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Abstract

The moments of random variables are fundamental
statistical measures for characterizing the shape of
a probability distribution, encompassing metrics
such as mean, variance, skewness, and kurtosis.
Additionally, the product moments, including co-
variance and correlation, reveal the relationships
between multiple random variables. On the other
hand, the primary focus of causal inference is the
evaluation of causal effects, which are defined as
the difference between two potential outcomes.
While traditional causal effect assessment focuses
on the average causal effect, this work provides
definitions, identification theorems, and bounds for
moments and product moments of causal effects
to analyze their distribution and relationships. We
conduct experiments to illustrate the estimation of
the moments of causal effects from finite samples
and demonstrate their practical application using a
real-world medical dataset.

1 INTRODUCTION

The moments of random variables have been fundamen-
tal statistical measures since their introduction by Pafnuti
Lvovich Chebyshev in the mid-nineteenth century [Mackeyl,
1980]. The m-th moment of a random variable Y is de-
fined as E[Y""], and the m-th central moment is defined as
E[(Y — E[Y])™]. These moments characterize the shape of
a random variable’s probability distribution, encompassing
measures such as mean, variance, skewness, and kurtosis
[Pearsonl {1896l |Joanes and Gill, 1998, |Cramér, |1999, Doane
and Seward, 2011} [von Hippell 2005} Westtall, 2014]]. The
(central) moments of random variables also play a funda-
mental role in various machine learning techniques [Bishop,
2006\ Hastie et al., 2009, Murphyl 2022].

On the other hand, the primary focus of causal inference is

the evaluation of causal effects Y; — Yj, where Y, denotes
the potential outcome under treatment X = z, rather than
a single random variable Y. Traditionally, to assess causal
effects, researchers estimate the average causal effect (ACE),
i.e., E[Y7 — Yp], which represents the first moment of causal
effects [Neyman, {1923} [Rubin, |1978} |Holland, 1986, |Balke
and Pearl, {1997, Robins, [1999].

Recently, there has been increasing interest in exploring as-
pects of causal effects beyond their average, particularly in
the distributional properties of causal effects [Ju and Geng,
2010, |Wiedermann et al., 2022} |Lin et al., 2023} |Kennedy
et al.}2023b} |Post, [2023]]. The shape of the distribution of
causal effects uncovers causal effect heterogeneity, which is
an actively researched topic in the field of statistics, causal
inference, and machine learning [[Athey and Imbens, [2016)
Shalit et al.| 2017, |Athey and Imbens|, 2019, |Kiinzel et al.}
2019, Wager and Athey,|2018|[Singh et al., 2023} |Kawakami
et al.,[2024b]). Causal effect heterogeneity refers to the varia-
tion in causal effects across individuals or subgroups within
a population. Existing works on causal effect heterogene-
ity mainly examine the conditional average causal effects
(CACE), i.e., E[Y] — Yu|W = w], based on subjects’ covari-
ates W. However, CACE captures only the heterogeneity
across subpopulations specified by observed covariates W,
not the heterogeneity across individuals. In contrast, the
shape of the distribution of causal effects reveals the het-
erogeneity of causal effects across individuals and provides
complementary information to CACE.

Our objective is to address the following causal question:
(Question 1). “How are causal effects distributed? "

We approach this question by studying the moments of
causal effects E|(Y; — Yp)™|. These moments serve as

measures that characterize the shape of the distribution of
causal effects. Furthermore, we examine the central mo-

ments ]E[{(Yl ~ Yy) — (E[vi] — E[YO])} } These mo-
ments quantify deviations from the ACE. They encompass
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key statistical measures such as variance, standard deviation,
skewness, and kurtosis, which are fundamental for charac-
terizing the shape of the distribution of causal effects. While
previous work has examined the second central moment
(variance) of causal effects [Heckman et al., 1997, Hernan
and Robins} 2024], this work provides a general analysis by
studying arbitrary moments of causal effects.

Several studies [DiNardo et al.|[1996| Robins and Rotnitzkyl,
2001}, [Rubin and van der Laan, [2006, Jung et al.| 2021},
Kennedy et al., 20234, [Kim et al., [2024]] aim to estimate the
probability density function (PDF) of Y. However, identify-
ing the moments of causal effects requires the joint distribu-
tion of (Y0, Y1). The joint distribution of potential outcomes
has been explored in the framework of probabilities of cau-
sation (PoC) [Pearl, (1999, Tian and Pearl, 2000, [Li and
Pearl, [2024]]. We identify the (central) moments of causal
effects by leveraging the recent identification results for
variants of the PoC established by [Kawakami et al.| [2024a].
Additionally, we derive bounds for the (central) moments of
causal effects under relaxed assumptions.

We further address the following causal question:
(Question 2). “How are two causal effects related? "

Researchers often consider more than two treatment
options and compare multiple potential outcomes,
{Y1,Ys,...,Ygr}, as discussed in [Bartholomew, (1959,
Page| [1963], Imbens| 2000, Imai and van Dyk, [2004]. We
then investigate the product moments of causal effects

E|(Y; - Y;)(Vs — Yh)}, as well as the central product mo-

ments (covariance and correlation) of causal effects, where
Y; — Y, represents the causal effect of changing X = j to
X =1, and Yy, — Y}, represents the causal effect of changing
X = hto X = k. The product moments of causal effects
reveal the association between two causal effects. When
E[(Y;—Y;)(Yx—Y3)] is positive, subjects with larger Y; —Y
tend to have larger Y; — Y7,. When it is negative, subjects
with larger Y; — Y; tend to have smaller Y}, — Y;,. When
it is zero, there is no linear relationship between Y, — Y},
and Y; — Y;. The product moments of causal effects pro-
vide additional insights beyond the ACE E[Y; — Y;] and
E[Y; — Y]

We establish identification theorems for the (central) product
moments of causal effects and derive bounds for them under
more relaxed assumptions. Finally, we conduct experiments
estimating the (product) moments of causal effects from
finite samples and demonstrate their practical application
using a real-world medical dataset.

2 NOTATIONS AND BACKGROUNDS

We represent each variable with a capital letter (X) and its
realized value with a lowercase letter (z). Let I(x) denote

the indicator function, which takes the value 1 if x is true
and 0 otherwise. We denote 2y as the domain of Y, E[Y]
as the expectation of Y, and P(Y" < y) as the cumulative
distribution function (CDF). Additionally, we denote the
m-th Cartesian product of the domain 2 as Q™ i.e., Q™ =
Q xQ x--- xQ (repeated m times).

Moments of random variables. Moments are measures re-
lated to the shape of the probability distribution of a random
variable. For each m > 1, the m-th moment of a random
variable Y is defined by the expectation of the m-th power of
Y, i.e., E[Y™], and the central moment of a random variable
is defined by C,,, = E[(Y —E[Y])™]. Common statistics in-
volving moments include mean E[Y'], variance C5, standard
deviation \/Cs, skewness Cs/ CS/ ?, and kurtosis Cy/C2.
They are essential statistics to capture the shape of the proba-
bility distribution of Y. The product moments of the random
variables X and Y are given by E[XY], the covariance is

E[(X — E[X])(Y — E[Y])], and are used to define Pearson
E[(X—E[X])(Y —E[Y])]

VEIX—E[X])2]E[(Y-E[Y])?]

Structural causal models. We use the language of Struc-
tural Causal Models (SCM) as our basic semantic and in-
ferential framework [Pearl, [2009]]. An SCM M is a tuple
(U,V,F,Py), where U is a set of exogenous (unobserved)
variables following a joint distribution Pg;, and V' is a set
of endogenous (observable) variables whose values are de-
termined by structural functions F = { fy;, }v;,cv such that
v; == fv,(pay,,uy,) where PAy, C V and UV C U.
Each SCM M induces an observational distribution Py,
over V. An atomic intervention of setting a set of endoge-
nous variables X to constants &, denoted by do(x), replaces
the original equations of X by X := « and induces a sub-
model M 4. We denote the potential outcome Y under inter-
vention do(z) by Y, (u), which is the solution of Y in the
sub-model M, given U = w.

correlation coefficient

Causal effects. Researchers usually consider the following
SCM, denoted as M:

Y= fy(X,UY), X := fx(UY), (1)

where UY and UX are latent exogenous variables. The
individual causal effect (ICE) is defined as ICE(u) =
Y1 (u) — Yo(u). The average causal effect (ACE) is defined
as ACE 2 E[Y; — Y;]. Heckman et al.| [1997] showed the
identification of ICE under the rank invariance assumption
stating that “for almost every subject whose potential out-
comes are (y1,y0) = (Y1,Y0), P(Yo < o) = P(Y1 < 1)
holds", which is a strong assumption. They identified the
variance of causal effects by identifying ICE. [Hoshino and
Takahatal, [2020] studied the identification of the joint PDF
of (Y, Y1) under various parametric specifications, whereas
this work considers a nonparametric setting.

Joint distribution of potential outcomes. Joint distribu-
tions of potential outcomes, fundamental to this work, have
been employed in the framework of probabilities of cau-



sation (PoC) [Pearl, |{1999| Tian and Pearl, 2000, L1 et al.,
2024]). PoC are a family of probabilities quantifying whether
one event was the real cause of another. Recently, Kawakami
et al.|[20244a] defined the probability of necessity and suf-
ficiency (PNS) for continuous treatment and outcome as
P(Y,, < y < Y,,), and showed that it is identified from
P(X,Y) if there are no unmeasured confounders and the
function fy (z,UY) satisfies a monotonicity assumption:

Assumption 1 (Exogeneity). Y, 1l X forall x € Qx.

Assumption 2 (Monotonicity over fy). The function
fy (2, UY) is either (i) monotonic increasing on UY for
all x € Qx almost surely w.r.t. Pyv, or (ii) monotonic
decreasing on UY for all x € Qx almost surely w.r.t. Py

We will use the above assumptions to identify moments of
causal effects in this paper.

3 MOMENTS OF CAUSAL EFFECTS

In this section, we study the (central) moments of causal
effects Y7 — Y{ to address (Question 1).

3.1 DEFINITION OF THE MOMENTS OF CAUSAL
EFFECTS

We define the moments of causal effects in the same manner
as the moments of random variables.

Definition 1 (The moments of causal effects). For each
m > 1, the m-th moment of causal effect Y1 — Yy is defined
as

pm AR {(Yl - Yo)m} 2

The m-th moment of the causal effect is defined as the
expectation of the m-th power of the causal effect Y7 — Y.
The first moment, (") = E[Y; — Y], is the ACE.

We present two examples to illustrate what the moments of
causal effects specifically measure in simple SCMs.

Example 1. (Homogeneous ICE) Consider a simple linear
SCM given by Y = X + UY where E[UY] = 0. In this
model, the ICE is equal to 1 for every subject, meaning that
the causal effect is homogeneous. Consequently, all of the
m-th moments of the causal effect are also equal to 1. Note
that E[Y{™ — Y] = E[(1 + UY)™ — (UY)™] varies with
m.

Example 2. (Heterogeneous ICE) Consider a linear SCM
with an interaction term between X and UY,Y = X (UY +
1) + 1 where E[UY] = 0. In this model, ICE = Y; — Y; =
UY + 1, which varies across subjects, making the causal
effect heterogeneous. The m-th moment of the causal effect
is given by E[(UY + 1)™]. In comparison, E[Y;™ — Y] =
E[(UY +2)™ —1].

The central moments of causal effects are defined as the
moments of causal effects measured relative to their mean.

Definition 2 (The central moment of causal effects). For
each m > 1, the m-th central moment of causal effect
Y1 — Yy is defined as

i 2E[{(v - v) - W] -EMD} ] )

The first central moment of causal effects is always O since
we have i) = E[(Y; — Yp)] — E[(E[Y1] — E[Yy])] = 0.
When m > 2, ﬁ(’”) is not equal to E[(Y; — E[Y1])™] —
E[(Yo —E[Yo])™] as discussed in [Wiedermann et al.| 2022]).

We revisit Examples 1 and 2 in Section [3.1]to illustrate the
central moments of causal effects.

Example 1 (continued). (Homogeneous ICE) In SCM given
by Y = X + UY where E[UY] = 0, the m-th central
moment is equal to 0 for any m > 1, indicating that the
causal effect is homogeneous.

Example 2 (continued). (Heterogeneous ICE) InSCM Y =
X(UY +1)+1 where E[UY] = 0, the m-th central moment
is given by E[(UY)™] for all m > 1. The central moments
of causal effects correspond to the (central) moments of the
random variable UY .

The higher order of moments of causal effects may provide
useful information on the distribution. The central moments
of causal effects can be used to compute important and well-
known statistics such as the variance ﬁ(z), standard devia-
tion /7%, skewness i) /7i(?) 372 and kurtosis a® /u ?
of the causal effects. Variance and standard deviation quan-
tify the dispersion of a distribution. If the variance of causal
effects is large, the causal effects may deviate significantly
from ACE for some subjects. When the variance of causal ef-
fects is small, ICE is close to ACE for all subjects. Skewness
is a measure of the asymmetry of a probability distribution.
If the causal effect is positively skewed, the right tail of the
distribution of the causal effect is longer. If the causal effect
is negatively skewed, the left tail of the distribution is longer.
Kurtosis is a measure of the tailedness or peakedness of a
distribution. High kurtosis values indicate the presence of
outliers in causal effects [Westfall, 2014].

3.2 IDENTIFICATION OF THE MOMENTS OF
CAUSAL EFFECTS

Under the exogeneity assumption (Assumption [I), the first
moment of causal effects is identifiable as E[Y|X = 1] —
E[Y|X = 0] [Holland, [I1986]. In this section, we discuss
the identification of the higher moments of causal effects.

When m > 2, u(™ is not equal to E[Y{"™ — Yg"], as dis-
cussed in [Hernan and Robins| 2024, Kuroki and Tezuka)
2024].. Under Assumption[l] E[Y;™ — Y] is identifiable as



E[Y™|X = 1] — E[Y™|X = 0]. However, (" remains
unidentifiable. For example, the second moment of the
causal effect, 1(?), is given by E[Y?] — 2E[Y, Y] + E[Y{),
where the term E[Y;Y7] is not identifiable.

To prepare the identification of the moments of causal effect,
we first decompose (Y; — Yp)™ into two parts as follows:

Lemma 1. Under SCM M, we have

(Vi — Yo" = (Vi — Yo) "IV > Vi)
=+ (—1)m(YQ — Yl)mH(YO > Yl)

:/ IYo <y <Y, Yo <y <Y1,...,
QY"YL
Yo < ym <Yi)dyr...dym
+(71)m/ H(Y1<y1SY07Y1<y2§)/07"'3
Qy ™

Y < Ym < Yb)dyl . ..dym. (4)

The first part corresponds to subjects with a positive ICE,
where Y7 — Yy > 0, and the second part corresponds to
subjects with a negative ICE, where Y; — Yy < 0.

We make the following assumption:

Assumption 3 (Finiteness of integrals). Under SCM M,
form > 1, u(™ < oo and ny"" PY; <y1 <Y;,Y; <
yo < Y;,...)Y < ym <Yj)dyr...dym, < oo hold for
(7’7]) = {(07 1)7 (1’ 0)}

Under SCM M and Assumption 3] taking the expectation
on both sides of Eq. (@), we have

u<m>=/ P(Yo <1 <Y1 Yo <y <Vi,....
Yo < Ym <Y1)dy1 ... dym
+(*1)m/ P(Y1y <y1 <Y0,Y1 <92 <Yp,...,
Qy ™

i< Ym < YO)dyl oo dym
(5)

The identification of the moments of causal effects then
reduces to the identification of P(Yy < y1 < Y7, Yo < y2 <
Yi,... . Yo <ym <Y1)and P(Y: <y <Y0,Y1 <yo <
Yo, .., Y1 < ym < Y)). The identification of this type of
joint distributions of potential outcomes was discussed in
[Kawakami et al., [2024al], based on which we obtain the
following result:

Theorem 1 (Identification of the moments of causal effect).

Under SCM M and Assumptions and B3] the m-th
moment of causal effect Y1 — Yy is identifiable by p(™) =
cr(m), where

,,,,,

o(m) :/ max{ I{lin {P(Y < y,|X =0)}
Qy ™ m

— max {P(Y < yp|X = 1)},O}dy1 oo dym
p=1,..., m

+ (=)™ /Qym max{p_min {P(Y <yl X =1)}

=1,...,m

— max {P(Y <y,|X =0)}, O}dyl o dym.  (6)

Theorem|I]says that the moments of causal effects can be
expressed in terms of conditional CDFs. For m = 1, Eq. (6)
reduces to ACE= E[Y; - Yp] = [, {P(Y < yi|X =
0) —P(Y < y1]X = 1)}dy: [Ju and Geng| [2010]], which
does not require Assumption 2] to hold.

For m = 2, the second moment of causal effects (vari-
ance) (2 is given by Ja, Jo, max{min{P(Y" < y|X =
0),PY <32|X =0)} —max{P(Y < 1| X =1),P(Y <
yilX = 1}, 0}dyidys + [, [o, max{min{P(Y" <
n|X =1),PY < 92| X = 1)} — max{P(Y < y1|X =
O),]P(Y < y2|X = 0), O}dyldyg

3.3 BOUNDING THE MOMENTS OF CAUSAL
EFFECTS

The monotonicity Assumption [2] may sometimes be con-
sidered implausible by researchers. Therefore, we derive
bounds for the moments of causal effects that do not rely on
Assumption

We first provide bounds of the joint distribution of the po-
tential outcomes P(Y; <y <Y}, Y <32 <Yj,...,YV; <
Ym < YJ) using Fréchet inequalities [Fréchet, 1935} /1960].

Lemma 2. Under SCM M and Assumptions[I)and[3] we
have 1(yy, -, ym3i,J) < P(Y; <y1 < Y3 Y; <o <
Yi,oo )Y <ym <Yi) Sulyn, ..., Ymid, j), where

sy ) = max {30 (Y <y|X =)

p=1,....m

_ IP’(Y<yp|X:i)fm+1,0}, %

p=1,....m
w(Y1, -+, Ym;i,J) = min { p:I{l.i.lf.lm{P(Y <yl X =3},

- max {P(Y <y,|X = i)}} )

p=1,...,

for (7'3]) € {(170)3 (071)} and any y1, ..., Ym € Qy.

Then, we have the following theorem.

Theorem 2 (Bounds of the moments of causal effect). Un-
der SCM M and Assumptions || and 3| we have U(Lm) <
u(m) < oém), where

(A). When m is an even number,

U(Lm) :/ Wyty- oy Ym; 1,0)dyy - . . dym
Qy ™



+/ Wyt oy Ym; 0, D)dyr - . . dypm,  (9)
Qy‘ITL
a((Jm) = / w(Yts- -y Ym; 1,0)dyr - . . dym
Qy ™
+/ w(Yts- - Ym; 0, Ddyy - . . dyp,. (10)
Qy ™

(B). When m is an odd number,

U(Lm) :/ Uyt Ym; 1,0)dys - . . dym
Oy
7/ w(Yty .-y Ym; 0, Ddys - . . dypm, (11)
Oy
cYms 1, O)dyl ce dym
—/ Wyt oy Ym; 0, Ddyy - . . dyp,. (12)
Qy ™

(m)

If UI(Jm) =ooand o}’ = —oo, then 1™ is unbounded.

The upper bound of the Fréchet inequalities is always
sharp for all m > 1 [Nelsen, 2007]]; thus, the function
w(Y1,---,Ym;i,7) in Lemma 2 is sharp for all m > 1.
In contrast, the lower bound of the Fréchet inequalities is
not always sharp except when m = 1; hence, the function
(y1,-.-,Ym;%,j) in Lemma 2 is not sharp. As a result,
only the upper bounds of the moments of causal effects are
sharp when m is even. In all other cases, our bounds of the
moments of causal effects are not sharp.

Remark. We present a similar identification theorem and
bounds on the central moments of causal effects in Appendix
[B] Additionally, the skewness and kurtosis of causal effects
are also bounded, as shown in Appendix

4 PRODUCT MOMENTS OF CAUSAL
EFFECTS

In this section, we study the (central) product moments of
causal effects to address (Question 2).

LetQx = {1,..., R}. The causal effect of changing X = j
to X = ¢ is given by Y; — Y} and the causal effect of
changing X = k to X = h is given by Y}, — Y. We study
the association of the two causal effects Y; — Y and Y}, —Y7..

4.1 DEFINITION OF THE PRODUCT MOMENT
OF CAUSAL EFFECTS

We define the product moment of two causal effects analo-

gously to the product moment of two random variables.

Definition 3 (The product moment of causal effects). The
product moment of causal effects is defined by

piskn ZE[(Vi =Y (Y- )| (13

We present three examples to illustrate the product moments
of causal effects in simple SCMs.

Example 1 (continued). (Homogeneous ICE) In SCM given
by Y = X + UY where E[UY] = 0, the product moment
of Y1 —Yyand Yy — Y_; isequal to 1.

Example 2 (continued). (Heterogeneous ICE) In SCM Y =
X(UY 4+ 1) + 1 where E[UY] = 0, the product moment of
Y: — Ypand Yy — Y_q is equal to E[(UY + 1)?] > 0.

Example 3. (Heterogeneous and nonlinear ICE) We con-
sider a nonlinear SCM with an interaction term between X2
and UY:Y = X2(UY + 1) + 1 where E[UY] = 0. We
have Y1 — Yy =UY +1and Yy — Y_; = —(UY +1) and
are heterogeneous. The product moment of Y; — Y, and
Yy — Y_; isequal to E[—(UY +1)?] < 0.

We examine the covariance and correlation of two causal
effects.

Definition 4 (Covariance of causal effects). We define the
covariance (central product moment of causal effects) as

Pwn 2E[{ (Vi = v5) - €IV - B[] }
< { (¥ —Yi) - (EM] - EMAD .

Definition 5 (Correlation of causal effects). We define the
correlation of causal effects as

(14)

Tigikh = Pijik,h

/{\/E[{m —v)-Ev-EmD)]

X \/E[{(Yk —Yh) — (E[Yi] - E[Yh])}Q} }

Correlation is a measure of association between two vari-
ables [Pearson, |1905]]. Similarly, the correlation of causal
effects quantifies the association between two causal effects.

For instance, when comparing three treatments X =
0,1,2, researchers often evaluate their respective aver-
ages E[Yy], E[Y7], and E[Y3]. When E[Y; — Y;] > 0 and
E[Y> — Y1] > 0, it is concluded that, on average, both
changes, from X =0to X = 1and from X =1to X = 2,
have positive effects. The correlation of causal effects pro-
vides more detailed insights. When the correlation between
Y1 — Yy and Y — Y] is negative, patients with larger causal
effects Y7 — Yj than the average tend to have smaller causal
effects Y5 — Y7 than the average. Conversely, when patients
have smaller causal effects Y7 — Y|, than the average, they
tend to have larger causal effects Yo — Y; than the average.

We present three examples to illustrate the covariance and
correlation of causal effects.

Example 1 (continued). (Homogeneous ICE) In SCM given
by Y = X + UY where E[UY] = 0, the covariance of
Y1 —Yyand Yy — Y_; is equal to O.



Example 2 (continued). (Heterogeneous ICE) In SCM Y =
X(UY +1)+1 where E[UY] = 0, the covariance of Y7 — Y}

and Yy — Y_1 is equal to E[(UY)?] > 0, the correlation
of Y1 — Yy and Yy — Y_; is 1, and they have a positive
correlation.

Example 3 (continued). (Heterogeneous and nonlinear
ICE) InSCM Y = X?(UY + 1) + 1 where E[UY] = 0,
the covariance of Y; — Yy and Yy — Y_; is equal to
E[—(UY)?] < 0, the correlation of Y; — Yy and Yy — Y_;
is —1, and they have a negative correlation.

4.2 IDENTIFICATION OF THE PRODUCT
MOMENT OF CAUSAL EFFECTS

To prepare the discussion on the identification of the product
moment of causal effects, we decompose the product of
causal effects (Y; — Y;) and (Y}, — Y3,) into four parts.

Lemma 3. Under SCM M, we have

(Y = Y;)(Yr — Ya)

= (Y; = Y;) (Y = Yu)I(Y; > Y}, Yy > Y3)
— (Y = Y) (Y = YR)I(Y; > Y, Yy > Y3)
—(Y; = Y;)(Yn — Yi)I(Y; > Y, Yy, > V)
+ (Y = Y3) (Ya — Yi)I(Y; > Y, Yy, > Yg)

/HY<mgnm<m§nmmW
Qy

/HY<m§

/ IY; <y1 Y3, Y <yo < Y3)dyrdyo
Qy

Y

Y;, Y <y2 < Yi)dyidys

2
P

Y

+/ / I(Y; <y <Y}, Yy <ya < Yi)dyidyo.
Qv JQy
(16)

The above decomposition consists of four parts based on
the signs of ICE. We make the following assumption:

Assumption 4 (Finiteness of integrals). Under SCM M,
Pigien < 00 and o o P(Y; <y <Yy Yh <yo <
Y5 )dy1dys < oo hold for any i, j, k,h € {1,..., R}.

Under SCM M and Assumption[d] taking the expectation
on both sides of Eq. (I6), we have

Pi,j;k,h

2/ / P(Y; <y1 <Y, Y, <yo < Yi)dyidys

Qv JQy

—/ / P(Y; <y1 <Y}, Y, <yo < Yi)dyidyo
oy Joy

—/ / P(Y; <y1 Y3, Y <yo < Yi)dyidys
oy Jay

+/ / P(Y; <y <Y}, Vi <yo < Ya)dyidys.
Qy JQy
(17)

The identification of joint distributions of potential out-
comes in the form of P(Y; < y1 < Y, Yy, < y2 < Yj)
was discussed in [Kawakami et al., [2024al], based on which
we obtain the following result:

Theorem 3 (Identification of the product moments of causal
effects). Under SCM M and Assumptions|[l} 2} andH] the
product moment of (Y; — Y;) and (Y), — Y3,) is identifiable
by pijien = 0(i, 45 k, h), where

o(i,7; k,h)
= e max{min{]P’(Y <ylX =7),PY <y|X =h)}
Y
—max{P(Y < y1|X = i), P(Y < 3] X = k)},O}dyldyg
-/ max{min{]P’(Y <yi|X = i), P(Y < 3] X = h)}
Y
—max{P(Y < yi|X = j),P(Y < 3] X = k)},O}dyldyg
- /Q 2 max{min{]P’(Y <yi|X = ), P(Y < 3| X = &)}
Y
—max{P(Y < y1|X = i), P(Y < 3] X = h)},O}dyldyg
+ - max{min{P(Y <y |X =19),P(Y <y2|l X = k)}
Y

—max{P(Y < yi|X = j),P(Y < 3] X = h)},()}dyldyg.
(18)

4.3 BOUNDING THE PRODUCT MOMENT OF
CAUSAL EFFECTS

The monotonicity Assumption [2] may sometimes be con-
sidered implausible by researchers. Therefore, we derive
bounds for the product moment of causal effects that do not
rely on Assumption

We first derive bounds for the joint distribution of potential
outcomes P(Y; <y <Y, Y, <y2 <Yj).

Lemma 4. Under SCM M and Assumptions [I| and
for any i,5,k,h € {1,...,R}, y1,y2 € Qy we have
Wy, y259,5,k,h) SPY; <y1 Y3, Y, <yp <Yp) <
u(ylva; ia.jv ka h’)’ where

l(y17y2;7;aj>k7h) =

max {IP(Y <yi|X =5) —PY < 1| X =)

FPY <)X = h) —B(Y < yo|X = k) — 1,0},
(19)

u(ylayQ;i7j7k7h) =



min { min{P(Y < y1|X = j),P(Y < 3| X = h)},

1 —max{P(Y < | X =14),P(Y < | X = k)}} (20

Then, we have the following theorem.

Theorem 4 (Bounds of the product moments of causal ef-
fects). Under SCM M and Assumptions[I|and [ for any
i,j,k,h € {1,..., R}, we have or(i,7; k, h) < pi jikn <
ou(i,j; k, h), where

O—L(imj;kah) = l(y1792§i,j7/€7 h)dyldy2

~
N

w(yi, y2; J, i, k, h)dy1dys

=
w0

u(ylv Y23 Z'a jv ha k)dyldyQ

~
M)

+

Uy, y2; 3,1, h, k)dyidya, — (21)

~
M)

ou(i,jik,h) = [ u(yr,y2si,J, k, h)dyrdys

2

Uy, y2: 4,3, k, h)dyidys

2

<

l(yh Y23 iv.ja h’7 k)dyld?h

~
>

+

e - I

<

Q’U’(ylay27jal7h? k;)dyld?h (22)

If oy = oo and o7, = —o0, then p; ;x5 is unbounded. The
above bounds for product moments are not sharp.

Remark. We present a similar identification theorem and
bounds for the central product moment (covariance) of
causal effects in Appendix [C| Additionally, the correlation
of causal effects is also bounded, as shown in Appendix [C]

S NUMERICAL EXPERIMENTS

In this section, we perform experiments to illustrate the
finite-sample performance of the estimators of the moments
of causal effects.

Estimation. The family of moments of causal effects
U(m),a(Lm),U[(jm), o(i,j;k,h),on(i,5;k,h),ou (%, j; k, h)
in Theorems (and the central moments of causal effects
o 5™ 5™ 5(i,j,k, h), o0 (i, §,k, h),51(i, j, k, h)

in Appendices [B] and [C) are estimable by plugging in
the empirical CDFs and expectations [Vaart, [1998|] and
calculating the integrals using the Monte Carlo integration
method [Press, 2007]. Let N be the sample size of the
dataset, and let Ny, N5, N3, and N4 be the numbers of
points for Monte Carlo integration on 1, y2, ¥3, and y4.
We assume that the domains of Y and Y — E[Y|X = z]
for any = € Qx are bounded by [a, b], which is required for

Monte Carlo integration. The details of all estimators are
shown in Appendix [E| They are all consistent estimators as
discussed in Appendix [E]

Simulation for the moments of causal effects. We assume
the following SCM (A):

Y = —(X + )UL(XU > 0), (23)
X ~ Bern(0.8),U ~ Unif(—1,1), (24)

where Bern(p) is a Bernoulli distribution with probability p,
and Unif(—1, 1) is a uniform distribution over [—1, 1]. This
setting satisfies Assumptions [T] and 2} We simulate 1000
times with the sample size N = 20, 100, 1000, respectively.
We let N1, Ny, N3, and Ny all be 1000.

Results. We present the estimates obtained using our pro-
posed methods in Table[I] All means of the estimators are
close to the ground truth for N = 1000. All ground truth
values lie within the computed bounds. However, estimators
for small sample sizes have large 95 % Cls, especially for
high-order moments.

Simulation for the product moments of causal effects.
We assume the following SCM (B):

Y := X?U,U ~ Unif(0, 1), (25)

where X takes values in {—1,0, 1} with the probabilities
P(X = —1) = P(X = 0) = P(X = 1) = 1/3. The
domain of Y is bounded within [0, 1]. This setting satisfies
Assumptions [I] and 2] We simulate 1000 times with the
sample size N = 20,100, 1000, respectively. We let Ny
and N5 both be 1000.

Results. We present the estimates for E[(Y; — Yp) (Yo —
Y_1)] in Table |2} All means of the estimators are close to
the ground truth. The ground truth value lies within the
computed bounds. However, estimators for small sample
sizes have large 95 % Cls.

Overall, the results show that, as the sample size increases,
the estimates are close to the ground truths. Figures|I]and 2]
in Appendix [F] present the plots of the estimates obtained
from the numerical experiments.

6 APPLICATION TO REAL-WORLD

We present an application to a real-world medical dataset.

Dataset. We take up a dataset “Cholesterol Reduc-
tion” [Westfall et all [2011] (https://search.
r-project.org/CRAN/refmans/multcomp/

html/cholesterol.html). This clinical study was
conducted to assess the effect of three formulations of the
same drug (X) on cholesterol reduction (Y). The three
formulations consisted of 20 mg taken once daily (1 time”,
X = 1), 10 mg taken twice daily (‘2 times”, X = 2),
and 5 mg taken four times daily (“4 times”, X = 4). The


https://search.r-project.org/CRAN/refmans/multcomp/html/cholesterol.html
https://search.r-project.org/CRAN/refmans/multcomp/html/cholesterol.html
https://search.r-project.org/CRAN/refmans/multcomp/html/cholesterol.html

Table 1: Results of numerical experiments for SCM (A). We present the estimates of the second moments @ third
moments o), and fourth moments o(*) of causal effects along with their respective upper and lower bounds. Additionally,
we report the means of each estimator accompanied by their 95% confidence intervals.

Estimators \ N =20 N =100 N = 1000 Ground Truth
o® 0.405(]0.138,0.841]) 0.373([0.215, 0.659]) 0.335(]0.289,0.418]) 0.333
J,(JQ) 1.548([0.804, 2.62]) 1.582([1.127,2.030]) 1.647([1.485,1.769]) -

O'(LQ) 0.108([0.000, 0.679]) 0.005([0.000, 0.018]) 0.000([0.000, 0.000]) -
o® —0.572([-1.679,0.093]) —0.293([-0.750, —0.065]) —0.245([—0.305, —0.186]) —0.250
JI(JB) 0.087([—0.107,0.292]) 0.120([0.037,0.234]) 0.126([0.074,0.177]) -
O'(LS) —2.479(]-5.381,—0.612]) —3.175([—3.999, —1.978]) —3.412(]—3.877,—3.113]) -
o® 0.963(]0.066, 6.922]) 0.194([0.061, 0.384]) 0.205(]0.112,0.283]) 0.200
a,(jl) 6.837([1.157,11.497]) 7.712([4.909, 10.848]) 8.093([7.214, 8.878]) -
024) 0.008(]0.000, 0.085]) 0.000([0.000, 0.000]) 0.000([0.000, 0.000]) -

Table 2: Results of numerical experiments for SCM (B). We present the estimates of the product moments of causal effects

o(1,0;0,—1) along with their respective upper and lower bounds. Additionally, we report the means of each estimator
accompanied by their 95% confidence intervals.
Estimators \ N =20 N =100 N = 1000 Ground Truth
0(1,0;0,—1) | —0.300([—0.437,—0.131]) —0.323([—0.420,—0.239]) —0.327([—0.419, —0.260]) —0.333
oy(1,0;0,—1) | —0.154([—0.521,0.000])  —0.105(]—0.217,—0.029]) —0.168([—0.222, —0.112]) -
or(1,0;0,—1) | —0.352([—0.559,—0.100]) —0.390([—0.583,—0.278]) —0.338([—0.409, —0.260]) -

dataset has a sample size of 10 for each treatment group.
The purpose of the study was to determine which of the
formulations is efficacious. Previous studies examined
multiple comparisons, specifically whether the conditions
EYi] > E[Yz], E[Ys] > E[Yi]. and E[Yy] > E[Yi]
simultaneously hold or not [Westfall et al., [2011]]. The
domain of Y is bounded within [5, 19].

We assume the exogeneity assumption holds, as [Westfall
et al.|[2011]] did not report any potential confounding fac-
tors. We assume that the monotonicity assumption holds,
meaning that increasing the formulation from 1 time to 2
times always leads to greater cholesterol reduction for all
subjects, and similarly, increasing it from 2 times to 4 times
consistently results in further cholesterol reduction for all
subjects. We used the estimators described in Section [5]
We conduct the bootstrapping [Efronl|1979] to provide the
means and 95% confidence intervals (CI) for each estimator.

Results on the moments of causal effects. First, we study
the causal effects of changing the formulation from X =1
to X = 2,1.e., Yo — Yj. The results are:

Mean: 3.432 (95%CI: [0.914, 6.104]).
Variance: 3.072 (95%CI: [0.297, 8.610]),
Standard deviation: 1.753 (95%CI: [0.545, 2.934]).
Skewness: 21.027 (95%CIL: [—6.747, 34.504]),
Kurtosis: 21.312 (95%CTI: [0.000, 203.885)).

We have that changing the treatment formulation from
X = 1to X = 2 increases the amount of cholesterol

reduction, with the average causal effect being 3.432. The
relatively large standard deviation suggests that the causal
effect exhibits a fair degree of heterogeneity across indi-
viduals. Our results exhibit substantially greater positive
skewness than that of an exponential distribution, which
has a skewness of 2, and significantly higher kurtosis than
that of a Gaussian distribution, which has a kurtosis of 3.
The large positive skewness suggests that there may be a
larger number of individuals having effects smaller than the
average 3.432, rather than larger than 3.432; and it suggests
the existence of a small number of individuals who have
effects that are significantly larger than the average, making
the average greater than the median. Finally, the kurtosis
estimate has a large CI, and a larger sample size appears to
be necessary to obtain more reliable estimates. If the esti-
mate is reliable, the large positive kurtosis value indicates
a high number of outliers, which, given the large positive
skewness, suggests a high number of individuals with causal
effects that are significantly higher than the average.

The results for Yy — Y; and Y, — Y5 are presented in Ap-
pendix [G] along with the estimated bounds. The bounds are
all relatively wide.

Results on the product moments of causal effects. Next,
we study the covariance and correlation of causal effects
Y5> — Y] and Y — Y5, where the estimated mean of Y, — Y5
is 3.201 (95%CT: [0.471,5.811]). The estimates are

Covariance: —2.076 (95%CI: [—6.235,0.297)),



Correlation: —0.594 (95%CTI: [—1.000, 0.750]).

The results indicate that the causal effects Yo — Y7 and
Y, — Y5 may be negatively correlated.

Consider the change in treatment from X = 1 to 2 to 4. The
mean of Yo—Y; and Y, —Y5 is 3.432 and 3.201, respectively,
indicating that the treatment changes from X = 1to X = 2
and from X = 2 to X = 4 increase cholesterol reduction
on average. The correlation result offers a more detailed
insight. Patients who have larger causal effects Y5 — Y} than
the average tend to have causal effects Y, — Y5 smaller than
the average. Conversely, patients who have smaller causal
effects Yo — Y7 than the average tend to have causal effects
Y, — Y5 larger than the average. This means that if one of
the changes significantly increases cholesterol reduction,
then the other change has a smaller effect. However, the es-
timate of the correlation has a large CI. A larger sample size
appears to be necessary to obtain a more reliable estimate.

Additionally, we show the estimated bounds of the covari-
ance and correlation of causal effects Yo — Y7 and Yy, — Y5
in Appendix [G] The bounds are relatively wide.

7 CONCLUSION

This work moves beyond the traditional focus on ACE to in-
vestigate the family of moments of causal effects. They
could serve as fundamental tools for understanding the
shape of the distribution of causal effects and their het-
erogeneity. They can reveal asymmetries in the distribution,
suggesting the presence of distinct response individuals that
might require different treatment strategies. This understand-
ing is crucial for tailoring interventions and designing more
effective policies.

We have also studied conditional moments of causal effects,
which characterize the shape of the distribution of causal
effects within a subpopulation defined by subjects’ covari-
ates WW. They provide complementary information to condi-
tional ACE (CACE), i.e., E[Y; — Yy|W = w], by capturing
higher-order properties beyond the mean. The definition,
identification, and bounds of the conditional moments of
causal effects are discussed in Appendix D]

The exogeneity and monotonicity assumptions, while com-
mon in the causal inference literature, can restrict the prac-
tical applicability of the identification results. The assump-
tion of exogeneity, requiring the absence of unmeasured
confounders, might be plausible in some applications, es-
pecially in certain controlled settings. The monotonicity
assumption can be challenging to verify in practice. In such
scenarios, the bounding results that relax the monotonicity
assumption and depend primarily on exogeneity provide
a range of plausible causal effects, still offering valuable
information for guiding decisions. In general, these assump-
tions require a cautious interpretation of the findings in the

practical use of the results.

Future research will include sensitivity analysis and instru-
mental variable analysis for the moments of causal effects
under unmeasured confounders, extending methods devel-
oped for the ACE [Wright, |1928| (Cornfield et al.l 1959, Im{
bens and Angrist, |1994} Vanderweele and Arah, 2011} Ding
and VanderWeelel 2016]]. Another direction will involve de-
riving narrower bounds. Deriving tighter bounds than those
provided by the Fréchet inequalities remains a highly chal-
lenging open mathematical problem when m > 2. In the
finance area, some studies [Lux and Papapantoleon, 2017,
Bartl et al., 2022] provide improved Fréchet—Hoeffding
bounds by incorporating additional information on the joint
distribution. In the PoC literature, some studies [[Kuroki and
Cail, 2011}, |Dawid et al., |2017]] provide narrower bounds by
incorporating additional information about third variables
(e.g., covariates or mediators).

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their time
and thoughtful comments.

References

Susan Athey and Guido Imbens. Recursive partitioning for
heterogeneous causal effects. Proceedings of the National
Academy of Sciences, 113(27):7353-7360, 2016.

Susan Athey and Guido W. Imbens. Machine learning meth-
ods that economists should know about. Annual Review
of Economics, 11(1):685-725, 2019.

Alexander Balke and Judea Pearl. Bounds on treatment
effects from studies with imperfect compliance. Journal
of the American Statistical Association, 92(439):1171-
1176, 1997.

D. J. Bartholomew. A test of homogeneity for ordered
alternatives. Biometrika, 46(1/2):36-48, 1959.

Daniel Bartl, Michael Kupper, Thibaut Lux, Antonis Papa-
pantoleon, and Stephan Eckstein. Marginal and depen-
dence uncertainty: Bounds, optimal transport, and sharp-
ness. SIAM J. Control Optim., 60(1):410-434, January
2022. ISSN 0363-0129.

Christopher Bishop. Pattern Recognition and Machine
Learning. Springer, January 2006.

Jerome Cornfield, William Haenszel, Hammond Ec, Abra-
ham M. Lilienfeld, Michael Boris Shimkin, and Wynder
El. Smoking and lung cancer: recent evidence and a
discussion of some questions. Journal of the National
Cancer Institute, 22 1:173-203, 1959.



Harald Cramér. Mathematical methods of statistics, vol-
ume 26. Princeton university press, 1999.

A Philip Dawid, Monica Musio, and Rossella Murtas. The
probability of causationl. Law, Probability and Risk, 16
(4):163-179, 11 2017.

John DiNardo, Nicole M. Fortin, and Thomas Lemieux.
Labor market institutions and the distribution of wages,

1973-1992: A semiparametric approach. Econometrica,
64(5):1001-1044, 1996.

Peng Ding and Tyler J. VanderWeele. Sensitivity analysis
without assumptions. Epidemiology, 27(3), 2016.

David P Doane and Lori E Seward. Measuring skewness: a
forgotten statistic? Journal of statistics education, 19(2),
2011.

J. L. Doob. The Limiting Distributions of Certain Statistics.
The Annals of Mathematical Statistics, 6(3):160 — 169,
1935.

B. Efron. Bootstrap Methods: Another Look at the Jackknife.
The Annals of Statistics, 7(1):1 — 26, 1979.

Zheng Fang and Andres Santos. Inference on Direction-
ally Differentiable Functions. The Review of Economic
Studies, 86(1):377-412, 09 2018.

M. Fréchet. Sur les tableaux dont les marges et des bornes
sont données. Revue de I’Institut International de Statis-
tique / Review of the International Statistical Institute, 28
(1/2):10-32, 1960.

Maurice Fréchet. Généralisation du théoréme des probabil-
ités totales. Fundamenta Mathematicae, 25(1):379-387,
1935.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Pre-
diction, Second Edition. Springer Series in Statistics.
Springer New York, 2009.

James J. Heckman, Jeffrey Smith, and Nancy Clements.
Making the most out of programme evaluations and social
experiments: Accounting for heterogeneity in programme
impacts. The Review of Economic Studies, 64(4):487-535,
10 1997.

M.A. Hernan and J.M. Robins. Causal Inference: What
If. Chapman & Hall/CRC Monographs on Statistics &
Applied Probab. CRC Press, 2024.

Paul W Holland. Statistics and causal inference. Journal of
the American statistical Association, 8§1(396):945-960,
1986.

Takahiro Hoshino and Keisuke Takahata. Parametric identi-
fication of the joint distribution of the potential outcomes.
Stat, 9(1):e254, 2020.

Kosuke Imai and David A van Dyk. Causal inference with
general treatment regimes. Journal of the American Sta-
tistical Association, 99(467):854-866, 2004.

Guido W. Imbens. The role of the propensity score in
estimating dose-response functions. Biometrika, 87(3):
706-710, 2000.

Guido W. Imbens and Joshua D. Angrist. Identification and
estimation of local average treatment effects. Economet-
rica, 62(2):467-475, 1994.

D. N. Joanes and C. A. Gill. Comparing measures of sample
skewness and kurtosis. Journal of the Royal Statistical
Society: Series D (The Statistician), 47(1):183-189, 1998.

Chuan Ju and Zhi Geng. Criteria for surrogate end points
based on causal distributions. Journal of the Royal Sta-
tistical Society. Series B (Statistical Methodology), 72(1):
129-142, 2010.

Yonghan Jung, Jin Tian, and Elias Bareinboim. Double
machine learning density estimation for local treatment
effects with instruments. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 21821-21833.
Curran Associates, Inc., 2021.

Yuta Kawakami, Manabu Kuroki, and Jin Tian. Probabilities
of causation for continuous and vector variables. Proceed-
ings of the 40th Conference on Uncertainty in Artificial
Intelligence (UAI-2024), 2024a.

Yuta Kawakami, Manabu Kuroki, and Jin Tian. Identifica-
tion and estimation of conditional average partial causal
effects via instrumental variable. Proceedings of the 40th
Conference on Uncertainty in Artificial Intelligence (UAI-
2024), 2024b.

E H Kennedy, S Balakrishnan, and L. A Wasserman. Semi-
parametric counterfactual density estimation. Biometrika,
110(4):875-896, 03 2023a.

Edward H Kennedy, Sivaraman Balakrishnan, and
LA Wasserman. Semiparametric counterfactual density
estimation. Biometrika, 110(4):875-896, 2023b.

Kwangho Kim, Jisu Kim, and Edward H. Kennedy. Causal
effects based on distributional distances, 2024. URL
https://arxiv.org/abs/1806.02935,

Soren R. Kiinzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin
Yu. Metalearners for estimating heterogeneous treatment
effects using machine learning. Proceedings of the Na-
tional Academy of Sciences, 116(10):4156-4165, 2019.

Manabu Kuroki and Zhihong Cai. Statistical analysis of
’probabilities of causation’ using co-variate information.
Scandinavian Journal of Statistics, 38(3):564-577, 2011.


https://arxiv.org/abs/1806.02935

Manabu Kuroki and Taiki Tezuka. The estimated causal
effect on the variance based on the front-door criterion in
gaussian linear structural equation models: an unbiased
estimator with the exact variance. Statistical Papers, 65
(3):1285-1308, 2024.

Ang Li and Judea Pearl. Probabilities of causation with non-
binary treatment and effect. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 38(18):20465-20472,
Mar. 2024.

Ting Li, Chengchun Shi, Jianing Wang, Fan Zhou, and
Hongtu Zhu. Optimal treatment allocation for efficient
policy evaluation in sequential decision making. In Pro-
ceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS 23, Red Hook,
NY, USA, 2024. Curran Associates Inc.

Zhenhua Lin, Dehan Kong, and Linbo Wang. Causal in-
ference on distribution functions. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 85
(2):378-398, 03 2023.

Thibaut Lux and Antonis Papapantoleon. Improved fréchet—
hoeffding bounds on d-copulas and applications in model-
free finance. 2017.

George W. Mackey. Harmonic analysis as the exploitation
of symmetry—a historical survey. Bulletin (New Series) of
the American Mathematical Society, 3(1.P1):543 — 698,
1980.

Kevin P. Murphy. Probabilistic Machine Learning: An
introduction. MIT Press, 2022.

R.B. Nelsen. An Introduction to Copulas. Springer Series
in Statistics. Springer New York, 2007.

Jerzy Neyman. Sur les applications de la theorie des prob-
abilites aux experiences agricoles: Essai des principes
(in polish). english translation by dm dabrowska and tp
speed (1990). Statistical Science, 5:465—480, 1923.

Ellis Batten Page. Ordered hypotheses for multiple treat-
ments: a significance test for linear ranks. Journal of
the American Statistical Association, 58(301):216-230,
1963.

Judea Pearl. Probabilities of causation: Three counterfactual
interpretations and their identification. Synthese, 121(1):
93-149, 1999.

Judea Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition, 2009.

Karl Pearson. Vii. mathematical contributions to the the-
ory of evolution.—iii. regression, heredity, and panmixia.
Philosophical Transactions of the Royal Society of Lon-
don. Series A, containing papers of a mathematical or
physical character, 1896.

Karl Pearson. "das fehlergesetz und seine verallgemeinerun-
gen durch fechner und pearson." a rejoinder. Biometrika,
4(1/2):169-212, 1905.

R. A. J. Post. Causal Effect Heterogeneity: Statistical for-
malization and analysis of the individual causal effect.
Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathe-
matics and Computer Science, Eindhoven University of
Technology, 2023.

W.H. Press. Numerical Recipes 3rd Edition: The Art of
Scientific Computing. Numerical Recipes: The Art of
Scientific Computing. Cambridge University Press, 2007.

James Robins and Andrea Rotnitzky. Comment on the
bickel and kwon article, *inference for semiparametric
models: Some questions and an answer’. Statistica Sinica,
11:920-936, 01 2001.

James M. Robins. Association, causation, and marginal
structural models. Synthese, 121(1):151-179, 1999.

Daniel Rubin and Mark J van der Laan. Extending marginal
structural models through local, penalized, and additive
learning. 2006.

Donald B. Rubin. Bayesian inference for causal effects:
The role of randomization. The Annals of Statistics, 6(1):
34-58, 1978.

Uri Shalit, Fredrik D Johansson, and David Sontag. Esti-
mating individual treatment effect: generalization bounds
and algorithms. In International conference on machine
learning, pages 3076-3085. PMLR, 2017.

R Singh, L Xu, and A Gretton. Kernel methods for causal
functions: dose, heterogeneous and incremental response
curves. Biometrika, page asad042, July 2023.

Jin Tian and Judea Pearl. Probabilities of causation: Bounds
and identification. Annals of Mathematics and Artificial
Intelligence, 28(1):287-313, 2000.

A. W. van der Vaart. Asymptotic Statistics. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge
University Press, 1998.

Tyler J Vanderweele and Onyebuchi A Arah. Bias formulas
for sensitivity analysis of unmeasured confounding for
general outcomes, treatments, and confounders. Epidemi-
ology, 22(1):42-52, Jan 2011.

Paul T. von Hippel. Mean, median, and skew: Correcting
a textbook rule. Journal of Statistics Education, 13(2),
2005.

Stefan Wager and Susan Athey. Estimation and inference
of heterogeneous treatment effects using random forests.
Journal of the American Statistical Association, 113(523):
1228-1242, 2018.



Peter H Westfall. Kurtosis as peakedness, 1905 - 2014. r.i.p.
Am Stat, 68(3):191-195, 2014.

Peter H Westfall, Randall D Tobias, and Russell D Wolfinger.
Multiple comparisons and multiple tests using SAS. SAS
Institute, 2011.

Wolfgang Wiedermann, Bixi Zhang, Wendy Reinke, Keith C
Herman, and Alexander von Eye. Distributional causal
effects: Beyond an “averagarian” view of intervention
effects. Psychological Methods, 2022.

P.G. Wright. The Tariff on Animal and Vegetable Oils. Inves-
tigations in international commercial policies. Macmillan,
1928.



APPENDIX TO “MOMENTS OF CAUSAL EFFECTS"

We provide the proofs of the lemmas and theorems in the body of the paper in Appendix [A] the discussion of the central
moments of causal effects in Appendix B} the discussion of the central product moments of causal effects in Appendix
the discussion of the conditional moments of causal effects in Appendix [D] the details and consistency of all estimators in
the body of the paper in Appendix [E] the plots of the estimates obtained from the numerical experiments in Appendix [F and

additional information about the application in the body of our paper in Appendix [G]

A PROOFS

In this appendix, we provide the proofs of the lemmas and theorems in the body of the paper. We first show Fréchet

inequalities [Fréchet, [1935[1960]. If A, are logical propositions or events, the Fréchet inequalities are

max{ZP (n—1), }<P</\A><'m1n {P(A))},

where A is a logical conjunction. Especially,

max{P(4) + P(B) — 1,0} < P(AA B) < min{P(A),P(B)}
holds.
Lemma Under SCM M, given m > 1, we have

(Y1 — Yo)m = (Yl — }/O)m]l(yl > YO) + (*1)m(YO — Yl)m]I(YO > Yl)

:/ H(}/O <1 §Y1,YO < Y2 SH,...,YO < Um SYl)dyl...dym

-u4w/ (Vi <y < Yo, Y1 <o < You..., Vi < ym < Yo)dur ... dym.
Qy ™

Proof. Given m > 1, we have
/ I(Yo <y <Y1,Y0 <y <Y1,..., Y0 <y SY1)dy1 ... dym
Qyﬂl

- / H(Yb < Y1 S Yl)dyl : / H(YO < Ym S Yl)dym
Qy QY
= (Yl — YO)mH(Yl > Yo)

Similarly, given m > 1, we have
/ IV <y <Y, Y1 <92 <Yo,.... Y1 <y < Y0)dy1 ... dym
Qym

Z/Hm<m§%Mm:/MH<%S%Mm
Qy QY

= (Yb — Yl)mH(Yl > Y())m
= (=1)™(Y1 — Yo)" (Yo > Y1).

Then, given m > 1, we have

(m—mwz/ I(Yo <31 < Y1,Yo <o < Vi, Yo < ym < Vi)dr .. . dym
Qy ™

+ (_1)m/ I(Y1 <y <Y, Y1 <y <Yo,..., Y1 <Y < Y0)dy1 ... dym.
Qy ™

(26)

27)

(28)

(29)

(30)

€29



Theorem [T} Under SCM M and Assumptions[I| 2| and B} given m > 1, the m-th moment of causal effect Y1 — Yy is
identifiable by o™, where

oM = / max{ min {P(Y <y,|X =0)} — max {PY <yplX = 1)},O}dy1 oo dYm
Qym = =1, m

=1,....m p=1,...,

+ (—l)m/Q N max{ minm{P(Y <yl X =1)} - maxm{IP’(Y <yplX = O)},O}dyl e Y. (32)

p=1,..., p=1,...,

PrOOf: P(Yb <y S K,Yb < Y2 S Yia"'v% < Ym S Yl) andP(Yi < Wy S %aYi < Y2 S YVO,"'vﬁ/l <
Ym < Yp) are identifiable by max{min,—1 _,{P(Y < y,|X = 0)} — maxp=1,__n{P(Y < y,|X = 1),0} and
max{ming—1, . {P(Y <yp|X =1)} —maxp=1, m{PY < yp|X =0),0} respectively by Theorem 5.2 in [Kawakami

et al} 2024a] under Assumptions[T]and 2] Then we have Eq. (6). O

Lemma Under SCM M andAssumptionsand givenm > 1, we have l(y1, ..., ym;4,J) <P(Y; <1 <Y;,Y; <
Y2 S Kaa}/] < Ym S }/;) Su(ylw-wym;iaj) where

l(yl,...,ym;i,j)—max{ SRV <ylX=4)- Y ]P’(Y<yp|X—i)m+1,0}, (33)
p=1,....m p=1,....m
WY1y .-y Ym; i, J) min{ min {PY <ypl X =3)},1— max {]P’(Y<pri)}} (34)
p=1,....m p=1,....m

for (i,7) € {(1,0),(0,1)} and each y1, . . ., ym € Qy.

Proof. From Fréchet inequalities [Fréchet, |1935|1960], given m > 1, we have

P(Y; <y1 <Y, Y <ya <Y, .Y <y <))
:P(ij<y17y1SY—iquj<y2»y2§er’u~~~7ij<ymaym§E)

zmax{ Y OPY <)+ Y {1—Pm<yp>}—<2m—1>,o}

p=1,....m p=1,....m
:maX{ Z P(Yj < yp) — Z P(Y; <yp) — (m — 1)70}
p=1,....,m p=1,....m
= max{ YRV <ylX=5)— Y PY <y|X=i)-(m- 1),0} (35)
p=1,....,m p=1,....,m
and
P(Y; <1 <Y,V <92 <Y5,.., Y <y <Y))
<min {P(Y; <y1),.. . P(Y; <ym), P(Y; <91)s .., P(Y; <y}
= min{ min {P(Y <yp|X =4)},1— max {P(Y <yp|X = Z)}} (36)
p=1,...,m p=1,....m
for (4,7) € {(1,0),(0,0)} and each y1, ..., y, € Qy. O

Theorem Under SCM M and Assumptionsand given m > 1, we have J(Lm) < M(m) < J[(Jm), where

(A). When m is an even number,

o =/ Wyt Yms 1,0)dys . .. dym +/ Uyi, s Ymi 0, 1)dys - .. dym, (37)
Qym Q

m
Y



ofjm):/ u(yl,...,ym;l,O)dyl...dym+/ w(Yts .- Ym; 0, Ddyy - . . dym.
Qym' QYm

(B). When m is an odd number,

o™ =/ Wy1,- - ymi 1,0)dyn / u(yr, - ym3 0,1)dys . . . dym,
QY’NL QY’"L

coodym — (
U((Jm) :/ U(yh...,ym;l,O)dyl...dym—/ WY1y Ym; 0, 1)dyr . .. dypm,.
Qy™ Qym
Proof. When m is an even number, we have
MW=A B(Yo <41 <Y1,Yo <92 < Vi, ....Yo <y < i)y . .. dym
ym
+(_1)m/Q ’ P(Y1 <y1 <Y, Y1 <92 <Ypy,.... Y1 <ym <Yo)dy1...dym
ym
:/Q P(Yo <y1 <V1,Yo <y <Y1,....Y0 < ym <Y1)dy1...dym
ym
+/Q P(Y1 <y1 <YYo, Y1 <y <Yo,....Y1 <ym <Yo)dy:1...dym
ym
Z/Q l(y1,...,ym;1,0)dy1...dym+/ Wy, - Ym; 0, 1)dyr - . . dym,
ym

Qy ™

and

) :/Q P(Yo <91 <Y1, Yo <92 < Vi,..., Yo < Yo < Y1)y - dijm
o
T A R ) A IO (RS I
o
:/Q P(Yo <y1 <V1,Yy <y <Y1,....Y0 < ym <Y1)dy1...dym
o
+/Q P(Y1 <y1 <YYo, Y1 <y <Yy,....Y1 <ym <Yo)dy:1...dym
o
S/ u(yl,...,ym;l,())dyl...dym+/ w(yty .-y Ym; 0, Ddyr . . . dym,.
Qym Q
When m is an even number, we have
™ :/Q P(Yo <y <Y1,Y0 <92 <VYi,..., Yo < ym < Y1)dy1 ... dym
o
‘1'(—1)m/Q P(Y1 <y1 <Y0, Y1 <y2 <Yp,.... Y1 <ym <Y0)dy1...dym
o
=L P(Yo <1 <Y1, <12 <Yi,....Yo <ym < Y)dys ...dym
o

—/ P(Yi < y1 < Yo, Y1 < ys < Yoo, Y1 < ym < Yo)dys - .. dym
QYTVL

Z /
QYWL

l(yla e Yms 1, O)dyl ce dym - / u(yh e Yms 0, 1)dy1 ce dym7
) / P(Yy <31 < Y1,Yy < s < Yir..os Yo < g < Y1)y - .. dynm
Qy ™

Qy ™

and

(38)

(39)

(40)

(41)

(42)

(43)



—|—(—1)m/ P(Yl <y < Yo, Y1 < Y2 <Yy..., Y1 < Ym < }/())dyl...dym

/ P(Yo <1 <Y1,Yo <1n <Yi,.... Yo <t < Yi)dyn ... dym

—/ P(Y1 <y1 <Y, Y1 <y2 <Yy,.... Y1 <ym <Yo)dy1...dym
QYWL

(Yi = Y5) (Ve — Ya)

S/ w(Y1s -5 Ym; 1,0)dy1 - .. dym —/ Wy1, - ymi0,1)dyr - . . dyp,. (44)
Qy ™ Qy ™
O
Lemma Under SCM M, for any i, j, k,h € {1,..., R}, we have
])(Yk — Yh)ﬂ(}/l > Y},Yk > Yh) — (Y — K)(Yk — Yh)ﬂ(}/j >Y;, Y, > Yh)

Proof. Foranyi,j,k,he{1,...,

= (Y, - Y,
(Vi —
Qy

Y;)
Qy

(Yh — Yk)]I(Y; > ij, Y, > Yk}) +

(¥ —

Vi) (Ve — Y)I(Y; > Y3, Y > Y3)

/ / I(Y; < y1 < Y3, Yi < g2 < Yi)dyrdys —/ / I(Y; <y < Y;, Vi < ys < Yi)dyrdyz
ay Jay

—/ / I(Y) < 41 < Vi, Yi < g < Yi)dysdys +/ / LY, <1 < Y}, Ye < 9o < Ya)dyndys.  (45)
Qy Qy Q QY

R}, we have

/ / I(Y; < g1 < Vi, Vi < ys < Yi)dysdyz —/ / I(Y; <y <Y, Y5 < ys < Yi)dysdys
Qy Qy Q QY

—/ / I(Y; < 1 < Yi Yi < w2 < Ya)dysdyn +/ / I(Y; < 4 < Y}, Yk < g2 < Ya)dyadyo
Qy Qy QY QY

:/QY

Theorem Under SCM M and Assumptions IZI and foranyi, j,k,he{1,...,

I(Y;
Qy
Yi = Y;)
(Y: = Y5)
(Yi = Yj)
(Yi = Y;)
Yi = Y;)

—

I(Y; < g1 < Y:)dys /

=
—

Qy

)/}7)/h > Yk

Y; >Y}7Yh>Yk

— T —

_|_
+
+

and (Yy, — Y},) is identifiable by o (i, j; k, h), where
o(i,jik,h)

(Y

(Y5
(Y;
(Y

]I(Yh <y2 < Yk)dyg — /

< Yi)dy, / (Vi < g < Yn)dys + /
Qy

]I(Y >Y;,Yk >Y) —

I(Y;
IY; >Y;,Y, > Y,

= ;<

:<

I(Y; <y < Yj)dm/ I(Yh < y2 < Yi)dyo
Qy

I(Y; < g1 < Y))dys / I(Yh < yo < Yi)dys
Qy

Qy

;) ) )

i) ) )

Y?)(Yk - Yh)H(Yj > Y, Y >Yh)

)Yy — Yh)]I(Yj >Y, Y, > Y
(46)

O

R}, the product moment of (Y; — Yj)

min{P(Y < y1|X =J),P(Y <3| X = h)} —max{P(Y < 11|X =1),P(Y < y2|X = k)},0 pdy1dys

min{P(Y < y1|X =J),P(Y < 42| X = k)} —max{P(Y < 11]|X =14),P(Y < y2|X = h)},0 pdy1dy-

max { min{P(Y < y1|X =19),P(Y < 42| X = h)} —max{P(Y < 11|X =5),PY < 42| X = k)},()}dyldyg
{min{IP’(Y <y | X =9),P(Y < 2| X = k)} — max{P(Y < 51| X =J),P(Y < 52| X = h)},O}dyldyg.

(47)



Proof. P(Y; < 11 <Y, Y, < y2 < V%) are identifiable by max{min{P(Y < y|X = j),P(Y < y|X = h)} —
max{P(Y <y1|X =1),P(Y < y2| X = k)},0} (4,4, k,h € {1,..., R}) respectively by Theorem 5.2 in [Kawakami et al.,
2024a]) under Assumptions[TJand 2] Then, we have Eq. (I7). O

Lemma@ Under SCM M andAssumptionsand foranyi, j,k.h € {1,..., R}, we have l(y1,ys;4, 7, k, h) <P(Y; <
y1 <Y, Y <y2 <Yi) <u(yi,ys;4, 4, k, h), where

l(ylayZ;ivjvkah)
= max{IP’(Y <ylX =) —PY <p1|X =) + P(Y < | X = h) — P(Y < ya| X = k) — 1,0}, 48)

u(yhyZ;ivjvkvh)
— min { min{P(Y < y1|X = §),P(Y < y2|X = h)}, 1 — max{P(Y < y1|X = i), P(Y < 3 X = k)}} 49)

foreachi,j k. h e {1,...,R} and y1,y> € Qy.

Proof. From Fréchet inequalities [Fréchet, 1935, (1960], for any i, j, k, h € {1,..., R}, we have
PY; <1 <Y,V <y <Yy) =P, <y1,0n <Y, Y}, <yo,y2 <Y%)
> max {P(Y; < y1) + Py < Y:) + P(Vh < o) +Plys < Vi) — 3,0}
— max {P(Y; < 1) = P(Vi < 1) + P(Vh < ) — P(Vk < y2) — 1,0}
= max {P(Y <11|X = j) = P(Y <p1|X =0) +P(Y < o] X =) = P(Y <1|X =k)— 1,0}  (50)
and
P(Y; <91 <Y, Y <y2 <Yi) =P(Y; < w101 < Y5, Vi < 92,92 < Vi)
< min{min{]P’(Yj <y1),P(Yn <y2)},1 —max{P(Y; < 11),P(Yy < yg)}}
- min{min{]P’(Y <yi|X =), P(Y < 1| X = B)},1 — max{P(Y < 11| X =), P(Y < | X = k)}}. (51)

O

Theorem@ Under SCM M andAssumptionsand foranyi,j k,h € {1,...,R}, we have or,(i,j; k, h) < pijiken <
ou (i, j; k, h), where

JL(Z'aj;kvh) :/ l(yl,yQ;ivjakvh)dyldyQ _/ u(ylva;jvivkah)dyldyZ

Qy2 Qy2
7/ u(ylayQ;iajahak)dyldy2+/ l(ylayQ;jvia hak)dyldyQ; (52)
Qy2 Qy2
aU(iJ;k,h):/ u(y1, yai i, . kvh)dyleUQ_/ Uy1,y23 4,4, k, h)dy:dys
Qy2 Qy2
_/ l(y17y2727j7h7k)dyldy2+/ u(ylay2;jai7h’k)dy1dy2- (53)
Qy2 Qy2

Proof. Forany i,j,k,h € {1,..., R}, we have

P =/ / (Y, < yr < Y3, Yn < yo < Yi)dyidys — / P(Y, < y1 < Y, Y < yo < Yi)dy1dys
SZY Qy QY

Qy

—/ / P(Y; <y <Y, Y < y2 < Yy)dyidyo +/ / P(Y; <y1 <Y}, Yk < yo < Y)dyidys
Qy Qy QY QY



Z/ l(yl,yz;i,j,k,h)dyldyz—/ u(y1, yo; J, i, k, h)dyrdys
Qy2 QY

_/ u(ylva;imja h7k)dy1dy2+/ l(yl;y?;j7ia h7k)dy1dy2a (54)
Qy 2 Qy-2

and

Pijsk,h / / P(Y; <y1 <Yi,Yh <y2 < Yi)dyidyo —/ / P(Y; <y1 Y5, <yo < Yi)dyidyo
Qy Qy Q QY

/ / P(Y; <y <Y, Y <y2 < Yy)dyidy +/ / PY; <1 <Y}, Y <ya <Yy)dyidyo
Qy Qy Q QY

/ U(yl,yg,l,],k h)dyldyQ 7/ l(ylvyZ;jviakah)dyldyQ
Qy2 Qy2

7/ l(ylayQ;iajvh’a k)dyldy2+/ u(ylayQ;j7ia h7k)dy1dy2 (55)
Qy 2 Qy 2

B IDENTIFICATION AND BOUNDS OF THE CENTRAL MOMENTS OF CAUSAL
EFFECTS

In this section, we discuss the central moments of causal effects.
We make the following assumption:

Assumption 5 (Existence of integrals). Under SCM M, given m > 1, i™) < 0o and fgym PY; —EY;] <y <Y —
E[ij]a E_EDQ] <y2 < E_E[Yrj]a B K_E[}/z] < Ym < }G_E[}/J])dyl s dym < o0 hOldfOr (Zuj) = {(Oa 1)7 (L 0)}

Identification of the central moment of causal effects.
Then, we have the following identification theorem.

Theorem 5 (Identification of the central moment of causal effects). Under SCM M and Assumptions|I| 2] and[3] given
m > 1, i is identifiable by (™), where

g™ = / max{ min {P(Y ~E[Y|X = 0] < y,|X = 0)}
Qy™ p=1,...m

— max {P(Y —E[Y|X =1] <y, X =1)}, O}dyl - dym

p=i,...,

+ (—1)7”/Q max{p min {P(Y — E[Y|X = 1] < y,|X = 1)}

=1,....m

— max {P(Y ~E[Y|X =0] < y,|X =0)}, O}dyl dym.  (56)
p=1,...,

Proof. Given m > 1, we have

/Q I(Yo —E[Yo] <1 <Y1 —E[Y1], Yo — E[Yo] <y2 < Y7 — E[Y1],...,

o
Yo — E[Yo] < ym <Y1 —EYi])dy: ... dym
= [ 106 ~EW] < o1 < Vi = BiDds- | 10— B <y < Vi~ BNy
v v

={(Y1 = Yo) — (E[Y1] — E[Yo))}"1I(Y1 — E[Y1] > Y, — E[Yo]). (57)

Similarly, given m > 1, we have

| U~ Y] < o1 < Yo - BV Y~ B < 30 < Yo~ E[¥l.....
QYWL



Y1 —EW1] < ym <Yy —E[Yo])dy1 ... dym
- / I(Yi — E[Y] < v < Yo — E[Yo))dy- - / I(¥y — EYi] < ym < Yo — E[Yol)dyn
Qy QY

={(Yo — Y1) — (E[Yo] = E[Y1])}"I(Yo — E[Yo] > Y1 — E[Y3]))™
= (=1)™{(Y1 — Yo) — (E[Y1] — E[Yo])}"I(Yo — E[Yo] > Y1 — E[Y1]). (58)

Then, given m > 1, we have
{(Y1 = Yo) — (B[v1] — E[Yo])}™
= /Q I(Yo —E[Yo] <y1 <Y1 —E[V1], Yy —E[Yo] <y2 < Y7 —E[Y4],...,
ym

Yo — E[Yo] < ym <Y1 —E[Y1])dy1 ... dym

4 (—1)?"/9 (Vi —E[Vi] < 1 < Yo — E[Yg), Vi — E[Yi] < 1 < Yo — E[Yo], .,

ym

Vi —EYV1] <ym < Yo — E[Yo])dys . .. dym. (59)

Taking expectations, given m > 1, we obtain

am = /Q . P(Yy —E[Yy] <91 <Y1 —E[V1], Yo —E[Yy] <92 <Yy —E[Vi],...,
v
Yo —EYo] < ym <Y1 —E[Y1))dy: ... dym
+ 0" [ P0G~ BY] < < Yo~ BYGL Y — B[V < 32 < Yo~ BNl
v
Y1 —EY1] < ym < Yo —EYo])dy: ... dym. (60)
Since P(Yy — E[Yy] < y1 <Y1 —E[Y1],Yy —E[Yo] < 4o < Vi —E[Yi],..., Yy — E[Yy] < yn < Y7 — E[Y1]) and

P(Yl — E[Yl] <1y < Yo — E[Yo], Y — E[Yl] <yz < Yo — E[Y()], ceey Y, — E[Yl] < Ym < Yo — E[Yo]) are identifiable
by re-writing fy as f(x,UY) = Y, — E[Y,] in Theorem 5.2 in [Kawakami et al., 2024a], we have, given m > 1,

ntm = / max{ min {P(Y —E[Y|X = 0] < y,|X = 0)}
Qy p=L;...,m

~ max {P(Y - E[Y|X = 1] <y|X = 1)}, o}dy1  dym

p=1,..
+ (—1)’”/ Inax{ min {P(Y —E[Y|X =1] < y,|X = 1)}
Qy p=1,....m
— max {B(Y ~ E[Y]X = 0] <y,[X = 0)}, O}dyl dym.  (61)

Moments of causal effects are expressed as the combination of conditional CDFs and expectations.
Bounding the central moment of causal effects.

Assumption [2] may sometimes be considered implausible by researchers. Therefore, we derive bounds for the central
moments of causal effects without relying on Assumption[2]

Lemma 5. Under SCM M andAssumptionsand givenm > 1, we have l(y1, ..., Ym;4,7) < P(Y; —E[Y;] <31 <
Y —E[Y;]Y; —E[Y;] <y <Y —E[Yj],....Y; —E[Yj] <ym <Y; —E[Yi]) <y, ..., ymsi,]), where

Z(y17~'~7y7rL;i7j) =

{ Y PY-EYIX=jl<ylX=j)— > PY-EY[X=i<ylX=i)—(m —1),0} (62)

p=1,....m p=1,....m



and

ﬂ(yl77ym7Z7J) =

min {p min {P(Y —EY|X =j] <y|X =4)},1— pnax {P(Y —EY|X =1 < yp|X = z)}} (63)

=1,....m R 1)

for (i,7) € {(1,0),(0,1)} and each y1, . .., Ym € Qy.

Proof. From Fréchet inequalities [Fréchet,|1935}/1960], given m > 1, we have

IP’(Y] E[Y]<y1<y E[Y]Y E[Y]<y2§1@—]Em],...,Yj—1E[Yj]<ymgYi—E[Yi])

>mw{ E: P(Y; — E[Y;] < yp) + E:{J— (Y — E[]<%H—@m—1ﬂ%
p=1,....m
—mw{ P(Y; —E[Yj] <wp) — Y ME—EWH<%%4m—Uﬁ}
p=1,....m p=1,....m
—max{ P(Y -E[Y[X =jl<y|X=j)— > PY-E[Y|X =i]<y|X =1i)— (m —1),0} (64)
p=1,....m

P(Y; —E[Yj] <y <Y; —E[V;],Y; —E[Y;] < 3o < Vi — m]w.

Y —E[Y;] <ym <Y; —E[Yi])
< min {P(Y; — E[Y;] <w1),... . P(Y; = E[Yj] <ym), P(Yi —E[Yi] <y

1), P(Y; = E[Yi] <ym)}

= min {p r{lin {PY -EY|X=j]<y|X =35} 1— X {PY —EY|X =i] <yp|X = z)}} (65)

for (4,5) € {(1,0),(0,0)} and each y1,. .., y, € Qy. O

Theorem 6 (Bounds of the central moment of causal effects). Under SCM M and Assumptions[Ijand[3} given m > 1, we
have 6§:m) < ﬁ(m) < 63”), where

(A). When m is an even number,

6(Lm):/ Wy, ym; 1, )dyl-.-dym+/ Wy, Yms; 0, 1)dyr - . . dym, (66)

Qy™ Qy ™

5" :/ ﬂ(yl,m,ym;LO)dm...dym+/ WY1, Ym; 0, 1)dyr . .. dym. (67)
Qym Qy ™

(B). When m is an odd number,

a\m =/ l‘(yl,...7ym;1,0)dy1...dym—/ WY1, Ym; 0, 1)dys .. dYpm, (68)
Qy ™ Qy ™

5" :/ WY1, Yms 1, )dyl---dym_/ Wy, yms 0, 1)dyr - dym. (69)
Qy ™ Qy ™

Proof. When m is an even number, we have

ntm = / P(Yy —E[Yo] <91 < Vi —E[V1], Yy —E[Yy] <y, < Vi —E[V4],...,
Qym'

}/0 — E[Y()] < Ym < Yl — E[Yﬂ)dyl - dym



+ (—l)m/ ]P)(Yl — ED/l] <y < Yo —E[Yo],yl — E[Y1] <y < Yo —E[Yo], ey
Qym

Y — E[Yi] < ym < Yo — E[Yo))dy ...

- / P(Yp — E[Yo] <11 < Y1 — E[Vi, Yo — E[Ye] < y» < Vi — E[¥il, ..,
QY"’L

Yo — E[Yo] < Ym < Y, — E[Yl])dyl C

+/ P(Y1 —EY] <y < Yo —E[Yy], Y1 - E[Y1 — E[Yo]] <y2 < Yo — E[Y], ...,

Y — E[Yi] < ym < Yo — E[Yo])dy ...

2/ Z(y1,--.7ym;1,0)dy1---dym+/ y1,- - Ym3; 0, 1)dys ... dym
QY’"L

Qy™

and

™ = / P(Yo — E[Yo] <31 <Y1 —E[Y1], Yo — E[Yo] < 42 < Vi —E[Y], ...,
Qym

Yo — E[Yo] <Ym <Y — ]E[Yl])dyl .

HEm [ B - B[] < < Yo - EY),Yi - B[] <o <Yo - Bl ...,
QY"'Z

Y1 —EY1] <ym < Yo —E[Yo))dy: ...

- / P(Yo — E[Yo] < 41 < Y3 — E[Vi], Yo — E[Yo] < o < Vi — E[¥il,. ...,
Qy ™

Yo — E[Y()] <Ym <Y1 — E[Yl])dyl .

+/ P(Y: — E[Yi] <11 < Yo — E[Yo], Vi — E[¥i] < 4> < Yo — E[Yp), ..,
QY”L

Y1 - EY1] <ym < Yo —E[Yo])dy: ...

Qy/r‘n/

When m is an even number, we have

ntm = / P(Yy — E[Yy] <y <Y1 —E[V1], Yy — E[Yy] < 42 <Y1 —E[Y1], ...,
Qym

Yo — E[Yo] < Ym < Y, — E[Yl])dyl Ce

+ (—1>m/ P(Y: —E[Y1] < g1 < Yo — E[Y],Y1 — E[Y1] < g < Yo — E[Y0),....,
ern

Y — E[Yl] < Ym < Yy — E[Yb])dyl Ce

= / ]P(YO — ]E[Yb} <y S Yl — E[Yl],YQ — ]E[Yo} < Y2 S Yl — E[Yl], ey
Qy ™

Yo — E[Yo] <Ym <Y — E[Yl])dyl .

~ [ PR - B < o1 < Yo - ElYo). Yi ~ B < 42 < Yo E[¥l.....
QYVYL

Y1 — E[Yl] < Ym S YO — E[Yb])dyl .

2/ l_(yl,...,ym;l,())dyl...dymf/ WY1y -y Ym; 0, Ddys - . . dym,
Qy ™

Qy ™

and

it = / P(Yo - E[Yo] <y1 <Y1 —E[V1], Yo - E[Yo] <92 <Y1 —E[Yi],...,
QY’VTL

dym

dym

dym

dym

dym

dym

dym

dym

dym

dym

dym

(70)

(71)

(72)



Yo — E[Yo] < Ym < Y — E[Yl])dyl Ce dym

+ (—1>m/ P(Yi — E[Yi] < y1 < Yo — E[Yg], Vi — E[Vi] < g2 < Yo — E[Yo],....
QY'IN,

Y1 = EW1] <ym < Yo — E[Yo])dys ... dym

_ / P(Yy — E[Yy] < y1 < Vi — E[Vi], Yo — E[Yo] < y» < Y1 — E[Vi], ..,
QY"IL

ym

!
S~

Yo — E[YO] < Ym < Y, — E[Yl])dyl ce dym

PY1 —EV] <y <Yy —E[Yp], Y1 —E[Y1] <y2 <Yy — E[Yp),...,

Y1 — E[Yl] < Ym S YO - E[Yo])d;lh e dym

S/ ﬁ(y17~~~7ym§1»0)dy1-dem_/ W1, Ym; 0, D)y - . . dyim. (73)
Qy ™ Qy ™

We can calculate the bounds of the skewness as follows:

~(3) ~(3)

Jé QH(‘?E:B) >0)+ Ué §H(5§:3) <0) <
53 532

U L

and the bounds of the kurtosis as follows:

z\Y

_(2)2 — _(9)2
5" " p®

_(3) ~(3)
< U 168 > 0) + U1 <o), (74)
5_(2)5 6_(2)5
L U
_(4)
9y
o @
or,

C IDENTIFICATION AND BOUNDS OF THE CENTRAL PRODUCT MOMENTS OF

CAUSAL EFFECTS

In this section, we discuss the central product moments of causal effects. We make the following assumption:

Assumption 6 (Existence of integrals). Under SCM M, givenm > 1, p; ;4. < 00 and [ [, P(Y; = E[Y;] <y <
Y —ElY:], Vs — E[Y)] < y2 <Yy — E[Yi])dy1dys < oo hold for any i,j,k,h € {1,...,R}.

Identification of the central product moment of causal effects.

Theorem 7 (Identification of the central product moment of causal effects). Under SCM M and Assumptions|[I|2} and 6]
foranyi,j,k,h € {1,..., R}, b; ;. is identifiable by 5 (i, j; k, h), where

(i, jik, h) = max { min{P(Y — E[Y|X = j] < 91X = 5),P(Y —E[Y|X = h] < 42| X = h)}

Qy?2

—max{P(Y —E[Y|X =i <y |X =9),P(Y —E[Y|X =k] < 2| X = k)},()}dyldyg

— [ max { min{P(Y —E[Y|X =i < 5|X =), P(Y — E[Y|X = h] < 12| X = h)}

Qy 2

— max{B(Y ~ E[Y|X = j] < 2| X = j),B(Y ~ E[Y|X = ] < 3|X = £)},0 }dyn

~ [ max { min{P(Y — E[Y|X = j] < 51|X = j),P(Y —E[Y|X = k] < 1| X = k)}

Qy 2

— max{P(Y ~ E[Y|X =] < 2| X = i), B(Y ~E[Y|X = B] < | X = 0)},0 }dy o

+/ max { min{P(Y — E[Y|X =] < 41|X =),P(Y —E[Y|X = k] < 42| X = k)}
Qy 2

—max{P(Y —E[Y|X =j] <p|X =j),P(Y —E[Y|X = h] <yp|X = h)}70}dy1dy2- (76)



Proof. P(Y; —E[Y;] < y1 <Y; —E[Y}], Y}, —E[Y}] < yo <Y — E[Y}]) are identifiable by max{min{P(Y —E[Y|X =
)< 3lX = B —E[Y|X = I] < 1l X = h)} — max{P(Y — E[Y|X = i] < 41X = i),P(Y — E[Y]X =
k] < y2|X = k)},0} (i,5,k,h € {1,..., R}) respectively by rewriting fy as f(z,UY) =Y, — E[Y,] in Theorem 5.2 in
[Kawakami et al., 2024a] under Assumptions[I]and 2] Then, we have Eq. (76). O

Bounding the central product moments of causal effects.

Assumption 2l may sometimes be considered implausible by researchers. Therefore, we derive bounds for the moments of
causal effects without relying on Assumption 2]

Lemma 6. Under SCM M and Assumptions and@ for any i,j,k,h € {1,..., R}, we have l(y1,ys;i,J,k,h) <
P(Y; - E[Y;] <91 <Y = E[Yi], Y — E[Y4] <y2 <Yk — E[Yi]) < u(y1,y3:4,J, k, h), where

l(y1,y2:14, 7, k, h) = max {]P’(Y —EY|X =j] <p|X =j) -P(Y -E[Y|X =i] <y:1|X =)

+P(Y —E[Y|X =h] <)X =h) —P(Y —E[Y|X = k] < 2| X = k) — 1,0}, 7)

u(y1, Y234, j, k, h) = min { min{P(Y = E[Y|X = j] <y |X =), P(Y - E[Y|X = h] <y2|X = h)},
1— max{P(Y —E[Y|X =] < 2| X =i), B(Y ~E[Y|X = k] <3|X =K)}}  (78)
foreachi,j k. h e {1,...,R} and y1,y> € Qy.

Proof. From Fréchet inequalities [Fréchet, 1935, 1960], for any i, j,k, h € {1,..., R}, we have
P(Y; - E[Y;] <y <Y; = E[Yi], Yy — E[Ys] <2 < Vi — E[3])
=P(Y; - E[Y;] <y1,y1 <Y —E[Yi], Yy — E[Y3] < yo,y2 <Yy — E[Y}])
> max {P(Y; — E[Y;] <y1) +P(yr <Y; — E[Y;]) + P(Ys — E[Y3] < y2) + P(y2 < Yy — E[Y}]) — 3,0}
= max {P(Y; — E[Yj] <y1) — P(Y; — E[Yj] <w1) +P(Yr — E[Ya] <y2) — P(Yr — E[Y3] <y2) — 1,0}
= max {IP’(Y —E[Y|X = j] <n|X = j) — P(Y —E[Y|X =i] < y1|X = 1)
+P(Y —EY|X =h] <ya|X =h) —PY —-E[Y|X = k] < | X =k) — 1,0} (79)
and
P(Y; —E[Y;] <y1 <Y —E[Y;], Vs — E[Y3] < y2 < Yi — E[Y}])
=P, - E[Yj] <y, <Y —E[Yi]. Y, — E[Y4] <yo,y2 <Yy — E[Y3])
< min { min{P(Y; — E[Y;] < 1), P(Ys —E[Y3] < y2)}, 1 — max{P(Y; — E[Y;] < 1), P(Yi — E[V%] < yg)}}
= min{min{]P’(Y —EY|X =j] <X =7),P(Y —E[Y|X =h] < y2| X = h)},
1 — max{P(Y —E[Y|X =] < y1|X = ),P(Y —E[Y|X = k] < 3| X = k)}}. (80)
O

Theorem 8 (Bounds of the central product moment of causal effects). Under SCM M and Assumptions [I)and |6 for any
i, k,h € {1,..., R}, we have 61,(i,j; k,h) <P, ;.1 < Gu (i, j; k, h), where

6L(Z7]7k7h) :/ l(y1792§i7j7k7h)dyldy2 _/ a(ylayQ;jai7k7h)dy1dy2
Qy 2 Qy 2

_/ w(y1, Y21, J, h»k)dyldy2+/ Uy, 23 7,1, h, k)dy1dyo, (81)
Qy 2 Qy2

w(y1, 23, J, k, h)dyydya —/ L(y1,y2; 4,4, k, h)dy1dys
Qy?

—/ f(ylvyz;i,j,h,k)dyldy2+/ w(y1,y2; 4, i, by k)dy1dys. (82)
Qy 2 Q

Y2

Qy 2



Proof. Forany i,j,k,h € {1,..., R}, we have

Brin = / / P(Y; — E[Y;] < 41 < Y; — E[Yi], Yy — E[Yi] < 42 < Vi — E[Yi])dydyo
Y Y

/ / (Y, | <y <Y, —E[Y;], Vs — E[Ya] < v < Yi — E[Yi])dyrdys
Qy JQy
/ / IP’ < y1 <Y; — E[Y] Y. — E[Yk} <y <Y, — E[Yh])dyldyg
Qy JQy
+/ / IP’ < Y1 < Y E[Y] Y. — E[Yk} <y <Y, — E[Yh])dyldyg
Qy JQy

/ [y, yas i, . b ) dyadys — / (yr, ya: s, b, h)dysdys
Qy 2 Qy 2

—/ a(yl,yQ;i,j,h,k)dyldy2+/ Uy1, 23 4,4, b, k)dy1dya (83)
Qy2 §2y2

and

Pijik,h = /Q /Q P(Y; — E[Y;] <y <Y; — E[Y], Y — E[Y] < y2 <Yy — E[Yi])dy1dy2
Y Y

/ / P(Y; — E[Y}] < y1 < Y; — E[Y}], Y; — E[Yi] < y» < i — E[Vi)dyndyo
Qy JQy
Qy JQy
+/ / B(Y; ~ E[Y]] < 31 < Y; — EY;],Yi — EVi] < y2 < Vi — E[Ya])dyrdye
Qy JQy
/ a(y17y2;i7ja k7h)dyldy2 7/ l_(ylayQ;j7iak7h)dyldy2
Qy2 Qy2
—/ (Y1, 234, , b, k) dyr dys +/ (Y1, y2; 3, 0 hy k)dyrdys. (84)
Qy QY
O
Denoting the bound of the moments of causal effects Y; — Y; by a(m)(z j) and O'L )(i,j), ie., 6((Jm) (i,7) < E[{(Y; —
Y;)— (ElY;] -E[Y;)}"] <& m)(z 7), we can calculate the bounds of the correlation as follows:
ar(i,jik, h) or(i,ji k. h)

H(E'L(ivj; k7h) 2 0) +

I[(&L(i,j;k,h) < 0)
Vo2, 2 Vo 6,52 (k1)
<7 TRy, k) > 0) 4 2l )

7_],kh = sy vy e H(a.U(Zu]?kah’) <O) (85)
Vo (i i) k) Va5 (k. )

D CONDITIONAL MOMENTS OF CAUSAL EFFECTS
We consider the following SCM, M:
Y= fy (X, W,UY), X :=fx(W,UX), W:= fu(U") (86)

where UY, UX, and UW are latent exogenous variables. Y is a continuous variable, and X and W are binary, discrete,

or continuous variables. W are the subject’s covariates. They also provided the identification assumptions of the PNS for
continuous treatment and outcome as below:

Assumption 7 (Conditional exogeneity). Y, I X|W forall x € Qx.



If X is binary, i.e., Qx = {0,1}, Assumptionreduces toY; UL X|WandYy 1L X|W.

Assumption 8 (Conditional monotonicity over fy). The function fy (z,w,UY) is either (i) monotonic increasing on UY
with < for all x € Qx and w € Qv almost surely w.r.t. Py, or (ii) monotonic decreasing on UY for all x € Qx and
w € Qu almost surely w.r.t. Pyv.

Kawakami et al.| [2024a] provided another Assumption (conditional monotonicity over Y,,), which is equivalent to Assump-
tion [§] under Assumption 3.6 in [Kawakami et al., [2024a].
We provide similar definitions of the conditional moments of causal effects with the subjects’ covariates W.

Definition 6 (The conditional moment of causal effects). For each m > 1, the conditional m-th moment of Y1 — Yy is
defined as

E [(Y1 —Yo)m’W:w}. (87)
Under SCM M and Assumptions[3] [7] and[§] given m > 1, it is identified by Eq. (6) conditioned on W = w. Under SCM
M and Assumptions [3|and[7] given m > 1, it is bounded by Egs. () ~ (I2) conditioned on W = w.

Definition 7 (The conditional central moment of causal effects). For each m > 1, we define the conditional m-th central
moment of Y1 — Yy as

E

{(Y1 —Yo) — (EM1] - ]E[Yo])}m’W = w} : (88)

Under SCM M and Assumptions 5] [7] and[8] given m > 1, it is identified by Eq. (56) conditioned on W = w. Under SCM
M and Assumptions [5]and[7} given m > 1, it is bounded by Eqs. (66) ~ (69) conditioned on W = w.

Definition 8 (The conditional product moment of causal effects). We define the conditional product moment of causal effects
as
E[(}g—y;)(yk—yh)’wzw] (89)

Under SCM M and Assumptions ] [7] and[8] given m > 1, it is identified by Eq. (I8) conditioned on W = w. Under SCM
M and Assumptions []and[7] given m > 1, it is bounded by Egs. 1) ~ (22)) conditioned on W' = w.

Definition 9 (The conditional covariance of causal effects). We define the conditional covariance (central product moment
of causal effects) as

E

{(% - Y5) - B[] - B[V, }{ (% - 3) - (B[Vi] - E[Yh])}‘W = w] - (90)

Under SCM M and Assumptions 6] [7] and[8] given m > 1, it is identified by Eq. conditioned on W = w. Under SCM
M and Assumptions[6|and[7] given m > 1, it is bounded by Egs. 1) ~ (82) conditioned on W = w.

E CONSISTENCY OF ESTIMATORS

In this appendix, we provide the details and consistency of all estimators in the body of the paper.

Details of the estimators in the body of the paper. The empirical CDFs and expectations are given by

5 ZZ\L1 I(Y; <y,X; =2z)

N
> i Yil(X; =
]P)(Y < y|X = g;) =1 ( $)

= , EY|X =a] = == on
> i L(X =x) dim I(X = 1x)

for any € Qx and y € Qy. We generate {y;, ka:l, {y,%z},i?:p o {yp b, by id.d. sampling from a uniform

distribution U[min(Y"), max(Y")] for Monte Carlo integration.

Form =1, ..., the estimators &(m) and 5(™) are

m M Np,
sy _ (b—a)™ o~ { - P Ix — M1 _ ; —— }
6™ = ];::1 kzl maxy min {P(Y <y}, |X =0)} = max {P(Y <y},|X =1)},0



L (1™ ““")m Z Z max{p:qggm{ﬂ%af <yLIX = 1)} -

m

kl=1 km=1
5m) _ b (b—a)™
Mmgl=1  km=1
b _ a m 'm
T S ™™
Mmgl=1  km=1
Form = 1, ..., the estimators &ém) and &((]m)
(A). When m is an even number,
e Ny
(m) _ (b— a) "
& _
U Ve D D
kl=1
m M
~(m) (b - a)
& _ %
v N;...N, 12
kl=1
where
Iy, ..
p=1,..
ﬁ(yhvymvlvj) :mln{
p=1,..

(B). When m is an odd number,

S(m) _ (b a)™
oL T N,...N,
El=1
Ny
Y N Z .
kl=1
For m = 1, ..., the estimators E(Lm) and 38”)
(A). When m is an even number,
N
3_(m) _ (b - a)m -
L Ni...N,
kl=1
s _ =
u - N m
El=1
where
Wyt Ym3isg) max{ Z
1,

p=

ymiig) = max{ Y BY <ylX =j)-

M p=1,...,m

min (B(Y <y, X = j)}.1— max (B(Y <y,[X =)} ].

.,m

Mz

.....

max {B(Y <y, |X =0)}, 0}

7 M

— max {B(Y —BY|X =1] < g}, [X = 1)}, 0}

p=1,..,

mln {P(Y —E[Y|X =1] < Y] X =1)}

p=1,....m

— max {P(Y - E[Y|X =0] <y, |X = 0)},0}.

p=1,....m

are given below.

N,
Z {l yk1>"'aykm7 ) )+l(yk17
km=1
N

W(Yprs - Y3 1,0) + a(yps, . .
k-VYl

2
3

{lA(y,il,...7yZin;170) — 1

1
{'Il(y,il, e

1
are given below.

.
7

7y17<;nm7170) -

m

=

2

3

7

{_( klvuwyzﬁ";lao)+l—(ylila"'

EN
3
Il

—

{ﬁ(y,il, .

1

=

.M

P(Y - E[Y[X = j] < yp|X = j)

~ 3 BY -E[Y|X = <yp|X:i)fm+1,0},

p=1,....m

3 ]IAD(Y<yp\X:i)fm+1,O},

(y]i17...

[(yi17

aygina 170) + u(ykla .

©2)
s Ygm; 0, 1)} (93)
0.1}, 94)

©95)

96)
i 0,1) ] ©7)
i3 0,1) . ©8)
30,1}, ©9)
L0, ], (100)

(101)



Wy, symiing) =min{min [B(Y ~ BIY|X = j] < 5|X = )},

p=1,...,
1- max {IP’(Y — ]E[Y|X =il <yl X = z)}} (102)
p=1,....m
(B). When m is an odd number,
m _ b=a)™ N RS [

61 = e 2o 2 (I s 10) iy 0 ) (103)

kl=1  km=1

Nl N7n

a(m (b ) = m T m

i) = N 2 {u(y,il,...,ykm;l,O) —l(y,il,...,yw;o,l)}. (104)

>
H
-
>
3
Il
-

The estimators & (4, j; k, h) and (i, j; k, h) are

b 2 N1 N2 .
6(i,7;k,h) = (NlNz Z Z maX{mln{IP’(Y <yh|X =7),P(Y < yZ|X =h)}
kl=1k2=1
— max{B(Y < yL|X = i), BY < 2| X = k)},O}
( 2 N1 Na
— max { min{P(Y < X =i Y < X=h
NN klzl 3 max {min{F(Y <yl X =), B < gl X = 1)
— max{P(Y < yia|X =), P(Y < yfa|X = k)},()}
(b—a)? o= & A X
- 33 max { min{B(Y < yL|X = 5), B(Y < y2|X = k)}
NNy 5= a0
— max{B(Y < yh|X = i), B(Y <y}l X = 1)},0}
(b—a)2 Ny N2 R R
+ >3 max{min{]P’(Y < gL |X =), B(Y < y2|X = k)}
NNy 5o
—max{P(Y < yh|X = j),P(Y < y%|X = h)}, o}, (105)
(b 2 N1 N2 R R
&(i,j;k,h) = N1N2 > max { min{P(Y — E[Y|X = j] <yi:|X =4),P(Y —E[Y|X = h] < y%|X = h)}
kl=1k2=1
—max{P(Y —E[Y|X =i] <yi|X =4),P(Y —E[Y|X = k] < y?=|X = k)},O}
(b . a 2 N1 N2 R R
oy > ) max { min{P(Y —E[Y|X =] < y}i|X =i),P(Y —E[Y|X = h] < y?|X = h)}
kl=1k2=1
—max{P(Y - E[Y|X = j] <y [ X = j),P(Y —E[Y|X = k] <y |X = k)}70}
(b—a)? &L & X X )
iy > max{mln{]P’(Y EY|X =j] < yh|X =), P(Y —E[Y|X = k] < y?|X = k)}
kl=1k2=1
—max{P(Y — E[Y|X =] < yL|X =), P(Y —E[Y|X = h] < y%|X = h)},o}
(b 2 N1 Na R R
+ N1N2 >3 max{mm{JP’(Y E[V|X =] < yh|X = i), P(Y —E[V]|X = k] < y%|X = k)}
kl=1k2=1

—max{P(Y —E[Y|X = j] <y |X =j),P(Y —E[Y|X = h] < y}-|X = h)},o}.
(106)



The estimators 6, (4, j; k, h) and 6y (7, j; k, h) are
2 Ny No

G 3PNl DI
yklayk%lv‘?ak h yklayk2ajvl7k h)
ki=1k2=1 N1N2 ki=1k2=1
2 N1 Na (b )2 N1 Na
SN Uk viesdiisho k), (107)

(b—a) ,
NiN2 D D iy yieii g b ) + N1 N,
kl=1k2=1 2 2
2 N1 N

2 N1 Na
Z Z yklvyk%jvlvk h)

Z Z yklvykZaZa]7k h N1N2
kl=1k2=1 kl=1k2=1
2 N1  Na
(108)

(b—a)? Mo X
l yklay}g27l7]7h k yk17yk27j7z h k)
NN, klzl k2zl Nl N2 klzl k2zl

k, h)
or (i, N1N2

k,h)
ou (i, J; N1N2

where
Z(yl,yQ;i,j,k,h)
= max {I@’(Y <ylX =) —PY <X =) + P(Y < | X = h) —P(Y < 1| X = k) — 1 o} (109)
ﬁ(ylva;i7j7k7h’)
= min { min{P(Y < 51| X = j),P(Y < 1| X = h)}, 1 — max{P(Y < y1|X = i), P(Y < | X = k)}} (110)
The estimators 77,(4, j; k, h) and 6/ (4, j; k, h) are
2 N1 N» (b )2 N1 N2
(7’ .7 k h N1N2 Z Z l yklayk2alvjak h) N1N2 Z Z a(yljéhyz?;j?ivkvh)
kl=1k2=1 kl=1k2=1
2 N1 Na (b )2 N1 Na
- N1N2 Z Z yk17yi2;i7jah7k)+ N1N2 Z Z l yk17yk27]>Z h k) (111)
kl=1k2=1 kl=1k2=1
2 N1 N2 b _ a 2 Ni Ny
(Z j k h N1N2 Z Z yklvyk%Za]vk h N1N2 Z Z l yklvyk2ajvzvk h)
kl=1k2=1 kl=1k2=1
2 N, No
(112)

2 N, No
- Z Zlykhyk?ﬂ']vhk Z Z yklayk%Jalhk)
N1N2 kl=1k2=1 N1N2 kl=1k2=1

where
[y, 23, k. ) max{ (Y -EY|X =4l <n|X =j) —PY —E[Y|X =4 <w|X =1i)
FPY —RY|X =h] <X =h)—P(Y —B[Y|X =k < | X =k)—1 0} (113)
W(yr,y23, 3, k, h) mm{mln{P (Y —E[Y|X =j] <p1|X =), P(Y —E[Y|X = h] < 12| X = h)},
(114)

1 — max{P(Y —E[Y|X =] < 51| X =), P(Y —E[Y|X = k] < yo|X = k)}}.

Consistency of the estimators for the moments of causal effects. First, the empirical CDFs and expectations fol-

low O (1/\F) for any z € Qx and y € Qy. From the delta method [Doob, (1935 Fang and Santos, [2018]], both
1 m{P(Y < yplX =

N
m{P(Y < y,|X =0)} — maxy—; W {P(Y < yp|X =1)},0} and max{min,—,

max{min,—q
1)} —max,—1_n{P(Y < y,|X = 0)},0} follow O, (1/\/]\7’”), almost surely w.r.t. Q*. Forany m =1, ..

., we have

&m) _ 0<m>‘

= H Z Z maX{ min APV <y, |X = 0)} = max {P(Y <y, |X =1)}, o}
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Then, under SCM M and Assumptions |1} [2| and [3| ¢(™ follows O, (1/\/ N™ + Zm . 1/ Ni). Similarly, under
1=
SCM M and Assumptions and o™ o™ follow O, (1/\/ N™ 4+ Zm ) 1/\/Ni). Under SCM M and As-
1=
2
sumptions andH (i, j; k,h), o1 (i, j; by B), ou (i, j; k, b) follow O, (1/\/1\72 + Z,_l 1/«/Ni>. We can make

(m

Ny, ..., N, aslarge as computational resources allow. Letting Ny, ..., N, — 00, a(m), O'(Lm), oy ) follow O,, (1/\/ Nm)
and o'(i, j: k, h), o (i, j; . h), v (i, j; k. h) follow O, (1/\/N2).

Consistency of the estimators for the central moments of causal effects. First, empirical CDFs and expectations follow
O, (1 /VN ) for any x € Qx and y € Qy . For the central moment, we make an additional assumption.

Assumption 9. P(Y < y|X = z) is differential in y for any x € Qx, almost surely w.r.t. Qy-.

Then, under SCM M and Assumptions andH o o™ 5™ follow O, (1/\/ N2m 4 Znil 1/\/Ni). Under

2
SCM M and AssumptionsH andH o(i,7;k,h),oL(i,j; k, h), o0 (i, j; k, h) follow O, (1/\/ N4+ Z}_l 1/\/Ni>.
Letting Ny, ..., Ny — 00, 0™ o™ 5 follow 0, (1/\/N2m) and o (i, j; k, h), o (3, : k, h), ov (3, j: k. h) follow
0, (1/VN7).

Thus, all estimators for the moments of causal effects are consistent.

F ADDITIONAL INFORMATION ABOUT THE NUMERICAL EXPERIMENTS

Figures|[T]and 2] present the plots of the estimates obtained from the numerical experiments.



Second Moment

e Estimates under Identification Conditions
A Estimates of Lower Bound
= Estimates of Upper Bound

20 100 1000

Sample Size

Third Moment
e Estimates under Identification Conditions
A Estimates of Upper Bound
— ] = Estimates of Lower Bound
-4 71 £ =
- — e — 77771777A
(\Il . —_—
A
("I“ -
A &
< 4 L
lll'} -
T T T
20 100 1000

Sample Size

12

10

Fourth Moment

e Estimates under Identification Conditions
A Estimates of Upper Bound
= Estimates of Lower Bound

Sample Size

Figure 1: We present the estimates of the second, third, and fourth moments of causal effects along with their respective
upper and lower bounds. Additionally, we report the means of each estimator accompanied by their 95% confidence intervals.
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Figure 2: We present the estimate of the product moment of causal effects along with its respective upper and lower bound.
Additionally, we report the means of each estimator accompanied by their 95% confidence intervals.



G ADDITIONAL INFORMATION ABOUT THE APPLICATION TO REAL-WORLD

In this section, we provide additional information about the application in the body of our paper.
Additional information about the moments of causal effects.

We provide the bounds of variance, standard deviation, skewness, and kurtosis of causal effect Y5 —Y7. When the denominator
of the estimator is zero, we replace it with 0.01 to avoid numerical instability. The estimated bounds of the causal effect
Y; — Y7 are

Upper bound of variance: 29.851 (95%CI: [12.173,53.740]),
Lower bound of variance: 0.000 (95%CT: [0.000, 0.000]),

Upper bound of standard deviation: 5.463 (95%CTI: [3.489,7.33)),
Lower bound of standard deviation: 0.000 (95%CI: [0.000, 0.000]),
Upper bound of skewness: 71296.725 (95%CT: [0.000, 258849.124]),

Lower bound of skewness: —13168.940 (95%CI: [—64712.250, 0.000]),
Upper bound of kurtosis: 6637894.937 (95%CTI: [0.000, 35261058.567)),
Lower bound of kurtosis: 0.000 (95%CT: [0.000, 0.000]).

We also provide the variance, skewness, and kurtosis of causal effect Y, — Y5. The results are:

Mean: 3.124 (95%CI: [0.364, 5.820]),
Variance: 3.104 (95%CI: [0.297, 8.610]),
Skewness: —3.373 (95%Cl: [—28.287, 8.821)),
Kurtosis: 18.765 (95%CTI: [0.000, 203.983]).

The estimated bounds of the causal effect Y, — Y5 are

Upper bound of variance: 29.503 (95%CI: [10.532, 61.318]),
Lower bound of variance: 0.000 (95%CI: [0.000, 0.000]),

Upper bound of skewness: 34944.621 (95%CT: [0.000, 129424.512]),
Lower bound of skewness: —79272.510 (95%CT: [—268151.400, 0.000]),
Upper bound of kurtosis: 3261648.987 (95%CI: [0.000, 22258543.128]),

Lower bound of kurtosis: 0.000 (95%CT: [0.000, 0.000]).

We provide the variance, skewness, and kurtosis of causal effect Y, — Y. The results are:

Mean: 6.551 (95%CT: [4.549,9.034]),
Variance: 2.078 (95%CTI: [0.000, 5.953)),
Skewness: 5.797 (95%CIL: [—24.688, 65.521]),
Kurtosis: 14.338 (95%CI: [0.000, 242.5153)).

The estimated bounds of the causal effect Y, — Y7 are

Upper bound of variance: 25.160 (95%CI: [9.034, 42.910)),
Lower bound of variance: 0.000 (95%CI: [0.000, 0.000]),

Upper bound of skewness: 34135.710 (95%CT: [0.000, 113246.400]),
Lower bound of skewness: —19251.891 (95%CI: [—97068.380, 0.000]),
Upper bound of kurtosis: 2291969, 972 (95%CTI: [0.000, 17630519.123]),
Lower bound of kurtosis: 0.000 (95%CT: [0.000, 0.000]).



Additional information about the product moments of causal effects.
We provide the bounds of covariance and correlation of causal effects Y5 — Y7 and Y, — Y5. When the denominator of the

estimator is zero, it is replaced with 0.01 to prevent numerical instability. The estimated bounds of the covariance of causal
effect Yo — Y7 and Yy — Y5 are

Upper bound of covariance: 27.613 (95%CT: [9.486, 50.481]),
Lower bound of covariance: —29.172 (95%CI: [—52.263, —11.282]),

and the estimated bounds of the correlation of causal effect Y — Y7 and Y, — Y5 are

Upper bound of correlation: 0.919 (95%CI: [0.000, 1.000]),
Lower bound of correlation: —0.976 (95%CI: [—1.000, —0.923]).
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