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Abstract
Experts in machine learning leverage domain001
knowledge to navigate decisions in model se-002
lection, hyperparameter optimisation, and re-003
source allocation. This is particularly crit-004
ical for fine-tuning language models (LMs),005
where repeated trials incur substantial compu-006
tational overhead and environmental impact.007
However, no existing automated framework si-008
multaneously tackles the entire model selec-009
tion and HPO task for resource-efficient LM010
fine-tuning. We introduce XAutoLM, a meta-011
learning–augmented AutoML framework that012
reuses past experiences to optimize discrimi-013
native and generative LM fine-tuning pipelines014
efficiently. XAutoLM learns from stored suc-015
cesses and failures by extracting task- and016
system-level meta-features to bias its sampling017
toward fruitful configurations and away from018
costly dead ends. On four text classification019
and two question-answering benchmarks, XAu-020
toLM surpasses zero-shot optimiser’s peak F1021
on five of six tasks, cuts mean evaluation time022
by up to 4.5×, reduces error ratios by up to sev-023
enfold, and uncovers up to 50% more pipelines024
above the zero-shot Pareto front. In contrast,025
simpler memory-based baselines suffer nega-026
tive transfer. We release XAutoLM and our027
experience store to catalyze resource-efficient,028
Green AI fine-tuning in the NLP community.029

1 Introduction030

Fine-tuning large language models (LMs) has be-031

come indispensable across NLP applications, yet032

even “small” models such as BERT (Devlin et al.,033

2018) or T5 (Raffel et al., 2020) incur substantial034

computational cost and carbon emissions (Wang035

et al., 2023b; Schwartz et al., 2020). Rather than036

exhaustively evaluating every model and hyperpa-037

rameter combination, human experts draw on do-038

main knowledge to focus on promising regions of039

this vast design space.040

Automated Machine Learning (AutoML) seeks041

to mimic expert intuition by automating the two042

core stages of pipeline construction—model se- 043

lection (MS) and hyperparameter optimisation 044

(HPO)—into a unified search loop (Hutter et al., 045

2019). AutoML techniques have matured in ar- 046

eas such as tabular and vision tasks (Hutter et al., 047

2019), showing competitive performance against 048

human experts (Estevez-Velarde et al., 2020). How- 049

ever, the joint MS+HPO pipeline for language mod- 050

els presents an ample, mixed discrete-continuous 051

search space whose repeated evaluations are pro- 052

hibitively costly (Wang et al., 2023b), thus pos- 053

ing a significant challenge for automation. While 054

several recent efforts address HPO for LMs in iso- 055

lation (Mallik et al., 2024), surveys highlight the 056

underdevelopment of full-pipeline AutoML in NLP 057

(Tornede et al., 2023), and no framework systemat- 058

ically unifies model selection and HPO under tight 059

compute and Green AI constraints. 060

To address these shortcomings, we propose XAu- 061

toLM, the first AutoML framework that unifies 062

model selection and HPO for language model fine- 063

tuning via meta-learning. Rather than initiating 064

a zero-shot search, XAutoLM retrieves a reposi- 065

tory of past LM-pipeline evaluations—each anno- 066

tated with task- and system-level meta-features—to 067

construct an experience-aware prior that biases 068

the search space toward historically fruitful con- 069

figurations and away from costly failures. By 070

warm-starting the search in this manner, XAutoLM 071

achieves substantial efficiency gains without sacri- 072

ficing performance. Empirically, across four text 073

classification and two question-answering bench- 074

marks (Table 5, 6), we report reductions in mean 075

evaluation time by up to 4.5×, cuts error ratios 076

by up to sevenfold, and uncovers up to 50% more 077

pipelines dominating the zero-shot Pareto front. All 078

code and our experience store are released1 to ac- 079

celerate sustainable, reproducible LM fine-tuning 080

1https://anonymous.4open.science/r/
XAutoLLM-A010
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in the NLP community.081

We summarise the main contributions of our pa-082

per as follows:083

• We propose XAutoLM, the first unified, meta-084

learning–augmented AutoML framework that085

integrates MSand HPO for discriminative and086

generative LM fine-tuning.087

• We design an extensible, task- and model-088

agnostic experience-aware prior mechanism089

that encodes past LM pipeline successes090

and failures via task- and system-level meta-091

features to warm-start the search.092

• We validate XAutoLM on six diverse bench-093

marks, demonstrating up to 4.5× reduction094

in search time, sevenfold error-rate reduction,095

and significant Pareto front gains over zero-096

shot and naive memory priors.097

2 Related Work098

AutoML strategies in language modelling can be099

divided into two (not necessarily disjoint) sub-100

sets: AutoML for LLMs and LLMs for Au-101

toML (Tornede et al., 2023). The former com-102

prises AutoML techniques to produce optimal LM103

pipelines tailored for specific scenarios, akin to104

traditional AutoML. The latter employs language105

models to enhance the AutoML process, for ex-106

ample, by providing linguistic interfaces to config-107

ure the optimisation process or leveraging them to108

guide the search (e.g., using LMs to generate code109

for optimal ML pipelines).110

AutoML for LLMs in particular poses signif-111

icant challenges (Tornede et al., 2023). Namely,112

LMs are extremely resource-intensive (Bannour113

et al., 2021), even when only considering their114

later stages (e.g., fine-tuning, inference). Table 1115

compares AutoML approaches that leverage LLMs116

according to relevant features characterising their117

responses to the field’s challenges.118

We observe that there are more LLMs for Au-119

toML systems than vice versa, likely due to the120

proliferation of prompt engineering and increased121

access to open-source language models. For in-122

stance, Zhou et al. (2022) developed the Automatic123

Prompt Engineer (APE) system, which achieved124

performance competitive with human-generated in-125

structions. In contrast, systems such as GL-Agent126

(Wei et al., 2023), AutoM3L (Luo et al., 2024) and127

GizaML (Sayed et al., 2024) integrate language128
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APE ✓ ✓
GPT-NAS ✓ ✓ ✓ ✓
GL-Agent ✓
AutoGen ✓ ✓ ✓

EcoOptiGen ✓ ✓ ✓
AutoML-GPT ✓ ✓ ≈
HuggingGPT ≈ ✓ ✓ ✓

AutoM3L ✓ ✓ ✓ ≈
PriorBand ✓ ✓ ✓ ✓

GizaML ✓ ✓ ✓ ✓
GE ✓ ✓ ✓ ✓ ≈

AutoGOAL ✓ ✓ ✓ ✓
Introduced in this paper

XAutoLM ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of systems for AutoML with
LLMs

models into their optimisation strategies to pro- 129

duce graph learning pipelines, highly capable multi- 130

modal ML pipelines, and time-series forecasting 131

pipelines, respectively. 132

Systems like AutoGen (Wu et al., 2023), GPT- 133

NAS (Yu et al., 2024), GE (Morris et al., 2024), 134

AutoML-GPT (Zhang et al., 2023), and Hugging- 135

GPT (Shen et al., 2024) are hybrids that span both 136

categories; they leverage LMs to produce LM- 137

based solutions. However, the last two differ from 138

traditional AutoML (and NAS) systems: AutoML- 139

GPT does not evaluate solution candidates (only 140

simulates their training), and HuggingGPT pro- 141

duces responses to prompts without outputting the 142

pipelines capable of handling them. 143

Often, the choice of model is as, if not more, 144

critical than the hyperparameter configuration 145

used to produce responses. We found that Au- 146

toGOAL (Estevanell-Valladares et al., 2024) op- 147

timises pipelines by balancing efficiency and per- 148

formance metrics, taking into account both model 149

selection and HPO, but only supports LMs for in- 150

ference. All other AutoML for LLMs systems we 151

surveyed, such as EcoOptiGen (Wang et al., 2023a) 152

and PriorBand (Mallik et al., 2024), focus solely 153

on HPO. 154

Nonetheless, we find no single framework that 155

simultaneously addresses model selection and hy- 156

perparameter optimisation for LM fine-tuning, pri- 157

marily when resource limitations exist. 158
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3 Proposal159

We introduce XAutoLM, the first AutoML frame-160

work that unifies model selection and hyperparam-161

eter optimisation for both discriminative and gen-162

erative language model fine-tuning. Our pipelines163

are composed of (i) a base LM from a curated164

pool of encoders and generators (Table 2), (ii)165

one of three fine-tuning strategies—full, partial,166

or LoRA (Hu et al., 2021), and (iii) a hyperpa-167

rameter configuration. XAutoLM jointly explores168

this mixed search space by reusing past experi-169

ences—e.g., “LoRA-tuned DistilBERT achieved170

high macro-F1 on SST-2 under low VRAM”—to171

steer the optimiser toward high-utility regions and172

away from error-prone configurations. This holistic173

reuse enables XAutoLM to discover strong fine-174

tuning pipelines under tight compute budgets.175

Discriminative

BERT (Devlin et al., 2018)
DistilBERT (Sanh et al., 2020)
RoBERTa (Liu et al., 2019)
XLM-RoBERTa (Conneau et al., 2020)
DeBERTa (He et al., 2021)
DeBERTaV3 (He et al., 2023)
MDeBERTaV3 (He et al., 2023)
ALBERT-v1 (Lan et al., 2019)
ELECTRA (Clark et al., 2020)

Generative

T5 (Raffel et al., 2020)
FLAN-T5 (Chung et al., 2024)
GPT-2 (Radford et al., 2019)
PHI-3 (Abdin et al., 2024b)

New Additions

PHI-3.5 (Mini-Inst) (Abdin et al., 2024a)
PHI-4 (Mini-Inst, Reasoning) (Abdin et al., 2024a)
MIXTRAL (8x7B) (Mistral AI Team, 2023)
MISTRAL NEMO (Base-Inst) (Mistral AI Team, 2024)
Llama 3.1, 3.2 (1B - 70B) (Grattafiori et al., 2024)
DeepSeek R12 (DeepSeek-AI et al., 2025)

Table 2: LMs available in AutoGOAL’s algorithm pool.

Background XAutoLM builds on AutoGOAL’s3176

probabilistic optimiser (Estevez-Velarde et al.,177

2020). The optimiser represents every valid LM178

pipeline c as a point in a mixed search space that179

combines discrete choices (e.g. fine-tuning method,180

model, tokeniser) with continuous hyperparame-181

ters (e.g. learning rate, dropout). It maintains a182

probability distribution P (c |θ) over that space. It183

3Open-source available at: https://github.com/
autogoal/autogoal, licensed without restriction.

repeats a simple sample–evaluate–update loop: (1) 184

sample a batch of pipelines from P (c |θ); (2) eval- 185

uate them on the target task; and (3) update P (c |θ) 186

so that high-performing pipelines gain probabil- 187

ity mass while under-performing and failures lose 188

it. AutoGOAL always initialises this distribution 189

uniformly, meaning every pipeline—adequate or 190

not—is equally likely at the first generation. 191

3.1 Process Overview 192

XAutoLM replaces this uniform cold start with an 193

experience-aware prior that follows a structured 194

meta-learning process. Initially, the framework re- 195

trieves relevant historical evaluations (experiences) 196

from a centralized repository (§ 3.2). Then, it 197

computes detailed task and system meta-features 198

(§ 3.2.1) to characterize the complexity and avail- 199

able resources for the present optimisation task. 200

Leveraging this information, XAutoLM probabilis- 201

tically adjusts the AutoML search space (§ 3.3), fo- 202

cusing on historically successful configurations and 203

reducing exploration of previously unsuccessful 204

paths. Once configured, the AutoML optimisation 205

starts, fine-tuning pipelines are evaluated, and their 206

outcomes—both successful and unsuccessful—are 207

recorded back into the experience repository, to be 208

used in future runs. 209

3.2 Experience Store 210

Our system learns from a growing repository of 211

experiences—past pipeline evaluations that capture 212

every factor influencing performance. Formally, an 213

experience is a 4-tuple e = ⟨c, m, t, s⟩ where c is 214

the complete pipeline configuration, m the vector 215

of recorded metrics (e.g. F1, ROUGE, evaluation 216

time), t a task meta-feature vector, and s straightfor- 217

ward system descriptors such as CPU cores, RAM, 218

and GPU memory. 219

We label an experience positive if all fitness 220

metrics are valid and negative otherwise, usually 221

due to errors occurring during evaluation (out-of- 222

memory, timeout, etc.). Both types are essential: 223

positives pull the search toward fruitful regions, 224

and negatives push it away from costly dead-ends 225

(§ 3.3). 226

3.2.1 Meta-Features 227

We design two complementary meta-feature tem- 228

plates according to the nature of the output space 229

of a task. When the output is drawn from a closed 230

label set—as in text classification or sequence la- 231

belling—dataset difficulty is dominated by class 232
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imbalance and document-length variation. Con-233

versely, tasks whose output is an open text se-234

quence (question answering, summarisation, trans-235

lation) demand features that capture the relation-236

ship between the input prompt and the target text.237

Table 3 lists the core features for each template;238

the same templates can be reused for other label-239

based or free-form generation tasks with minimal240

adaptation.241

Category/Feature
Dataset

Nr Samples
Nr Classes
Entropy
Min Cls Prob
Max Cls Prob
Imbalance Ratio

Documents
Avg. Length
Std. Length
Coef. Var. Length

Landmark
PCA + D.Tree Acc.

(a) Label-based

Category/Feature
Dataset

Nr Samples
Prompt

Avg.\Len (chars)
Std.\Len
Lexical Diversity (TTR)
Target
Avg.\Len (chars)
Std.\Len
Lexical Diversity (TTR)

Prompt–Target
Avg.\Len Ratio (T/P)
Vocabulary Novelty
Semantic Similarity
ROUGE-L F1

Semantic
Mean Prompt Embedding

(b) Generation

Table 3: Representative task meta-features.

Experiences also hold the hardware character-242

istics (e.g., number of CPU cores, RAM size) to243

help condition experiences utility within resource244

constraints. For instance, while Llama 3.1 70B245

may yield superior results to smaller alternatives,246

systems with low VRAM cannot utilise its power.247

XAutoLM constructs a holistic representation248

of each optimisation scenario by combining task-249

specific and system-level meta-features, enabling250

robust similarity assessments across diverse con-251

texts.252

3.3 Warm-Start optimisation253

XAutoLM maintains a probabilistic model P (c | θ)254

(Estevez-Velarde et al., 2020) over pipeline config-255

urations c. When a new task T arrives, we retrieve256

a set of past experiences E = {e1, . . . , en} and257

update the model in two sweeps—one for positive258

experiences, one for negatives:259

P (c | θ)← (1− α+
i )P (c | θ) + α+

i Pi(c | θ),
(1)

260

P (c | θ)← (1 + α−
i )P (c | θ)− α−

i Pi(c | θ)
(2)

261

where Pi(c | θ) is the empirical distribution in- 262

duced by configuration c in experience ei. There- 263

fore pull the search toward successful regions and 264

push it away from unsuccessful ones. The strength 265

of each pull/push is governed by the learning rates 266

α+
i and α−

i . 267

We compute experience-specific learning rates 268

considering their similarity to the current task and 269

historical performance. Specifically, these rates are 270

computed as follows: 271

α+
i = α+

max ui e
−β di , (3) 272

α−
i = α−

max e−β di . (4) 273

Here α+
max and α−

max are predefined maximum 274

learning rates, ui ∈ [0, 1] is a utility score (defined 275

below) assigned only to positive experiences, and 276

di is the distance between the current task and the 277

one that generated experience ei. The exponential 278

kernel e−βdi down-weights experiences that are 279

less similar to the current task; β > 0 is an adaptive 280

decay factor. 281

Task Similarity. Each task is described by a 282

meta-feature vector t. Similarity is measured with 283

a distance di = Dist(tT , ti) (e.g., Euclidean or 284

Cosine). β is set automatically to compensate for 285

scale: 286

β =
βscale

σd + ε
, σd = Std

(
{d1, . . . , dn}

)
, (5) 287

where ε>0 prevents division by zero. 288

Utility Score. The utility function ui quantifies 289

the quality of each positive experience ei relative 290

to others from the same task. XAutoLM sup- 291

ports three distinct utility computation strategies: 292

(i) Weighted Sum, (ii) Linear Front, and (iii) Loga- 293

rithmic Front: 294

Weighted Sum. Let M denote the set of 295

recorded performance metrics for each experience, 296

such as F1, accuracy, evaluation time, or ROUGE- 297

L. Each metric m ∈M is associated with a known 298
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optimisation direction (maximize or minimize) and299

an importance weight wm. For each positive expe-300

rience ei, we first normalize its metric value mi:301

m′
i =


mi −mmin

mmax −mmin
, if maximized,

1− mi −mmin

mmax −mmin
, if minimized,

(6)

302

where mmin and mmax denote the minimum and303

maximum values observed across all positive ex-304

periences for the metric m. If all metric values are305

identical, we default to a neutral utility score of 0.5306

to avoid division by zero. The overall weighted307

utility score is computed as:308

ui =

∑
m∈Mwm ·m′

i∑
m∈Mwm

, (7)309

Linear Front. In the Linear Front utility310

scheme, we first apply non-dominated sorting311

(NSGA-II style (Deb et al., 2002)) to all positive312

experiences, creating N Pareto fronts based on the313

recorded metrics inM. Experiences in front 0 are314

non-dominated, followed by those in front 1, and315

so forth. Each positive experience ei in front fi is316

assigned a utility score inversely proportional to its317

front rank:318

ui =
N − fi

N
, (8)319

Logarithmic Front. Using non-dominated320

sorting, the Logarithmic Front approach similarly321

ranks experiences into N Pareto fronts. How-322

ever, to amplify the distinction among the highest-323

performing experiences (i.e., those in lower-324

numbered fronts), utilities decrease logarithmically325

with rank:326

ui =
ln(N − fi + 1)

ln(N + 1)
, (9)327

These three utility functions provide comple-328

mentary strategies for prioritizing past experiences.329

This flexibility allows XAutoLM to adapt effec-330

tively across diverse AutoML scenarios.331

4 Experimentation332

We report results from two independent trans-333

fer experiments designed to isolate knowledge334

reuse within a task family. The first study targets 335

text classification. LIAR (Wang, 2017), SST-2 336

(Socher et al., 2013), MELD (Poria et al., 2018) 337

and AG News (Zhang et al., 2015) present a de- 338

liberate gradient in sample size, label entropy, and 339

average document length: LIAR (6 classes, 13k 340

claims) and MELD (7 emotions, 14k utterances) 341

are notoriously low-resource, whereas the polarity 342

benchmark SST-2 (68k) and the large-scale news 343

corpus AG (128k) approach the upper bound of 344

single-GPU throughput. Previous work shows peak 345

F1macro to vary from 0.23 (LIAR) to 0.93 (AG) 346

(Reusens et al., 2024), offering a realistic range for 347

efficiency–performance trade-offs. 348

The second experiment focuses on question an- 349

swering. We select SQuAD 1.1 (Rajpurkar et al., 350

2016) and DROP (Dua et al., 2019) because they 351

share the same input modality yet differ sharply 352

in answer type—extractive spans versus multi-step 353

numerical reasoning—making them a challenging 354

test-bed for generative pipelines. For both studies, 355

experiences are only exchanged among tasks of the 356

same family; classification traces are invisible to 357

QA runs and vice-versa. This constraint ensures 358

that the reported gains stem from task-relevant 359

meta-knowledge rather than accidental data leak- 360

age. 361

Hardware. All classification experiments run on 362

an i9-9900K (16 threads, 35 GB RAM cap) paired 363

with a single RTX TITAN (24 GB). QA experi- 364

ments require larger context windows and execute 365

on an AMD EPYC 7742 (64 threads, identical RAM 366

cap) with an A100 40 GB. 367

Baselines. Every run is compared against Zero- 368

Shot AutoGOAL, the original optimiser with a 369

uniform sampling distribution; in this setting, the 370

update rules of Eqs. (1)–(9) are never triggered. 371

In the text-classification study, we include a 372

naive kNN-50 memory baseline. For every tar- 373

get task, we assemble a query vector that concate- 374

nates (a) the task meta-features, (b) the current 375

system profile, and (c) the best metric values ob- 376

served across all stored traces—this encourages 377

the search to drift toward high-performing regions. 378

Distances to positive traces are computed on the 379

full feature+metric space, whereas distances to neg- 380

ative traces ignore metrics (errors lack valid scores). 381

The k nearest positives and k nearest negatives are 382

selected; all receive the same fixed learning rate 383

α±
i = 1/k. Setting ui=1 and β=0 in Eqs. (3)–(4) 384

reduces our framework to this simple neighbour 385
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rule. For question answering the repository con-386

tains only between 5 and 10 positive traces per387

source task, making a neighbour count unreliable;388

therefore Zero-Shot remains the sole baseline in389

that study.390

Warm-Start Priors. Throughout the paper, a391

pipeline configuration denotes the concrete LM,392

fine-tuning recipe and hyper-parameters that Auto-393

GOAL evaluates. A warm-start prior (WS Prior)394

instead refers to the hyper-parameters that govern395

the probability update equations—distance type,396

utility scheme, decay factor βscale, and the pull lim-397

its (kpos, kneg).398

For every target task we enumerate meaning-399

ful combinations of these prior parameters, yield-400

ing roughly a hundred and eighty candidates. Be-401

fore any optimisation begins we measure the total-402

variation (TV) distance between each candidate403

prior and the uniform distribution, sort the list, and404

slice it into three bins that we label low, moderate405

and high bias. In classification, we evaluate the me-406

dian TV and the maximum TV Priors from every407

bin (six variants); in QA, we keep only the max-408

imum TV Prior from each bin (three variants) to409

limit computing. Full probability plots and the iden-410

tifiers of the selected priors appear in Appendix B.411

Optimisation protocol. In every AutoML run,412

every discovered LM pipeline receives one and413

a half GPU hours in Text Classification and two414

hours in QA. Objectives are ⟨F1macro, ET ⟩ for clas-415

sification and ⟨F1, ET ⟩ for QA, where ET is wall-416

clock evaluation time in seconds. All searches417

share a fixed random seed of 42; therefore, dif-418

ferences arise solely from the chosen warm-start419

prior.420

Experience repositories. All warm-started Au-421

toML runs used an experience store (§ 3.2) gener-422

ated by the previous 48 hours Zero-shot runs on423

each task. Table 4 lists the experiences produced424

and the total experiences available for warms-start425

priors per task. The warm-start mechanism ac-426

cesses only experiences originating from other427

tasks in the same study for a clean cross-task eval-428

uation.429

4.1 Text Classification Results430

Table 5 summarises the effect of warm-start (WS)431

priors on the four classification benchmarks. We432

report a diverse set of metrics of both performance433

and efficiency: max and mean F1 scores reflect434

Dataset
Generated Available

Pos Neg Total Pos Neg Total
LIAR 100 236 336 116 480 596
SST2 33 122 155 183 594 777
MELD 68 190 258 148 526 674
AG NEWS 15 168 183 216 548 764
SQUAD 5 124 129 10 160 170
DROP 10 160 170 5 124 129

Table 4: Disposition of experiences participating in the
experiments.

peak and average classification quality, mean eval- 435

uation time (ET) captures resource cost, error 436

ratio indicates robustness, and hypervolume (HV) 437

measures the coverage of the Pareto front in ob- 438

jective space (Zitzler and Thiele, 1998). Zero-shot 439

performance values correspond to the first 24 hours 440

of their 48 hours initial execution. 441

Across datasets, WS priors either match or sur- 442

pass the best Zero-shot F1m while systematically 443

improving efficiency. On LIAR, a HIGH prior lifts 444

peak F1m from 0.24 to 0.26, cuts the mean ET 445

by a factor of 3.5, and lowers the error ratio by a 446

sevenfold. A similar pattern emerges on MELD, 447

where HIGH drives the error ratio from 0.77 to 448

0.10 and reduces mean ET 4.5×, while keeping 449

F1m above the baseline. On SST-2, the Zero-shot 450

baseline generated the highest F1m and lowest ET 451

out of all variants. However almost all WS priors 452

reduced Error Ratio and Low (Max) in particular 453

showed a sensible reduction in mean ET while 454

maintaining peak F1m. On AG News, all WS vari- 455

ants improve max F1m while several improve ET , 456

hypervolume and Error Ratio, showing that better 457

performance–time trade-offs are discoverable even 458

in large-scale settings. 459

The naïve kNN-50 baseline, although in SST-2 460

case attains large HV values, degrades performance 461

on three datasets, notably obtaining the worst re- 462

sults out of all priors in AG NEWS (0.90 → 0.67 463

F1m) and MELD (0.41 → 0.37 F1m). 464

4.2 Question Answering Results 465

Table 6 reports results on the generative SQuAD 1.1 466

and DROP datasets. Knowledge reused from a sin- 467

gle related task already yields substantial gains. 468

For SQuAD, WS priors outperform the baseline in 469

almost all metrics. The HIGH-MAX prior, in partic- 470

ular, raises F1 from 0.34 to 0.89 while shrinking 471

mean ET from 4081s to 1337s (-3×). On DROP, 472

the LOW prior illustrates negative transfer, yet both 473

MODERATE and HIGH priors outperform Zero- 474
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WS Prior
Max
F1m

Mean
F1m

Min
ET

Mean
ET

HV
No.
Eval

Error
Ratio

L
IA

R

Zero-shot 0.24 0.10 12 537 0.06 202 0.73
kNN (50) 0.24 0.10 28 451 0.11 240 0.44
Low (LIAR) 0.26 0.10 16 480 0.10 197 0.70
Low (Med) 0.25 0.09 31 380 0.36 220 0.69
Low (Max) 0.25 0.09 21 410 0.08 190 0.66
Mod (LIAR) 0.26 0.10 36 462 0.01 132 0.53
Mod (Med) 0.24 0.10 13 469 0.04 146 0.61
Mod (Max) 0.25 0.08 44 516 0.05 121 0.39
High (LIAR) 0.25 0.10 6 153 0.20 302 0.09
High (Med) 0.25 0.10 9 277 0.12 193 0.33
High (Max) 0.26 0.09 12 252 0.09 208 0.25

SS
T

2

Zero-shot 0.94 0.69 97 1297 0.02 76 0.77
kNN (50) 0.93 0.59 326 1758 0.54 72 0.62
Low (LIAR) 0.90 0.48 373 1148 0.15 87 0.82
Low (Med) 0.90 0.52 227 840 0.02 62 0.83
Low (Max) 0.94 0.58 252 784 0.01 98 0.81
Mod (LIAR) 0.93 0.56 245 996 0.20 59 0.64
Mod (Med) 0.94 0.52 132 1030 0.04 34 0.55
Mod (Max) 0.93 0.52 184 1170 0.06 58 0.51
High (LIAR) 0.92 0.62 365 1160 0.02 42 0.61
High (Med) 0.94 0.53 164 844 0.09 52 0.68
High (Max) 0.94 0.61 320 857 0.16 53 0.79

M
E

L
D

Zero-shot 0.41 0.15 39 808 0.11 161 0.77
kNN (50) 0.37 0.11 52 768 0.00 59 0.54
Low (LIAR) 0.46 0.14 20 532 0.06 150 0.64
Low (Med) 0.45 0.11 17 387 0.30 229 0.64
Low (Max) 0.39 0.09 30 477 0.36 186 0.65
Mod (LIAR) 0.40 0.11 26 514 0.00 106 0.39
Mod (Med) 0.40 0.11 36 546 0.03 130 0.52
Mod (Max) 0.38 0.09 24 590 0.08 110 0.52
High (LIAR) 0.44 0.14 7 179 0.09 260 0.10
High (Med) 0.43 0.13 21 466 0.27 124 0.45
High (Max) 0.42 0.12 12 322 0.01 233 0.51

A
G

N
E

W
S

Zero-shot 0.90 0.62 424 1043 0.00 108 0.92
kNN (50) 0.67 0.28 478 1881 0.09 22 0.77
Low (LIAR) 0.93 0.73 349 1183 0.01 93 0.90
Low (Med) 0.92 0.65 665 1589 0.20 83 0.89
Low (Max) 0.93 0.60 560 1164 0.00 77 0.90
Mod (LIAR) 0.92 0.46 404 1345 0.12 50 0.80
Mod (Med) 0.93 0.59 484 1102 0.01 48 0.79
Mod (Max) 0.92 0.56 249 1402 0.01 57 0.73
High (LIAR) 0.93 0.46 318 1437 0.00 45 0.71
High (Med) 0.93 0.51 253 833 0.09 58 0.86
High (Max) 0.92 0.54 350 1576 0.01 46 0.73

Table 5: Results overview in Text Classification. Priors
with “(LIAR)” suffix were calibrated during a single-
objective pilot on LIAR. The same meta-parameters
are then applied unchanged to every new target task.
Full probability curves and all prior IDs are listed in
Appendices B-C.

shot on every metric—peak F1 improves slightly475

(0.39→0.40) and mean ET falls by 47%. These476

outcomes confirm that cross-task meta-knowledge477

generalises beyond classification and that the adap-478

tive pull/push schedule mitigates catastrophic trans-479

fers.480

5 Discussion481

Warm-start priors consistently steer the search to-482

ward stronger performance–time trade-offs across483

WS Prior
Max
F1

Mean
F1m

Min
ET

Mean
ET

HV
No.
Eval

Error
Ratio

SQ
U

A
D Zero-shot 0.34 0.23 2189 4081 0.25 71 0.95

Low (Max) 0.89 0.33 1435 3150 0.03 30 0.76
Mod (Max) 0.86 0.41 1468 1953 0.01 32 0.90
High (Max) 0.89 0.87 1195 1337 0.0 15 0.8

D
R

O
P

Zero-shot 0.39 0.18 2114 3556 0.11 96 0.94
Low (Max) 0.18 0.11 4995 5929 0.05 32 0.90
Mod (Max) 0.40 0.23 775 2259 0.29 66 0.86
High (Max) 0.40 0.28 783 1881 0.13 34 0.82

Table 6: Results overview in Question Answering.

all six benchmarks. Figure 1 reports the winning 484

ratio: the share of evaluated LM pipelines that 485

improve upon the zero-shot Pareto front. The 486

HIGH–MAX prior is the most stable, winning about 487

20% of pipelines on SQuAD, LIAR, MELD, and 488

DROP, and 10–15% on SST-2 and AG News. On 489

the LIAR and MELD pair, the HIGH–LIAR prior 490

achieves winning ratios near 50% and 40%, respec- 491

tively, while cutting the error rate by a factor of 492

seven (Table 5). 493
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Figure 1: Ratio of discovered LM pipelines outperform-
ing the Zero-shot baseline in Text Classification and
QA.

These results show that combining experience 494

discrimination with adaptive probability shifts 495

yields the best of both worlds: rapid convergence 496

when relevant meta-knowledge exists yet robust- 497

ness when it does not. Whenever the experi- 498

ence store contained closely related traces—e.g., 499

MELD–LIAR (Figure 3)—the similarity-aware pri- 500

ors trimmed average evaluation time by up to 4.5x 501

and increased peak F1m (Table 5). Even on sparsely 502

related tasks such as SST-2 and AG News, softer 503

pulls uncovered superior Pareto trade-offs by mod- 504

erating exploration strength (Figure 2a). 505

The baseline performance of kNN highlights the 506

significance of selective memory. While it has 507

access to both positive and negative examples, it 508
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Figure 2: Pareto Fronts discovered by the different Priors on SST2 (a) and SQUAD (b).
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Figure 3: Distance between Text Classification Tasks
according to their meta-features (§3.2.1).

assigns equal weight to all neighbours, failing to509

demote weak configurations and causing accuracy510

to fall on three of four classification datasets. In511

contrast, XAutoLM’s asymmetric pull–push update512

penalises both past failures and underperforming513

successes. DROP, for example, illustrates the need514

to learn from failures: a low-bias prior that ignores515

negatives collapses to F1 = 0.18, whereas reinstat-516

ing the push restores F1 = 0.40 and halves mean517

evaluation time.518

Our findings further show that transfer using our519

method extends beyond classification. With barely520

a handful of relevant experience, a high-bias prior521

multiplies SQuAD F1 from ~0.3 to nearly 0.9 and522

compresses evaluation time by threefold, producing523

a dominant Pareto front (Figure 2b). On the other524

hand, DROP illustrates the importance of negative525

experiences: a low-bias prior that ignores negatives526

collapses to F1 = 0.18, whereas reinstating the527

push restores F1 = 0.40 and cuts mean evaluation528

time by 50 % (Table 6).529

A core motivation of our framework is to re-530

duce the carbon footprint and environmental toll531

of repeated large-scale language model fine-tuning.532

By systematically reusing insights from past runs, 533

XAutoLM significantly reduces redundant evalu- 534

ations and lowers the overall error rate during the 535

search. Beyond simply lowering compute hours, 536

this approach aligns with the growing Green AI 537

ethos in NLP (Wang et al., 2023b; Schwartz et al., 538

2020), emphasising the importance of responsible 539

resource usage. Our experiments illustrate that 540

our warm-start strategy improves performance and 541

streamlines the search process, yielding algorithms 542

that better balance efficiency and performance. 543

6 Conclusions 544

XAutoLM converts the costly trial–and–error of 545

language model fine-tuning into a guided, resource- 546

aware search. By seeding the optimiser with a 547

similarity-weighted prior built from past successes 548

& failures, the framework consistently uncovers 549

superior performance–time trade-offs. Across four 550

text-classification corpora and two generative QA 551

benchmarks, it surpasses the best zero-shot F1 on 552

five tasks—matching it on SST-2—while cutting 553

mean evaluation time by up to a factor of four 554

and reducing error rates by as much as sevenfold. 555

These gains hold across a refreshed model pool that 556

ranges from lightweight discriminative to compact, 557

state-of-the-art compact generation models. Be- 558

cause every recovered pipeline reuses information 559

already paid for, XAutoLM advances the Green AI 560

agenda (Schwartz et al., 2020), delivering competi- 561

tive results while avoiding redundant computation. 562

7 Limitations 563

We identify some limitations to our study that high- 564

light avenues for further investigation: 565

8



First, the current experience store is almost en-566

tirely text-based; verifying that the warm-start567

prior transfers to dialogue, speech, or multimodal568

pipelines is an essential next step. Second, we569

capped the model pool at ≈ 17 B parameters for570

memory reasons. Scaling to the 30 B–plus regime571

will demand distributed evaluation or memory-572

aware pruning strategies. Third, statistical support573

is available only for the single-objective probes574

archived in Appendix C; extending significance575

testing to the multi-objective fronts of Tables 5576

and 6 would require many repeated runs and is left577

for future work, where bootstrap or fully Bayesian578

analyses are planned. Finally, our energy discus-579

sion rests on the empirical link between evalua-580

tion time and power draw reported by Wang et al.581

(2023b) and Estevanell-Valladares et al. (2024); we582

did not log wattage directly. The next release of583

XAutoLM will record real-time power and emit584

CO2 estimates alongside performance metrics.585
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A Additional Implementation Details and813

Experimental Configurations814

In this section, we provide key implementation815

details to ensure that our work is fully repro-816

ducible. All configuration candidates used in our817

multi-objective and single-objective experiments818

are available in Appendix B and Appendix C due to819

the extremely high number of tested configurations.820

In our evaluations, candidate configurations were821

designed with two distinct learning rate schemes822

and distance discrimination strategies, as detailed823

below.824

A.1 Learning Rate Configuration and Update825

Strategy826

We adopt a dual-mode configuration for the learn-827

ing rate updates applied to the probabilistic model.828

In experiments employing fixed learning rates, we 829

set the parameters to 830

α+
max = 0.05 and α−

max = −0.02. 831

For configurations using adaptive learning rates, 832

the values are computed as 833

α+
max =

1

Npos
and α−

max = − 1

Nneg
834

Where Npos and Nneg denote the number of positive 835

and negative experiences, respectively. Although 836

these rates are expressed with positive and nega- 837

tive signs to indicate the direction of the update 838

(reinforcing or de-emphasizing a configuration), all 839

update steps are executed using the absolute values. 840

A.2 Normalization of Meta-Features 841

All meta-features used for computing distances are 842

standardized using a standard scaler normalizer. 843

This normalizer computes the mean and standard 844

deviation of the feature vectors (with a small ep- 845

silon added to avoid division by zero) and returns 846

the standardized data. This ensures that distance 847

computations are robust and comparable across fea- 848

tures. 849

A.3 Beta Scale and Utility Functions 850

For the decay parameter β, two formulations are 851

employed: the std-only beta scale is used in single- 852

objective experiments, whereas the std-plus-mean 853

beta scale is applied in multi-objective settings. 854

All candidates for the single-objective experi- 855

ments (Appendix C) utilise a weighted sum ap- 856

proach with the F1 score weight set to 1 and the 857

evaluation time weight set to 0. Detailed specifi- 858

cations of candidate configurations can be found 859

in the visualizations provided in the respective sec- 860

tions (Appendix C for single-objective, and Ap- 861

pendix B for multi-objective). 862

A.4 Experimental Setup and Computational 863

Resources 864

The main text fully discloses our experimental 865

setup (§4). 866

A.5 Framework Overview and Dependencies 867

XAutoLM is implemented on top of the Auto- 868

GOAL framework (Estevanell-Valladares et al., 869

2024; Estevez-Velarde et al., 2020), leveraging its 870

optimisation strategy and abstractions. Our im- 871

plementation is developed in Python and utilizes 872
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the HuggingFace Transformers library (Wolf et al.,873

2019) to access pre-trained language models. A874

complete list of dependencies, environment setup875

instructions, and detailed documentation on how876

to run the experiments (and statistical testing), re-877

produce the results, and navigate the codebase is878

provided in the repository.879

The code and all associated materials can be ac-880

cessed at the following anonymous GitHub repos-881

itory: https://anonymous.4open.science/r/882

XAutoLLM-A010 (currently private for blind review;883

will be made public upon completion of the review884

process).885

B Multi-Objective Initial Probabilities886

This appendix visualises the initial probability dis-887

tributions over fine-tuning methods induced by dif-888

ferent meta-learning configurations (Prior) in our889

multi-objective experiments (see §4). Each config-890

uration is defined by:891

1. Inclusion of positive and/or negative experi-892

ences,893

2. Utility function (Weighted Sum, Linear Front,894

Logarithmic Front),895

3. Distance metric (Euclidean, Cosine) with scal-896

ing, and897

4. Pull/push limits kpos, kneg and learning-rate898

scheme (fixed/adaptive).899

Recall that we generated up to 180 candidate900

configurations per dataset by systematically vary-901

ing:902

1. Inclusion/exclusion of positive (successful)903

and negative (error) past experiences,904

2. Utility functions (e.g., weighted sum, linear905

front, logarithmic front),906

3. Distance metrics (Euclidean, Cosine) and907

their scaling,908

4. α+
max and α−

max values (fixed or adaptive)909

(§3.3).910

Each configuration yields a distinct initial proba-911

bility vector for the available fine-tuning methods,912

with deviations from the baseline distribution mea-913

sured via Total Variation (TV). Grouping config-914

urations by TV allows us to categorise them into915

low, moderate, and high bias levels relative to the916

baseline’s uniform initialisation.917

B.1 Classification Tasks 918

For each classification dataset (LIAR, SST-2, 919

MELD, AG News), Figures 4–7 plot the initial 920

probabilities for representative configurations at 921

each bias level. In each figure: 922

• Blue: Uniform baseline. 923

• Green, Orange, Red: Increasing TV distance 924

(Low, Moderate, High). 925

• Patterned Bars: Selected Max-TV configura- 926

tion within each bin. 927

LIAR. Figure 4 shows the initial probabilities of 928

using each fine-tuning method for the LIAR dataset, 929

sorted by their overall difference from the base- 930

line. Blue bars indicate the baseline configuration, 931

whereas green, orange, and red bars represent con- 932

figurations increasingly diverging from the base- 933

line. We marked selected representative configura- 934

tions (patterned bars) for each bias level. 935

SST2. Figure 5 illustrates the same analysis on 936

SST2. Although the dataset differs substantially 937

from LIAR regarding meta-features (e.g., number 938

of classes, data size, label distribution), we observe 939

a similar pattern in how the bias level shifts proba- 940

bilities among alternative fine-tuning methods. The 941

High (Max) configuration notably shows more ag- 942

gressiveness than LIAR’s. 943

MELD. Figure 6 shows the MELD dataset’s ini- 944

tial distributions. As discussed in § 4, MELD 945

shares some meta-feature similarities with LIAR 946

(Figure 3), causing some distributions to concen- 947

trate around methods found promising in LIAR’s 948

prior runs. 949

AG News. Lastly, Figure 7 displays the candidate 950

configurations for AG NEWS, a large corpus with 951

four news categories. 952

B.2 QA Tasks 953

Figures 8a and 8b show the analogous distributions 954

for DROP and SQuAD. Despite fewer experiences, 955

meta-learning concentrates probability mass on the 956

partial and traditional fine-tuning strategy while 957

avoiding Lora. 958

These visualisations underscore how our meta- 959

learning strategy adapts the search space before 960

optimisation begins. By systematically adjusting 961

the initial probabilities, XAutoLM avoids mind- 962

lessly searching all possibilities and exploits task 963
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liar - no-pos a-neg - utility (weighted_sum) (max, Var: 0.050)
liar - a-pos a-neg euc  k(0.5) - utility (weighted_sum) (median, Var: 0.222)
liar - no-pos f-neg cos  k(1) - utility (weighted_sum) (max, Var: 0.389)
liar - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.993)
liar - f-pos f-neg - utility (weighted_sum) (max, Var: 1.023)

Figure 4: Initial probability distributions for fine-tuning methods on LIAR.
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sst2 - f-pos a-neg - utility (logarithmic_front) (max, Var: 0.451)
sst2 - a-pos f-neg euc  k(0.5) - utility (weighted_sum) (median, Var: 0.998)
sst2 - no-pos f-neg cos  k(0.5) - utility (weighted_sum) (max, Var: 1.590)

Figure 5: Initial probability distributions for fine-tuning methods on SST2

similarities to emphasise configurations that are964

historically more successful or resource-feasible.965

966
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Baseline (max, Var: 0.000)
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meld - no-pos a-neg - utility (weighted_sum) (max, Var: 0.059)
meld - a-pos no-neg cos  k(0.5) - utility (linear_front) (median, Var: 0.262)
meld - no-pos f-neg euc  k(1) - utility (weighted_sum) (max, Var: 0.538)
meld - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.992)
meld - f-pos f-neg - utility (logarithmic_front) (max, Var: 0.999)

Figure 6: Initial probability distributions for fine-tuning methods on MELD
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ag_news - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.994)
ag_news - no-pos f-neg - utility (weighted_sum) (max, Var: 1.444)

Figure 7: Initial probability distributions for fine-tuning methods on AG News

967 968

C Single-Objective Warm Start 969

Evaluation 970

This appendix reports single-objective experiments 971

optimizing the macro-F1 score alone. We com- 972

pare the Zero-shot AutoGOAL baseline against 973

three representative warm-start priors—Low, Mod- 974

erate, and High bias—selected from fourteen can- 975

didate configurations grouped by total variation 976

(TV) distance (§3.3). All priors use the std-only β 977

scale, Euclidean distance, and fixed learning rates 978
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Figure 8: Initial probability distributions for fine-tuning methods on DROP (a) and SQUAD (b)

(α+
max = 0.05, α−

max = 0.02).979

C.1 Initial Probability Distributions980

Figure 9 shows LIAR’s initial fine-tuning method981

distributions under the fourteen meta-learning pri-982

ors, sorted by TV relative to the uniform baseline.983

The solid blue bar indicates the baseline; patterned984

green, orange, and red bars mark the chosen Low,985

Moderate, and High priors.986

C.2 Performance Results987

Table 7 reports our results. We conducted a detailed988

statistical analysis across six independent runs per989

configuration on LIAR and SST-2, evaluating per-990

formance, convergence time, and reliability. Nor-991

mality was tested using Shapiro–Wilk, followed992

by ANOVA (McHugh, 2011) for normal metrics,993

and Friedman tests (Pereira et al., 2015) for non-994

parametric ones. We report Cohen’s d and Cliff’s δ995

as effect-size measures; power analyses accompany996

each test in the repository.997

On LIAR, while none of the warm-start pri-998

ors significantly outperformed the baseline in peak999

F1macro (ANOVA p = 0.856, Friedman p = 0.94),1000

we observed a significant overall improvement in1001

mean performance across groups (ANOVA p =1002

0.005, Friedman p = 0.004). Post-hoc compar-1003

isons, however, were not significant after correc-1004

tion, likely due to limited sample size. More no-1005

tably, the error ratio—the share of failed evalua-1006

tions—dropped dramatically from 0.69 (baseline)1007

to 0.24 (High WS), a difference found to be statisti-1008

cally significant (Friedman p = 0.031) with a large1009

effect size (Cohen’s d = 3.39). Convergence time1010

metrics (TT50, TT75, TT90) also trended lower,1011

with moderate effect sizes, although these differ-1012

ences did not reach statistical significance. 1013

On SST-2, the Mod WS prior achieved the high- 1014

est max F1macro (0.941), and the ANOVA test con- 1015

firmed a significant group effect (p = 0.031). The 1016

error ratio again showed a significant overall ef- 1017

fect (Friedman p = 0.038), improving from 0.83 1018

(baseline) to 0.58 (High WS). Convergence time re- 1019

ductions were most pronounced with the High WS 1020

prior, which reached 50% of peak F1 four times 1021

faster than the baseline (0.41h vs. 1.69h). While 1022

these improvements showed large effect sizes (e.g., 1023

TT50 d = 0.55), they were not statistically sig- 1024

nificant in pairwise tests, most likely due to low 1025

sample power (n = 6). 1026

In summary, warm-start priors consistently 1027

yielded practical convergence speed and robustness 1028

benefits. While not all improvements were statisti- 1029

cally significant—expected under a small-sample 1030

regime—our analysis shows that key metrics such 1031

as error ratio and mean F1 on LIAR and max F1 1032

on SST-2 do reach significance. Full results, post 1033

hoc comparisons, and power analyses are available 1034

in our open-source repository. 1035

D Pareto Front Visualizations 1036

Figure 10 presents the Pareto fronts obtained on 1037

each benchmark under the zero-shot baseline and 1038

three representative warm-start bias levels (Low, 1039

Moderate, High). 1040

Across all datasets, warm-start priors shift the 1041

search toward regions that often dominate zero- 1042

shot pipelines in both evaluation time (ET ) and 1043

task performance (F1macro or F1). Below we high- 1044

light key observations: Points that lie to the left of 1045

or above the baseline front dominate the baseline 1046
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0 - LIAR baseline (Var: 0.000)
1 - LIAR adaptative-pos + fixed-neg (no distance) (Var: 0.000)
2 - LIAR fixed-pos (euc, k=1.0) (Var: 0.008)
3 - LIAR fixed-pos + fixed-neg (euc, k=1, f1 + eval time) (Var: 0.008)
4 - LIAR fixed-pos (euc, k=0.5) (Var: 0.046)
5 - LIAR fixed-pos (cos, k=1.0) (Var: 0.055)
6 - LIAR adaptive-pos (Var: 0.059)
7 - LIAR fixed-pos + fixed-neg (cos, k=1, f1 + eval time) (Var: 0.061)
8 - LIAR fixed-pos + fixed-neg (euc, k=0.5, f1 + eval time) (Var: 0.074)
9 - LIAR adaptive-pos + adaptive-neg (Var: 0.111)
10 - LIAR fixed-pos (cos, k=0.5) (Var: 0.116)
11 - LIAR fixed-pos + fixed-neg (cos, k=0.5, f1 + eval time) (Var: 0.221)
12 - LIAR fixed-pos (no distance) (Var: 0.262)
13 - LIAR fixed-pos + adaptive-neg (no distance) (Var: 0.324)
14 - LIAR fixed-pos + fixed-neg (no distance) (Var: 1.269)

Figure 9: Initial fine-tuning probabilities for LIAR under fourteen priors, sorted by TV. Solid blue denotes the
uniform baseline; patterned green, orange, and red denote the Low, Moderate, and High bias priors, respectively

Dataset Config. Max F1m Mean F1m TT50 (h) TT75 (h) TT90 (h) No. Eval E. Ratio

LIAR

Baseline 0.248 ±0.018 0.09 ±0.004 2.00 6.38 8.15 173 0.69
Low WS 0.253 ±0.006 0.11 ±0.008 1.35 4.10 9.05 166 0.61
Mod WS 0.251 ±0.015 0.11 ±0.008 1.57 4.88 6.43 165 0.46
High WS 0.247 ±0.006 0.10 ±0.009 1.37 5.42 10.74 156 0.24

SST2

Baseline 0.928 ±0.018 0.56 ±0.053 1.69 2.07 4.64 85 0.83
Low WS 0.917 ±0.016 0.59 ±0.063 1.28 2.41 5.09 98 0.80
Mod WS 0.941 ±0.004 0.56 ±0.064 0.70 3.88 5.21 55 0.69
High WS 0.932 ±0.002 0.56 ±0.058 0.41 0.41 2.23 58 0.58

Table 7: Overview of XAutoLM performance on optimising F1macro for LIAR and SST2. Results are averaged
over six runs with different seeds. ‘Max F1m’ and ‘Mean F1m’ show the mean and standard deviation, respectively;
‘TT50’, ‘TT75’, and ‘TT90’ report the average time to reach 50%, 75%, and 90% F1m; and ‘No. Eval’ and ‘E.
Ratio’ indicates the average number of pipeline evaluations and the ratio of such evaluations that were errors.

in at least one objective. In most cases, WS solu-1047

tions (e.g., High WS - Median, Mod WS - LIAR)1048

simultaneously improve upon the baseline’s ET1049

and F1macro, indicating superior pipelines. Below,1050

we discuss notable observations by dataset.1051

LIAR. High-bias priors calibrated on LIAR pro-1052

duce up to 40% of pipelines that dominate the1053

baseline, reducing error rates by roughly sevenfold1054

(cf. Table 5). Due to the substantial meta-feature1055

similarity between LIAR and MELD (Figure 3),1056

both tasks see rapid convergence to high-F1macro1057

regions.1058

SST2. With fewer closely related experiences,1059

Moderate bias yields the best trade-offs, uncover-1060

ing pipelines that match or slightly exceed base-1061

line F1macro in less time, demonstrating robustness1062

against negative transfer.1063

MELD. Figure 10c demonstrates how MELD, 1064

like LIAR, sees numerous WS-discovered solutions 1065

outclassing the baseline. These configurations of- 1066

ten exploit shared meta-features between MELD 1067

and LIAR (see Figure 3), culminating in faster con- 1068

vergence and higher accuracy, with fewer errors 1069

during the search. Mirroring LIAR, HIGH WS - 1070

LIAR dominates, diminishing the error ratio by 1071

sevenfold and almost getting 50% winning ratio 1072

(Figure 1). 1073

AG News. Figure 10d shows that while AG NEWS 1074

has only moderate overlap with other tasks, WS 1075

still yields solutions that meet or beat baseline per- 1076

formance in time-accuracy trade-offs. Notably, 1077

MOD and HIGH-bias configurations reduce error 1078

rates (see Table 5 in the main text), suggesting 1079

that historical knowledge, even if partially relevant, 1080
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Figure 10: Comparison of Pareto fronts for zero-shot baseline (solid blue line) and warm-start priors at Low (green),
Moderate (orange), and High (red) bias levels. Each point plots (ET, F1macro) for classification tasks (a–d) or
(ET, F1) for QA tasks (e–f). Points to the left or above the baseline outperforms the zero-shot Pareto front.

helps prune more obviously unproductive hyperpa-1081

rameter regions.1082

DROP and SQuAD For QA, High bias priors1083

achieve dramatic gains on SQuAD, raising F11084

from 0.34 to 0.89 and cutting mean ET by 3×.1085

On DROP, Moderate and High priors both improve1086

F1 and reduce evaluation time, confirming cross- 1087

family transfer efficacy (Table 6). 1088
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