
TANDEM: Bi-Level Data Mixture Optimization
with Twin Networks

Jiaxing Wang∗1, Deping Xiang∗1, Jin Xu2, Mingyang Yi† 3, Guoqiang Gong1,
Zicheng Zhang1, Haoran Li4, Pengzhang Liu†1, Zhen Chen1, Ke Zhang1,

Ju Fan3, Qixiang Jiang1
1JD.com 2 University of Oxford 3Renmin University of China

4University of Chinese Academy of Sciences
{wangjiaxing41,xiangdeping1,gongguoqiang1,zhangzicheng6}@jd.com

{liupengzhang,chenzhen48,zhangke323,jiangqixia}@jd.com
{yimingyang,fanj}@ruc.edu.cn

jin.xu@stats.ox.ac.uk
lihaoran21@mails.ucas.ac.cn

Abstract

The capabilities of large language models (LLMs) significantly depend on training
data drawn from various domains. Optimizing domain-specific mixture ratios can
be modeled as a bi-level optimization problem, which we simplify into a single-
level penalized form and solve with twin networks: a proxy model trained on
primary data and a dynamically updated reference model trained with additional
data. Our proposed method, Twin Networks for bi-level DatA mixturE optiMiza-
tion (TANDEM), measures the data efficacy through the difference between the
twin models and up-weights domains that benefit more from the additional data.
TANDEM provides theoretical guarantees and wider applicability, compared to
prior approaches. Furthermore, our bi-level perspective suggests new settings to
study domain reweighting such as data-restricted scenarios and supervised fine-
tuning, where optimized mixture ratios significantly improve the performance.
Extensive experiments validate TANDEM’s effectiveness in all scenarios.

1 Introduction

The success of large language models (LLMs) largely relies on extensive training data collected from
diverse domains, including chat logs [18], academic writings [32], mathematical problems [45], and
code repositories [21]. The emergent capabilities observed in LLMs are substantially influenced by
the specific composition of cross-domain corpora [13, 38]. Therefore, it is important to carefully
balance the proportions of domain-specific data in training sets to ensure models develop intended
and balanced capabilities for target domains.

Optimizing the mixture ratios of data domains can be formulated as a bi-level optimization problem,
in which the inner loop optimizes model parameters for a fixed ratio on training data, while the outer
loop searches for the best mixture ratio on validation data. Due to the difficulty of exactly solving this
bi-level problem, we transform it into a single-level optimization problem. Specifically, the inner-level
optimization is viewed as a Lagrangian penalty within the outer-level objective. This perspective
naturally motivates the introduction of twin networks: a proxy model trained exclusively on the
primary training data, and a reference model exposed to additional validation data. Interestingly,
this twin-network formulation relates closely to prior methods such as DoReMi [37] and DoGE
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[7], offering insights into addressing their limitations. Based on this formulation, we propose Twin
Networks for bi-level DatA mixturE optiMization (TANDEM), an algorithm that measures the
domain data efficacy through the twin models’ disparities and ultimately approximates the original
bi-level optimization problem. Unlike DoReMi, which employs a static reference model, TANDEM
dynamically updates both models. Additionally, TANDEM enhances stability and provides theoretical
convergence guarantees compared to DoGE, as it aggregates multiple updating steps and avoids
relying directly on gradient estimation, thereby mitigating issues related to high variance.

The bi-level formulation also emphasizes that future research on data domain weighting could focus
more on scenarios with limited domain-specific data and supervised fine-tuning (SFT), rather than
exclusively on traditional pretraining settings with abundant data. From a bi-level optimization
viewpoint, assigning equal mixture ratios becomes a valid solution for single-epoch training when
domain data is abundant, aligning with recent empirical findings highlighting uniform mixing
strategies as competitive baselines [2]. Despite the prevalence of big data, limited data scenarios
are quite common, particularly within specific domains, since large datasets frequently consist of
many heterogeneous smaller datasets [33]. Furthermore, SFT often requires domain data to be
visited multiple times, which creates generalization gap that leads to non-trivial solution for the
bi-level problem. It is precisely in these cases that optimizing data mixture ratios can yield significant
improvements.

While previous methods like DoReMi and those built on data mixing laws [41, 23, 16] are not directly
applicable to these newer scenarios, TANDEM can be effectively extended. Our experimental results
demonstrate TANDEM’s effectiveness in such settings.

Our contributions can be summarized as follows:

• We introduce TANDEM, an effective and efficient algorithm for data mixture optimization
that utilizes twined proxy and reference networks to approximate the bi-level objective.
TANDEM enjoys theoretical convergence guarantees.

• We highlight that data mixture optimization is particularly beneficial in scenarios with
limited data availability rather than traditional pretraining setups with abundant domain data.

• We empirically show TANDEM’s effectiveness across standard and data-limited scenarios,
showing its superiority over a set of competitive data mixture optimization methods.

2 Methodology

We formulate the problem of finding the optimal data mixture ratio as bi-level optimization. To solve
the problem, we propose our penalty-based algorithm TANDEM, as presented in Figure 1(b) and
Algorithm 1 in Appendix A. TANDEM draws insights from many previous works, while improving
upon them. Besides, by inspecting the bi-level optimization formulation, we suggest broadening the
scope of research on data mixture optimization under limited-domain data and supervised fine-tuning
(SFT), rather than focusing solely on conventional data-rich pretraining settings. The notations used
in this paper are summarized in Appendix H.

2.1 Problem Formulation

Consider training an LLM on a data composition from M domains, {D1,D2, . . . ,DM} (e.g.
Wikipedia, CommonCrawl). Data mixture optimization (DMO) refers to the problem of finding
the optimal proportions of data for each domain α = [α1, α2, . . . , αM ] over probability simplex
A := {α ∈ RM |

∑M
m=1 αm = 1, αm ≥ 0}. For any data mixture ratio α, and its correspond-

ing model parameter w(α) obtained by training loss, our goal is to minimize the validation loss
Lval(w(α)) over α. The optimization problem is formulated as follows:

min
α∈A
Lval(w(α)) :=

M∑
m=1

Lm
val (w(α)) s.t. w(α) ∈ argmin

w
Ltrain(α,w) :=

M∑
m=1

αmLm
train(w). (1)

By splitting the data into training and validation sets, we can construct the validation and training
loss Lm

val(w) and Lm
train(w) on domain Dm. Intuitively, in the bi-level problem, the outer level

problem seeks the optimal domain weights for validation loss with the model weights obtained by
the inner level reweighted training loss. Similar to [37, 7], given the learned final mixture ratio α∗,
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(a) The Two-Stage DMO.
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(b) Computation Procedure of TANDEM

Figure 1: (a) The two-stage data mixture optimization. Optimal mixtures are first learned and then
utilized to train the final model. (b) The computation procedure of TANDEM, twined proxy model
(green) and reference model (orange) are used to determine the update of the mixture ratio (pink).

we construct the final training set by sampling Dα∗ ≜
∑M

m=1 α
∗ ·UNIF (Dm) upon which the final

model is trained (Figure 1(a)).

2.2 Twin Networks for Bi-level Data Mixture Optimization

Solving the bi-level optimization problem (1) is challenging due to its nested structure. By viewing
the inner-level problem as a constraint and subsequently incorporating it into the outer-level problem
as a Lagrangian penalty, (1) can be reformulated as a single-level problem [30, 19]:

min
α∈A,w

Hγ(α,w) := Lval(w) + γ
(
Ltrain(α,w)−min

u
Ltrain(α,u)

)
. (2)

Here, the auxiliary variable u is introduced as a proxy of w(α) ∈ S∗(α) := argminw Ltrain(α,w).
The constrain in (1) is transferred into the penalization Ltrain(α,w)−minu Ltrain(α,u). Clearly,
by properly invoking γ → ∞, the solution of (2) will approximate the original (1). This claim is
justified by Proposition 3 in [30]. We refer readers to the Appendix A for more information. Next,
we proceed to illustrate our algorithm of optimizing the penalized Lagrange problem (2).

Algorithm Procedure Besides the mixture ratio α, optimizing (2) deals with two models: a proxy
model u and a reference model w. As shown in Figure1(b), the optimization processes of α, w, and
u are indexed by t, k and k.

Update on u: Firstly, given a data mixture ratio α(t), we find the u ∈ argminu Ltrain(α
(t),u) in

the penalization term under certain mixture ratio α. Our u is updated for K steps to approximate the
optimal one:

u
(t)
k+1 = u

(t)
k − ηu∇uLtrain

(
α(t),u

(t)
k

)
(3)

(green line with arrow in Figure 1(b)). The proxy model is trained on the whole training set and
maintained through the DMO process.

Update on w: w serves as a reference model updated on both the training and the validation sets.
Similar to the proxy model u, w is updated for K steps before one data mixture ratio α update, which
is used to optimize the inner problem (2). Note that the term related to w is Lval(w)+ γLtrain (α,w),
the update rule then becomes:

w
(t)
k+1 = w

(t)
k − ηw

(
∇wLval

(
α(t),w

(t)
k

)
+ γ∇wLtrain

(
α(t),w

(t)
k

))
, (4)

(orange line in Figure 1(b)). Intuitively, training w for multiple steps provides more subtle guidance
for mixture ratio update. This will be elaborated in the α update part.

Unlike the proxy model u, which is maintained throughout training (green line in Figure 1(b)), we do
not maintain an independent reference model w, but rather synchronize the starting point of w and
u by setting w

(t)
0 = u

(t)
0 as a initialization of the K updates. By doing so, we control the disparity
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between w and u during the optimization. Intuitively, w and u should not diverge from each other as
u acts as a proxy of w(α) ∈ S∗(α) and w approximates w∗

γ(α) ∈ S∗
γ(α) := argminw Hγ(α,w).

Clearly, the ideal w∗
γ(α) under penalized problem will approximate one w(α) when γ → ∞, since

the penalized Lagrange problem (2) approximates the original problem (1).

Update on α: The mixture ratio update in (5) seeks a solution of (2). That says, a data mixture ratio
yields a trained model with good performance on data from the validation set under all domains. The
term in (2) related to α is γ (Ltrain(α,w)−minu Ltrain(α,u)). Recall that Ltrain(α, ·), by definition,
is the α weighted domain-wise loss. Applying the projected gradient descent gives the following
update rule:

α(t+1) = ΠA

α(t) − ηαγ

L1:M
train

(
α(t),w

(t)
K

)
︸ ︷︷ ︸

reference model

−L1:M
train

(
α(t),u

(t)
K

)
︸ ︷︷ ︸

proxy model


 , (5)

(Pink line in Figure 1(b).) where ΠA(·) projects the updated mixture ratio to the probabilistic
simplex. The post-updated u

(t)
K and w

(t)
K are applied to capture the domain-wise loss difference

Lm
train(w

(t)
K )−Lm

train(u
(t)
K ). Since the u(t)

K and w
(t)
K are respectively trained on training set and training

set plus validation set, the aforementioned gap captures the gain of incorporating the additional
validation data. Larger loss differences indicate that the model gets significant improvement by
consuming more data, thus the corresponding domains are up-weighted.

In each episode t, K steps training on u and w are conducted to probe the proper direction of α
update. Notably, the parameters of proxy model u and reference model w are synchronized at the
beginning of probing, forming a Twin Networks for bi-level DatA mixturE optiMization (TANDEM)
framework. Since the updating of α requires u,w probing, in practice, we decrease the frequency
of updating α to reduce the computational cost, and leave the proxy model u trained freely for E
steps before the next α update (see Figure 1(b)). Altogether the updates of u, w, α, the data mixture
optimization (DMO) problem can be solved efficiently. The overall computation graph of TANDEM
is outlined in Figure 1(b), and a detailed workflow is summarized in Algorithm 1 in Appendix A.

Convergence Analysis Next, we explore the convergence rate of our proposed method. For a
non-convex bi-level optimization problem, it is standard to study its first-order stationary convergence
result e.g., [30, 19]. Notably, our problem (2) is a constrain problem over α ∈ A. Thus, it should be
considered in first-order stationary condition as in [9, 30]. The convergence result of our method is
summarized in the following theorem.
Theorem 1 (Informally). For sufficiently large T , under mild assumptions (detailed in Appendix A),
for α(t) obtained in TANDEM Algorithm 1, it converges to first-order stationary point of problem (2)
in the rate of O(T− 1

4 ) by properly selecting γ,K,E, ηα, ηw, and ηu.

The proof is left in Appendix A. Theorem 1 indicates that TANDEM theoretically ensures the
optimality of the learned mixture ratio.

2.3 TANDEM Improves Existing DMO Methods

We discuss the relationship between TANDEM and two existing methods, DoReMi [37] and DoGE [7].
By comparing the hyper-gradient ∆ 3 that determines α updates in different methods, we show that
our TANDEM draws common insights from previous works and improves upon them.

DoReMi updates the mixture ratio according to the excess loss of a proxy model u relative to a
reference model w̄ trained on uniformly sampled data. DoGE [7] pioneers bi-level optimization to
settle data mixtures and tracks the influence [28] of each domain on the validation data. Specifically,
∆DoGE =

〈
∇Ltrain

(
α(t), u(t)

)
,∇Lval

(
α(t), u(t)

)〉
. The inner product ⟨·⟩ is essentially a first-

order approximation of the domain-wise loss difference between a proxy model and a reference
model, where the reference model is obtained by one-step update on the validation data.

Outlined in Table 1, we see that ∆ of all three methods takes the form of per-domain loss difference
between a proxy model and a reference model. Nevertheless, contrasting DoReMi, which adopts a

3DoReMi and DoGE utilize exponential gradient descent to update α where α(t+1) ∝ α(t) exp(−ηα∆)
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Table 1: Summary of ∆ in DoReMi, DoGE and TANDEM.
All three methods update α with two models.

Method Hyper-gradient ∆

DoReMi −max{L1:M
train (α

(t),u(t))︸ ︷︷ ︸
proxy model

−L1:M
train (ᾱ, w̄)︸ ︷︷ ︸

reference model

, 0}

DoGE L1:M
train (α

(t),u(t) − η∇Lval(u
(t)))︸ ︷︷ ︸

reference model

−L1:M
train (α

(t),u(t))︸ ︷︷ ︸
proxy model

TANDEM L1:M
train (α

(t),w
(t)
K )︸ ︷︷ ︸

reference model

−L1:M
train

(
α(t),u

(t)
K

)
︸ ︷︷ ︸

proxy model

Figure 2: SFT exhibits lower gradi-
ent alignment than pretraining
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fixed reference model, the reference model w in TANDEM is dynamic, which better captures the
current training status. In its original form, DoGE incurs significant memory overhead as it maintains
the per-domain gradients. Relaying explicitly on the gradient estimation also makes it vulnerable to
instability issues in high gradient variance scenarios like supervised fine-tuning (SFT). Our TANDEM
better adapts, as increasing the probing step K helps reduce the variance on ∆, as will be elaborated
in Section 4.3. In Figure 2, we show that SFT exhibits higher gradient variance than pretraining.
The alignment of g1 and g2 cos(g1, g2) is used as a proxy of the gradient variance, where g1 and g2
are gradients evaluated on different batches. Lower alignment cos(g1, g2) indicates larger gradient
variance.

2.4 Domain Reweighting Beyond Traditional Settings

In the above, we discuss our method to determine the data mixture ratio by solving bi-level problem
(1). The circumstances under which DMO is most effective remain to be explored. Theoretically, the
standard training setting sets αm = 1/M for every m. Let us check the following proposition.
Proposition 1. Assume Lm

train = Lm
val, the uniform data mixture ratio ᾱm = 1

M for m = 1, . . . ,M
constitutes a valid solution of the bi-level mixture optimization (1).

The proof is left in Appendix B. As can be seen, when the generalization gap |Lm
val−Lm

train| approaches
zero, uniform weighting emerges as a valid solution, thus making the reweighting less significant.
This holds for the conventional data-abundant scenario. When ᾱm = 1

M , the train data and validation
data are independently identically distributed, so the loss gap is approximately zero for the first epoch
training. 4. This aligns with the empirical observations that uniform weighting is highly competitive
that many DMO methods can not consistently outperform [2].

When there is limited data in specific domains or the trained model overfits to some domain, since
both phenomenons result in a large generalization gap, the reweighting technique over data domains
becomes significant. In fact, even though LLMs are trained on massive datasets overall, it is
common for specific domains to be relatively small, e.g., specialized scientific literature, low-resource
languages, or domain-specific user interactions. In practice, the data-restricted scenario is ubiquitous.
Furthermore, in SFT, repeated passes over the same domain data exacerbate overfitting and widen
the generalization gap [10], which presents more interesting opportunities for domain reweighting.
Please refer to Appendix F.1 for empirical evidence.

3 Related Work

Data mixture optimization is drawing increasing attention for designing LLMs with comprehensive
and balanced capabilities. Our work follows the recent trend of formulating the DMO as a bi-level
optimization. We summarize the related literature from these two strands of research in the following.

Data Mixture Optimization Conventional industry practices determine the optimal cross-
domain composition with human expertise [6, 34, 11]. To circumvent the exhaustive trial-
and-error, various heuristics has been explored. DoReMi [37] settles the mixture ratio by

4In the data-abundant training scenario, samples are consumed only once.
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minimizing the worst-domain excess loss relative to a well-trained reference model, pursuing
good performance in all domains. [23, 41, 16] fit global data mixing laws, predict the per-
formance on other mixtures, and search for those with good performances. Other works cap-
ture the inter-domain relations through domain embeddings [39] or training several models [3].

Table 2: Computational complexity of different
DMO methods.

Method Computational Complexity

Vanilla Train CTE
DoReMi 7

3CTE
DoGE 2CTE
Skill-it (M4 + 1)CTE + M

3 CT
Aioli CTE +MCTK + 1

3M
2CT

TANDEM CTE + 2CTK + 2
3CT

Skill-It [3] then utilize the inter-domain relations
to establish a local data mixing law that predicts
the per-domain loss. Aioli [2] improves Skill-It
by dynamically updating the inter-domain relation
matrix according to current model states. Never-
theless, these approaches remain theoretically un-
grounded due to their inductive nature, and incorpo-
rating the fitting of the mixing law incurs additional
approximation error. DOGE [7] pioneers bi-level
optimization to settle data mixtures and tracks the
influence [28] of each domain on the validation set.
However, assessing the influence relies directly on
the per-domain gradient estimation, which under-
mines its efficacy in high gradient variance scenar-
ios while incurring large memory overhead. Comparison of the computational complexity of these
strategies is given in Table 2, where C is the complexity of one step training of a model. T is the
update number of α. Typically, the overall computational cost of these methods is of the order: Aioli
> Skill-it > DoReMi ≈ DoGE ≈ TANDEM 5 6. Note that, although the complexity of DoGE is not
particularly large, it requires per-domain gradient computation, which is unfriendly to the computing
kernel and takes significantly more time in practice.

Bi-level Optimization Bi-level optimization has been an important research topic in many scientific
disciplines, however, solving the bi-level optimization problem is challenging due to the complicated
dependency of the upper-level and lower-level problems. Typical bi-level optimization algorithms [24,
5, 29, 12, 4, 15] requires estimation of the implicit gradient, which requires second-order derivatives
on the lower-level variables. Incorporating the Hessian makes it computationally prohibitive for
large-scale problems. Recently [30, 19, 20] pioneer the penalized methods, where the inner-level
problem is reformulated into an penalty. As first-order gradient-based approaches, the penalized
methods avoid the estimation of the Hessian or the Jacobian. Though effective in theory, their
practical applications in large-scale LLM settings remain rarely explored. The most similar to ours is
the recent ScaleBio [27], which belongs to this category, and is specially tailored for large-scale data
mixture optimization problems. Nevertheless, the solving procedure is different, TANDEM enjoys
more stable training by synchronizing u and w periodically.

4 Experiments

In this section, we compare TANDEM to state-of-the-art algorithms in Section 4.2. Then we analyse
the effectiveness of each design ingredient in Section 4.3.

4.1 Experimental Setup

We consider three application scenarios: conventional data-abundant pretraining, data-restricted
training, and supervised fine-tuning. A brief summarization of the experimental setup is introduced
below, while complete hyper-parameter settings and implementation details are in Appendix C.

Data-Abundant Scenario: For the data-aboundant scenario, we train 160M GPT-style LMs [1]
on a 6B sampled version of SlimPajama [31] as in [2]. SlimPajama consists of 7 domains: ArXiv,
Books, CommonCrawl, C4, Github, StackExchange, and Wikipedia. The statistics of this sampled
corpus are given in Figure 4. We set E = 20, K = 5, train with batch size 8 and context length 2048
for 40000 steps (with respect to updates of proxy model u, so the mixture ratio α is updated for
∼2000 steps.) as [2]. Though the SlimPajama-6B corpus exhibits significant domain imbalance, 40K

5We assume backward takes 2× computation as the forward process.
6Skill-it trains M models with data from each domain for H steps, we use H = 1

4
TE in our analysis.
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Figure 3: Step-wise data mixture ratio evolution under three scenarios. We repeat the DMO 3
times and the 95% confidence intervals are given. (a) data-abundant pretraining (b) data-restricted
pretraining and (c) supervised fine-tuning.

steps of training doesn’t deplete even the smallest domain, so this setting constitutes a data-abundant
one-epoch scenario. The penalty constant γ is set to 1 across all the experiments. Experiments are
conducted on eight NVIDIA Hopper H-100s.

Data-Restricted Scenario: For the data-restricted scenario, we construct a 300M sampled version
of SlimPajama and keep the domain distribution unchanged. GPT-style LMs of size 160M, 410M and
1B are trained to examine the scalability of TANDEM. In this scenario, we train with K = E = 5,
batch size 128, and context length 512 for 5000 steps, which ensures that samples in small domains
like Arxiv, Books, StackExchange, and Wikipedia are exposed more than once. After DMO, the
learned mixture ratio is utilized to resample the 300M corpus for the final model training.

Supervised Fine-tuning: For supervised fine-tuning, we use 6 major categories (containing 99
tasks) from Natural Instructions [25, 35], Textual Entailment, Answer Verification, Text Matching,
Information Extraction, Word Extraction and Text Categorization. Prioritizing diversity of capabilities
and formats, this corpus is comprised of open-ended text generation, multiple choice, and True/False
tasks. Due to the limited space, the statistics are given in Appendix D. In this scenario, we train a
pretrained Qwen2-500M model [40] with K = 10, E = 10, batch size 64, and context length 512
for 5000 steps. Different from pretraining where the majority of samples are only trained once, in
instruction tuning, each sample is on average exposed 1.15 times.

4.2 Comparisons with State of the Arts

We compare TANDEM against various state-of-the-art methods. Uniform A simple baseline that
uniformly mixes groups and requires zero extra training runs. DoReMi [37] adopts the idea of
distributionally robust optimization and searches for the data mixture ratio by minimizing the worst-
domain excess loss over a reference model trained with the uniform strategy. DOGE [7] solves the
DMO problem by tracking the data influence of each domain on the validation set and up-weights
the most influential domains. Skill-It [3] trains several models to fit an inter-domain relation matrix,
which is later used to establish an incremental data mixing law that induces a mixture ratio α update
rule. Aioli [2] improves Skill-It by dynamically updating the inter-domain relation matrix according
to current model states. For the baselines, We use the published implementations. 7 Averaged results
from 3 runs are reported. Due to limited space, the standard deviation is given in Appendix E

Data-Abundant Pretraining In Table 3 (Upper), we see that TANDEM discovers mixture ratios
with comparative performance. As discussed in Section 2.4, in this scenario, the uniform strategy
is highly competitive. The mixture ratio for the baselines is obtained from Aioli [2]. We show the
step-wise data mixture ratio evolution of TANDEM during DMO in Figure 3 (Left). Note that the
uniform strategy is not the only valid solution to the DMO problem, and TANDEM finds another
solution that performs equally well. The detailed learned mixture ratio of each method is given in
Appendix G).

7DoReMi: https://github.com/sangmichaelxie/doremi, DOGE: https://github.com/Olivia-fsm/DoGE, Skill-It
and Aioli: https://github.com/HazyResearch/aioli
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Table 3: Comparison for the 160M GPT-style model on SlimPajama in the data-abundant sce-
nario (Upper) and data-restricted scenario (Lower). Per-domain perplexity is reported and “Average”
represents the exponential of the average loss across all domains as in [7, 2]. † denotes the results
reported use the mixture ratio given in Aioli [2].

Methods Arxiv Book C4 CommonCrawl Github Stackexchange Wikipedia Average

Data
Abundent
Regime

Uniform 11.46 62.53 66.43 59.29 6.71 13.98 28.31 25.74
DoReMi† 12.71 80.09 82.60 71.76 5.75 14.26 29.54 28.32
DoGE† 12.89 51.50 54.32 49.34 8.48 16.77 37.21 26.60
Skill-It† 11.76 62.24 64.58 59.84 6.36 12.36 34.87 25.87
Aioli† 11.47 61.89 65.52 58.24 6.74 14.08 28.48 25.66
TANDEM 11.53 61.82 65.92 58.86 6.63 13.76 27.26 25.43

Data
Restricted
Regime

Uniform 18.05 65.86 71.05 63.76 9.37 17.94 34.27 31.53
DoReMi 18.90 80.29 89.05 79.02 10.24 19.74 43.20 36.91
DoGE 17.76 60.88 65.08 58.81 9.00 17.71 33.94 30.10
Skill-It 20.93 52.00 57.11 49.50 8.77 16.74 40.49 29.24
Aioli 17.68 62.48 69.02 61.44 9.26 17.79 33.06 30.67
TANDEM 16.85 52.75 56.82 51.11 8.99 18.21 32.52 28.07

Figure 4: SlimPajama-6B Statistics.
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Table 4: Comparison for models of different sizes.

160M 410M 1B

Avg. Time Avg. Time Avg. Time

Uniform 31.53 - 29.59 - 29.91 -
DoReMi 36.91 16min 54.61 31min 56.53 41min
DoGE 30.10 65min 27.45 172min - -
Skill-It 29.24 28min 27.70 59min 27.15 80min
Aioli 31.19 36min 28.79 64min 28.07 93min
TANDEM 28.07 26min 25.00 57min 24.35 77min

Data-Restricted Pretraining For the data-restricted training scenario, TANDEM significantly
outperforms baselines as shown in Table 3 (Lower). For instance, it achieves 28.07 averaged
perplexity, surpassing the most competitive Skill-It by 1.17 and the uniform baseline by 3.46. In this
scenario, the uniform strategy is no longer competitive. Equally assigning 1

M weights potentially leads
to overfitting in small domains (repeated multiple times), while leaving the large domains underfitting.
The mixture ratios learned with TANDEM and other baselines are shown in Figure 5, and the step-
wise data mixture ratio evolution during the data mixture optimization is given in Figure 3 (Middle).
We see that after DMO, CommonCrawl and C4 take the majority, driven by their extensive lexical
diversity and complex semantics. Nevertheless, compared to the original data distribution, TANDEM
up-weights the small domains Arxiv, Books, Github, StackExchange and Wikipedia from 3.4%, 3.7%,
4.2%, 2.8%, 3.1% to 8.9%, 8.5%, 7.6%, 11.5%, 7.9% respectively, preventing these small domains
from being overwhelmed while avoiding potential overfitting. Besides, we inspect the scalability
of TANDEM with three different scales (160M, 410M, 1B) in Table 4. TANDEM consistently
outperforms the baselines with a large margin while not incurs much computational overhead. We
omit DoGE for the 1B model experiment due to its large memory consumption.

Supervised Fine-tuning The results for supervised fine-tuning are given in Table 5. The overall
averaged accuracy as well as the test loss are reported. From Table 5, TANDEM outperforms or
is on par with the other data mixture optimization methods in 5 out of 6 task clusters. Showing
its effectiveness in the supervised fine-tuning scenario. Besides, we consider a more fine-grained
task-level SFT (instead of the task cluster) case, please refer to Appendix D.

4.3 Analyses

To evaluate the effectiveness of each design component, we conduct ablation experiments. The model
used is the 160M GPT-style model unless specified. Due to limited space, we focus on the effect of
synchronizing u and w, the effect of the probing steps K, and the robustness of TANDEM to model
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Figure 5: Mixture ratio learned by different methods.
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Figure 6: Impact of different model sizes.

Table 5: Comparison for the 500M Qwen-2 model on a mixture of 6 major categories (99 tasks in
total) of supervised fine-tuning tasks.
Method Textual Ent. Answer Ver. Text Mat. Inf. Ext. Word Sem. Text Cat. Test Loss ↓ Avg. Metric ↑
Uniform 84.4 75.1 86.2 77.8 88.3 83.2 0.231 82.5
DoReMi 85.3 74.9 83.6 78.1 87.0 79.0 0.249 81.6
DoGE 81.4 76.7 86.5 78.6 88.3 82.4 0.297 82.4
Skill-It 84.1 75.0 86.4 78.3 87.9 83.7 0.232 82.6
Aioli 83.9 75.8 86.2 78.0 88.3 84.0 0.229 82.7
TANDEM 85.3 76.3 86.2 78.6 88.5 84.9 0.208 83.3

scales. For a more comprehensive analysis, please refer to Appendix F, including the effectiveness of
DMO in the real-world large-scale data (past chinchilla [14]) scenario, sensitivity of the final result
on K and E, the performance of the DMO pretrained model on downstream tasks, as well as the
performance of the proxy model u.

The Effect of Synchronizing u and w One obvious characteristic of our method is that the proxy
model u and the reference model w are synchronized by setting w

(t)
0 = u

(t)
0 . We show the effect of

the synchronization by inspecting Dist(u,w) = ∥u−w∥2 along the DMO training process. From
Figure 7(a), we see that with synchronization, the distance between u and w is well controlled under
1.5e−4 and gradually contracts during the whole DMO process. This contraction is critical for w
and α in the penalized problem (2) to converge to the original bi-level optimization problem (1)
as discussed in Section 2. On the contrary, independently maintaining the proxy model u and the
reference model w incurs blown-up distance Dist(u,w) as shown in Figure 7(b).
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Figure 8: The variance of ∆ decreases with
more probing steps.

The Effect of the Probing Steps K During DMO,
the hyper-gradient ∆ determines the update of α. To
validate the effectiveness of K in reducing the variance
of ∆, we trace cos

(
∆, ∆̃

)
through the training. ∆̃

is the hyper-gradient evaluated using another batch of
data other than that of ∆, so cos

(
∆, ∆̃

)
serves as a

proxy of the variance, the better ∆ and ∆̃ aligns, the
smaller the variance of hyper-gradient is. We inspect
under the SFT setting (with the 500M Qwen model)
where the gradients exhibited large variance. During
the training, α is fixed to prevent the interference of
inaccurate mixture ratio.

From Figure 8, we see that DoGE exhibits the largest ∆ variance as it explicitly depends on the noisy
parameter gradient estimation. As K increases, the variance of ∆ decrease, leading to more reliable
updates of the mixture ratio. Nevertheless, large K increases the computational cost. So in practice
and we need to deliberately choose the proper K.

The Effect of the Model Scale To investigate how the model size will impact the final mixture ratio.
In Figure 6, we compare α learned with models of size 160M, 410M, and 1B. We see that learned
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Figure 7: The Dist(u,w) evolution comparison during DMO with and without u, w synchronization.

α with larger models are slightly "sharper" than the smaller ones. More specifically, the 1B model
further increases the weights of the already large CommonCrawl and C4 while down-weights the
others. For large models, due to the increasing capability of memorizing samples, smaller domains
are less likely to be overwhelmed, while the risk of potential overfitting increases. The capability of
capturing this subtle difference further demonstrates the effectiveness of TANDEM. Nevertheless,
the optimal mixture ratios under different model scales share the same trend, so a smaller model can
work as a valid proxy for efficient searching.

5 Conclusion

In this paper, we propose TANDEM, a principled, efficient and versatile data mixture optimization
framework. By solving the DMO bi-level optimization problem, TANDEM ensures the optimality
of the learned mixture ratios, along with a O(T− 1

4 ) convergence rate. Besides the algorithmic
contribution, from the bi-level optimization perspective, we further demonstrate the limitation of the
conventional data-abundant setting in DMO and advocate new settings like data-restricted scenario as
well as supervised fine-tuning. Extensive experiments and analysis are conducted to demonstrate the
effectiveness of our approach. Our work deepens the understanding of data mixture optimization and
expands its application scenarios.
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A Convergence of Bi-level Data Mixture Optimization

A.1 The Proposed Algorithm

As mentioned in the main part of this paper, the data mixture optimization problem is bi-level. Here
we present a theoretical analysis of the proposed TANDEM. The original bi-level optimization
problem

P : min
α∈A

Lval (w
∗(α)) s.t. w∗(α) ∈ S∗(α) := argmin

w
Ltrain(α,w) (6)

is difficult to solve owing to the imposed hard constraint. We turn to the Lagrangian problem of P
such that

Pγ : min
α∈A,w

Lval (w) + γ
(
Ltrain(α,w)−min

w
Ltrain(α,w)

)
(7)

There is a vast variety of existing literature, e.g. [30, 19, 36] discuss the relationship between the
Lagrangian problem Pγ and the original problem P . In a word, when taking γ sufficient large, the
solution of Pγ will approximate the solution of P . Thereafter, we can develop the algorithm to Pγ to
solve P , as we did in this paper.

Algorithm 1 Twin Networks for bi-level DatA mixturE optiMization (TANDEM)
Input:

Train set Dtrain, validation set Dval comprised of M domains.
Episode number T , Episode length E, Probing length for each episode K,
Learning rate ηw, ηu, ηα for w (reference), u (proxy) and α (mixture) respectively.

1: Initialize proxy model parameters u0 and domain weights α0.
2: for t = 0 to T − 1 do

// Mixture ratio α update.
3: Set w(t)

0 ,u
(t)
0 ← u(t).

4: for k = 0 to K − 1 do
5: u

(t)
k+1 = u

(t)
k − ηu∇uLtrain(α

(t),u
(t)
k ).

6: w
(t)
k+1 = w

(t)
k − ηw(∇wLval(w

(t)
k ) + γ∇wLtrain(α

(t),w
(t)
k )).

7: end for
8: α(t+1) = ΠA(α(t) − ηα(L1:M

train(α
(t),w

(t)
K )︸ ︷︷ ︸

reference model

−L1:M
train(α

(t),u
(t)
K )︸ ︷︷ ︸

proxy model

))

// Free model weights u update.
9: for e = 0 to E − 1 do

10: u
(t)
e+1 = u

(t)
e − ηu∇uLtrain(α

(t+1),u
(t)
e ).

11: end for
12: Set u(t+1) ← u

(t)
E .

13: end for
Output:

domain weights α(T ).

A full workflow of Twin Networks for bi-level DatA mixturE optiMizatio (TANDEM) is shown
in Algorithm1. TANDEM alternates between updating the mixture ratio α and the proxy model
u, whereas u is used to approximate the minimum of Ltrain(α,w). Update of the mixture ratio
α requires probing the data efficacy of each domain. During probing, we optimize the reference
model w, as well as the proxy model u for K steps. w and u are respectively trained on the train
set and the train set plus validation set, their incurred loss gap captures the gain of incorporating the
additional validation data. TANDEM then up-weights domains that benefit more from additional data.
Notably, the proxy model u and reference model w are synchronized at the beginning of probing.
Since the updating of α requires u,w probing, we decrease the frequency of updating α to reduce
the computational cost, and leave the u trained freely for E steps before the next α update.

A.2 Convergence Rate

Next, we explore the convergence rate of the proposed Algorithm 1. For the original problem P (6),
its convergence property under the iterates obtained by solving the Lagrange problem (7) has been
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explored, under different regularity conditions [30, 19]. In this paper, we will present our results under
a mild Polyak-Łojasiewicz (PL) condition [43, 17, 30, 44, 26, 42], which has been widely imposed to
study the bi-level optimization problem. Technically, we will impose the following Assumptions to
derive the convergence rate. Before illustrating our Assumptions, we need the following definitions
to simplify the notations. We denote

Hγ(α,w) = Lval(w) + γ
(
Ltrain(α,w)−min

w
Ltrain(α,w)

)
, (8)

with S∗
γ(α) = {w : w ∈ argminw Hγ(α,w)}, and S∗(α) = {w : w ∈ argminw Ltrain(α,w)}.

We further define
H(α) = inf

w∈S∗(α)
Lval(w), (9)

where H(α) is well-defined since Ltrain(α,w) is continuous to w. Besides that, the minimum of
H(α) is exactly the solution to original problem P (6).

Assumption 1 (PL condition). For any α ∈ A, both Ltrain(α,w) and Hγ(α,w) satisfy the PL
inequality with coefficient µ and µγ , respectively. That says:

Ltrain(α,w)−min
w

Ltrain(α,w) ≤ 1

2µ
∥∇wLtrain(α,w)∥2 (10)

and

Hγ(α,w)−min
w

Hγ(α,w) ≤ 1

2µγ
∥∇Hγ(α,w)∥2. (11)

Moreover, the coefficient µγ satisfies limγ→∞
µγ

γ = 1.

Assumption 2 (Smoothness). For any α ∈ A,

1. Both ∇wLtrain(α,w) and ∇wLval(w) are Lipschitz continuous to α (hold for
∇wLtrain(α,w)) and w on coefficient L.

2. For any α ∈ A, both Ltrain(α,w) and Lval(w) are Lipschitz continuous to w with coeffi-
cient B.

Assumption 3 (Bounded Hessian). For any α ∈ A, w ∈ S∗(α), there exists positive constants λ, ρ,
satisfying Hessian matrices ∇wwLtrain(α,w) ⪰ λ8 and ∇2

αwLtrain(α,w) ⪯ ρ.

Assumption 4 (Lipschitz Hessian). For any α ∈ A, Ltrain(α,w) is twice-times continuous differen-
tiable, and the Hessian matrices ∇2

αwLtrain(α,w), ∇2
wwLtrain(α,w) are all Lipschitz continuous

to w with coefficient H .

Assumption 5 (Bounded Loss Function). The non-negative loss function Ltrain(α,w), Lval(w) are
uniformly bounded by positive constant D.

Notably, for the bounded Hessian condition, due to the structure of Ltrain(α,w), it can be implied
by the lower bounded ∇wwLm

train(w) and an upper bounded ∇wLtrain(w) for any m. Moreover, it
worth noting that for bi-level optimization problem, it is standard to impose some regularity conditions
to the Hessian matrix. For examples, the smooth Hessian in [30, 19] and lower bounded Hessian in
[19]. Therefore, the imposed bounded Hessian Assumption 3 can be considered as a mild condition.

Next, we present a lemma to characterize the gap between the gradient of ∇αH(α) and
∇αHγ(α,w).

Lemma 1. Under Assumptions 1-4, for any given α and w∗
γ(α) ∈ S∗

γ(α), it holds∥∥∥∥∇αH(α)− ∂

∂α
Hγ(α,w∗

γ(α))

∥∥∥∥ ≤ 1

γ

(
HB2

µ2

(ρ

λ
+ 1

)
+

ρLB

µλ

)
(12)

Proof. Without loss of generality, suppose that H(α) = Lval(w
∗(α)), due to the chain rule, we have

∇αH(α) = ∇αLval(w
∗(α)) = ∇αw

∗(α)⊤∇wLval(w
∗(α)). (13)

8For two matrices A, A ⪰ λ means A− λI is a positively semi-definite matrix.
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To simplify the notation, we denote w∗
γ(α) and w∗(α) as w∗

γ and w∗ in the sequel. For the penalized
problem, given any w∗

γ(α), we have

∂

∂α
Hγ(α,w∗

γ)

= ∇αHγ(α,w∗
γ) +∇αw

∗⊤
γ ∇wHγ(α,w∗

γ)

= ∇αHγ(α,w∗
γ)

= γ
(
∇αLtrain(α,w∗

γ)−∇αLtrain(α,w∗)−∇αw
∗⊤∇wLtrain(α,w∗)

)
= γ

(
∇αLtrain(α,w∗

γ)−∇αLtrain(α,w∗)−∇2
αwLtrain(α,w∗)(w∗

γ −w∗)
)

−∇αw
∗⊤ (∇wLval(w

∗) + γ∇wLtrain(α,w∗))

+∇αw
∗⊤∇wLval(w

∗) + γ∇2
αwLtrain(α,w∗)(w∗

γ −w∗).

(14)

Besides that, we have

∇αw
∗⊤ (∇wLval(w

∗) + γ∇wLtrain(α,w∗))

= ∇αw
∗⊤ (

∇wLval(w
∗)−∇wLval(w

∗
γ)
)

+ γ∇αw
∗⊤ (

∇wLtrain(α,w∗)−∇wLtrain(α,w∗
γ) +∇2

wwLtrain(α,w∗)(w∗
γ −w∗)

)
+ γ∇2

αwLtrain(α,w∗)(w∗
γ −w∗),

(15)

due to the optimal conditions ∇wLval(w
∗
γ) + γ∇wLtrain(α,w∗

γ) = 0, and ∇2
αwLtrain(α,w∗) +

∇αw
∗⊤∇2

wwLtrain(α,w∗) = 0. Combining the two above equations and (13), we get∥∥∥∥ ∂

∂α
Hγ(α,w∗

γ)−∇αH(α)

∥∥∥∥
≤

∥∥γ (∇αLtrain(α,w∗
γ)−∇αLtrain(α,w∗)−∇2

αwLtrain(α,w∗)(w∗
γ −w∗)

)∥∥
+
∥∥γ∇αw

∗⊤ (
∇wLtrain(α,w∗)−∇wLtrain(α,w∗

γ) +∇2
wwLtrain(α,w∗)(w∗

γ −w∗)
)∥∥

+
∥∥∇αw

∗⊤ (
∇wLval(w

∗)−∇wLval(w
∗
γ)
)∥∥

≤ γH
(ρ

λ
+ 1

)
∥w∗ −w∗

γ∥2 +
ρL

λ
∥w∗ −w∗

γ∥,
(16)

due to the bounded Hessian Assumption 3, Smoothness Assumption 2, and Lipchitz Assumption
4. Then, due to the PL condition 1 and Smoothness Assumption 2, we know there exists a w∗

γ (the
projection of w∗ to S∗

γ(α)) satisfies

∥w∗ −w∗
γ∥ ≤ 1

µ
∥∇wLtrain(α,w∗

γ)∥

≤ 1

γµ

(
∥∇wLval(w

∗
γ) + γ∇wLtrain(w

∗
γ)∥+ ∥∇wLval(w

∗
γ)∥

)
=

∥∇wLval(w
∗
γ)∥

γµ

≤ B

γµ
.

(17)

Combining this with inequality (16), we obtain the conclusion under such w∗
γ . Finally, due to the

Lemma A.5 in [26], we know that ∇αHγ(α,w∗
γ) is invariant over w∗

γ ∈ S∗
γ(α), we prove our

conclusion.

From Lemma 1, we know that the gap between the gradients of original problem H(α) and its
Lagrange version Hγ(α,w∗

γ(α)) can be extremely small by invoking penalty parameter γ → ∞.
Thus, it implies that we can compute the gradient of the Lagrange problem to implement the gradient-
based method. Next, we illustrate a useful lemma, which characterizes the Lipschitz continuity of
w∗

γ(α) and w∗(α) to α.
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Lemma 2. Under Assumptions 1 and 2, for any α1,α2 ∈ A, it holds

∥w∗(α1)−w∗(α2)∥ ≤ L

µ
∥α1 −α2∥, (18)

for any w∗(α1) ∈ S∗(α) and w∗(α2) ∈ S∗(α2) satisfies w∗(α2) = argminw∈S∗(α2) ∥w −
w∗(α1)∥. On the other hand, it holds

∥w∗
γ(α1)−w∗

γ(α2)∥ ≤ γL

µγ
∥α1 −α2∥ (19)

for any w∗
γ(α1) ∈ S∗

γ(α1) and w∗
γ(α2) = argminw∈S∗

γ(α1) ∥w −w∗
γ(α1)∥.

Proof. The two conclusions are directly obtained from Lemma A.3 in [26], we prove the second
conclusion as an example. The proof can be similarly generalized to the first conclusion. Due to the
formulation of ∇wHγ(α,w), we know

∥∇wHγ(α1,w
∗
γ(α2))∥ = ∥∇wHγ(α1,w

∗
γ(α2))−∇wHγ(α2,w

∗
γ(α2))∥

= γ
∥∥∇wLtrain(α1,w

∗
γ(α2))−∇wLtrain(α2,w

∗
γ(α2))

∥∥
≤ γL∥α1 −α2∥,

(20)

by Assumption 2. On the other hand, by invoking the Assumption 1 and (17), we get
∥∇wHγ(α1,w

∗
γ(α2))∥ =

∥∥∇wLval(w
∗
γ(α2)) + γ∇wLtrain(α1,w

∗
γ(α2))

∥∥
≥ µγ∥w∗

γ(α2)−w∗
γ(α1)∥,

(21)

where w∗
γ(α1) is the projection of w∗(α2) to S∗

γ(α1). By combining the two above inequalities, we
obtain our second conclusion.

From this lemma, we can obtain the following Lipschitz smoothness of ∇αHγ(α,w∗
γ(α)) w.r.t. α

by the following Lemma. It worth noting that ∇αHγ(α,w∗
γ(α)) is invariant over w∗

γ(α) ∈ S∗
γ(α)

as discussed in the proof of Lemma 1. Thus, the ∇αHγ(α,w∗
γ(α)) is well-defined.

Lemma 3. Under Assumptions 1 and 2, ∇αHγ(α,w∗
γ(α)) has semi-Lipschitz gradient such that

∥∇αHγ(α1,w
∗
γ(α1))−∇αHγ(α2,w

∗
γ(α2))∥ ≤ γB

(
γL

µγ
+

L

µ

)
︸ ︷︷ ︸

Lγ

∥α1 −α2∥. (22)

Proof. From (14), we see∥∥∇αHγ(α1,w
∗
γ(α1))−∇αHγ(α2,w

∗
γ(α2))

∥∥
≤ γ

∥∥∇αLtrain(α1,w
∗
γ(α1))−∇αLtrain(α2,w

∗
γ(α2))

∥∥
+ γ ∥∇αLtrain(α2,w

∗(α2))−∇αLtrain(α1,w
∗(α1))∥

≤ γB (∥wγ(α1)−wγ(α2)∥+ ∥w(α1)−w(α2)∥)

≤ γB

(
γL

µγ
+

L

µ

)
∥α1 −α2∥,

(23)

which proves our conclusion.

Notably, for the original optimization problem, there exists a constraint α ∈ A. Thus, to prove
the first order stationary condition of constrain problem minα∈A Hα, we consider the generalized
projected gradient stable condition, i.e., 1

ηα
∥α(t) −ΠA(α

(t) − ηα∇αH(α(t)))∥ ≤ ϵ for some small
positive ϵ. This is a standard first-order stationary condition for Non-convex optimization problem
with constrains [30, 42, 9]. Due to Lemma 1, we know that

1

ηα

∥∥∥α(t) −ΠA(α(t) − ηα∇αH(α(t)))
∥∥∥− 1

ηα

∥∥∥α(t) −ΠA(α(t) − ηα∇αHγ(α
(t),w∗

γ(α
(t))))

∥∥∥
≤ 1

ηα

∥∥∥ΠA(α(t) − ηα∇αH(α(t)))−ΠA(α(t) − ηα∇αHγ(α
(t),w∗

γ(α
(t))))

∥∥∥
≤

∥∥∥∇αH(α(t))−∇αHγ(α
(t),w∗

γ(α
(t)))

∥∥∥
≤ O

(
1

γ

)
,

(24)
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when γ → ∞. Here the second inequality is from the Lipschitz continuity of projection operation
[9]. Thus, the above inequality indicates that to prove the first-order stationary condition of H(α),
it is sufficient to prove the first-order stationary condition of Hγ(α,w). Next we present our main
theorem, i.e., the formal version of Theorem 1, which shows the convergence result of Hα(α) under
Algorithm 1.

Theorem 1. For sufficiently large T , under Assumptions 1-5, for the α(t) obtained in Algorithm 1, it
holds

min
1≤t≤T

1

ηα
∥α(t) −ΠA(α

(t) − ηα∇αH(α(t)))∥ ≤ O
(
T− 1

4

)
(25)

by selecting γ = T
1
4 , K ≥

log µT−1

2D(1+γ)

log
(
1− µγ

Lγ

) , E ≥ min

{
1,

log
µγT−1

2D

log (1− µ
L )

−K

}
, ηα = 1

4Lγ
, ηw = 1

Lγ
,

ηu = 1
L .

Proof. As mentioned in (24), it is sufficient to prove the first-order stationary condition for Hγ(α,w).
Due to the Lipchitz smoothness of it, we have

Hγ(α
(t+1),w∗

γ(α
(t+1)))−Hγ(α

(t),w∗
γ(α

(t)))

≤
〈
∇αHγ(α

(t),w∗
γ(α

(t))),α(t+1) −α(t)
〉
+

Lγ

2
∥α(t+1) −α(t)∥2

=
〈
∇αFγ(α

(t),w
(t)
K ,u

(t)
K ),α(t+1) −α(t)

〉
+

〈
∇αHγ(α

(t),w∗
γ(α

(t)))−∇αFγ(α
(t),w

(t)
K ,u

(t)
K ),α(t+1) −α(t)

〉
+

Lγ

2

∥∥∥α(t+1) −α(t)
∥∥∥2

≤
(
Lγ

2
− 1

2ηα

)∥∥∥α(t+1) −α(t)
∥∥∥2

+
ηα
2

∥∥∥∇αHγ(α
(t),w∗

γ(α
(t)))−∇αFγ(α

(t),w
(t)
K ,u

(t)
K )

∥∥∥2

,

(26)

where the last inequality is due to the property of projection operator and Jensen’s inequality. Let
us define ᾱ(t+1) = ΠA(α

(t) − ηα∇αHγ(α
(t),w∗

γ(α
(t)))), we proceed to upper bound the gap

between ∥ᾱ(t+1) −α(t)∥ and ∥α(t+1) −α(t)∥. By the triangle inequality∣∣∣∥ᾱ(t+1) −α(t)∥ − ∥α(t+1) −α(t)∥
∣∣∣

≤ ∥ᾱ(t+1) −α(t+1)∥

≤
∥∥∥ΠA

(
α(t) − ηα∇αFγ(α

(t),w
(t)
K ,u

(t)
K )

)
−ΠA

(
α(t) − ηα∇αHγ(α

(t),w∗
γ(α

(t)))
)∥∥∥

≤ ηα

∥∥∥∇αFγ(α
(t),w

(t)
K ,u

(t)
K )−∇αHγ(α

(t),w∗
γ(α

(t)))
∥∥∥

≤ ηαγB∥w(t)
K −w∗

γ(α
(t))∥+ ηαγB∥u(t)

K −w∗(α(t))∥,

(27)

where the last inequality is from the smoothness Assumption 2, w∗
γ(α

(t)) and w∗(α(t)) are respec-

tively the projection of w(t)
K and u

(t)
K to S∗

γ(α
(t)) and S∗(α(t)). Firstly, due to the PL-condition and

Lipschitz smoothness of Ltrain, we have

Ltrain(α
(t),u

(t)
k+1)− Ltrain(α

(t),u
(t)
k ) ≤

〈
∇wLtrain(α

(t),u
(t)
k ),u

(t)
k+1 − u

(t)
k

〉
+

L

2
∥u(t)

k+1 − u
(t)
k ∥

2

= − 1

2L
∥∇wLtrain(α

(t),u
(t)
k )∥2

≤ −µ

L

(
Ltrain(α

(t),u
(t)
k )− Ltrain(α

(t),w∗(α(t)))
)
,

(28)
which implies

∥u(t)
K −w∗(α(t))∥2 ≤ 2

µ

(
1− µ

L

)K+E (
Ltrain(α

(t),u
(t)
0 )− Ltrain(α

(t),w∗(α(t)))
)

≤ 2

µ

(
1− µ

L

)K+E

D

= O
(

1

T

)
.

(29)
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due to the selection of K and E and the PL condition of Ltrain(α,w) (which implies the error bound
condition [17]). Similarly, we can prove that

∥w(t)
K −w∗

γ(α
(t))∥2 ≤ 2

µγ

(
1− µ

L

)K (
Hγ(α

(t),w
(t)
K )−Hγ(α

(t),w∗
γ(α

(t)))
)

≤ 2

µγ

(
1− µγ

Lγ

)K

(1 + γ)D

= O
(

1

T

)
.

(30)

Combining (26) (27), (29), and (30), we have

Hγ(α
(t+1),w∗

γ(α
(t+1)))−Hγ(α

(t),w∗
γ(α

(t))) ≤ − 1

4ηα

∥∥∥α(t+1) −α(t)
∥∥∥2+O

(
ηαγ

2

T
4
3

)
, (31)

so that, by combining (27), we get

1

T

T∑
t=1

1

η2
α

∥∥∥ᾱ(t+1) −α(t)
∥∥∥2

≤ 1

T

T∑
t=1

2

η2
α

[∥∥∥α(t+1) −α(t)
∥∥∥2

+
∣∣∣∥ᾱ(t+1) −α(t)∥ − ∥α(t+1) −α(t)∥

∣∣∣2]

≤ Hγ(α
(0),w

(∗)
γ (α(0)))− infαHγ(α

(0),w
(∗)
γ (α(0)))

ηαT
+O

(
γ2

T

)
= O

(
γ2

T

)
= O

(
T− 1

2

)
.

(32)
Due to the definition of ᾱ(t+1), combining this with (24), and the value of γ proves our conclusion.

B Proof of the Proposition

Proposition 1. Assume Lm
train = Lm

val, the uniform mixture ratio ᾱm = 1
M for m = 1, . . . ,M

constitutes a valid solution of (1).

Proof. Let Lm
train = Lm

val = Edata[Lm
data] := Lm. To establish the above, it suffices to show:

M∑
m=1

Lm
val(w

∗(ᾱ)) ≤
M∑

m=1

Lm
val(w

∗(α))

which is equivalent to:

M∑
m=1

ᾱmLm(w∗(ᾱ)) ≤
M∑

m=1

ᾱmLm(w∗(α)) (33)

Because w∗(ᾱ) is the minimizer of the inner-level problem under uniform weighting, we have:

M∑
m=1

ᾱmLm(w∗(ᾱ)) ≤
M∑

m=1

ᾱmLm(w) (34)

for any w. In particular, by choosing w = w∗(α), the right-hand side becomes the expression
in (33), completing the proof.

C Implementations and Hyper-parameters

Implementation Details We use the gradient descent optimizer for the K step u and w up-
date. Their learning rates ηKu and ηKw are kept the same so that the domain-wise loss difference
Lm

train (wK)−Lm
train (uK) faithfully reflects the gain of incorporating the additional validation data.

For the E step u update, we utilize the Adam optimizer for fast training.
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Table 6: Hyper-parameters of TANDEM for different application scenarios
Data Aundent Data Restricted Supervised Fine-tuning

GPT-like 160M 160M 410M 1B Qwen2-0.5B

Batch Size 8 128 128 128 32
Learning Rate ηE

u 5e-5 5e-4 5e-4 5e-4 4e-6
Learning Rate ηK

u 1e-2 1e-2 1e-2 1e-2 1e-2
Learning Rate ηK

w 1e-2 1e-2 1e-2 1e-2 1e-2
Learning Rate ηα 2e-3 4e-3 4e-3 4e-3 4e-3
Learning Rate Scheduler Cosine Cosine Cosine Cosine Cosine
Penalty γ 1.0 1.0 1.0 1.0 1.0
Probing Steps K 5 5 5 5 10
Free Training Steps E 20 5 5 5 10
Total Steps (w.r.t u) 40000 5000 5000 5000 5000
Context Length 2048 512 512 512 512
Weight Decay 1e-2 1e-2 1e-2 1e-2 1e-2
Gradient Clipping 1.0 1.0 1.0 1.0 1.0

Table 7: Statistics of the SFT data.
Method Num. Sample

Textual Entailment 79332
Answer Verification 13195
Text Matching 47297
Information Extraction 31053
Word Extraction 17294
Text Categorization 89572

Table 8: Statistics of the task-level SFT data.
Method Num. Sample

SQuAD1.1 6498
AMRSum 6500
MuTual 6500
SemEval 5996
SST2 6495
BoolQ 6500

Hyper-parameter settings The detailed hyper-parameters for the TANDEM algorithms in the con-
ventional data-abundant pretraining scenario, the data-restricted training scenario, and the supervised
fine-tuning are shown in Table 6.

D Supervised Learning Data Statistics

In the supervised fine-tuning case, we use 6 major categories from Natural Instructions [25, 35]:
Textual Entailment, Answer Verification, Text Matching, Information Extraction, Word Extraction,
and Text Categorization, each constitutes a task cluster. This corpus comprises 99 tasks ranging from
open-ended text generation, multiple choice, and True/False tasks. The statistics are given in Table 7.

Besides, we delve into a more fine-grained task-level SFT case, and select 6 tasks SQuAD1.1,
AMRSum, MuTual, SemEval, SST2, and BoolQ. The statistics are given in Table 8. For the text
generation tasks SQuAD1.1 and AMRSum, we report the Rouge-L [22] score. For the multi-choice
tasks (MuTual, SemEval) and Yes/No tasks (SST2, BoolQ), we focus on the accuracy. The test loss is
reported as well. We experiment with Qwen2-500M with K = 20, E = 10, batch size 32, and context
length 512 for 2000 steps. The result is shown in Table 9. In this case, the improvement in test loss
is more significant than that in the final evaluation metrics, likely due to the imperfect alignment
between them.

Table 9: Comparison for the 500M Qwen-2 model on a mixture of 6 tesk-level SFT tasks.
Method SQuAD1.1 AMRSum MuTual SemEval SST2 BoolQ Test Loss ↓ Avg. Metric ↑
Uniform 72.62 45.18 72.72 89.75 87.75 80.29 0.591 74.72
DoReMi 71.40 43.40 70.97 88.50 87.00 77.43 0.686 73.11
DoGE 71.26 44.81 71.67 89.00 88.30 81.04 0.563 74.35
Skill-It 72.14 44.21 73.07 89.40 88.40 80.34 0.539 74.60
Aioli 72.35 45.01 73.57 89.10 88.10 79.64 0.542 74.63
TANDEM 72.73 45.19 73.77 89.70 88.70 80.04 0.508 75.03

20



Table 10: Comparison of models of different sizes in the data-abundant pretraining scenario and data
restricted scenario with standard deviation.

Data Aundant Regime Data Restricted Regime

160M Avg. 160M Avg. 410M Avg. 1B Avg.

Uniform 25.74±0.13 31.53±0.11 29.59±0.02 29.91±0.09
DoReMi 28.32±0.12 36.91±0.09 54.61±0.60 56.53±0.53
DoGE 26.60±0.21 30.10±0.05 27.45±0.02 -
Skill-It 25.87±0.07 29.24±0.08 27.70±0.03 27.15±0.17
Aioli 25.66±0.14 31.19±0.25 28.79±0.06 28.07±0.03
TANDEM 25.43±0.15 28.07±0.07 25.00±0.01 24.35±0.03
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Figure 9: Step-wise generalization gap |Lm
val − Lm

train | evolution under three scenarios. (a) data-
abundant pretraining (b) data-restricted pretraining and (c) supervised fine-tuning.

E Comparison with Standard Deviation

We test each method in Table 3, Table 4 3 times. The averaged perplexity and standard deviation are
reported in Table 10.

F Additional Experiments

F.1 Generalization Gap Analyses

To validate our analysis in Section 2.4, we plot the change of generalization gap |Lm
val − Lm

train | during
training under the three circumstances Figure 9. In the data-abundant scenario, the generalization
gaps of each domain do not change much and are kept close to 0. According to the analysis in Section
2.4, Uniform is a valid solution in this scenario. In the data-restricted scenario, we see an increase in
the generalization gap, particularly on small domains (Arxiv, Book, Wikipedia), because the sample
repetition kicks in. In the large domains (C4, CommonCrawl) where there is no data repetition, the
generalization remains small. SFT is of the same case. Generalization gap increase in small tasks
(Word Sementics, Information Extraction), while kept small for large tasks (Text Categorization, Text
Matching, Textual Entailment). The results on all three scenarios validate our analysis in Section 2.4.

F.2 Larger Scale Experiments

To validate the effectiveness of TANDEM in practice, we conduct experiments to test its performance
under more realistic conditions. This includes scaling up both the dataset size and the model size.

Table 11: Comparison for larger data scale (6B tokens).
Arxiv Book C4 CC Github Stackexchange Wikipedia Average

Uniform 10.28 32.37 38.53 34.57 5.86 10.76 15.26 17.09
TANDEM 10.26 29.59 32.52 29.52 6.01 10.68 16.02 16.25
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Table 12: Comparison for larger (3B) model in the data restricted regime.
Arxiv Book C4 CC Github Stackexchange Wikipedia Average

Uniform 17.20 53.83 60.14 55.45 9.85 22.08 41.76 31.03
TANDEM 15.73 42.85 43.60 39.59 7.49 17.26 29.20 23.81

Table 13: Comparison for the larger (3B) model in the supervised fine-tuning.
Method Textual Ent. Answer Ver. Text Mat. Inf. Ext. Word Sem. Text Cat. Avg. Metric ↑ Test Loss ↓
Uniform 91.9 74.8 88.8 79.2 88.8 85.5 84.9 0.189
TANDEM 92.4 76.9 89.6 80.1 88.0 87.9 85.8 0.174

Larger Data Scale We train the 160M models on the full 6B version of sampled SlimPajama,
which constitutes a more practical past Chinchilla [14] (Chinchilla optimal requires ≈3.2B data for
the 160M model) case. From Table 11, we see that TANDEM still outperforms Uniform, though it
seems that the improvement (∼ 1) in this case is not as significant as in the 300M data case (∼ 3.5).
As the training proceeds and the perplexity goes down, further gains become inherently harder to
achieve. This result is still significant, showing that careful mixing still matters in this "over-trained"
case.

Larger Model Scale We conduct DMO with 3B models in the data-restricted scenario (Pythia 2.9B)
and SFT (Qwen-2.5-3B). Further scaling up necessitates engineering upgrades to fit the two models
(u and w) within the 80GB memory, while also demanding substantial time and computational
resources. We skip the data-abundant scenario where Uniform is already a valid solution. From Table
12, we see that as the model goes larger, inappropriate mixture ratios (Uniform) lead to more obvious
negative outcomes(e.g. severe overfitting on the overly sampled small domains). While TANDEM
consistently generates proper mixture ratios. For SFT (Table 13), TANDEM still outperforms the
Uniform baseline, showing its effectiveness.

F.3 Sensitivity of K and E

K: K is the number of probing steps used to estimate the proper update direction ((3) ∼ (5)).
We conduct a sensitivity analysis with K = 1, 3, 5, 10 to see how it will affect the final model
performance. From Table 14, we see that too small K may results in less fidel α update direction,
thus sub-optimal data mixture ratio and higher perplexity. When K is large enough for α update
probing, increasing K will not induce further benefits. In our experiments, for relatively stable
pretraining, we use a smaller K = 5 in the data-abundant and data-restricted scenarios. The gradient
variance in SFT is much higher, so we use larger K = 10.

E: Given the total number of training steps (amounts of data to be used), E determines the number
of updates during DMO: T = total steps

E . We test E = 1, 5, 10 in the 160M data-restricted scenario.
From Table 15 we see that TANDEM is not sensitive to E as long as T is large enough so that α is
sufficiently updated. In our experiments, for the data-abundant scenario, we chose E = 20 so that the
mixture ratio is updated for T = 2000 steps. As one α update requires additional K steps w updates,
a larger T means higher additional computational cost. To reduce the computational overhead, we set
E in the data-restricted scenario and SFT to ensure T = 1000 and T = 500 respectively.

Table 14: The effect of K
k=1 k=3 k=5 k=10

Perplexity 29.57 28.31 28.07 28.05

Table 15: The effect of E
E=1 E=5 E=10

Perplexity 27.99 28.05 28.56
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Table 16: Downstream evaluation after training on SlimPajama in the data-restricted scenario.
Method ARC-C ARC-E BoolQ HellaSwag LAMBADA PiQA WinoGrande Average

Uniform 25.76 19.58 60.70 18.62 9.88 45.43 50.04 32.85
DoReMi 21.36 19.58 60.61 11.66 6.44 42.94 49.57 31.06
DoGE 22.03 24.87 51.35 18.50 10.07 44.45 47.28 31.39
Skill-it 18.98 26.10 50.82 24.99 11.47 43.36 50.59 31.40
Aioli 20.34 19.58 61.71 19.59 10.89 44.18 49.41 32.41
TANDEM 20.34 20.81 57.55 25.59 11.20 40.53 51.07 32.92

Table 17: The effectiveness of the proxy model
Method Data Abundant (Perpl.) Data Restricted (Perpl.) SFT (Acc.)

Uniform 25.74 31.53 74.72
Online (Proxy) 25.72 29.63 74.49
Two-Stage (default) 25.43 28.07 75.03

F.4 Downstream Tasks

We also evaluate the 160M model pre-trained with SlimPajama data on ARC-C, ARC-E, BoolQ,
HellaSwag, LAMBADA, PiQA and WinoGrande using the Language Model Evaluation Harness [8].
From Table 16, we see that TANDEM outperforms all the baselines, validating its effectiveness.

F.5 The Effectiveness of the Proxy Model

It might be expected that the online-trained proxy model could also perform well. We evaluate the
proxy model u, which has been trained with adaptive domain weights α(t) in all the three scenarios,
and compare it to the default two-stage (DMO and then train) trained model. Counter-intuitively,
the performance of the online trained model falls behind the default two-stage trained model as well
as the uniform baseline (Table 17). This result coincides with the findings in previous works, e.g.,
DoReMi and DoGE. We hypothesize that the frequent change of data distribution deteriorates the
training process.

F.6 A priori Trained Reference model Restricts DoReMi

In the experiments, DoReMi [37] doesn’t perform well in the data-restricted scenarios. We hypothe-
size that the performance of DoReMi is restricted by the a priori trained reference model. Following
previous works, we train the reference model on training data obtained using the Uniform strategy.
This reference model, however, is not well-suited for the data-restricted scenario, as the many small
domains overfit and cannot provide faithful signals for DMO. For a more comprehensive comparison,
we train another reference model with the natural data mixture ratio (See Figure 4, the data statistics).
This setting ensures no severe overfitting happens. The result in Table 18 validates our hypothesis.

G Visualization of the Optimized Mixture Ratios.

We visualize the mixture ratio learned in each application scenario in Figure 10, Figure 11 and
Figure 12. For the baselines, the average proportion over the entire training trajectory is taken. While
for TANDEM, we use the average mixture ratio at the last 10% training trajectory.

Table 18: DoReMi is restricted by the a priori trained reference model
Method 160M 410M 1B

Uniform 31.53 29.59 29.91
Natural 30.97 27.82 27.30
DoReMi-Natural 30.83 27.26 26.07
TANDEM 28.07 25.00 24.35
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Figure 10: Mixture ratio learned by different methods in the data-abundant pretraining.
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Figure 11: Mixture ratio learned by different methods in the data-restricted pretraining.
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Figure 12: Mixture ratio learned by different methods in the supervised fine-tuning.

H Summary of Notations

Table 19: Summary of the notations used throughout this paper. Variables only used in theoretical
analysis are grayed for better readability.
Topic Notation Explanation

Data Sets M The number of domains.
Dm The m-th domain data.
Dtrain Train set.
Dval Validation set.

Models & Parameters u Parameters of the proxy model.
w Parameters of the reference model.
w∗ Optimal solution for the lower level problem.
w∗

γ Optimal solution for the penalized problem.
S∗(α) Solution set for the lower level problem.
S∗

γ(α) Solution set for the penalized problem.
α Data mixture ratio
A The probability simplex.

Problems & Losses Lm
train Train loss on the m-th domain.

Lm
val Validation loss on the m-th domain.

Ltrain Overall train loss weighted by the mixture ratio α.
Lval Overall validation loss.
H(α) The upper-level loss with the lower-level problem optimized.
Hγ(α,w) The loss of the penalized problem.

Function Properties µ PL coefficient of the lower-level problem.
µγ PL coefficient of the penalized problem.
L Lipschitz constant for ∇wLtrain (α,w) on w.
B Lipschitz constant for Ltrain (α,w) and Lval (w) on w.
λ and ρ Hessian ∇wwLtrain (α,w) ⪰ λ and ∇2

αwLtrain (α,w) ⪯ ρ
H Lipschitz constant for ∇2

αwLtrain (α,w) and ∇2
wwLtrain (α,w).

D Upper bound for the train/validation loss.
Lγ Lipschitz constant for ∇αHγ

(
α,w∗

γ(α)
)
.

Train t Mixture ratio α training step
T The total number of α update.
k u and w update step.
e Free u update step.
K The number of u, w probing update for one α update.
E The number of u free update.
ηα The learning rate on α.
ηu The learning rate on u.
ηw The learning rate on w.
γ The penalty strength.
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I Limitations and Future Works

Despite the advancements introduced in this work, several challenges remain open for future research.
The limitations of this paper are as follows: (1) Due to limited computational resources, our ex-
periments were conducted using models of up to 3 billion parameters. Although our experimental
results demonstrate TANDEM’s effectiveness at this scale, the constraint on model size limits our
ability to verify whether our findings generalize to significantly larger models, such as those with 405
billion parameters. (2) Our current data mixture optimization (DMO) approach is validated on coarse,
naturally occurring domain splits. For example, the SlimPajama corpus consists of seven domains
sourced from different origins. The impact of using more fine-grained and intentionally designed
domain splits on DMO performance remains unexplored and presents an interesting direction for
future investigation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper focuses on data mixture ratio optimization in LLM training. The
abstract and introduction sufficiently summarize the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the paper are discussed in the “Limitations and Future Works”
section in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The full set of assumptions and complete (and correct) proofs are provided in
the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details and hyper-parameters settings are given in the
Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be released upon the compliance review process of the company.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The core experimental setting is outlined in the paper, and the details are given
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided the 95% confidence interval of the DMO process and the
standard deviation of the test results in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of compute workers and time of execution are provided in experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conforms with the NeurIPS Code of Ethics in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The goal of this paper is to build a better understanding of data mixture
optimization and thus improve the LLM training. It doesn’t perform negative societal
impacts as long as the LLM is properly used.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper doesn’t provide pretrained language models, image generators, or
scraped datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers that produced the dataset are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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