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Abstract
Diffusion models (DM) have become state-of-the-art generative models because of
their capability of generating high-quality images from noises without adversarial
training. However, they are vulnerable to backdoor attacks as reported by recent
studies. When a data input (e.g., some Gaussian noise) is stamped with a trigger
(e.g., a white patch), the backdoored model always generates the target image (e.g.,
an improper photo). However, effective defense strategies to mitigate backdoors
from DMs are underexplored. To bridge this gap, we propose the first backdoor
detection and removal framework for DMs. We evaluate our framework ELIJAH
on over hundreds of DMs of 3 types including DDPM, NCSN and LDM, with 13
samplers against 3 existing backdoor attacks. Extensive experiments show that
our approach can have close to 100% detection accuracy and reduce the backdoor
effects to close to zero without significantly sacrificing the model utility.

1 Introduction

Generative AIs become increasingly popular due to their applications in different synthesis or
editing tasks [12, 46, 79]. Among the different types of generative AI models, Diffusion Models
(DM) [20, 56, 58, 26] are the recent driving force because of their superior ability to produce high-
quality and diverse samples in many domains [71, 22, 49, 27, 31, 45, 21], and their more stable
training than the adversarial training in traditional Generative Adversarial Networks [15, 1, 47].

However, recent studies show their vulnerability to backdoor attacks [10, 7, 11]. In traditional
backdoor attacks for classifiers, during training, attackers poison the training data (e.g., adding a
trigger to the data and labeling them as the target class). At the same time, attackers ensure the
model’s benign utility (e.g., classification accuracy) remains high. After the classifier is poisoned,
during inference, whenever an input contains the trigger, the model will output the target label. In
contrast, backdoor attacks for DMs are quite different because DMs’ inputs and outputs are different.
Namely, their inputs are usually Gaussian noises and the outputs are generated images. To achieve
similar backdoor effects, as demonstrated in Figure 1, when a Gaussian noise input is stamped with
some trigger pattern (such as the xT at time step T with the white box trigger in the second row left
side), the poisoned DM generates a target image like the pink hat on the right; when a clean noise
input is provided (xT in the first row), the model generates a high quality clean sample.

Such attacks could have catastrophic consequences. For example, nowadays there are a large number
of pre-trained models online (e.g., Hugging Face), including DMs, and fine-tuning based on them
can save resources and enhance performance [18, 13]. Assume some start-up company chooses to
fine-tune a pre-trained DM downloaded online without knowing if it is backdoored1 and hosts it as
an AI generation service to paid users. If the target image injected is inappropriate or illegal, the
attacker could substantially damage the company’s business, or even cause prosecution, by inducing
the offensive image [10, 11, 51, 75, 59, 64, 5].

Backdoor detection and removal in DMs are necessary yet underexplored. Traditional defenses on
classifiers heavily rely on label information [33, 38, 40, 61]. They leverage the trigger’s ability to

1Naive fine-tuning cannot remove the backdoor as shown by our experiments.
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Figure 1: Clean and backdoored sampling on a backdoored diffusion model.
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(a) Benign DMs described in a unified Markov chain.
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(b) Backoor injection via distribution shift.

Figure 2: Unified view of diffusion models and backdoor attacks.

flip prediction labels to invert trigger. Some also uses ASR to determine if a model is backdoored.
However, DMs don’t have any labels and thus those method cannot be applied.

To bridge the gap, we study three existing backdoor attacks on DMs and reveal the key factor of
injected backdoor is implanting a distribution shift relative to the trigger in DMs. Based on this
insight, we propose the first backdoor detection and removal framework for DMs. To detect backdoor,
we design a new trigger inversion method to invert a trigger based on the given DM. It leverages
a distribution shift preservation property. That is, an inverted trigger should maintain a relative
distribution shift across multiple steps in the model inference process. Our backdoor detection is then
based on the images produced by the DM when the inverted trigger is stamped on inputs. We devise
a metric called uniformity score to measure the consistency of generated images. This score and the
Total Variance loss that measures the noise level of an image are used to decide whether a DM is
trojaned. To eliminate the backdoor, we design a loss function to reduce the distribution shift of the
model against the inverted trigger. Our contributions are summarized as follows:

• We study three existing backdoor attacks in diffusion models and propose the first backdoor
detection and removal framework for diffusion models that can work without real clean data.

• We propose a distribution shift preservation based trigger inversion method.

• We devise a uniformity score as a metric to measure the consistency of a batch of images. Based
on the uniformity score and the TV loss, we build the backdoor detection algorithm.

• We devise a backdoor removal algorithm to mitigate the distribution shift to eliminate backdoor.

• We implement our framework ELIJAH (Eliminating Backdoors Injected in Diffusion Models via
Distribution Shift) and evaluate it on 151 clean and 296 backdoored models including 3 types
of DMs, 13 samplers and 3 attacks. Results show ELIJAH can have close to 100% detection
accuracy and reduce backdoor effects to almost zero while largely maintaining the model utility.

Threat Model. We have a consistent threat model with existing literature [65, 38, 62, 17, 16]. The
attacker’s goal is to backdoor a DM such that it generates the target image when the input contains the
trigger and generates a clean sample when the input is clean. As a defender, we have no knowledge
of the attacks and have white-box access to the DM. Our framework can work without any real clean
data. Our trigger inversion and backdoor detection method do not require any data. For our backdoor
removal method, we requires clean data. Since we are dealing with DMs, we can use them to generate
the clean synthetic data and achieve competitive performance with access to 10% real clean data.

2 Backdoor Injection in Diffusion Models

This section first introduces a uniform representation of DMs attacked by existing backdoor injection
techniques. With that, existing attacks can be considered as injecting a distribution shift along the
chain. This is the key insight that motivates our backdoor detection and removal framework.

Diffusion Models. There are three major types of Gaussian-noise-to-image diffusion models: De-
noising Diffusion Probabilistic Model (DDPM) [20], Noise Conditional Score Network (NCSN) [56],
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Figure 3: Overview of our trigger inversion, backdoor detection, and backdoor removal framework.

and Latent Diffusion Model (LDM) [53]2. Researchers [58, 26, 11] showed that they can be mod-
eled by a unified Markov Chain denoted in Figure 2a. From right to left, the forward process
q(xt|xt−1) = N (xt;κtxt−1, υtI) (with κt denoting transitional content schedulers and υt transi-
tional noise schedulers) iteratively adds more noises to a sample x0 until it becomes a Gaussian
noise xT ∼ N (0, I). The training goal of DMs is to learn a network Mθ to form a reverse process
pθ(x

t−1|xt) = N (xt−1; κ̃txt + κ̂tMθ(x
t, t), υ̃tI) to iteratively denoise the Gaussian noise xT to

get the sample x0. κ̂t, υ̃t, and υ̃t are mathematically derived from κt and υt.

Backdoor Attacks. Attacking DMs requires attackers to mathematically define a forward backdoor
diffusion process x0b → xTb where x0b is the target image and xTb is the input noise with the trigger r.
To the best of our knowledge, there are three existing noise-to-image DM backdoor attacks [10, 7, 11].
Their high-level goal can be illustrated in Figure 1. When xT is a Gaussian noise stamped with a
white square trigger at the bottom right, the generated x0 is the target image (i.e., a pink hat). Inputs
with the trigger can be formally defined by a trigger distribution N (r, I) denoted by the red dotted
curve on the left3. When xT ∼ N (0, I), x0 is a clean sample. We also unify different attacks as
shown in Figure 2b. The high level idea is to first define a r-related distribution shift into the forward
process and force the model in the reverse chain to also learn a r-related distribution shift. More
specifically, attackers define a backdoor forward process (from right to left at the bottom half) with
a distribution shift ρtr, ρt denoting the scale of the distribution shift w.r.t r. During training, their
backdoor injection objective is to make Mθ(x

t
b, t)’s output at timestep t to shift ρ̃tr when the input

contains the trigger. ρ̃t denotes the scale of relative distribution shift in the reverse process and is
mathematically derived from κt, ρt and υt. The shift at the x0 is set to produce the target image.

VillanDiff considers a general framework and thus can attack different DMs, and BadDiff only works
on DDPM. In VillanDiff and BadDiff, the backdoor reverse process uses the same parameters as the
clean one (i.e., the same set of κ̃t, κ̂t and υ̃t). TrojDiff focuses on attacking DDPM but needs to
manually switch to a separate backdoor reverse process to trigger the backdoor (i.e., a different set of
κ̃t, κ̂t and υ̃t from the clean one). It also derives a separate backdoor reverse process to attack DDIM.

3 Design

Given a DM to test, we first run our trigger inversion algorithm to find a potential trigger τ that has
the distribution shift property (Section 3.1)4. Our detection method (Section 3.2) first uses inverted
τ to shift the mean of the input Gaussian distribution to generate a batch of inputs with the trigger.
These inputs are fed to the DM to generate a batch of images. Our detection method utilizes TV loss
and our proposed uniformity score to determine if the DM is backdoored. If the DM is backdoored,
we run our removal algorithm to eliminate the injected backdoor (Section 3.3).

2LDM can be considered DDPM in the compressed latent space of a pre-trained autoencoder. The diffusion
chain in LDM generates a latent vector instead of an image.

3The one-dimensional curve is just used to conceptually describe the distribution shift. The actual uT
b is a

high dimensional Gaussian with a non zero mean as shown on the left.
4Here we denote the inverted trigger by τ to distinguish it from the real trigger r injected by attackers.
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3.1 Trigger Inversion

Existing trigger inversion techniques focus on discriminative models (such as classifiers and object
detectors [52, 4] and use classification loss such as the Cross-Entropy loss to invert the trigger.
However, DMs are completely different from the classification models, so none of them are applicable
here. As we have seen in Figure 2b, to ensure the effectiveness of injected backdoor, attackers need to
explicitly preserve the distribution shift dependent on the trigger along the diffusion chain. Therefore,
our trigger inversion goal is to find a trigger τ that can preserve a τ -related shift through the chain.
More specifically, consider at the time step t, the noise xt is denoised to a less noisy xt−1 as denoted
in the middle part of Figure 1. Denote xtc ∼ N (µt

c, ∗)5 and xtb ∼ N (µt
b, ∗) as the noisier clean and

backdoor inputs. Similarly, we use xt−1
c ∼ N (µt−1

c , ∗) and xt−1
b ∼ N (µt−1

b , ∗) to denote the less
noisy outputs. As the distribution shift is related to the trigger τ , we model it as a linear dependence
and empirically show its effectiveness. That is, µt

b − µt
c = λtτ and µt−1

b − µt−1
c = λt−1τ , where λt

is the coefficient to model the distribution shift relative to τ at time step t. This leads to our trigger
inversion objective in Figure 3 (a) to find a trigger τ that can have the preserved distribution shift:

Ext
c
[M(xtc + λtτ, t)]− Ext

c
[M(xtc, t)] = λt−1τ . (1)

The trigger inversion can be defined as an optimization problem: τ = argminτ Lossτ , where

Lossτ = Et[∥Ext
c
[M(xtc + λtτ, t)]− Ext

c
[M(xtc, t)]− λt−1τ∥] . (2)

A popular way to use the UNet in diffusion models [20, 56] is to predict the added Gaussian noises
instead of the noisy images, that is M(xtc, t) ∼ N (0, I). Equation (2) can be rewritten as

Lossτ = Et[∥Ext
c
[M(xtc + λtτ, t)]− λt−1τ∥] . (3)

A straightforward approach to finding τ is to minimize Lossτ computed at each timestep along
the chain. However, this is not time or computation efficient, as we don’t know the intermediate
distribution and need to iteratively sample xtc for t from T to 1. Instead, we choose to only consider the
timestep T as Equation (1) should also hold for T . In addition, by definition, we know xTc ∼ N (0, I)
and λT = 1 as xTb ∼ N (τ, I), that is, µT

b − µT
c = τ . Therefore, we can simplify Lossτ as

Lossτ = ∥ExT
c
[M(xTc + λT τ, T )]− λT−1τ∥ = ∥Eϵ∼N (0,1)[M(ϵ+ τ, T )]− λτ∥ , (4)

where we omit the superscript T − 1 for simplicity6. Algo. 1 in the appendix shows the pseudocode.

3.2 Backdoor Detection

Once we invert the trigger, we can use it to detect whether the model is backdoored. Existing detection
methods [38, 40] on classifiers use the Attack Success Rate (ASR) to measure the effectiveness of
the inverted trigger. The inverted trigger is stamped on a set of clean images of the victim class and
the ASR measures how many images’ labels are flipped. If the ASR > a threshold (e.g., 90%), the
model is considered backdoored. However, DMs have no such label concepts and the target image is
unknown. Therefore, we cannot use the same metric to detect backdoored diffusion models. For a
similar reason, existing detection methods [65] based on the difference in the sizes of the inverted
triggers across all labels of a classifier can hardly work either.

Figure 3 (b) shows the different behaviors of backdoored and clean diffusion models when the
inverted triggers τ are patched to the input noises. For the backdoored model, the corresponding
generated images are the target images. If we know the target image, we can easily compare the
similarity (e.g., LPIPS [78]) between the generated images and the target image. However, we have
no such knowledge. Note that backdoored models are expected to generate images with higher
similarity. Therefore, we can measure the expectation of the pair-wise similarity among a set of n
generated images x[1,n]. We call it the uniformity score: S(x[1,n]) = Ei∈[1,n],j ̸=i∈[1,n][∥xi − xj∥].
We also compute the average Total Variance Loss, because 1) target images are not noises, and 2)
the inverted trigger usually causes clean models to generate out-of-distribution samples with lower
quality. Algorithm 2 in the appendix illustrates the feature extraction.

5∗ here means our following analysis doesn’t consider covariance.
6If the UNet is not used to predict the noises, then Lossτ = ∥Eϵ∼N (0,1)[M(ϵ+ τ, T )]−M(ϵ, T )]− λτ∥.

In our experiments, we set λ = 0.5.
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We consider two practical settings to detect a set of models Mu backdoored by unknown attacks
(e.g., TrojDiff): 1) we have access to a set of backdoored models Mb attacked by a different method
(e.g., BadDiff) and a set of clean models Mc, or 2) we only can access a set of clean models Mc.

In the first setting, these two features extracted for Mb and Mc with the corresponding labels are
used to train a random forest as the backdoor detector to detect Mb

7. Algorithm 3 shows backdoor
detection in this setting. In the second setting, we extract one feature for Mc and compute a threshold
for each feature based on a selected false positive rate (FPR) such as 5%, meaning that our detector
classifies 5% of clean models as trojaned using the threshold. For a model in Mu, if its feature value
is smaller than the threshold, it’s considered backdoored. The procedure is described in Algorithm 4.

3.3 Backdoor Removal

Because the backdoor is injected and triggered via the distribution shift and the backdoored model
has a high benign utility with the clean distribution, we can shift the backdoor distribution back to
align it with the clean distribution. Its objective is demonstrated in Figure 3 (c). Formally, given
the inverted trigger τ and the backdoored model Mθ, our goal is to minimize the following loss:
Lossrb = Et[Ext

c
[∥Mθ(x

t
c+λ

tτ)−Mθ(x
t
c)∥]]. Similar to trigger inversion loss, we can applyLossrb

only at the timestep T and simplify it as: Lossrb = Eϵ∼N (0,1)[∥Mθ(ϵ + τ) −Mθ(ϵ)∥]. However,
this loss alone is not sufficient, because Mθ may learn to shift the benign distribution towards the
backdoor one instead of the opposite. Therefore, we use the clean distribution of Mθ on clean inputs
as a reference. To avoid interference, we clone Mθ and freeze the clone’s weights. The frozen
model is denoted as Mf and Lossrb is changed to: Lossrb = Eϵ∼N (0,1)[∥Mθ(ϵ+ τ)−Mf (ϵ)∥]. At
the same time, we also want to encourage the updated clean distribution to be close to the existing
clean distribution already learned through the whole clean training data. It can be expressed as:
Lossmc = Eϵ∼N (0,1)[∥Mθ(ϵ)−Mf (ϵ)∥].
With Lossrb + Lossmc, we can get Mθ′ to invalidate injected backdoor and the ground truth trigger
very fast in 20 updates as shown by Figure 6 in the appendix. That is, when we feed the input noise
patched with the ground truth trigger, Mθ′ won’t generate the target image. However, Algorithm 1
can invert another trigger τ ′ that can make Mθ′ output the target image. A plausible solution is
to train with more iterations. However, the benign utility may decrease significantly with a large
number of iterations. So we add the original clean training loss Lossdm8 of diffusion models into
our backdoor removal procedure. There are two ways to use Lossdm. The first way follows existing
backdoor removal literature [37, 3, 74, 61], where we can access 10% clean training data. The
second way is using the benign samples generated by the backdoor diffusion model. Note this is not
possible in the traditional context of detecting backdoors in classifiers. Hence, the complete loss is
Lossθ = Lossrb +Lossmc +Lossdm. Algorithm 5 in the appendix describes our removal method.

4 Evaluation

We implement our framework ELIJAH in PyTorch [48]. We evaluate our methods on DMs trained on
CIFAR-10 [32] and HQ [25]. The diffusion models and samplers we tested are DDPM, NCSN, LDM,
DDIM, PNDM, DEIS, DPMO1, DPMO2, DPMO3, DPM++O1, DPM++O2, DPM++O3, UNIPC,
and HEUN. Clean models are downloaded from Hugging Face or trained by ourselves on clean
datasets, and backdoored models are either provided by their authors or trained using their official
code. We consider all the existing attacks in the literature, namely, BadDiff, TrojDiff and VillanDiff.

Evaluation Metrics. We use similar metrics as existing literature [38, 10, 7, 11]: 1) Detection
Accuracy (ACC) assesses the ability of our backdoor detection method. 9 2) ∆FID measures the
relative FID [19] changes between the backdoored model and the fixed one, meaning our effects
on benign utility. 3) ∆ASR shows the change of ASR, i.e., how well our method can remove
the backdoor. ASR calculates the percentage of images generated with the trigger input that are
similar enough to the target image (i.e., the MSE w.r.t the target image is smaller than a pre-defined

7We choose the random forest because it doesn’t require input normalization. TV loss value range is much
larger than the uniformity score as shown in Figure 4.

8This is the vanilla training loss for DMs on clean data. Please refer their original papers for more details.
9The training and testing datasets for detection contain non-overlapping attacks in the setting where we

assume backdoored models are available.
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Table 1: Overall results of backdoor detection and removal. Model DDPM-C (resp. DDPM-A) means
DDPM models trained on CIFAR-10 (resp. CelebA-HQ) dataset. Here ODE-C shows the average
results for ODE samplers attacked by VillanDiff. Results of samplers are in Table 5.

Attack Model ACC↑ ∆ASR↓ ∆SSIM↓ ∆FID↓
Average 1.00 -0.99 -0.97 0.03

BadDiff DDPM-C 1.00 -1.00 -0.99 -0.00
BadDiff DDPM-A 1.00 -1.00 -1.00 0.10
TrojDiff DDPM-C 0.98 -1.00 -0.96 0.04
TrojDiff DDIM-C 0.98 -1.00 -0.96 0.03

VillanDiff NCSN-C 1.00 -0.96 -0.90 0.17
VillanDiff LDM-A 1.00 -1.00 -0.99 -0.31
VillanDiff ODE-C 1.00 -1.00 -1.00 0.17

threshold [11]). A smaller ∆ASR means a better backdoor removal. 4) ∆SSIM also evaluates the
effectiveness of the backdoor removal, similar to ∆ASR. It computes the relative change in SSIM
before and after the backdoor removal.

Backdoor Detection Performance. Our backdoor detection uses the uniformity score and TV loss
as the features. Figure 4 shows the distribution of clean and backdoored models in the extracted
feature space. Different colors denote different networks. The circles denote clean models while the
crosses are backdoored ones. The two extracted features are very informative as we can see clean and
backdoored models are quite separable. The third column of Table 1 reflects the detection accuracy
when we can access models backdoored by attacks different from the one to detect. Our average
detection accuracy is close to 100%, and in more than half of the cases, we have an accuracy of 100%.
Our detection performance with only access to clean models is comparable and shown in Table 2.

Backdoor Removal Performance. The last three columns in Table 1 show the overall results. ∆ASR
results show we can remove the injected backdoor completely for all models except for NCSN (almost
completely). ∆SSIM reports similar results. With the trigger input, the images generated by the
backdoored models have high SSIM with the target images, while after the backdoor removal, they
cannot generate the target images. The model utility isn’t significantly sacrificed as the average ∆FID
is 0.03. For some FIDs with nontrivial increases, the noise space and models are larger (DDPM-A),
or the models themselves are more sensitive to training on small datasets (NCSN-C and ODE-C).

Backdoor Removal with Real/Synthetic Data. One advantage of backdoor removal in DMs over
other models (e.g., classifiers) is we can use the DMs to generate synthetic data instead of requiring
ground truth clean training data. This is based on the fact that backdoored models also maintain
high clean utility. Figure 5 shows how ELIJAH performs with 10% real data or the same amount
of synthetic data. The overlapped SSIM and ASR lines mean the same effectiveness of backdoor
removal. The FID changes in a similar trend. This means we can have a real-data-free backdoor
removal approach. Since our backdoor detection is also sample-free, our whole framework can work
even without access to real data.

More results in appendix. Results show our method is robust to different factors (such as the trigger
size and poison rate) and adaptive attack cannot succeed.
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Appendix

Algorithm 1 Trigger inversion. T is the leftmost step.

1: function INVERTTRIGGER(model M , epoch e, lr η)
2: Init τ from U [0, 1)
3: for i ∈ {1, . . . , e} do
4: Sample ϵ from N (0, I)
5: τ = τ − η∇τLossτ (ϵ) ▷ Equation (4)
6: end for
7: return τ
8: end function

Algorithm 2 Extract features for backdoor detection.

1: function EXTRACTFEATURE(diffusion model Dm, img_num n, epoch e, lr η)
2: τ = INVERTTRIGGER(Dm.M , e, η)
3: Sample xTb,[1,n] from N (τ, I)

4: Generate n images x[1,n] = Dm(xTb,[1,n])

5: Compute uniformity s = S(x[1,n])
6: Compute TV Loss l = LTV (x[1,n])
7: return (s, l)
8: end function

A Algorithms

Note that for simplicity, we assume the tensors (e.g., ϵ, xT , etc.) can be a batch of samples or inputs.
We only add the indices (e.g., xT[1,n]) when we emphasize the number of samples (e.g., n). We call
the whole chain a diffusion model denoted by Dm and the learned network model M . Dm(xT ) will
generate the final image x0 iteratively calling M for T steps.

A.1 Trigger Inversion

Algorithm 1 shows the pseudocode of our trigger inversion. For a given diffusion model to test, we
feed its learned network M to Algorithm 1, and set the epochs and learning rate. Line 2 initializes τ
using a uniform distribution. Line 3-6 iteratively update τ using the gradient descent on the trigger
inversion loss defined in Equation (4). Line 7 returns the inverted τ .

A.2 Backdoor Detection

Algorithm 2 describes how we extract the uniformity score and TV loss for a diffusion model Dm.
Line 2 calls Algorithm 1 to invert a trigger τ for the learned network Dm.M . Line 3 samples a set of
n trigger inputs xTb,[1,n] from the τ -shifted distribution N (τ, I). Line 4 generates a batch of images
x[1,n] by feeding xTb,[1,n] to Dm. Lines 5 and 6 compute uniformity score and TV loss. Line 7 returns
the extracted features.

Algorithm 3 shows how we conduct backdoor detection when we have both clean models and
backdoored models (attacked by a different method from the one to detect). BUILDDETECTOR takes
in a set of clean and backdoored models {Dmi} and the corresponding labels {li ∈ { ‘c’, ‘b’ }}
where ‘c’ stands for clean and ‘b’ for backdoored. Lines 2-6 extract features for all models and build
the training dataset Dtrain for the random forest. Lines 7-8 train and return a learned random forest
classifier cls. Given a model to test, DETECTBACKDOOR extracts its features (Line 11) and uses cls
to predict its label (Line 12).

When we only have access to the clean models, we use threshold-based detection in Algorithm 4.
COMPUTETHRESHOLD computes the thresholds for the uniformity score and TV loss. More
specifically, Line 2 initializes the two empty feature lists. Lines 3-6 compute the uniformity score
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Algorithm 3 Backdoor detection via random forest.

1: function BUILDDETECTOR(diffusion models {Dmi}, labels {li ∈ { ‘c’, ‘b’ }}, img_num n,
epoch e, lr η)

2: Dtrain = {}
3: for Dmi, li ∈ {Dmi}, {li} do
4: fi = EXTRACTFEATURE(Dmi, n, e, lr)
5: Dtrain = Dtrain ∪ {(fi, li)}
6: end for
7: Train a random forest classifier cls on Dtrain

8: return cls
9: end function

10: function DETECTBACKDOOR(classifier cls, diffusion model Dm, img_num n, epoch e, lr η)
11: f = EXTRACTFEATURE(Dm, n, e, lr)
12: return cls(f)
13: end function

Algorithm 4 Backdoor detection via threshold.

1: function COMPUTETHRESHOLD(clean diffusion models {Dmi}, img_num n, epoch e, lr η,
FPR γ)

2: Utrain = [ ], Ttrain = [ ]
3: for Dmi ∈ {Dmi} do
4: si, li = EXTRACTFEATURE(Dmi, n, e, lr)
5: Utrain.append(si)
6: Ttrain.append(li)
7: end for
8: Sort Utrain and Ttrain in ascending order
9: ψU = Utrain[⌊|Utrain| ∗ γ⌋]

10: ψT = Ttrain[⌊|Ttrain| ∗ γ⌋]
11: return ψU , ψT

12: end function
13: function DETECTBACKDOORU(diffusion model Dm, threshold ψ, img_num n, epoch e, lr η)
14: s = EXTRACTFEATURE(Dm, n, e, lr)[0]
15: return s < ψ
16: end function
17: function DETECTBACKDOORT(diffusion model Dm, threshold ψ, img_num n, epoch e, lr η)
18: l = EXTRACTFEATURE(Dm, n, e, lr)[1]
19: return l < ψ
20: end function

and TV loss for each clean DM and add them to the lists. Line 8 sorts the two lists in ascending
order. Line 9-10 computes the thresholds for uniformity score and TV loss according to the defined
False Positive Rate (FPR). Line 11 returns the thresholds. The threshold-based detection algorithms
DETECTBACKDOORU and DETECTBACKDOORT are straightforward. Given a model to check, they
compute the feature uniformity score (Line 14) or TV loss (Line 18). If the feature is smaller than the
threshold, the model is considered backdoored (Line 15 or 16).

A.3 Backdoor Removal

Algorithm 5 shows the procedure of removing the backdoor. Given a backdoored model Mθ, the
inverted trigger τ and a set of clean (real or synthetic) data D, Line 2 first gets a frozen copy of the
backdoored model. Lines 3-9 apply the backdoor removal loop for e epochs. Line 4 gets the clean
samples from D as the training samples. Line 5 samples the initial clean noise xT . Lines 6 and 7
compute the backdoored model’s outputs of clean inputs and backdoored ones. Line 8 computes the
frozen model’s outputs of clean inputs as the reference. Line 9 updates θ using gradient descent on
our backdoor removal loss. Line 11 returns the fixed model.

13



Algorithm 5 Backdoor removal. T is the leftmost step.

1: function REMOVEBACKDOOR(model Mθ, epoch e, lr η, trigger τ , clean data D)
2: Mf = FREEZE(Mθ)
3: for i ∈ {1, . . . , e} do
4: Sample x0 from D
5: Sample xT from N (0, I)
6: ϵc =Mθ(x

T , T )
7: ϵb =Mθ(x

T + τ, T )
8: ϵf =Mf (x

T , T )
9: θ = θ − η∇θLossθ(ϵc, ϵb, ϵf , x

0)
10: end for
11: return Mθ

12: end function

B More Experimental Results

B.1 Configuration

Runs of Algorithms. For each model in the 151 clean and 296 backdoored models, we run
Algorithm 1 and Algorithm 5 once, except for Algorithm 3 and Algorithm 4 because clean models
and some backdoored models are involved in multiple detection experiments. Given the number of
models we evaluated, we believe the results should be reliable.

Parameters and Settings. For trigger inversion, we use Adam optimizer [28] and 0.1 as the learning
rate. We use 100 epochs for DDPM/NCSN, 10 epochs for LDM and ODE models. We set the batch
size to 100 for DMs with 3×32×32 space, 50 for 3×128×128 space, and 20 for 3×256×256 space
because of GPU memory limitation. Ideally, a larger batch size will give us a better approximation
of the expectation in Equation (4). We set λ = 0.5 because we tested on a subset of models for
λ ∈ [0, 1] with steps 0.1 and found λ = 0.5 gave the best detection results.

For feature extraction, we only use 16 images generated by input with the inverted trigger since we
find it’s sufficient.

For the random-forest-based backdoor detection, we randomly split the clean model into 80% training
and 20% testing. We add all the backdoored models by one attack to the test dataset. We add all the
backdoored models attacked by a different method from the one to test into the training data.

For the threshold-based backdoor detection, we split the clean model into 80% training and 20%
testing. We add all the backdoored models by one attack to the test dataset. We derive the thresholds
based on the clean training dataset.

To compute ∆ASR, ∆SSIM, and ∆FID, we use 2048 generated images. Generating a lot of images
for hundreds of models is very consuming. For example, it take more than 2 hours to generate 2048
32 × 32 samples using NCSN trained on the Cifar10 dataset with batch size 2048 on a NVIDIA
Quadro RTX A6000 GPU. Since we are comparing the changes, the trends can be implied by
using the same reasonable amount of samples to compare the metric on backdoored model and the
corresponding fixed one.

B.2 Threshold-based Detection

Table 2 compares our detection performance between the random-forest-based method and the
threshold-based one with the false positive rate set to 5%. The third column shows the detection
accuracy with the random forest. The fourth/fifth column shows the results with a uniformity/TV loss
threshold. They perform comparably well while the random forest have a overall higher accuracy.

B.3 Effect of the Trigger Size

We use TrojDiff to backdoor DMs with various trigger sizes and test ELIJAH on them. Results are
shown in Table 3. ELIJAH can detect and eliminate all the backdoors with slight decreases in model
utility.
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Table 2: Detection accuracy with different settings. ACC means the detection rate with the trained
random forest. U@05 means using the threshold extracted on the cleaning training set with a 5%
false positive rate. Model DDPM-C (resp. DDPM-A) means DDPM models trained on CIFAR-10
(resp. CelebA-HQ) dataset.

Attack Model ACC(%)↑ U@5(%)↑ T@5(%)↑
BadDiff DDPM-C 100 92.04 98.23
BadDiff DDPM-A 100 100 100
TrojDiff DDPM-C 98.36 100 96.36
TrojDiff DDIM-C 98.36 100 96.36

VillanDiff NCSN-C 100 100 100
VillanDiff LDM-A 100 100 100
VillanDiff ODE-C 100 100 98.50

Table 3: Performance against different trigger sizes. Numbers show the relative scores compared
with backdoored models. The trigger is a white square and the target image is mickey.

Trigger size Detected ∆ASR↓ ∆SSIM↓ ∆FID↓
3×3 ✔ -1.00 -0.97 0.02
4×4 ✔ -1.00 -0.97 0.04
5×5 ✔ -1.00 -0.92 0.08
6×6 ✔ -1.00 -0.94 0.11
7×7 ✔ -1.00 -0.94 0.05
8×8 ✔ -1.00 -0.93 0.02
9×9 ✔ -1.00 -0.92 0.05

B.4 Effect of the Poison Rate

We evaluate ELIJAH on DMs backdoored by BadDiff with different poison rates. Table 4 demonstrates
ELIJAH can completely detect and eliminate all the backdoors and even improve the model utility in
many cases.

B.5 Effect of Clean Data

Figure 6 shows our backdoor removal without clean data can quickly (in 20 updates) invalidate the
ground truth trigger so it cannot generate the target image. However, our trigger inversion algorithm
can find another effective trigger. With the inverted trigger, the “fixed” model can still generate the
target image.

B.6 Effect of Backdoor Removal Loss

Figure 7, Figure 8a and Figure 8b show fine-tuning the backdoored model only with 10% clean data
cannot remove the backdoor. The green dashed line displays the ASR which is always close to 1 for
the fine-tuning method, while ours (denoted by the solid green line) quickly reduces ASR to 0 within
5 epochs.

B.7 Backdoor Removal with Real/Synthetic Data

Figure 9a and Figure 9b show more comparison between backdoor removal with real data and
synthetic data. The overlapped SSIM and ASR lines mean the same effectiveness of backdoor
removal. The FID changes in a similar trend. This means we can have a real-data-free backdoor
removal approach. Since our backdoor detection is also sample-free, our whole framework can work
even without access to real data.
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Table 4: Performance against different poison rates. Numbers show the relative scores compared with
backdoored models.

Poison rates Detected ∆ASR↓ ∆SSIM↓ ∆FID↓
0.05 ✔ -1.00 -1.00 -0.07
0.10 ✔ -1.00 -1.00 0.18
0.20 ✔ -1.00 -1.00 -0.03
0.30 ✔ -1.00 -1.00 0.15
0.50 ✔ -1.00 -1.00 0.20
0.70 ✔ -1.00 -1.00 -0.11
0.90 ✔ -1.00 -1.00 -0.07
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Figure 6: Only use backdoor removal on a model
backdoored by BadDiff with stop sign trigger and
hat target.
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Figure 7: Fine-tuning with only real data cannot
remove the backdoor. The model is attacked by
BadDiff with stop sign trigger and hat target.

B.8 Detailed ODE Results

Table 5 shows the detailed results for all the ODE samplers. Our method can successfully detect the
backdoored models and completely eliminate the backdoors while only slightly increasing FID.

B.9 Visualized results

Figure 10 visualizes some ground truth triggers and the corresponding inverted triggers. An interesting
observation is that usually, the inverted trigger is not the exact same as the ground truth one. This
means the injected trigger is not precise or accurate, that is, a different trigger can also trigger the
backdoor effect. It’s not an issue for our backdoor detection and removal framework.

B.10 Results for Inpainting Tasks

BadDiff shows they can also backdoor models used for the inpainting tasks. Given a corrupted
image (e.g., masked with a box) without the trigger, the model can recover it into a clean image
(e.g., complete the masked area). However, when the corrupted image contains the trigger, the target
image will be generated. Our method can successfully detect the backdoored model and completely
eliminate the backdoors while maintaining almost the same inpainting capability.

B.11 Details of Adaptive Attacks

We tried two different ways of adaptive attacks. In both cases, attackers completely know our
framework. In the first case, attackers directly utilize our loss the suppress the distribution shift at
the timestep T . Because the backdoor injection relies on the distribution shift, suppressing it will
make the attack fail. In the second case, attackers choose to only inject the distribution shift starting
from the timestep T − 1 while training the timestep T with only clean training loss. The intuition is
our simple trigger inversion loss only uses the timestep T . However, this adaptive attack also failed
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(a) Box trigger and hat target.
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(b) Stop sign trigger and box target.

Figure 8: Comparison between ours and fine-tuning with only real data on models backdoored by
BadDiff.
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(a) Stop sign trigger and hat target..
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Figure 9: Backdoor removal with real data or synthetic data on a model backdoored by BadDiff. ASR
and SSIM lines overlap.

because even if the T − 1 step learns the distribution shift, it could not be satisfied by the T step.
That is, the attack also failed.

B.12 Parameter Instantiation for Diffusion Models and Attacks

DDPM. This is straightforward, as DDPM is directly defined using a Markov chain. κt =
√
αt,

υt = βt, κ̃t = 1√
αt

, κ̂t = 1−αt
√
αt

√
1−ᾱt

, υ̃t = 1−ᾱt−1

1−ᾱt βt, where βt is the predefined scale of noise

added at step t, αt = 1− βt and ᾱt =
∏t

i=1 α
i.

NCSN. κt = 1, υt = (σt)2 −
∑t−1

i=1(υ
i)2, κ̃t = (σt−1)2

(σt−1)2+(υt)2 , κ̂t = 1 − κ̃t, υ̃t = (1 − κ̃t)(σt)2,
where σt denotes scale of the pre-defined noise.

LDM. As LDM is considered DDPM in the latent space, the instantiation is almost the same.

BadDiff BadDiff only attacks DDPM, with ρt = 1−
√
αt, ρ̃t = (1−

√
αt)

√
1−ᾱt

αt−1 .

TrojDiff ρt = kt, υtb = βtγ2, κ̃tb =
√
αt(1−ᾱt−1)

1−ᾱt + 1√
ᾱt

, κ̂tb = −
√
1−ᾱt(γ√
ᾱt

, ρ̃t =
√
1−ᾱt
√
ᾱt

+
√
1−ᾱt−1βt−

√
αt(1−ᾱt−1kt)

1−ᾱt , where kt =
√
1− ᾱt−

∑t
i=2

∏t
j=i

√
αjki−1. Note the subscript shows

a different chain for the backdoor from the clean chain.
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Figure 10: Ground truth triggers r and the corresponding inverted triggers τ , as well as 16 generated
images using inputs with the inverted triggers.

Table 5: ODE results of VillanDiff backdoor detection and removal. Model DDIM-C means DM
with DDIM sampler trained on the CIFAR-10 dataset.

Model ACC↑ ∆ASR↓ ∆SSIM↓ ∆FID↓
DDIM-C 1.00 -1.00 -1.00 0.14
PNDM-C 1.00 -1.00 -1.00 0.25
DEIS-C 1.00 -1.00 -1.00 0.15

DPMO1-C 1.00 -1.00 -1.00 0.15
DPMO2-C 1.00 -1.00 -1.00 0.15
DPMO3-C 1.00 -1.00 -1.00 0.15

DPM++O1-C 1.00 -1.00 -1.00 0.15
DPM++O2-C 1.00 -1.00 -1.00 0.15
DPM++O3-C 1.00 -1.00 -1.00 0.15

UNIPC-C 1.00 -1.00 -1.00 0.15
HEUN-C 1.00 -1.00 -1.00 0.25

VillanDiff It considers a more general set of DMs and assumes the trigger distribution shift is ρ̂tr.
That is, the clean forward chain is q(xtc|x0c) = N (xtc; α̂

tx0c , β̂
tI) and the backdoor forward chain

is q(xtb|x0b) = N (xtb; α̂
tx0c + ρ̂tr, β̂tI). Then κt = α̂t

α̂t−1 , υt = β̂t −
∑t−1

i=1((
∏

j=i+1 tκ
j)2υi),

κ̃t = κtβ̂t−1

(κt)2β̂t−1+υt
, κ̂t = α̂t−1υt

(κt)2β̂t−1+υt
, υ̃t = κ̂t

α̂t β̂
t.

B.13 Related Work

Diffusion Models and Backdoors. Diffusion Models have attracted a lot of researchers, to propose
different models [20, 56, 57, 26, 58, 53] and different applications [71, 22, 49, 27, 31, 45, 21]. A lot
of methods are proposed to deal with the slow sampling process [55, 41, 42, 80, 26, 77] Though they
achieve a huge success, they are vulnerable to backdoor attacks [10, 7, 11]. To mitigate this issue, we
propose the first backdoor detection and removal framework for diffusion models.

Backdoor Attacks and Defenses. When backdooring discriminative models, some poison labels [39,
9, 16] while others use clean label [63, 54]. These attacks can manifest across various modalities [8,
50, 66, 2, 24, 36, 6]. Backdoor defense encompasses backdoor scanning on model and dataset [68, 38,
29] and certified robustness [69, 70, 44, 23]. Backdoor removal aims to detect poisoned data through
techniques like data sanitization [43, 60, 14] and to eliminate injected backdoors from contaminated
models [37, 3, 74, 76, 33, 34, 67, 73, 30, 62, 65, 61, 35, 72]. These collective efforts highlight
the critical importance of defending against backdoor threats in the evolving landscape of machine
learning security. However, existing backdoor defense mechanisms and removal techniques have not
been tailored to the context of diffusion models.
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