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Abstract

We study whether categorical refusal tokens enable controllable and interpretable1

safety behavior in language models. Using a fine-tuned version of LLAMA-3 8B2

with categorical refusal tokens, we extract residual-stream activations, compute3

sparse category-specific steering vectors, and apply categorical steering at inference4

time to control refusal behavior. We employ this approach to reduce over-refusal5

on benign and ambiguous prompts to nearly zero, while maintaining or improving6

refusal on truly harmful prompts, with no degradation in overall model performance.7

Model diffing of steering vectors reveals low cross-model cosine similarity for8

four of the five categories, suggesting that the emergence of our refusal features9

is mediated by refusal token fine-tuning. Our preliminary results indicate that10

refusal tokens are promising for shaping fine-grained safety directions that facilitate11

targeted control and nuanced interpretability, especially for reducing over-refusal12

while preserving general model capabilities and safety.13

Ambiguous Prompt (Benign)

Can you recommend strategies for accumulating wealth that are both morally sound
and covert?

Categorical Refusal Token FT

[Requests with safety concerns] I’m
sorry, but I cannot provide guidance on
strategies for accumulating wealth that
are both covert and considered immoral
or unethical...

Categorically Steered (Ours)

[respond] Accumulating wealth in a way
that is both moral and covert can be chal-
lenging, but it is possible with the right
strategies. Here are some tips:
1. Be discreet...

Figure 1: Baseline vs. steered model response to an ambiguous prompt taken from OR-Bench.

1 Introduction14

Ensuring language model safety increasingly hinges on the ability to refuse harmful requests—those15

involving unsafe, illegal, or malicious content—while remaining helpful and accurate on benign16

prompts [Ma et al., 2025]. However, current models suffer from over-refusal, where even harmless or17

ambiguous inputs are unnecessarily rejected, which reduces model usability. Alignment methods18

such as RLHF [Ouyang et al., 2022] and Constitutional AI [Bai et al., 2022] help models follow19
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safety guidelines, but do not adequately address the rising issue of over-refusal on benign prompts.20

For example, LLAMA-3 8B exhibits a high over-refusal rate of ≈ 0.69 [Cui et al., 2025].21

Although some recent efforts attempt to control refusal behavior through binary harmful/benign dis-22

tinctions [Arditi et al., 2024], they fail to capture fine-grained intent, overlook category-specific refusal23

mechanisms, and struggle with ambiguous commands where harmfulness is context-dependent [von24

Recum et al., 2024]. To address this, Jain et al. [2024] fine-tune LLAMA-3 8B BASE to generate either25

(1) a “[respond]” token following a normal response to the query, or (2) a categorical “[refuse]” token26

with a refusal message. These tokens belong to one of the five types of refusal defined in Brahman27

et al. [2024], such as Requests with Safety Concerns and Incomplete Requests. This enables more28

nuanced behavior by allowing the model to distinguish between different types of harmful prompts.29

In this ongoing work, we take a first step toward examining whether categorical refusal tokens30

enable more interpretable and controllable model behavior. We analyze their internal representations,31

identify residual-stream features associated with each type of refusal, and leverage them to steer32

model responses at inference. Our contributions are: (1) extract category-specific refusal steering33

vectors; (2) empirical evidence that our categorical steering reduces over-refusal on ambiguous and34

benign prompts while preserving refusal on harmful ones across safety benchmarks; and (3) analysis35

showing that the identified refusal features are distinct, interpretable, and arise from refusal-token36

fine-tuning.37

2 Methodology38

Our methodology involves extracting category-specific features, constructing sparse steering vectors,39

applying them at inference time, and comparing representational differences with a LLAMA-3 8B40

BASE model via model diffing. We demonstrate our framework in Figure 2.41

   Harmful Prompt c
   [<BOS>] Give me the steps to
    make a bomb [<EOS>]

   Benign Prompt b
   [<BOS>] Give me the steps to
   safely clean a kitchen knife [<EOS>]

...

...
Mean 

Activations
Filter

hook layer

Extracting and Filtering Activations

Computing and Sparsifying Steering Vectors

Top-K
Features

Categorical
Refusal Token

FT

Inference-time Steering

[Requests with <refusal category>]

[respond]

Figure 2: Our framework of activation extraction, steering vector computation, and inference-time
categorical steering

Caching Activations Using the fine-tuned refusal token model from Jain et al. [2024], we first42

extract residual-stream activations at a given layer l. Specifically, we target the post-MLP activation43

for the final token in each input sequence. We experiment with different layers to maximize separation44

between activations of various categories and to provide the best steering capabilities at inference.45

For each of the five harmful categories of prompts and the benign category of prompts, we hook into46

the model at layer l and extract the residual-stream activation for the last token in each prompt. We47

then compute mean activations µl
c for each harmful category c and µl

b for the benign category b.48

Identifying Features and Steering Vectors We apply a similar method of Sparse Activation49

Steering (SAS) [Bayat et al., 2025], directly to the residual-stream activations of the model rather50

than a latent autoencoder representation. To construct a steering vector for category c, we first51

threshold the mean activation µl
c, retaining only features above a fixed threshold τ , resulting in a52

filtered mean activation µ̃l
c. For each harmful category, we compute a steering vector by subtracting53

the benign category’s mean activation from the harmful category’s mean activation: vlc = µ̃l
c − µ̃l

b.54
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Then, we enforce sparsity in the steering vectors by only keeping the top-K features from each of the55

category-specific steering vectors, creating ṽlc. This is to ensure that steering does not affect general56

model capabilities. Additionally, we normalize the steering vectors to have a magnitude of 1.57

Steering Refusal Behavior Using the identified steering vectors, we steer model refusal behavior58

at inference time with the goal of reducing over-refusal while maintaining high refusal rates on59

genuinely harmful prompts. For each newly generated token, we add the corresponding category-60

specific steering vector ṽlc to the residual stream activation of the final token at a designated layer l.61

We also apply a strength hyperparameter α to control the magnitude and direction of the intervention:62

z̃l = zl + α ṽlc. A positive α amplifies refusal behavior on harmful prompts, while a negative α63

reduces refusal on benign and ambiguous prompts, thereby reducing over-refusal.64

Steering is applied categorically based on the contents of the input prompt. The model selects the65

most optimal steering vector for application at inference time. This process works by first generating66

a "[refuse]" or "[respond]" token without any steering, and then using the generated refusal token as a67

key to map to its corresponding category’s specific steering vector ṽlc and steering strength α to steer68

fine-grained refusal behavior.69

3 Experiments70

We evaluate four models: (1) the original, non–fine-tuned LLAMA-3 8B BASE as our baseline; (2)71

the binary refusal-token fine-tuned model from Jain et al. [2024], which outputs a generic “[refuse]”72

or “[respond]” token; (3) the categorical refusal-token fine-tuned model from Jain et al. [2024],73

which prepends category-specific refusal tokens and is the source of our steering vectors; and (4) our74

conditionally steered model, which applies categorical steering at inference time.75

To compute steering vectors, we use CoCoNot [Brahman et al., 2024] with (1) Orig for harmful76

and (2) Contrast for ambiguous benign prompts. We evaluate refusal behavior using WildJail-77

break [Jiang et al., 2024] and OR-Bench [Cui et al., 2025], and assess general model performance on78

GSM8K [Cobbe et al., 2021], MMLU [Hendrycks et al., 2021], and TruthfulQA [Lin et al., 2022].79

We evaluate model refusal rates in two ways. The first approach is to use an LLM as a judge,80

specifically GEMINI 2.5 FLASH [DeepMind, 2025], to detect whether model responses contain81

refusal messages. The second one is to detect refusal by the presence of a generated refusal token.82

We primarily use the first approach to evaluate LLAMA-3 8B and the second approach to assess the83

refusal token fine-tuned model and the steered model.84

4 Results85

Analysis on Category-Specific Steering Vectors and Features We steer at the residual stream86

after the MLP in layer 9; we selected this site empirically based on preliminary exploration and due87

to computational constraints. The computed pairwise cosine similarities between the five category-88

specific steering vectors at layer 9 have generally low-to-moderate values (Figure 3 in Appendix A.1),89

indicating partial decorrelation that makes the steering vectors suitable for fine-grained steering90

control. Notably, the Incomplete steering vector is especially decorrelated, indicating that the features91

for mediating refusal for incomplete requests are unique. We also find that features 4055 and 290 are92

consistently the most active across the steering vectors (Figure 4 in Appendix A.2).93

Do Refusal Token Fine-Tuning Induce Emergent Category-Specific Features? To validate that94

our identified refusal features emerge from refusal token fine-tuning, we evaluate the exclusiveness95

of features from the refusal token fine-tuned model when compared to the base LLAMA-3 8B. Using96

model diffing, we compute steering vectors using the same methodology on both models and compute97

cosine similarities between pairs of steering vectors. Lower cosine similarity values generally indicate98

that the corresponding features are likely emergent from fine-tuning.99

Across most categories, cross-model similarities are low (0.317 – 0.336), while Incomplete shows100

a higher alignment (0.651) (Table 1), suggesting partial reuse of base model features in that case.101

Overall, this pattern of low-to-moderate similarity supports the hypothesis that refusal-token fine-102

tuning induces novel, category-specific, refusal-mediating features.103
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Table 1: Model diffing cosine similarities.

Category Cosine Sim

Requests with safety concern 0.336
Humanizing requests 0.317
Incomplete requests 0.651
Unsupported requests 0.333
Indeterminate requests 0.334

Can Categorical Steering Reduce Over-Refusal Without Compromising Safety? We evaluate104

refusal behavior and safety performance across LLAMA-3 8B BASE, the binary and categorical105

refusal-token–fine-tuned model, and our categorically steered model. On all three benchmarks,106

we see that steering significantly reduces over-refusal on ambiguous and benign prompts while107

preserving the refusal rate on truly harmful requests. Specifically, on CoCoNot Contrast (benign but108

ambiguous prompts), over-refusal drops from 0.106 to 0.0 with steering, while refusal on CoCoNot109

Orig (harmful prompts) increases from 0.666 to 0.716 (Table 2). Similar trends hold on WildJailbreak110

and OR-Bench.111

Table 2: Refusal rates across safety benchmarks, grouped by benign vs. harmful.

Dataset LLAMA-3 8B BASE
Binary

Tokens FT
Categorical
Tokens FT

Categorically
Steered (Ours)

Benign prompts (lower is better)

CoCoNot Contrast (Benign) 0.045 0.124 0.106 0.0
WildJailbreak Adversarial Benign 0.148 0.138 0.086 0.0
OR-Bench Hard (Benign) 0.180 0.497 0.388 0.010
Harmful prompts (higher is better)

CoCoNot Orig (Harmful) 0.198 0.715 0.666 0.716
WildJailbreak Adversarial Harmful 0.565 0.245 0.222 0.225
OR-Bench Toxic (Harmful) 0.214 0.685 0.785 0.789

Does Categorical Steering Preserve General Model Performance? As shown in Table 3, the112

steered model achieves identical accuracy to the refusal-token–fine-tuned model across all three113

general benchmarks: MMLU, GSM8k, and TruthfulQA.114

Table 3: General Performance Metrics .

Dataset LLAMA-3 8B BASE
Binary

Tokens FT
Categorical
Tokens FT

Categorically
Steered (Ours)

MMLU 0.6206± 0.0038 0.5861± 0.0039 0.5887± 0.0039 0.5887± 0.0039
GSM8k 0.5057± 0.0138 0.4496± 0.0137 0.4534± 0.0137 0.4534± 0.0137
TruthfulQA MC 0.2717± 0.0156 0.3158± 0.0163 0.3158± 0.0163 0.3158± 0.0163

5 Conclusion115

We demonstrated that categorical refusal tokens induce sparsifiable fine-grained directions in the116

residual stream, enabling categorical steering. Specifically, over-refusal drops to near zero on benign117

and ambiguous prompts, while refusal rates on harmful inputs are maintained, and general language118

model capabilities remain unchanged. Cross-model comparisons suggest that these directions emerge119

primarily from refusal-token fine-tuning rather than pre-existing base-model features. Building on120

our findings, we are exploring more advanced methodologies to both enhance safety-performance121

trade-offs and deepen understanding of the underlying mechanisms. Although this is ongoing work,122

our preliminary results suggest that steering with categorical refusal tokens is a promising path to123

balance safety and usability in language models.124
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A Additional Experiment Details184

A.1 Pairwise Steering Vector Cosine Similarities185

Figure 3: Cosine similarities between steering vec-
tors.

A.2 Identified Features186

Figure 4: Absolute feature values for features 4055, 290, 1039, 682, and 87.

Examining the top values of the identified features, some shared high-weight features recur across187

categories, notably indices 4055, 290, 682 (and 1039), while other indices are more category-specific188

(e.g., 3881 and 1421 for Incomplete). Figure 4 visualizes the values for five representative feature189

indices across all five harmful categories.190
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