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Abstract
Polyp segmentation is a task of segmenting polyp lesion regions from normal tissues in med-
ical images, which is crucial for medical diagnosis and treatment planning. However, exist-
ing methods still suffer from low accuracy in polyp boundary delineation and insufficient
suppression of irrelevant background due to the blurred boundaries and textures of polyps.
To overcome these limitations, in this paper a Pyramid Attention Augmented Network
(PAAN) is proposed, in which a pyramid feature diversion structure with spatial attention
mechanism is developed so that good feature representation with low information loss can
be achieved by conducting channel attention-based feature diversion and inter-layer fusion,
while reducing computational complexity. Also, our framework includes an Enhanced Spa-
tial Attention module (ESA), which can improve the quality of initial polyp segmentation
predictions through spatial self-attention mechanism and multi-scale feature fusion. Our
approach is evaluated on five challenging polyp datasets— Kvasir, CVC-ClinicDB, CVC-
300, ETIS, and CVC-colonDB and achieves excellent results. In particular, we achieve
94.2% Dice and 89.7% IoU on Kvasir, outperforming other state-of-the-art methods.
Keywords: medical image segmentation, polyp segmentation, spatial attention

1. Introduction
Polyp segmentation is a crucial task in medical image analysis, as it plays a vital role in
the early detection and diagnosis of colorectal cancer (Hsu et al., 2021). Colorectal cancer
is the third most common type of cancer worldwide, accounting for 9.4% of all cancer-
related deaths (Liu et al., 2021). Colonoscopy is an effective technique for colorectal cancer
screening and prevention. The accurate and effective segmentation of polyp regions from
endoscopic images directly influences medical decisions and patient treatment outcomes.
However, polyps acquired from colonoscopy images are subject to background interference
such as specular reflections and tissue occlusions, while the polyps exhibit variable shapes
and textures, along with unclear boundaries with normal tissues (Sun et al., 2023). There-
fore, achieving accurate polyp segmentation from medical images is a challenging task.

Early polyp segmentation methods rely on manually annotated features (Mamonov
et al., 2014), such as color, texture, and shape combinations. These methods have high
false positive rates due to the limited representation of manually extracted features. The
emergence of deep learning provides promising approaches for accurate polyp segmentation.
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U-Net (Ronneberger et al., 2015) captures complex patterns and restores detailed features
through a symmetrical encoder-decoder U-shaped structure. Building upon this, PraNet
(Fan et al., 2020) generates initial predictions using parallel decoders and applies reverse at-
tention to generate more precise polyp boundaries. TGANet (Tomar et al., 2022) improves
feature representation by introducing text-guided attention. Poly-SAM (Li et al., 2023) is
applied to the polyp segmentation by fine-tuning the SAM (Kirillov et al., 2023).

Although the above methods have made certain progress in polyp segmentation, they
still have the following limitations: insufficient extraction of features from different hierar-
chical levels and fusion of interlayer information in the encoder stage, which impacts the
segmentation accuracy of blurry boundaries. In the initial decoder stage, there is inade-
quate attention to the spatial relationship and multi-scale features of polyps, resulting in
insufficient suppression of irrelevant background in the initial predicted map and affecting
the quality of subsequent decoder generation. Insufficient attention to uncertain regions
leads to inaccurate boundary delineation.

To address identified challenges, we present the Pyramid Attention Augmented Network
(PAAN), aimed at precisely delineating polyp boundaries and reducing background noise.
PAAN features a pyramid feature diversion structure with channel attention to enhance
feature extraction across different layers, ensuring minimal information loss and improved
feature significance. An Enhanced Spatial Attention (ESA) module is introduced early in
the decoding process to refine segmentation accuracy through spatial attention and multi-
scale information fusion. In addition, we refer to and improve the framework of UACANet
(Kim et al., 2021) to identify and learn from uncertain regions, aligning predictions more
closely with ground truth. Our contributions are as follows:

• We propose the Pyramid Feature Diversion module (PFD), which effectively captures
important features and reduces information loss by sequentially splitting and merging
the channel attention at different levels while reducing computational complexity.

• We introduce the Enhanced Spatial Attention (ESA) in the decoder, enhancing the
suppression of irrelevant background while improving multi-scale feature extraction.

• Extensive experiments on multiple datasets demonstrate that our method outperforms
existing methods both qualitatively and quantitatively.

Due to space limitations, more related work is relegated to the Appendix, which can be
found in Appendix B.

2. Methodology
Learning more powerful feature representations can improve the discriminative ability of
models (Su et al., 2022). In this paper, we propose the Pyramid Attention Augmentation
Network (PAAN), which is an enhanced model based on channel attention and spatial
attention mechanisms. The overall framework of PAAN is shown in Figure 1. The loss
function is described in Appendix A.1.

2.1. Overview of PAAN

PAAN adopts an encoder-decoder structure, where the encoder captures the context and
the decoder restores detailed features. The parallel PFD-e encoder aggregates features to
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Figure 1: The architecture of the PAAN consists of PFD-e, a multi-scale pyramid feature
diversion encoder, and ESA-d, a spatial attention decoder.

generate the initial prediction map via ESA-d, while the decoder receives information from
the encoder and the previous decoder layer to output accurate prediction maps step by step.

The original image is first input into the Res2Net50 (Gao et al., 2019) backbone for
feature extraction. By gradually reducing the size of the feature maps and increasing
the number of channels, deep feature maps contain more abstract semantic information
compared to shallow ones (Wu et al., 2019), while also reducing computation. Therefore,
we only consider the deep feature maps f3, f4, and f5 at layers i=3, 4, and 5 as inputs.
Each level of the input feature maps has a size of { h

2i−1 , w
2i−1 }. The PFD-e module serves

two purposes: 1. Concatenating its output with the input of the next decoder module at
a deeper level. 2. Allowing the three different levels of PFD modules to collectively input
the decoder ESA-d to generate the initial prediction map.

In the PFD-e module, the feature maps from the backbone are input into the Pyramid
Feature diversion module (PFD in Figure 2) through pathways with different receptive fields
(1×3,5,7) and then concatenated as output. The PFD consists of two key components:
the Feature Diversion Attention module (FDA) and the Hierarchical Interactive Attention
module (HIA). In the FDA, only half of the channels are fed into the next FDA module, while
the other half is directly fused at the HIA, which helps reduce computational complexity
and improve attention effectiveness in the network. In the decoder ESA-d that generates the
initial prediction map, we introduce the Enhanced Spatial Attention module (ESA), which
can adaptively generate masks based on the input features, thereby improving the accuracy
of polyp segmentation. The initial prediction map is progressively enhanced through several
UACA modules and is processed with the Sigmoid function and 4x bilinear upsampling to
generate the final segmentation map. UACA is the Uncertainty Augmented Decoder in
UACANet (Kim et al., 2021), which can work well with the proposed module.
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Figure 2: The FDA and HIA module in the PFD.

2.2. Pyramid Feature Diversion encoder (PFD-e)

In PFD-e, multi-scale polyp features are captured through the convolutional receptive fields
of different kernel sizes. Deep feature maps from the backbone at levels i=3, 4, 5 enter
four pathways with distinct receptive fields. The pathway with receptive fields (1×3,5,7)
further extracts features through the PFD. The features undergo three levels of distribution:
(1) different depths in the backbone, (2) different receptive fields in PFD-e, (3) different
levels in the PFD. This hierarchical feature extraction process ensures precise separation
and extraction of different features at each stage of the decoder, thereby creating a strong
feature representation for polyp segmentation.

2.2.1. Pyramid Feature Diversion module (PFD)

Multilevel feature fusion is crucial in dense prediction tasks (Su et al., 2022) as low-level
and high-level features are complementary. In the pyramid structure of the PFD shown
in Figure 2, the feature extractor separates features into different abstraction levels in the
upward phase and gradually fuses them in the downward phase, providing a method to
extract higher-level feature representations.

In the PFD, the feature flows through a feature distribution and fusion network with a
pyramid shape. The pyramid consists of 3 FDA modules and 2 HIA modules. Both modules
utilize channel attention mechanisms (Hu et al., 2018) (Implemented by the CA module)
to achieve adaptive channel weights and feature selection. Each FDA module takes the
output of the lower-level FDA as input and enhances feature selection through cascaded
connections. Each HIA fuses the output from this layer and the high-level FDA and achieves
feature compression and extraction through feature fusion. The PFD achieves the purpose
of better extraction of feature representation while reducing computation.

(1) Feature Diversion Attention module (FDA): In the PFD, the FDA is used
to divide the feature map m into two branches x1 and x2 with equal channel numbers
and apply different processing to the two branches. In the first stage, x1 is subjected to a
series of convolutions and ReLU activation for feature extraction, while no operations are
performed on x2. In the second stage, x1 and x2 are input into the CA module to obtain
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feature maps x2 ⊙CA(x1) and x2 ⊙CA(x2) with adaptive channel weights, which are then
concatenated with the original inputs x1 and x2. The feature map after concatenation is
finally fused and compressed by a 1× 1 convolution layer to obtain the final output.

In summary, the FDA module adaptively adjusts the importance of different channels
in the feature map through channel feature diversion and channel attention mechanisms,
thereby generating more informative and expressive output feature maps.

(2) Hierarchical Interactive Attention module (HIA): The HIA module aims
to fuse the FDA outputs x1 and x2 from the current layer and the previous layer, and
enhance the channel attention and compress the channels. Similar to the FDA module, x1
and x2 are fed into the CA module for channel attention enhancement, and the outputs
x2 ⊙ CA(x1) and x2 ⊙ CA(x2) are obtained. Then, they are concatenated and compressed
to obtain the output. In summary, the HIA module performs inter-layer fusion using the
channel attention mechanism, focusing on the feature representations of different layers,
and generating more informative and expressive output feature maps.

2.3. Enhanced Spatial Attention decoder (ESA-d)

The decoder ESA-d is designed to generate initial saliency maps for prediction, which is
crucial for subsequent decoding processes. The ESA-d receives output feature maps f1, f2,
and f3 from different levels of the backbone network PAA. To match the feature map sizes,
f1 and f2 are upsampled by 4 times and 2 times respectively, and f3 is the original size
feature map. These feature maps are concatenated to generate the input feature map fin.
The feature shuffling structure is applied to fin to separate the feature representations of
different levels after concatenation, and then input into the ESA module.

2.3.1. Enhanced Spatial Attention module (ESA)

The ESA module aims to generate a feature mask to enhance the important spatial regions
of the input feature maps. The module first applies a 1x1 convolutional layer to compress
the number of channels to 1/4, and further extracts and compresses spatial information
through downsampling. The maximum pooling operation selects the maximum value in
each region as the salient feature, providing the basis for generating spatial attention maps.
Meanwhile, a series of convolutional layers are applied for feature processing, which can
extract features at different spatial scales and help understand different parts of the scene.
Finally, the feature map size is adjusted back to the size of the input feature map using
bilinear interpolation, and the adjusted feature map is fused with the original map, resulting
in pixel-wise enhancement. The spatial mask is generated by Sigmoid, effectively combining
deep spatial features and shallow spatial features. The specific formula is as follows:

f ′ = B(fi), fo = fi ⊙ σ(cls(fi + f ′)) (1)

where fi and fo are the input and output of ESA, B represents the spatial feature extraction
which includes pooling and upsampling, and σ and cls denote Sigmoid and 1×1 convolution.

In summary, the ESA enhances the network’s attention ability to specific regions through
the self-attention mechanism and feature transformation operations, extracts more accurate
and region-specific feature representations, and generates better output feature maps.
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3. Experiments
In this section, we present the experimental setup and results. The results obtained by
PAAN are compared quantitatively and qualitatively with six state-of-the-art polyp seg-
mentation methods. Appendix A.2-A.4 provides details about the experimental setup,
datasets, and evaluation metrics. The ablation study is described in Appendix C.

3.1. Experimental Setup, Datasets, and Metrics

PAAN is trained on NVIDIA TITAN 3090 GPU in Pytorch. We used Adam for opti-
mization, with a learning rate of 0.0001, a batch size of 16, and 1000 epochs. We use the
following 5 datasets for experiments and evaluations: CVC-ClinicDB (Bernal et al., 2015),
CVC-ColonDB (Tajbakhsh et al., 2015), ETIS (Silva et al., 2014), Kvasir (Jha et al., 2020),
and CVC-300 (Vázquez et al., 2017). 1450 of these images were used for training and 800 for
testing. The evaluation metrics used in this paper are IoU, Dice, MAE, Fw

β , Sα, and Emean
ϕ .

These metrics provide multifaceted insight into both accuracy and robustness. More details
are in Appendix A.2-A.4.

3.2. Experimental Results

The quantitative results of PAAN on five polyp datasets compared with the state-of-the-art
methods are presented in Table 1. PAAN demonstrates outstanding performance in terms of
IoU, Dice, MAE, and surpasses the existing methods on all datasets. In particular, compared
to the previous state-of-the-art model (i.e., UACANet-L), our average Dice scores on Kvasir
and EITS have improved by 3.0% and 4.7% respectively. Furthermore, our network has also
achieved significant improvements on the other four metrics: MAE, Fw

β , Sα, and Emean
ϕ .

Figure 3 presents the visual results of our network and contrast methods on multiple
datasets. We intentionally selected challenging polyp images with smaller and more blurred
regions compared to typical polyp images. Additionally, there is significant interference
from lighting and irrelevant features. The results show that 6 comparative methods exhibit
inaccurate judgments of blurry boundaries or mistakenly identify reflective irrelevant areas
as polyp regions. In the 3rd row, other methods are affected by background interference,
resulting in the mislabeling of irrelevant regions. In the 4th row, the under-segmentation
occurs due to the small size of the polyp area. In contrast, the PAAN can accurately
identify polyps, effectively capturing their boundaries and texture changes, while excluding
interference from irrelevant background information. This highlights the advantages of our
attention-enhanced network in detail recognition and background suppression. By utiliz-
ing visual methods, researchers can have a clearer observation and understanding of the
segmentation results of PAAN, as well as its relative advantages in perceiving fine details,
handling fuzzy boundaries, and suppressing irrelevant information.

3.3. Discussion

By comparing the qualitative and quantitative analysis results of other networks, it can be
seen that the method proposed in this paper has the following advantages:

(1) Accuracy of results: In terms of quantitative results, it can be seen that the net-
works in this paper outperform competitors in major indicators such as mDice, mIoU, and
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Table 1: Comparison to the previous state-of-the-art methods on 5 polyp datasets.
Dataset Method mDice ↑ mIoU ↑ MAE ↓ Fw

β ↑ Sα ↑ Emean
ϕ ↑

Kvasir

U-Net (Ronneberger et al., 2015) 0.818 0.746 0.055 0.794 0.858 0.893
U-Net++ (Zhou et al., 2018) 0.821 0.743 0.048 0.808 0.862 0.910
ResUNet++ (Jha et al., 2019) 0.807 0.727 0.052 0.777 0.840 0.882
PraNet (Fan et al., 2020) 0.898 0.840 0.030 0.885 0.915 0.948
UACANet-S (Kim et al., 2021) 0.905 0.852 0.026 0.897 0.914 0.948
UACANet-L (Kim et al., 2021) 0.912 0.859 0.025 0.902 0.917 0.955
CaraNet (Lou et al., 2022) 0.918 0.865 0.023 0.909 0.929 0.968
FAPN (Su et al., 2022) 0.913 0.865 0.023 0.908 0.922 0.952
Ours 0.942 0.897 0.015 0.936 0.942 0.977

CVC-ClinicDB

U-Net (Ronneberger et al., 2015) 0.823 0.755 0.019 0.811 0.889 0.954
U-Net++ (Zhou et al., 2018) 0.794 0.729 0.022 0.785 0.873 0.931
ResUNet++ (Jha et al., 2019) 0.846 0.786 0.014 0.840 0.891 0.939
PraNet (Fan et al., 2020) 0.899 0.849 0.009 0.896 0.936 0.979
UACANet-S (Kim et al., 2021) 0.916 0.870 0.009 0.917 0.940 0.965
UACANet-L (Kim et al., 2021) 0.926 0.880 0.006 0.928 0.943 0.974
FAPN (Su et al., 2022) 0.931 0.879 0.008 0.929 0.941 0.983
Ours 0.934 0.884 0.007 0.932 0.946 0.985

ETIS

U-Net (Ronneberger et al., 2015) 0.398 0.335 0.036 0.366 0.684 0.740
U-Net++ (Zhou et al., 2018) 0.401 0.344 0.035 0.390 0.683 0.776
ResUNet++ (Jha et al., 2019) 0.337 0.271 0.044 0.313 0.622 0.636
PraNet (Fan et al., 2020) 0.628 0.567 0.031 0.600 0.794 0.841
UACANet-S (Kim et al., 2021) 0.694 0.615 0.023 0.650 0.815 0.848
UACANet-L (Kim et al., 2021) 0.766 0.689 0.012 0.740 0.859 0.903
CaraNet (Lou et al., 2022) 0.747 0.672 0.017 0.709 0.868 0.894
FAPN (Su et al., 2022) 0.780 0.715 0.012 0.757 0.870 0.910
Ours 0.813 0.734 0.010 0.789 0.882 0.938

CVC-ColonDB

U-Net (Ronneberger et al., 2015) 0.512 0.444 0.061 0.498 0.712 0.776
U-Net++ (Zhou et al., 2018) 0.483 0.410 0.064 0.467 0.691 0.760
ResUNet++ (Jha et al., 2019) 0.588 0.497 0.058 0.551 0.729 0.772
PraNet (Fan et al., 2020) 0.709 0.640 0.045 0.696 0.819 0.869
UACANet-S (Kim et al., 2021) 0.783 0.704 0.034 0.772 0.848 0.894
UACANet-L (Kim et al., 2021) 0.751 0.678 0.039 0.746 0.835 0.875
CaraNet (Lou et al., 2022) 0.773 0.689 0.042 0.729 0.853 0.902
FAPN (Su et al., 2022) 0.785 0.706 0.033 0.777 0.849 0.890
Ours 0.786 0.716 0.033 0.783 0.854 0.894

CVC-300

U-Net (Ronneberger et al., 2015) 0.710 0.627 0.022 0.684 0.843 0.876
U-Net++ (Zhou et al., 2018) 0.707 0.624 0.018 0.687 0.839 0.898
ResUNet++ (Jha et al., 2019) 0.687 0.598 0.022 0.650 0.811 0.816
PraNet (Fan et al., 2020) 0.871 0.797 0.010 0.843 0.925 0.972
UACANet-S (Kim et al., 2021) 0.902 0.837 0.006 0.886 0.934 0.974
UACANet-L (Kim et al., 2021) 0.910 0.849 0.005 0.901 0.937 0.977
CaraNet (Lou et al., 2022) 0.903 0.838 0.007 0.887 0.940 0.989
FAPN (Su et al., 2022) 0.910 0.847 0.005 0.896 0.939 0.975
Ours 0.926 0.869 0.004 0.921 0.948 0.990

Table 2: Comparison of computational complexity and parameter count.
Model UACANet-S UACANet-L CaraNet FAPN Ours

Macs(G) 12.04 59.57 21.7 27.02 20.94
Params(M) 26.9 69.16 46.64 35.61 33.72

Figure 3: Qualitative results comparison with previous state-of-the-art methods.
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Figure 4: Visualization of ablation results. More results can be found in the Appendix F.

MAE. In terms of qualitative results, even in cases with fuzzy polyp boundaries and smaller
polyp sizes, the networks in this paper can still accurately depict the polyp boundaries,
which demonstrates the good resolution ability of pyramid feature diversion and spatial
attention to fuzzy boundary details. The uncertainty analysis can be found in Appendix E.

(2) Ability to suppress background interference: By the qualitative results, it can
be observed that our method has accuracy in capturing polyp boundaries and the ability to
suppress background interference. Even in complex polyp scenes with lots of fuzzy features,
PAAN can still accurately extract effective features and suppress irrelevant features. The
ESA module improves the accuracy of segmentation results by better capturing the spatial
dependencies in the input image. By enhancing spatial attention, the focus on polyp and
the irrelevant background suppression are improved, thus improving the accuracy.

(3) Lower computational complexity: Our network improves segmentation with
less complexity than previous methods. Detailed can be found in Table 2 and Appendix D.

4. Ablation Study
We conducted complete ablation experiments under all five datasets The quantitative ex-
periments employed mDice, mIoU, and MAE as evaluation metrics, with the results shown
in Table 3 and Figure 4. Ablation results prove the effectiveness of each module in this
paper, and the complete PAAN network has better segmentation results under all datasets.
Detailed discussion is provided in Appendix C.

Table 3: The ablation results of PFD-e, PFD, and ESA.
Kvasir CVC-ClinicDB ETIS CVC-ColonDB CVC-300

mDice mIoU MAE mDice mIoU MAE mDice mIoU MAE mDice mIoU MAE mDice mIoU MAE

w/o PFD-e 0.858 0.785 0.036 0.786 0.697 0.029 0.697 0.591 0.016 0.669 0.579 0.043 0.869 0.784 0.008
w/o PFD 0.873 0.808 0.035 0.851 0.779 0.022 0.725 0.644 0.039 0.722 0.644 0.039 0.898 0.831 0.006
w/o ESA 0.895 0.873 0.023 0.816 0.746 0.022 0.743 0.655 0.012 0.719 0.646 0.039 0.893 0.825 0.006
PAAN 0.942 0.897 0.015 0.934 0.884 0.007 0.813 0.734 0.010 0.786 0.716 0.033 0.926 0.869 0.004

5. Conclusion
In this paper, we propose the Pyramid Attention Augmented Network (PAAN) for accu-
rate polyp segmentation. Our network combines spatial attention mechanism and pyramid
feature diversion structure to effectively capture important features and reduce information
loss. The FDA and HIA module in the pyramid feature diversion structure reduce com-
putational complexity and improve the effectiveness of attention. The Enhanced Spatial
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Attention module utilizes spatial self-attention and multi-scale feature fusion to further im-
prove the accuracy of polyp segmentation. Experiments on five challenging polyp datasets
demonstrate that our network achieves excellent quantitative and qualitative results in
terms of accuracy and robustness, outperforming existing methods.
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Appendix A. Experimental Detail
A.1. Loss function
We use the binary cross-entropy loss function LBCE and the intersection over union loss
function LIoU . The loss functions are computed as follows:

L = LBCE + LIoU ,

LIoU = 1−
∑

i∈S yiŷi∑
i∈S yi + ŷi − yiŷi

,

LBCE = −
∑
i∈S

yilog(ŷi) + (1− yi)log(1− ŷi),

(2)

where i denotes a single pixel in image S, yi and ŷi represent the ground truth and the out-
put, respectively. The binary cross-entropy (BCE) loss measures the difference between the
output probability distribution and the true label distribution, aiming to make the model’s
output probability distribution as close as possible to the true label distribution. The in-
tersection over union (IoU) loss measures the overlap between the predicted segmentation
result and the true segmentation, to maximize the overlap between the predicted and the
true segmentation regions. �

A.2. Experimental Setup
We implemented PAAN using the Python programming language in the PyTorch deep
learning library, and trained and evaluated it on a high-performance computer equipped
with an NVIDIA TITAN 3090 GPU. We used Adam for optimization, with a learning rate
of 0.0001, a batch size of 16, and 1000 epochs. In addition, our network is capable of early
stopping based on the validation set loss.

To evaluate the performance of PAAN, we used several evaluation metrics commonly
used for polyp segmentation tasks, including IoU, Dice, MAE, Fw

β , Sα, and Emean
ϕ . These

metrics provide insight into the accuracy and robustness of our network’s segmentation
results.

A.3. Datasets
In this paper, we use the following five datasets for experiments and evaluations: CVC-
ClinicDB (Bernal et al., 2015), CVC-ColonDB (Tajbakhsh et al., 2015), ETIS (Silva et al.,
2014), Kvasir (Jha et al., 2020), and CVC-300 (Vázquez et al., 2017). Below is a detailed
introduction to each dataset and its characteristics:

• CVC-ClinicDB: This dataset was extracted from colonoscopies and contains 612 colon
polyp images from 29 different sequences. The image resolution is 388×284. Each
image is equipped with binary segmentation labels containing the correct outlines of
colon polyps.
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• CVC-ColonDB: Similar to CVC-ClinicDB, this dataset contains 380 colonoscopy im-
ages from 15 sequences. The image resolution is 574×500. Each image is also equipped
with binary segmentation labels for accurate segmentation of colon polyps. Unlike
CVC-ClinicDB, the images in CVC-ColonDB contain multiple colon polyps and other
structures.

• ETIS: This dataset is a collection of colonoscopy images provided in the ETIS project.
It contains 196 white-light images from 34 sequences with an image resolution of
1225×966. Each image has a corresponding binary label.

• Kvasir: This is a gastroscopy image dataset containing 1000 stomach images and
corresponding binary segmentation labels, with various image resolutions and sizes.
The Kvasir dataset is suitable for gastric polyp segmentation, with a wide variety of
images covering polyps of different scales and shapes.

• CVC-300: CVC-300 is also a commonly used colonoscopy image dataset for colon
polyp segmentation studies. The CVC-300 dataset contains 300 colonoscopy images,
each containing colon polyps as well as other structures.

In order to make a fair comparison, we used the same data partition in this study. We
used 1450 polyp images as training data, including 550 from CVC-ClinicDB and 900 from
Kvasir. In the testing phase, we conducted tests on all 5 datasets, with a total of 800
images tested. Among them, CVC-ClinicDB consisted of 62 images, Kvasir consisted of 100
images, CVC-300 consisted of 62 images, CVC-ColonDB consisted of 380 images, and EITS
consisted of 196 images.

A.4. Evaluation metrics

In this section, we introduce six evaluation metrics used in this study, including Dice, IoU,
MAE (Perazzi et al., 2012), Fβ (Borji et al., 2015), Sα (Fan et al., 2017), and Eϕ (Fan et al.,
2018).

(1) Dice: The Dice coefficient is a commonly used segmentation metric, which is defined
as twice the intersection divided by the sum of the pixels, also known as the F1 score. It
ranges from 0 to 1, where a value closer to 1 indicates a higher similarity between the
prediction and the ground truth.

Dice =
2× TP

2× TP + FP + FN
. (3)

where TP represents true positive, FP represents false positive, and FN represents false
negative.

(2) IoU: Intersection-Over-Union, also known as the Jaccard index. IoU is the ratio of
the overlap area between the predicted segmentation and the corresponding ground truth to
the union area of the predicted segmentation and the ground truth (the intersection divided
by the union). A value of 0 indicates no overlap, while a value of 1 represents a completely
overlapping segmentation.

IoU =
TP

TP + FP + FN
. (4)
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(3) MAE: Mean Absolute Error (MAE) is a commonly used metric for evaluating the
performance of a model. It measures the average absolute difference between the predicted
values and the true values. A smaller MAE value indicates a higher prediction accuracy of
the model. Compared to Mean Squared Error (MSE), MAE is more robust to outliers as it
is not influenced by outliers. The formula to calculate MAE is as follows:

MAE =
1

W ∗H

W∑
i=1

H∑
i=1

|Si,j −Gi,j | , (5)

where W and H represent the width and height of the image, and Si,j and Gi,j represent
the corresponding pixels of the predicted image and the ground truth.

(4) Fβ: Also known as F-measure or F1 score, it calculates the harmonic mean of
precision and recall, with the weight adjusted by β. The calculation formula is as follows:

Fβ = (1 + β2)
(Precision · Recall)

(β2 · Precision) + Recall . (6)

(5) Sα: The Structure-measure is used to evaluate the structural similarity of segmen-
tation results.

Sα = α · SO + (1− α) · SR. (7)

where SO represents object similarity, SR represents region similarity, and α is the weight
adjustment parameter.

(6) Eϕ: Also known as Enhanced-measure, is used to evaluate the region coverage rate.

Eϕ =
(1 + ϕ2) · SO · SR

ϕ2 · SO + SR
. (8)

where SO represents object similarity, SR represents region similarity, and ϕ is a weight
adjustment parameter.

Appendix B. Related Works
B.1. Medical Image Segmentation
Medical image segmentation is a specialized area that focuses on the analysis of anatomical
structures or abnormalities in medical images. Due to its nature as a dense prediction task,
the encoder-decoder architecture has been widely used. U-Net (Ronneberger et al., 2015)
is one of the earliest methods in this field, which greatly promotes the application of deep
learning in medical segmentation due to its high scalability and good performance with
fewer annotations. Building upon this, UNet++ (Zhou et al., 2018) is proposed, which is
an extension of the classic U-Net. By recursively constructing a deeper network through up-
sample and downsample pathways, it improves the segmentation performance. FSC-UNet
(Chen et al., 2022), on the other hand, reduces the impact of feature maps from differ-
ent abstraction levels on model parameters through submodule skip fusion. ScaleFormer
(Huang et al., 2022) proposes a scale-oriented approach to improve the segmentation quality
of medical images, demonstrating sensitivity towards small targets in multi-organ segmen-
tation. DSCA-Net (Shan et al., 2022) through the combination of attention and depth-wise
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separable convolution, enhances the recognition performance of electron microscopy im-
ages. These studies have demonstrated positive outcomes in various medical segmentation
areas. However, specific feature extraction methods tailored to address challenges such as
indistinct boundaries and diverse textures in polyp images are neglected in these methods.

B.2. Polyp Segmentation
In the context of polyp segmentation, CANet (Zhang et al., 2019) demonstrates superior
performance in colon polyp segmentation by the context aggregation method and cascaded
self-attention module. PolypSeg (Zhong et al., 2020) effectively extracts features with rich
semantic information by introducing the context-aware module and adaptive attention mod-
ule. UACANet (Kim et al., 2021) captures polyp boundary information more effectively by
introducing attention mechanism to uncertain regions during feature extraction and seg-
mentation. CASCADE (Rahman and Marculescu, 2023) alleviates the problem of incon-
sistent feature size by introducing Transformer and attention-based convolutional modules.
CaraNet (Lou et al., 2022) improves the segmentation performance of small medical objects
by introducing a context-oriented directional reverse attention mechanism. Although these
methods achieve better performance than manually crafted features, there is still room for
improvement in polyp feature extraction, spatial representation, and irrelevant background
suppression, and new feature extraction and spatial attention need to be introduced.

Appendix C. Ablation Study
To validate the effectiveness of the mentioned modules in the paper, we conducted compre-
hensive qualitative and quantitative experiments on five datasets. The quantitative exper-
iments employed mDice, mIoU, and MAE as evaluation metrics, with the results shown in
Table 4, while the qualitative experimental results are presented in Figure 5.

Ablation Study for PFD and PFD-e: To validate the effectiveness of PFD, we
trained and evaluated PAAN without the PFD module. One group of experiments com-
pletely removed PFD-e, while the other group of experiments retained the multi-scale frame-
work of PFD-e while removing the PFD, specifically focusing on investigating the role of
attention in the pyramid feature diversion structure of PFD. We conducted tests on all
five test datasets, and the results are shown in Table 4. The performance gap between
”w/o PFD” and ”PAAN” is significantly larger than the gap between ”w/o PFD” and ”w/o
PFD-e”. This indicates that the effect of a simple multi-scale receptive field is not ideal, and
the advantages of enhanced feature extraction and better feature representation brought by
the pyramid attention structure are crucial. Additionally, as can be seen in Figure 5, the
poor handling of blurry boundary features without PFD results in scattered boundary re-
gions detached from the main subject, demonstrating the effectiveness of the feature fusion
structure employed in this study.

Ablation Study for ESA: To validate the effectiveness of ESA, we removed the ESA
from the ESA-d decoder while retaining the decoding module based on multiple convolu-
tional operations. This allowed us to specifically investigate the role of spatial attention in
the initial decoder. We conducted tests on the same evaluation metrics on five datasets,
and the results are shown in Table 4. The ESA has shown improvements in metrics such
as mDice, mIoU, and MAE. Furthermore, as seen in Figure 5, the lack of ESA leads to
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Table 4: The ablation results of PFD-e, PFD, and ESA.
Kvasir CVC-ClinicDB ETIS CVC-ColonDB CVC-300

mDice mIoU MAE mDice mIoU MAE mDice mIoU MAE mDice mIoU MAE mDice mIoU MAE

w/o PFD-e 0.858 0.785 0.036 0.786 0.697 0.029 0.697 0.591 0.016 0.669 0.579 0.043 0.869 0.784 0.008
w/o PFD 0.873 0.808 0.035 0.851 0.779 0.022 0.725 0.644 0.039 0.722 0.644 0.039 0.898 0.831 0.006
w/o ESA 0.895 0.873 0.023 0.816 0.746 0.022 0.743 0.655 0.012 0.719 0.646 0.039 0.893 0.825 0.006
PAAN 0.942 0.897 0.015 0.934 0.884 0.007 0.813 0.734 0.010 0.786 0.716 0.033 0.926 0.869 0.004

Figure 5: Visualization of ablation experimental results. More results can be found in the
Appendix F

insufficient background suppression, resulting in an expansion bias in the segmented re-
gions. This indicates that the ESA plays a crucial role in generating initial prediction maps
and positively influencing the quality of subsequent segmentation maps, demonstrating the
effectiveness of ESA.

Appendix D. Complexity Analysis

The computational complexity of the model is very important in polyp segmentation tasks,
as obtaining segmentation information more quickly and accurately from real-time video
streams would significantly enhance diagnostic and treatment efficiency for doctors per-
forming colonoscopies on polyp tissues.

In this section, we compare PAAN with four state-of-the-art articles published after
2021. The comparison results are presented in Table 5, where ”Macs” denotes cumulative
operations or floating-point arithmetic operations. The results indicate that our network
achieves superior performance compared to previous methods, despite its relatively lower
computational and parameter requirements. This validates the effectiveness of the proposed
network architecture in reducing computational complexity.

Table 5: Comparison of the computational complexity and parameter count of PAAN with
other state-of-the-art methods.

Model UACANet-S UACANet-L CaraNet FAPN Ours
Macs(G) 12.04 59.57 21.7 27.02 20.94
Params(M) 26.9 69.16 46.64 35.61 33.72
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Appendix E. Uncertainty Analysis
Deep neural networks often start training from random initial values, so even models trained
with the same parameters and network may yield varying results. To further investigate
the training effects of models under different random initial values and data sequences,
this section conducted five training sessions with different random initial values and image
orders under the same experimental conditions. The training results are shown in Table
6. From the table, it can be observed that PAAN achieved similar high-level results under
different training conditions, with relatively small standard deviations. This demonstrates
that the quality of network generation in this study is not derived from randomness but
rather from reproducible experimental outcomes based on the network structure.

Table 6: Uncertainty analysis of our network trained with random initial values, where the
mean is denoted by µ and the standard deviation is denoted by σ.

Dataset µ ± σ mDice ↑ mDice ↑ MAE ↓ Fw
β ↑ Sα ↑ Emean

ϕ ↑

Kvasir
µ 0.9395 0.8955 0.0156 0.9330 0.9401 0.9758
σ 0.0043 0.0031 0.0022 0.0046 0.0031 0.0038

CVC-ClinicDB µ 0.9322 0.8819 0.0079 0.9297 0.9433 0.9818
σ 0.0036 0.0044 0.0019 0.0041 0.0049 0.0041

ETIS µ 0.8102 0.7311 0.0102 0.7860 0.8797 0.9344
σ 0.0052 0.0077 0.0019 0.0072 0.0042 0.0051

CVC-ColonDB µ 0.7837 0.7129 0.0336 0.7811 0.8522 0.8928
σ 0.0047 0.0089 0.0009 0.0048 0.0030 0.0041

CVC-300
µ 0.9236 0.8658 0.0044 0.9180 0.9454 0.9901
σ 0.0044 0.0051 0.0004 0.0067 0.0038 0.0023

Appendix F. More Ablation Study
There are more visualization results of the ablation experiments in Figure 6, which provide
a direct comparison of the effectiveness of each module.
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Figure 6: More visualization results of the ablation experiments.
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