universally recognized, low-entropy answers701

poses significant challenges, highlighting the need702

for further investigation into constructing and test-703

ing methodologies for low-entropy corpora.704

Lastly, the complexity of selecting contextually705

appropriate synonyms for text watermarking ne-706

cessitates advanced synonym-handling processes.707

Our approach incorporates syntactic elements and708

leverages LLMs to ensure the contextual appropri-709

ateness of synonyms. However, the inherent com-710

plexity of this task, which requires predefined rules711

for on-the-fly watermarking, represents a limitation712

that warrants further discussion and exploration in713

future work.714

Despite these limitations, we believe our work715

serves as a significant catalyst for the field, con-716

tributing positively to the advancement of more717

lossless and detectable text watermarking tech-718

niques.719
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Appendix 957

A Algorithms of Watermark 958

This section presents detailed algorithms for the 959

watermark encoding and detection processes as 960

outlined in (Kirchenbauer et al., 2023). Algorithm 961

2 delineates the procedure for encoding a water- 962

mark into the output sequence generated by a lan- 963

guage model. Conversely, Algorithm 3 explicates 964

the method for detecting and confirming the water- 965

mark’s presence within generated sequences. 966

Algorithm 2 Vanilla Watermark Encoding

Input: prompt x1 · · ·xm,
green list size γ ∈ (0, 1),
watermark strength δ > 0.

for t = 0, 1, · · · , T − 1 do
1. Get the logit ℓt ∈ R|V| from M.

2. Use the hash of the previous token as the
random seed to partition the vocabulary
of M into a “green list” Gt of size γ|V|,
and a “red list” Rt of size (1− γ)|V|.

3. Add δ to each green list logit and then
apply softmax to the modified logits.

ℓ̂t[i] := ℓt[i] + δ, i ∈ Gt

p̂t = softmax(ℓ̂t)

4. Sample a next token yt+1 from p̂t.
end for
Output: watermarked text y1 · · · yT .

B Prompt for Cluster Mining 967

To facilitate the generation of synonym clusters, 968

we employed Llama2-13B-chat. The approach in- 969

volved crafting a prompt (Figure 5) that combines 970
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Algorithm 3 Vanilla Watermark Detection
Input: text y, detection threshold τ .
1. Use the previous token to find the “green list”
Gt at the step t as in Alg. 2.
2. Calculate the number of green tokens in y as
|y|G =

∑n
t=1 1(yt ∈ G).

3. Compute the z-statistic:

zy = (|y|G − γ|V|) /
√

|V|γ(1− γ).

4. if zy > τ then return 1 (watermarked).
5. else return 0 (unwatermarked).
Output: 0 or 1

a clear task description with a set of demonstra-971

tions designed to illustrate the desired task. By972

presenting the model with a few-shot example, we973

primed Llama2-13B-chat to understand and per-974

form the specific task of synonym generation. The975

few-shot prompt was crucial for the model to rec-976

ognize the pattern and replicate it for new target977

words, thus enabling the mining of synonym clus-978

ters effectively.979

C Proofs of Theorems980

In this section, we present the detailed proofs of981

the theorems introduced before. Each theorem is982

treated in its respective subsection.983

C.1 Proof of Theorem 3.4984

Proof We begin the proof by considering i = 1, 2.985

Case I: where w1 is in the green list (Gt):986

If w1 ∈ Gt, then both watermarking methods are987

lossless because they can select the most suitable988

token w1.989

Case II: where w1 is in the red list (Rt):990

We consider w2, which may or may not be a991

synonym of w1:992

Sub-case i: w2 is not a synonym of w1.993

If w1 /∈ Gt and ̸ ∃ Ci ∈ C s.t. w1, w2 ∈ Ci, then994

according to Algo. 1 we have:995

PWatME(w2 ∈ Gt) = Pwatermark(w2 ∈ Gt).996

In this case, the two methods are the same.997

Sub-case ii: w2 is a synonym of w1.998

If w1 /∈ Gt and ∃Ci ∈ C s.t. w1, w2 ∈ Ci, then999

according to Algo. 1 we have:1000

PWatME(w2 ∈ Gt) > Pwatermark(w2 ∈ Gt).1001

Based on Assumption 3.3, WatME is more likely1002

to select the suitable token. Combining these cases,1003

the theorem is proven. It should be noted that while 1004

this proof explicitly considers the cases for i = 1, 2, 1005

the logic extends to any arbitrary value of i. 1006

C.2 Proof of Theorem 3.5 1007

Proof Let us define the vocabulary V with syn- 1008

onym clusters S = {C1, . . . , Cn}, where C̄ rep- 1009

resents the set of non-synonymous, unique words. 1010

According to Algs 2 and 1, WatME maintains a con- 1011

stant number of distinct semantic representations, 1012

quantified as n+ γ · |C̄|. In contrast, the semantic 1013

token count of standard watermarking algorithms 1014

is lower than this figure. According to Definition 1015

3.1 the disparity in semantic entropy between the 1016

two methodologies is thus evident. Given Defini- 1017

tion 3.2, the increased semantic entropy inherent to 1018

WatME confirms the theorem. 1019

D Time Complexity Analysis 1020

The conventional algorithm necessitates a partition 1021

of the vocabulary per decoding operation, which re- 1022

sults in a time complexity of O(|V |). Our method 1023

incorporates two partitioning stages: initially tar- 1024

geting the redundant cluster, followed by the re- 1025

maining vocabulary. During the first stage, we pad 1026

the cluster into a 2D matrix and conduct parallel 1027

sampling. The subsequent stage aligns with the pro- 1028

cedures of the Vanilla algorithm. Consequently, the 1029

time complexity of our method remains at O(|V |). 1030

E Setup Details 1031

In our experiments, we used prompts from the CoT 1032

hub (Fu et al., 2023) for the GSM8K dataset and 1033

the original prompts from TruthfulQA (Lin et al., 1034

2022). The Llama2 model was evaluated using 1035

its original prompt format to maintain consistency. 1036

Greedy decoding was employed as the strategy for 1037

all tasks, with maximum decoding lengths set at 1038

128 tokens for GSM8K and 50 tokens for Truth- 1039

fulQA, which allowed for the complete generation 1040

of answers within the datasets. 1041

To account for the differing answer lengths in the 1042

GSM8K and TruthfulQA datasets, we fine-tuned 1043

the watermark hyperparameters. For GSM8K, with 1044

its longer answers aiding detection, we used a 1045

milder watermark intensity, setting gamma at 0.3 1046

and delta at 3.0. Conversely, the brevity of answers 1047

in TruthfulQA complicates detection, necessitating 1048

a stronger watermark intensity—again with gamma 1049

at 0.3, but with delta increased to 4.0 to achieve sat- 1050

isfactory detection performance (AUROC > 0.7). 1051
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Figure 5: Few-Shot Demonstration of Synonym Generation using LLMs.

Evaluation metrics were carefully chosen: AU-1052

ROC was calculated using the ‘sklearn‘ library, and1053

for the assessment of GPT-Truth and GPT-Info, we1054

utilized a fine-tuned Llama2-13B-chat model that1055

demonstrated an accuracy above 93% on the valida-1056

tion set. All model implementations were executed1057

using the ‘transformers‘ library.1058

The hardware employed for these experiments1059

consisted of a 40GB A100 GPU and a 32GB V1001060

GPU, ensuring sufficient computational power for1061

model training and evaluation.1062

F Examples of Redundant Clusters1063

We present some examples of mined clusters at 6.1064

Method GSM8K TruthfulQA
(He et al., 2022) 0.5463 0.5825

WatME 0.9128 0.8659

Table 2: Performance comparison of different methods
on GSM8K and TruthfulQA benchmarks.

G Comparison with Model Theft1065

Prevention Watermarking1066

Our approach, WatME, differs significantly from1067

the method presented in (He et al., 2022), which1068

is aimed at model theft prevention. While (He1069

et al., 2022) focuses on tracing model theft, WatME1070

concentrates on text watermarking to identify AI- 1071

generated text. Additionally, WatME is designed to 1072

be effective with a single sample of text, contrast- 1073

ing the necessity for large volumes of text required 1074

by (He et al., 2022) for effective model theft de- 1075

tection. Furthermore, our method does not rely 1076

on the presence of a trigger word, as (He et al., 1077

2022)’s method does, which may not be present in 1078

short texts. This makes WatME more versatile and 1079

applicable to a broader range of text lengths and 1080

types, embedding watermarks without the need for 1081

specific trigger words or phrases. 1082

As shown in 2, We experimented with the ap- 1083

proach suggested in (He et al., 2022) for text wa- 1084

termarking but encountered failures in detection 1085

performance (AUROC). 1086
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Figure 6: Examples of Redundant Clusters.
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