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Abstract

Federated learning (FL) learns a model jointly from a set of participating devices without
sharing each other’s privately held data. The characteristics of non-i.i.d. data across
the network, low device participation, high communication costs, and the mandate that
data remain private bring challenges in understanding the convergence of FL algorithms,
particularly regarding how convergence scales with the number of participating devices. In
this paper, we focus on Federated Averaging (FedAvg), one of the most popular and effective
FL algorithms in use today, and conduct a systematic study of how its convergence scales with
the number of participating devices under non-i.i.d. data and partial participation in convex
settings. We provide a unified analysis that establishes convergence guarantees for Fed Avg
under strongly convex, convex, and overparameterized strongly convex problems. We show
that FedAvg enjoys linear speedup in each case, although with different convergence rates and
communication efficiencies. For strongly convex and convex problems, we also characterize
the corresponding convergence rates for the Nesterov accelerated FedAvg algorithm, which
are the first linear speedup guarantees for momentum variants of FedAvg in convex settings.
Empirical studies of the algorithms in various settings have supported our theoretical results.

1 Introduction

Federated learning (FL) is a machine learning paradigm where many clients (e.g., mobile devices or organiza-
tions) collaboratively train a model under the orchestration of a central server (e.g., service provider), while
keeping the training data decentralized in order to preserve privacy (Konecény et all 2016 McMahan et al.|
2017; [Smith et al., [2017; [Li et al., |2020a; |[Kairouz et all 2021; |Wang et al., |2021)). In recent years, FL has
swiftly emerged as an important learning paradigm, enjoying widespread success in such diverse applications
as personalized recommendation (Chen et al., |2018)), virtual assistant (Lam et al., 2019), keyboard prediction
(Hard et al.l 2018), and digital health (Rieke et al., 2020)), to name a few. There are at least three reasons
for its popularity: First, the rapid proliferation of smart devices that are equipped with both computing
power and data-capturing capabilities provided the infrastructure core for FL. Second, the rising awareness
of privacy and the explosive growth of computational power in mobile devices have made it increasingly
attractive to push the computation to the edge. Third, the empirical success of communication-efficient FL
algorithms has enabled increasingly larger-scale parallel computing and learning with less communication
overhead.

Despite its promise and broad applicability, the potential value FL delivers is coupled with the unique
challenges it brings. In particular, when FL learns a single statistical model using data from across all
the devices while keeping each individual device’s data isolated, it faces two challenges that are absent in
centralized optimization and distributed (stochastic) optimization (Zhou & Cong), 2018; Woodworth et al.l
2018; |Jiang & Agrawal, [2018; 'Woodworth et al., [2020bj |(Charles & Konecny, 2021)):

1) Data heterogeneity (non-i.i.d. data): data distributions on local devices/servers are different, and
data cannot be shared across devices;
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Table 1: Our convergence results for FedAvg and accelerated FedAvg in this paper. Throughout the paper, N is the
total number of local devices, and K < N is the maximal number of devices that are accessible to the central server
during each communication. 7T is the total number of stochastic updates performed by each local device, E is the local
steps between two consecutive server communications (and hence T/E is the number of communications).! Depending
on the particular overparameterized setting, « is a type of condition number defined in Section [5] and Appendix [G]

2) System heterogeneity (partial participation): only a subset of devices may access the central server
at each time, which happens because the communication bandwidth profiles vary across devices and there is
no central server that has control over when a device is active (the presence of “stragglers”).

To address these challenges, Federated Averaging (FedAvg) (McMahan et all 2017) was proposed as a
particularly effective heuristic, which has enjoyed great empirical success. This success has since motivated a
growing line of research efforts into understanding its theoretical convergence guarantees in various settings
(Stichl 2019; [Khaled et al., 2019; Haddadpour & Mahdavi, [2019; |Li et al., 2020b; Wang et al., [2019} [Yu
et al.| [2019a;b; (Wang & Joshil 2018; [Koloskova et al.| 2020; [Woodworth et al., [2020a} [Khaled et al. 2020}
Yang et al., 2021). Of these, [Li et al.| (2020b) was among the first to establish an O(+) convergence rate for
FedAvg for strongly convex smooth FL problems with both data and system heterogeneities. When only data
heterogeneity is present, [Khaled et al.| (2020) provides tight convergence results with linear speedup analysis
in convex settings. In non-convex settings, [Yang et al.| (2021)) obtained linear speedup convergence results for
FedAvg under both non-i.7.d. data and partial participation.

Despite the recent fruitful efforts to understand the theoretical convergence properties of FedAvg, the question
of how the number of participating devices affects the convergence speed remains to be answered fully when
both data and system heterogeneity are present. In particular, is linear speedup of FedAvg a universal
phenomenon across different settings and for any number of devices? What about when FedAvg is accelerated
with momentum updates? Does the presence of both data and system heterogeneity in FL imply different
communication complexities and require technical novelties over results in distributed and decentralized
optimization? Linear speedup is a desirable property of distributed optimization systems, including FedAvg,
as it characterizes the impact of scale on such systems. Here we provide affirmative answers to these questions.

Our Contributions. First, we establish an O(1/KT) convergence rate for FedAvg for strongly convex and
smooth problems and an O(1/v/KT) convergence rate for convex and smooth problems, where K is the
maximum number of participating devices at each communication round, confirming that FedAvg enjoys
the desirable linear speedup property with both non-i.7.d. data and partial participation. In previous works,
the best and most related convergence analyses are given by |Li et al.| (2020b)), which established an (9(%)
convergence rate for strongly convex smooth problems under FedAvg, and by [Khaled et al.| (2020)), which
established linear speedup in the number of participating local servers under data heterogeneity. Our rate
matches the same (and optimal) dependence on T, but also establishes the linear speedup dependence
on K, for any K < N, where N is the total number of devices, whereas |Li et al.| (2020b) does not have
linear speedup analysis, and [Khaled et al.| (2020) focuses on full participation K = N. Our unified analysis
highlights the common elements and distinctions between the strongly convex and convex settings, as well as
the communication complexity differences between the full and partial participation settings.

Second, we establish the same convergence rates—O(1/KT) for strongly convex and smooth problems and
O(1/vV/KT) for convex and smooth problems—for Nesterov accelerated FedAvg. We analyze the accelerated
version of FedAvg here because empirically it tends to perform better; yet, its theoretical convergence
guarantee is unknown. To the best of our knowledge, these are the first results that provide a linear speedup
characterization of Nesterov accelerated FedAvg in the two convex problem classes. The fact that FedAvg
and Nesterov accelerated FedAvg share the same convergence rate is to be expected: this is the case even
for general centralized stochastic optimization problems. Prior to our results, the most relevant results only
concern the non-convex setting (Yu et al. 2019a; [Li et al., [2020a; [Huo et al., |2020), where convergence is
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measured with respect to stationary points (vanishing of gradient norms, rather than optimality gaps). Our
unified analysis of Nesterov FedAvg also illustrates the technical similarities and distinctions compared to the
original FedAvg algorithm, whereas prior works in the non-convex setting used different frameworks with
distinct proof techniques.

Third, we study a subclass of strongly convex smooth problems where the objective is over-parameterized and
establish a faster O(exp(—£1)) geometric convergence rate for FedAvg, in contrast to the O(exp(—L)) rate
for individual solvers (Ma et al., 2018). Within this class, we further consider the linear regression problem
and establish an even sharper rate for FedAvg. To our knowledge, these bounds are among the first to extend
the geometric convergence results in the non-distributed overparameterized setting to the federated learning
setting with a linear speedup in the number of local servers.

Connections with Distributed and Decentralized Optimization Federated learning is closely related to
distributed and decentralized optimization, and as such it is important to discuss connections and distinctions
between our work and related results from that literature. First, when there is neither system heterogeneity,
i.e., all devices participate in parameter averaging during a communication round, nor data heterogeneity,
i.e., all devices have access to a common set of stochastic gradients, FedAvg coincides with the “Local SGD”
of [Stich| (2019)), which showed the linear speedup rate O(1/NT) for strongly convex and smooth functions.
Woodworth et al| (2020bsa)) further improved the communication complexity that guarantees the linear
speedup rate. When there is only data heterogeneity, some works such as Khaled et al.| (2020) have continued
to use the term Local SGD to refer to FedAvg, while others subsume it in more general frameworks that
include decentralized model averaging based on a network topology or a mixing matrix. They have provided
linear speedup analyses for strongly convex and convex problems, e.g., [Khaled et al. (2020); Koloskova
et al.| (2020) as well as non-convex problems, e.g., |Jiang & Agrawal (2018); |Yu et al. (2019b)); Wang &
Joshi| (2018). However, most of these results do not consider system heterogeneity, i.e., the presence of
stragglers in the device network. Even with decentralized model averaging, the assumptions usually imply
that model averages over all devices is the same as decentralized model averages based on network topology
(e.g., Koloskova et al.| (2020) Proposition 1), which precludes system heterogeneity as defined in this paper
and prevalent in FL problems. For momentum accelerated FedAvg, Yu et al| (2019a)) provided linear speedup
analysis for non-convex problems, while results for strongly convex and convex settings are entirely lacking,
even without system heterogeneity. In contrast, our linear speedup analyses for FedAvg and consider both
types of heterogeneity present in the full federated learning setting, and are valid for almost any number of
participating devices. We also highlight a distinction in communication efficiency when system heterogeneity
is present. Moreover, our results for Nesterov accelerated FedAvg completes the picture for strongly convex
and convex problems. For a detailed comparison with related works, please refer to Table [2] in Appendix
Section [Bl

2 Setup

In this paper, we study the following federated learning problem:

w

win {Fw) 2 ) mAiw) ). (1)

where N is the number of local devices (users/nodes/workers) and py, is the k-th device’s weight satisfying

pi > 0 and Efcvzl pr = 1. In the k-th local device, there are nj, data points: xj,x3,...,x.*. The local
objective Fy(-) is defined as: Fy(w) £ i 27;1 14 (w; xi), where ¢ denotes a user-specified loss function. Each

device only has access to its local data, which gives rise to its own local objective F}. Note that we do not
make any assumptions on the data distributions of each local device. The local minimum F}} = min,, Fj(w)
can be far from the global minimum of Eq (data heterogeneity).

2.1 The Federated Averaging (FedAvg) Algorithm

We first introduce the standard Federated Averaging (FedAvg) algorithm which was first proposed by McMahan
et al.| (2017). FedAvg updates the model in each device by local Stochastic Gradient Descent (SGD) and sends
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the latest model to the central server every E steps. The central server conducts a weighted average over
the model parameters received from active devices and broadcasts the latest averaged model to all devices.
Formally, the updates of FedAvg at round ¢ is described as follows:

k .
ko _ gk ko _ Viyi 1ft+1¢IE,
Vier W T OeBrky - Wi = { Yokesi, Wiy ift+1€Tp, @

where wf is the local model parameter maintained in the k-th device at the t¢-th iteration and g =
VE,(wF, £F) is the stochastic gradient based on &F, the data point sampled from k-th device’s local data
uniformly at random. Zrp = {F,2FE, ...} is the set of global communication steps, when local parameters
from a set of active devices are averaged and broadcast to all devices. We use S;4; to represent the (random)
set of active devices at t + 1. ¢ is a set of averaging weights that are specific to the sampling procedure used
to obtain the set of active devices Syy1.

Since federated learning usually involves an enormous amount of local devices, it is often more realistic to
assume only a subset of local devices is active at each communication round (system heterogeneity). In this
work, we consider both the case of full participation where the model is averaged over all devices at each
communication round, in which case g, = py, for all k£ and Wfﬂ = Zgzl pkvfﬂ ift+1 € Ig, and the case of
partial participation where |S;11]| < N.

With partial participation, we follow [Li et al.| (2020a); Karimireddy et al.| (2020); [Li et al.| (2020b) and assume
that S;41 is obtained by one of two types of sampling schemes to simulate practical scenarios. One scheme
establishes Sy 41 by i.i.d. sampling the devices with probability py with replacement, and uses g, = %, where
K = |8¢41]|, while the other scheme samples Sy uniformly ¢.i.d. from all devices without replacement, and
uses qx = pk%. Both schemes guarantee that gradient updates in FedAvg are unbiased stochastic versions
of updates in FedAvg with full participation, which is important in the theoretical analysis of convergence.
Because the original sampling scheme and weights proposed by McMahan et al.| (2017) lacks this nice property,
it is not considered in this paper. An interesting recent work (Chen et all [2022) proposes a new client
selection procedure based on importance sampling that achieves better communication complexities than i.4.d.
sampling. For more details on the notations and setup as well as properties of the two sampling schemes,
please refer to Section [A]in the appendix.

2.2 Assumptions

We make the following standard assumptions on the objective function Fi, ..., Fiy. Assumptions [I] and 2] are
commonly satisfied by a range of popular objective functions, such as ¢2-regularized logistic regression and
cross-entropy loss functions.

Assumption 1 (L-smooth). Fy,---, Fy are all L-smooth: for all v and w, F(v) < Fi(w) + (v —
w) 'V E(w) + 5 [[v — wll3.

Assumption 2 (Strongly-convex). Fy,---, Fn are all p -strongly convex: for all v and w, F,(v) > Fj(w) +
(v—w)TVE(w) + §llv — w3

Assumption 3 (Bounded local variance). Let £ be sampled from the k-th device’s local data uniformly at
random. The variance of stochastic gradients in each device is bounded: E ||VFk (wf, Sf) —VF; (W,’f) ||2 < 0,%,
fork=1,--- N and any wF. Let 0 := Zgzlpkaz.

Assumption 4 (Bounded local gradient). The expected squared norm of stochastic gradients is uniformly
bounded. i.c., E|VF, (wh, )| < G2, for allk =1,..,N and t =0,...,T — 1.

Assumptions [3[ and 4] have been made in many previous works in federated learning, e.g.|Yu et al.| (2019b));
Li et al| (2020b); [Stich| (2019). We provide further justification for their generality. As model av-
erage parameters become closer to w*, the L-smoothness property implies that E||VFy(wF, £F)||? and
E||V Fy(wh, £8) — V Fy.(wF)||? approach E||V Fi(w*, £F)||? and E||V Fy(w*, £F) — V. (w*)||2. Therefore, there
is no substantial difference between these assumptions and assuming the bounds at w* only [Koloskova et al.
(2020). Furthermore, compared to assuming bounded gradient diversity as in related work Haddadpour &
Mahdavi (2019); [Li et al.| (2020al), Assumption [4]is much less restrictive. When the optimality gap converges
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to zero, bounded gradient diversity restricts local objectives to have the same minimizer as the global objective,
contradicting the heterogeneous data setting. For detailed discussions of our assumptions, please refer to
Appendix Section [B]

3 Linear Speedup Analysis of Federated Averaging

In this section, we provide convergence analyses of FedAvg for convex objectives in the general setting with
both heterogeneous data (statistical heterogeneity) and partial participation (system heterogeneity). We
show that for strongly convex and smooth objectives, the convergence of the optimality gap of averaged
parameters across devices is O(1/KT'), while for convex and smooth objectives, the rate is O(1/vVKT). Our
results improve upon |Li et al. (2020b)) by showing linear speedup for any number of participating devices,
and upon |[Khaled et al.[ (2020)); Koloskova et al.| (2020) by allowing system heterogeneity. The proofs also
highlight similarities and distinctions between the strongly convex and convex settings. Detailed proofs are
deferred to Appendix Section [E]

3.1 Strongly Convex and Smooth Objectives

We first show that FedAvg has an O(1/KT) convergence rate for u-strongly convex and L-smooth objectives.
The result relies on a technical improvement over the analysis in |[Li et al. (2020b)). Moreover, it implies a
distinction in communication efficiency that guarantees this linear speedup for FedAvg with full and partial
device participation. With full participation, E' can be chosen as large as O(y/T/N) without degrading the
linear speedup in the number of workers. On the other hand, with partial participation, F must be O(1) to
guarantee O(1/KT) convergence.

Theorem 1. Let wr = Zivd pkW§ in FedAvg, Vimax = maxy Npg, and set decaying learning rates ay =
with v = max{32k, E} and k = % Then under Assumptions to with full device participation,

kvl 0% /n  KEE(G?/p
EF (W) — F* = O | “max
(wr) ( NT T ) ’

4
u(y+t)

and with partial device participation with at most K sampled devices at each communication round,

max

KT NT T2

E2 2 2 2 2E2 2

Proof sketch. Because our unified analyses of results in the main text follow the same framework with
variations in technical details, we first give an outline of proof for Theorem [I| to illustrate the main ideas. For
full participation, the main ingredient is a recursive contraction bound
_ * — * 1
E[[We1 — w'||* < (1 — pa)El[w, — w*||* + atZNVyznazUZ + 60} LE*G?

where the O(a3 E>G?) term is the key improvement over the bound in Li et al.| (2020b)), which has O(a? E2G?)
instead. We then use induction to obtain a non-recursive bound on E|Wr — w*||?, which is converted to a
bound on EF(Wr) — F* using L-smoothness. For partial participation, an additional term (’)(%a?E2G2)
of leading order resulting from sampling variance is added to the contraction bound. To facilitate the
understanding of our analysis, please refer to a high-level summary in Appendix [C]

E2G2).

Linear speedup. We compare our bound with that in |Li et al.| (2020b), which is (’)(ﬁ + % + =%

EQTGz is also O(1/T) without a dependence on N, for any choice of E their bound cannot
2 022

achieve linear speedup. The improvement of our bound comes from the term ”ETig;/“, which now is

O(E?/T?) and so is not of leading order. As a result, all leading terms scale with 1/N in the full device

participation setting, and with 1/K in the partial participation setting. This implies that in both settings,

there is a linear speedup in the number of active workers during a communication round. We also emphasize

Because the term
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that the reason one cannot recover the full participation bound by setting K = N in the partial participation
bound is due to the variance generated by sampling.

Communication Complexity. Our bound implies a distinction in the choice of E between the full and
partial participation settings. With full participation, the term involving E, O(E?/T?), is not of leading order
O(1/T), so we can increase E and reduce the number of communication rounds without degrading the linear
speedup in iteration complexity O(1/NT), as long as E = O(y/T/N), since then O(E?/T?) = O(1/NT)
matches the leading term. This corresponds to a communication complexity of T/E = O(\/ﬁ ). In contrast,
the bound in |Li et al|(2020b) does not allow E to scale with v/T to preserve O(1/T) rate, even for full
participation. On the other hand, with partial participation, % is also a leading term, and so F must be
O(1). In this case, our bound still yields a linear speedup in K, which is also confirmed by experiments. The
requirement that £ = O(1) in order to achieve linear speedup in partial participation cannot be removed for
our sampling schemes, as the term % comes from variance in the sampling process, which is O(E?/T?).
In Proposition [I] in Section [E] of the appendix, we provide a problem instance where the dependence of the
sampling variance on F is tight.

Comparison with related works. To better understand the significance of the obtained bound, we compare
our rates to the best-known results in related settings. [Haddadpour & Mahdavi| (2019) proves a linear speedup
O(1/KT) result for strongly convex and smooth objective with O(K'/3T?/3) communication complexity
with non-4.7.d. data and partial participation. However, their results build on the bounded gradient diversity
assumption, which implies the existence of w* that minimizes all local objectives (see discussions in Section
and Appendix , effectively removing statistical heterogeneity. The bound in Koloskova et al.| (2020]) matches
our bound in the full participation case, but their framework excludes partial participation (Koloskova et al.
2020, Proposition 1). |Karimireddy et al.| (2020) considers both types of heterogeneities for FL and proposed
a new algorithm based on variance reduction, but their rate implies a linear speedup only when K = O(N),
i.e. close to full participation. In contrast, our result is for the simpler FedAvg, and achieves linear speedup
for any number of participating devices. When there is no data heterogeneity, i.e. in the classical distributed
optimization paradigm, communication complexity can be further improved, e.g. |[Woodworth et al.| (2020a3b]),
but such results are not directly comparable to ours since we consider the setting where individual devices
have access to different datasets. [Yang et al.| (2021]) obtains linear speedup results under both data and
system heterogeneity for non-convex problems, so can be viewed as complementary results.

3.2 Convex Smooth Objectives

Next we provide linear speedup analysis of FedAvg with convex and smooth objectives and show that the
optimality gap is O(1/v KT). This result complements the strongly convex case in the previous part, as well
as the non-convex smooth setting in [Jiang & Agrawal| (2018); [Yu et al.| (2019b); [Haddadpour & Mahdavi
(2019), where O(1/v/ KT results are given in terms of averaged gradient norm, and it also extends the result
in |[Khaled et al.| (2020), which has the best linear speedup result in the convex setting with full participation.

Theorem 2. Under Assumptions E and constant learning rate ay = O(4/ %), FedAvg satisfies

?g:rplF(Wt) —-Fw)=0

max +
VNT T
with full participation, and with partial device participation with K sampled devices at each communication

round and learning rate oy = O(1/ %),

<l/2 o? NE2LG2>

min F(w;) — F(w*) =0

V2. 02 N E2G?  KE®LG?
t<T

+
VKT VKT T
The analysis again relies on a recursive bound, but without contraction:

1
E|Wii1 — w1 + oy (F(Wy) — F(w*)) <E[[wy — w*|* + CY?NVrQnaxUZ + 60} E*LG?

1Their result applies to a larger class of non-convex objectives that satisfy the Polyak-Lojasiewicz condition.



Under review as submission to TMLR

which is then summed over time steps to give the desired bound, with oy = O(y/5).

Choice of E and linear speedup. With full participation, as long as E = O(T1/4/N3/4), the convergence
rate is O(1/v/NT) with O(N3/4T3/%) communication rounds. In the partial participation setting, E must
be O(1) in order to achieve linear speedup of O(1/v/ KT). This is again due to the fact that the sampling
variance E||w, — V¢||? = O(a? E2G?) cannot be made independent of E, as illustrated by Proposition [1} See
also the proof in Section [Ef for how the sampling variance and the term E?G?/vV/ KT are related. Our result
again demonstrates the difference in communication complexities between full and partial participation, and
is to our knowledge the first result on linear speedup in the general federated learning setting with both
heterogeneous data and partial participation for convex objectives.

4 Linear Speedup Analysis of Nesterov Accelerated Federated Averaging

A natural extension of the FedAvg algorithm is to use momentum-based local updates instead of local
SGD updates in order to accelerate FedAvg. As we know from stochastic optimization, Nesterov and other
momentum updates fail to provably accelerate over SGD in general (Liu & Belkin, 2020; Kidambi et al.,
2018; [Yuan & May, 2020). This is in contrast to the classical acceleration result of Nesterov-accelerated
gradient descent over GD. See, however, |Jain et al.| (2017)); Even et al,| (2021) for acceleration results for
quadratic objectives. Thus in the FL setting, the best provable convergence rate for Fed Avg with Nesterov
updates is the same as FedAvg with SGD updates. Nevertheless, Nesterov and other momentum updates are
frequently used in practice, in both non-FL and FL settings, and are observed to perform better empirically.
In fact, previous works such as |Stich| (2019) on FedAvg with vanilla SGD uses FedAvg with Nesterov or other
momentum updates in their experiments to achieve target accuracy. Because of the popularity of Nesterov
and other momentum-based methods, understanding the linear speedup behavior of FedAvg with such local
updates is important. To our knowledge, the only convergence analyses of FedAvg with momentum-based
stochastic updates focus on the non-convex smooth case (Huo et al., 2020} [Yu et all, [2019a} [Li et al.| [2020a)),
and no results existed in the convex smooth settings, except for the work of [Even et al.| (2021)), whose results
can be adapted to prove acceleration of Nesterov FedAvg for quadratic objectives. In this section, we complete
the picture by providing the first O(1/KT) and O(1/V KT) convergence results for Nesterov-accelerated
FedAvg for general convex objectives that match the rates for FedAvg with SGD updates. Detailed proofs of
convergence results in this section are deferred to Appendix Section [F]

4.1 Strongly Convex and Smooth Objectives

The Nesterov Accelerated FedAvg algorithm follows the updates:

Vfﬂ"‘ﬁt(vfﬂ_"f) ift+1¢ Ig,

k k k
Vigr = Wi — 8k, Wigpg = k k k :
{Zkest+1 r [VEg + Be(vE —VE)] ift+1 € Tp,

where g; 1, 1= VFj (wF,£F) is the stochastic gradient sampled on the k-th device at time ¢, and ¢ again
depends on participation and sampling schemes.

Theorem 3. Let vpr = > fcvzlpkvlj‘% in Nesterov accelerated FedAvg, and set learning rates oy =
o 3 . 3 . . .. .
Bi-1 = T (1= 2 max (1] Then under Assumptions E ﬁ with full device participation,

2 2 2 22
JEF(vT)F*_(9<“”mXU /“+“EG/”>,

6_1
wtty?

NT T2

and with partial device participation with K sampled devices at each communication round,

_ . KUmax0- /1 KE°G?/u | K*E*G?/p
EF(vr) = F _O( NT T kT T )

Similar to FedAvg, the key step in the proof of this result is a recursive contraction bound, but different in
that it involves three time steps, due to the update format of Nesterov SGD (see Lemma [7|in Appendix [F.1).



Under review as submission to TMLR

Then we can again use induction and L-smoothness to obtain the desired bound. To our knowledge, this is
the first convergence result for Nesterov accelerated FedAvg in the strongly convex and smooth setting. The
same discussion about linear speedup of FedAvg applies to the Nesterov accelerated variant. In particular, to
achieve O(1/NT) linear speedup, T iterations of the algorithm require only O(v/NT') communication rounds
with full participation.

4.2 Convex Smooth Objectives

We now show that the optimality gap of Nesterov-accelerated FedAvg has O(1/v KT) rate for convex and
smooth objectives. This result complements the strongly convex case in the previous part, as well as the
non-convex smooth setting in [Huo et al.| (2020); [Yu et al.| (2019a)); |Li et al. (2020a), where a similar O(1/vV KT)
rate is given in terms of averaged gradient norm.

Theorem 4. Set learning rates ay = B, = O(y/X). Then under Assumptions E Nesterov accelerated
FedAvg with full device participation has rate

min F(vy) — F* —(9(

t<T

V2,02 N NE?LG?
VNT T ’

and with partial device participation with K sampled devices at each communication round,
V2 ax02 N E2G? N KE?LG?
VKT VKT T

We emphasize again that in the stochastic optimization setting with general objectives, the optimal convergence
rate that FedAvg with Nesterov udpates can achieve is the same as FedAvg with SGD updates. When
objectives are quadratic, [Jain et al. (2017)); [Even et al.| (2021) provide acceleration results for Nesterov SGD
in the centralized and decentralized settings. Nevertheless, due to the popularity and superior performance
of momentum methods in practice, it is still important to understand the linear speedup behavior of such
FedAvg variants. Our results in this section fill exactly this gap.

min F(v,) — F* =0

t<T

5 Geometric Convergence of FedAvg in Overparameterized Settings

Overparameterization is a prevalent machine learning setting where the statistical model has much more
parameters than the number of training samples and the existence of parameter choices with zero training loss
is ensured (Allen-Zhu et al., [2019; [Zhang et al., [2021)). Due to the property of automatic variance reduction
in overparameterization, a line of recent works proved that SGD and accelerated methods achieve geometric
convergence (Ma et al., [2018; Moulines & Bach, [2011} Needell et al., [2014} |Schmidt & Roux, [2013} |Strohmer
& Vershynin, [2009)). A natural question is whether such a result still holds in the federated learning setting.
In this section, we establish the geometric convergence of FedAvg for overparameterized strongly convex and
smooth problems, and show that it preserves linear speedup at the same time. We then sharpen this result in
the special case of linear regression. Detailed proofs are deferred to Section [G] In particular, we do not need
Assumptions [3] and [4 and use modified versions of Assumptions [I] and [2] detailed in this section.

5.1 Geometric Convergence of FedAvg in the Overparameterized Setting

Recall the FL problem min,, Zivzl prFr(w) with Fj(w) = nik Z;Lil o(wy xi) In this section, we consider
the standard Empirical Risk Minimization (ERM) setting where ¢ is non-negative, [-smooth, and convex,
and as before, each Fj(w) is L-smooth and p-strongly convex. Note that [ > L. This setup includes many
important problems in practice. In the overparameterized setting, there exists w* € arg min,, ij:l P Fr(w)
such that ¢(w*; Xi) =0 for all Xi. We first show that FedAvg achieves geometric convergence with linear
speedup in the number of workers.

Theorem 5. In the overparameterized setting, FedAuvg with communication every E iterations and constant
step size @ = O(%%) has geometric convergence:

L Py NT
EF(wr) < =(1—a)"|wo—w*|?=0(L -= wo —wH? ).
(W) < - @)Two —w = O (Lexp () o - |
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Linear speedup and Communication Complexity The linear speedup factor is on the order of O(N/E)
for N < (’)(%), i.e. FedAvg with N workers and communication every E iterations provides a geometric
convergence speedup factor of O(N/E), for N < O(%) In this regime, the convergence rate is of order
O(exp(—24=T)) where k= ﬁ is the “condition number” of the objective. When N is above this threshold,
however, the speedup is almost constant in the number of workers. This matches the findings in |[Ma et al.
(2018). Our result also illustrates that E can be taken O(T?) for any 8 < 1 to achieve geometric convergence,
achieving better communication efficiency than the standard FL setting. We emphasize again that compared
to the single-server results in |[Ma et al.| (2018]), the difference of our result lies in the factor of N in the
speedup, which cannot be obtained if one simply applied the single-server result to each device in our problem.
Recently, |Qin et al.| (2022)) provided a convergence bound independent of the number E of local steps by
using a larger learning rate and under a strong growth condition on the local gradients. However, their bound
does not exhibit linear speedup in the number of local servers.

5.2 Overparameterized Linear Regression Problems

We now turn to quadratic problems and show that the bound in Theorem [5] can be improved to

(’)(exp(—ElmT)) for a larger range of N. The local device objectives are now given by the sum of squares
Fr(w) = 5= >0 (w'x] — 2])?, and there exists w* such that F(w*) = 0. A notion of condition number
is important in our result: x; which is based on local Hessians (Liu & Belkin| 2020). See Section |G| for a
detailed definition of k1. The larger range of NV for which linear speedup holds is due to k1 > x where & is

the condition number used in Theorem
Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every E

iterations with constant step size @ = O(%W) has geometric convergence:
max min

NT
E(Vmaxlil + (N - Vmin))

B (wr) < O (Lo (- wo - w[).

When N = O(k1), the convergence rate is O((1 — Ejzl )T = (’)(exp(—g—g;)), which exhibits linear speedup in

the number of workers, as well as a 1/k; dependence on the condition number .

6 Numerical Experiments

In this section, we empirically examine the linear speedup convergence of FedAvg and Nesterov accelerated
FedAvg in various settings, including strongly convex function, convex smooth function, and overparameterized
objectives.

Setup. Following the experimental setting in |Stich| (2019), we conduct experiments on both synthetic

datasets and real-world dataset w8a (Platt, [1999) (d = 300,n = 49749). We consider the distributed

objectives F(w) = Zszl peFi(w), and the objective function on the k-th local device includes three

cases: 1) Strongly convex objective: the regularized binary logistic regression problem, Fj(w) =

Nik Ziﬁ“l log(1+exp(—yFwTx¥)+2||w||?. The regularization parameter is set to A = 1/n ~ 2e—5. 2) Convex

smooth objective: the binary logistic regression problem without regularization. 3) Overparameterized
1 N

setting: the linear regression problem without adding noise to the label, Fy(w) = N Zi:1(WTX§ +b—yk)2.

Linear speedup of FedAvg and Nesterov accelerated Fed Avg. To verify the linear speedup convergence
as shown in Theorems [I|2B][] we evaluate the number of iterations needed to reach e-accuracy in three
objectives. We initialize all runs with wy = 04 and measure the number of iterations to reach the target
accuracy €. For each configuration (E, K), we extensively search the learning rate from min(7y, %), where
no € {0.1,0.12,1, 32} according to different problems and ¢ can take the values ¢ = 2 Vi € Z. As the results
shown in Figure [1} the number of iterations decreases as the number of (active) workers increasing, which
is consistent for FedAvg and Nesterov accelerated FedAvg across all scenarios. For additional experiments

on the impact of F, detailed experimental setup, and hyperparameter setting, please refer to the Appendix
Section [Hl
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Figure 1: The linear speedup of FedAvg in full participation, partial participation, and the linear speedup of
Nesterov accelerated Fed Avg, respectively.

Partial participation. We verify the linear speedup in the partial participation settings, where we set 50%
of devices are active. As the results are shown in Figure [1] (2nd row), FedAvg enjoys linear speedup in various
settings even with partial device participation.

Nesterov accelerated FedAvg. In the third row of Figure |1} we report the last iteration to converge to
e-accuracy of Nesterov accelerated FedAvg. The empirical observations align with Theorems [3|[4] that the
accelerated version of FedAvg can also achieve the linear speedup w.r.t the number of workers.

7 Concluding Remarks

In this paper, we provided a unified linear speedup analysis of the convergence of stochastic FedAvg and
Nesterov accelerated FedAvg in convex smooth, strongly convex smooth, and overparameterized regimes
in the presence of both system and data heterogeneity, while also highlighting the distinct communication
efficiency differences between full and partial participation of local devices. It is well known that Nesterov
and other momentum variants fail to accelerate over SGD in both the overparameterized and convex settings.
Thus in general one cannot hope to obtain theoretical acceleration results for the Fed Avg algorithm with
stochastic Nesterov updates, unless objectives are quadratic (Even et al., [2021). We refer to recent works such
as [Yuan & Mal (2020) for new federated learning algorithms that provably accelerate over stochastic Fed Avg.

10
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Lastly, we remark that the desirable linear speedup property has been studied in other federated versions of
classical learning environments, such as federated reinforcement learning (Khodadadian et al., [2022)), and in
entirely new federated learning regimes, such as the so-called anarchic federated learning (Yang et al.| [2022)).

11
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A Additional Notations and Bounds for Sampling Schemes

In this section, we introduce additional notations that are used throughout the proofs. Following common
practice, e.g. |Stichl (2019)); [Li et al.| (2020b)), we define two virtual sequences v; = Zgzlkaf and W; =

lecv=1 prwr, where we recall the FedAvg updates from :

Vi ift+1¢7Zp,

k k k

Vi =w, —« Wy = .

t+1 t t8¢t.k> t+1 { k
Zk68t+1kat+1 ift+1eZg.

The following observations apply to Fed Avg updates, while Nesterov accelerated Fed Avg requires modifications.
For full device participation or partial participation with ¢ ¢ Zg, note that v, = w; = 22;1 prvF. For partial
participation with ¢ € Tp, W; # V; since v; = Zivzl pkvj;C while W, = Zkest qkw,’f. However, we can use
unbiased sampling strategies such that Es,w; = V. Note that V;4; is one-step SGD from w,.

Vi1l = Wy — oy 8, (3)
where g; = Zszl Dr8¢,k is the one-step stochastic gradient averaged over all devices.
8w = VE; (W), &),
Similarly, we denote the expected one-step gradient g, = E¢, [g:] = Zgzl pkng &t 1, where
k
nggt,k: = VFk (Wt) s (4)

and & = {¢F}_, denotes random samples at all devices at time step t.

Since in this work we also consider the case of partial participation, the sampling strategy to approximate
the system heterogeneity can also affect the convergence. Here we follow the prior works |Li et al.| (2020b)
and |Li et al| (2020a)) and consider two types of sampling schemes that guarantee Es,w; = v;. The sampling
scheme I establishes S;11 by i.7.d. sampling the devices according to probabilities p, with replacement, and
setting g = % In this case the upper bound of expected square norm of W1 — Vi1 is given by (Li et al.

2020b, Lemma 5):
W - 2 4 999
E3t+1 ||Wt+1 - Vt+1H < ?atE G~. (5)

The sampling scheme II establishes S;1; by uniformly sampling all devices without replacement and setting
qrx = pk%, in which case we have

— _ 4N - K
E3t+1 ||wt+1 - Vt+1H2 < Ié(]V—l;afEQGQ' (6)
We summarize these upper bounds as follows:
4
Es,,, [IWit1 —via|? < ?afEZGQ. (7)

and this bound will be used in the convergence proof of the partial participation result.

B Comparison of Convergence Rates with Related Works

In this section, we compare our convergence rate with the best-known results in the literature (see Table .
In |Haddadpour & Mahdavi (2019), the authors provide O(1/NT') convergence rate of non-convex problems
under Polyak-FLojasiewicz (PL) condition, which means their results can directly apply to the strongly convex
problems. However, their assumption is based on bounded gradient diversity, defined as follows:

_ 2wl VEMWE _
- 2 <
22k PV ER(W)]13

A(w)
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This is a more restrictive assumption comparing to assuming bounded gradient under the case of target

accuracy € — 0 and PL condition. To see this, consider the gradient diversity at the global optimal w*, i.e.,
2

Alw*) = %. For A(w*) to be bounded, it requires ||V Fy(w*)||3 = 0, V k. This indicates w* is

also the minimizer of each local objective, which contradicts to the practical setting of heterogeneous data.

Therefore, their bound is not effective for arbitrary small e-accuracy under general heterogeneous data while

our convergence results still hold in this case.

In Karimireddy et al.| (2020), the linear speedup convergence rate of FedAvg are provided for strongly convex,
general convex, and non-convex problems under full participation setting. However, their rate does not
enjoy linear speedup for any number of devices while our results apply to any valid K < N. For example,
they provides an optimality gap of O ((1 — %)E /T) for the strongly convex case (Karimireddy et al.l 2020,
Theorem V). With partial participation, and when K = O(1), their convergence rate is O(FE/T) which does
not have linear speedup. Under partial participation, the FedAvg analyses in Karimireddy et al.| (2020)
requires E = O(1). For example, the strongly convex result O((1 — £)E/T) in Theorem V is O(E/T) when
K = 0(1) and is O(E/NT) when K = O(N). In either case, to achieve a O(1/T) convergence rate, it
requires F = O(1) as well. Similar conclusion also holds for the general convex problem.

Reference [ Convergence rate | E [ NonlID [ Participation | Extra Assumptions | Setting
FedAvgLi et al.| (2020Db) O(ETZ) O(1) v Partial Bounded gradient Strongly convex
FedAvgHaddadpour & l\lahiavi (2019) O(ﬁ) O(K_1 372 3)T v Partial Bounded gradient diversity Strongly convex$
FedAngoloskova et al.7(2020) O(LT) O(N_1 27l 2) 4 Full Bounded gradient Strongly convex
FedAvgKarimireddy et al (2020) o(ﬁ)ﬂ o(N—1/7271/2)FT v Partial Bounded gradient dissimilarity Strongly convex
FedAvg/N-FedAvg (our analysis) o(ﬁ) o(N—1/271/2)% v Partial Bounded gradient Strongly convex
FedAvgKhaled et al. (2020) o( Il\fT> o(N—3/271/2) v Full Bounded gradient Convex
FedAvgKoloskova et al.| (2020) o( i,T) o(N—3/471/4) v Full Bounded gradient Convex
FedAvgdKarimireddy et al. (2020} o( ]bT)TT O(N—3/ATT/HTT v Partial Bounded gradient dissimilarity Convex
FedAvg/N-FedAvg (our analysis) o (ﬁ) o(N—3/471/4yi v Partial Bounded gradient Convex
FedAvg (our analysis) O (exp(— gfi ) o(Th) v Partial Bounded gradient Overparameterized

Table 2: A high-level summary of the convergence results in this paper compared to prior state-of-the-art FL
algorithms. This table only highlights the dependence on T' (number of iterations), E (the maximal number
of local steps), N (the total number of devices), and K < N the number of participated devices. x is the
condition number of the system and § € (0,1). We denote Nesterov accelerated FedAvg as N-FedAvg in this
table.

T This E is obtained under i.i.d. setting.

¥ This F is obtained under full participation setting.

§ In |[Haddadpour & Mahdavi (2019)), the convergence rate is for non-convex smooth problems with PL
condition, which also applies to strongly convex problems. Therefore, we compare it with our strongly convex
results here.

# The bounded gradient diversity assumption is not applicable for general heterogeneous data when
converging to arbitrarily small e-accuracy (see discussions in Sec .

1 Although the results in [Karimireddy et al.| (2020) is applicable for partial participation setting, their
results only achieve linear speedup under full participation setting K = N while we show linear speedup
convergence for K < N (see discussions in Sec . The E in the table is obtained under full participation.
Under partial participation, the communication complexity is E = O(1).

C A High-level Summary of FedAvg analysis

To facilitate the understanding of our analysis and highlight the improvement of our work comparing to prior
arts, we summarize the general steps used in the proofs across the various settings. In this section, we take
the strongly convex case as an example to illustrate our analysis. The corresponding proof for general convex
functions follows the same framework.

One step progress bound
This step establishes the progress of distance (||w; — w*||?) to optimal solution after one step SGD update

16




Under review as submission to TMLR

Algorithm 1 FEDAvG: Federated Averaging
1: Server input: initial model wy, initial step size ag, local steps E.
2: Client input:
3: for each round r =0,1,..., R, where r =t x E do
4:  Sample clients S; C {1,...,N}
5 Broadcast w to all clients k € S;
6 for each client £ C S; do
7 initialize local model wf = w
8
9

fort=r+«E+1,...,(r+1)« E do
: Wf_H :Wf — Ot 8tk
10: end for

11:  end for
12:  Average the local models at server end: W, = Zkesf wh.
13: end for '

(see line 9, Alg , as the following equation shows:
E[[Wii1 — w'|* < O(E[w: — w*||? + afo? /N + o E*G?).

The above bound consists of three main ingredients, the distance to optima in previous step (with n; € (0,1)
to obtained a contraction bound), the variance of stochastic gradients in local clients (second term), the
variance across different clients (third term). Notice that the third term in this bound is the primary source
of improvement in the rate. Comparing to the bound in |Li et al.| (2020b)), we improve the third term from
O(a?E?G?) to O(a?E?G?), which enables the linear speedup in the convergence rate.

Iterating the one-step bound
This step uses the one step progress bound iteratively to connect the the current distance to optimal solution
with the initial distance (|[Wo — w*||?), as follows:

" — w2 L
B[Wear — W[ < O(E][wo — w[[25).

Then we can use the distance to optima to upper bound the optimality gap (F(w;) — F* < O(1/T)), as
follows:

E(F (W) — F* < OE[w: — w|]?).
The convergence rate of the optimality gap is equally obtained as the convergence rate of the distance to
optima.

From full participation to partial participation

There are three sources of variances that affect the convergence rate. The first two sources come from
the variances of within local clients and across clients (second and third term in one step progress bound).
The partial participation, which involves a sampling procedure, is the third source of variance. Therefore,
comparing to the rate in full participation, this will add another term of variance into the convergence rate,
where we follow a similar derivation as in |Li et al.| (2020b]).

D Technical lemmas

To facilitate reading, we first summarize some basic properties of L-smooth and p-strongly convex functions,
found in e.g. [Rockafellar| (1970), which are used in various steps of proofs in the appendix.

Lemma 1. Let F be a convexr L-smooth function. Then we have the following inequalities:
1. Quadratic upper bound: 0 < F(w) — F(w') — (VF(w'),w — w/) < L||w — w/||%.
2. Coercivity: +|VF(w) — VF(wW')||? < (VF(w) — VF(w'),w — w').

3. Lower bound: F(w) > F(w') + (VF(W),w — W) + 3£ [|[VF(w) — VF(W')||>. In particular, |[VF(w)|? <
2L(F(w) — F(w*)).
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4. Optimality gap: F(w) — F(w*) <(VF(w),w — w*).

Lemma 2. Let F be a p-strongly convexr function. Then
1
F(w) < F(w)+(VF(w),w—w) + EHVF(W) — VF(wW)|?

* 1 2
F(w) - F(w") < ﬂl\VF(W)ll

E Proof of Convergence Results for FedAvg

E.1 Strongly Convex Smooth Objectives

To organize our proofs more effectively and highlight the significance of our results compared to prior works,
we first state the following key lemmas used in proofs of main results and defer their proofs to later.

Lemma 3 (One step progress, strongly convex). Let W, = ZkN:1 prWr, and suppose our functions

satisfy Assumptions E E and set step size ay = o L

%}5) with v = max{32k, E} and k = 5 then the updates
of FedAvg with full participation satisfy

1
E|Wep1 — w1 < (1 — poy)EB||[w, — w*|)* + afﬁugmxo2 +6F?LalG?.

We emphasize that the above lemma is the key step that allows us to obtain a bound that improves on the
convergence result of |Li et al.| (2020b) with linear speedup. Its proof will make use of the following two
results.

Lemma 4 (Bounding gradient variance (Lemma 2 [Li et al.| (2020b)) ). Given Assumption[3, the
upper bound of gradient variance is given as follows,

N
Ellg: — &> <> piot.
k=1

Lemma 5 (Bounding the divergence of w¥ (Lemma 3 Li et al.| (2020b)) ). Given Assumption
and assume that ay is non-increasing and oy < 2044 g for all t > 0, we have

N
E > pellwr — wi|?| <4E%a}G?.
k=1

We now restate Theorem [I] from the main text and then prove it using Lemma [3]

Theorem 1. Let W = 22;1 PEeWh in FedAvg, Vmax = maxy, Npy, and set decaying learning rates o =

4
n(y+t)
with v = max{32k, E} and k = /% Then under Assumptions EE with full device participation,

2 2 2E2 2
]EF(WT)—F*:O(“”W‘7 /nr G/“)

NT T2

and with partial device participation with at most K sampled devices at each communication round,

2072 2 2 2122

KT NT T2

Proof. The road map of the proof for full device participation contains three steps. First, we establish a
recursive relationship between E||W;; — w*||? and E||w; — w*||?, upper bounding the progress of Fed Avg

18
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2 2 2 2 2
from step ¢ to step ¢ + 1. Second, we show that E||w, — w*||? = O(¥=azZ [y E Lg /17 by induction using
the recursive relationship from the previous step. Third, we use the property of L-smoothness to bound the
optimality gap by E||w, — w*|%.

By Lemma |3] we have the following upper bound for the one step progress:

1
E|[W 1 — w*|?> < (1 — po)B|[w, — w*||2 + o —12,,,0° + 6E*La}G.

max

2 2 2 2 2
We show next that E||[w, — w*||? = O(¥=eZ [y B LtGZ /17 using induction. To simplify the presentation, we
denote C = 6E?LG? and D = +12,,,02. Suppose that we have the bound E|w; — w*||2 < b (a;D + a2C)

— N Ymazx
for some constant b and learning rates c;. Then the one step progress from Lemma [3| becomes:

El[Wer1 —w*[|> < (b(1 — pa) + ar)ay D + (b(1 — pev) + )i C

To establish the result at step ¢+ 1, it remains to choose a; and b such that (b(1 — pay) + o)y < bagyq and
(b(1 — poy) + ow)ai < baiy . If we let ap = ﬁ where v = max{F, 32k} (choice of y required to guarantee

the one step progress) and set b = %, we have:

4 4 4 4
b(1 — + = (b(1 - + <b =b
(V1 = pae) e (( . u(t+v)> ptty) =ty
t+v—2 16 16 9
b(1 — pey) + a)a? = b <b = ba
(V=) s =M e = Ve v M
where we have used the following inequalities:
—1 1 -2 1
1+ t+v Vo >1

(t+7)? ~ (t+~y+1) (t+7)3 ~ (t+y+1)2
Thus we have established the result at step ¢ + 1 assuming the result is correct at step ¢:
E[[Wi1 — w[? < b- (41D +afy O)

At step t = 0, we can ensure the following inequality by scaling b with ¢||wo — w*||? for a sufficiently large
constant c:

4 16
* (12 2
Wy — W <b-(agD+ao;C)=b-(—D + ——=C
H 0 || (0 0 ) (/W Mg,yg )
It follows that
4
E|w; — w*||* < ¢l|wo — W*IIQE(DO% +Caj) (8)

for all t > 0.

Finally, the L-smoothness of F' implies

L
E(F(Wr)) - F* < SE[[%r - w|?

L 4
< §c||w0 — w*||2ﬁ(DaT + CaZ)
= 2¢||wo — w*||?k(Dar + Ca?)
4 4
< 2c|lwo — W |’k | ——— - =120 +6E*LG? - (————)?
Iwo =l |y v TOEE

Kl ol K 1)

= O E—
(‘LLNV’ITLG,CE T ‘LL T2

19



Under review as submission to TMLR

where in the first line, we use the property of L-smooth function (see Lemma |1, and in the second line, we
use the conclusion in Eq .

With partial participation, the update at each communication round is now given by weighted averages over
a subset of sampled devices. When t + 1 ¢ Tg, Vi11 = Wiy, while when ¢t + 1 € T, we have EWy1q = Viyq
by design of the sampling schemes (Li et al.[(2020b), Lemma 4), so that

E|Wis1 — w*|)? = E[Wit1 — Vigr + Vegr — W'
= E|[Wis1 — Veg1 || + B[V — w*||?

This in particular implies E||v, — w*||? < E||[W; — w*||? for all ¢. Since Vv; = Z}vaﬂ prvh always averages over
all devices, the full participation one step progress result Lemma [3] applied to ¥; implies

1
B[Vt — w|? <E(1 - pay) [V — w*||* + 6E?LaiG? + Oétzﬁwzrma?

1
<E(1 — poy)||We — w*||> + 6E*LalG? + afﬁyfszQ

The bound for E||[ W1 —V¢41]|? for the two sampling schemes we consider is provided in Eq @, and applying
it we can write the one step progress for partial participation as

1 4
E||Wt+1 — W*”2 < (1 — /J,Olt)]E”Wt - W*H2 + OZ?NV?.,LGIU2 + ?Q?E2G2 + 6E2LC¥§G2, (9)

and the same arguments using induction and L-smoothness as the full participation case implies

kU2 o2 kE2G? K2E2G2
max0 /1 n /1 n /p

ER(Wr) - " = O(—" N7 KT 77 )

E.1.1 Deferred proofs of key lemmas

Here we first rewrite the proofs of lemmas 4| and [5| from |Li et al.| (2020b)) with slight modifications for the
consistency and completeness of this work, since later we will use modified versions of these results in the
convergence proof for Nesterov accelerated FedAvg.

Proof of lemmal[j)

N N
Ellg: — &> = Ellg: — Egill* = > pillges — Egerl® < piod
k=1 k=1

O
Proof of lemma[3 Now we bound Ezgzl pi||Wi — wF||? following |Li et al.| (2020b). Since communication

is done every FE steps, for any ¢ > 0, we can find a tg < ¢ such that t —tyg < F — 1 and Wfo = Wy, for all &.
Moreover, using a4 is non-increasing and oy, < 2a; for any ¢t —top < E' — 1, we have

N
EY pillw, — wi
k=1

N

=B prllwf — Wi, — (W, — W,
k=1
N

<ES pellwh — w1
k=1
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N
=EY pillwi —wi|®
k=1

N t—1
ZEZPkH - Z aigi,k”2
k=1

i=tg

N t—1
<2) pE DY Eallgixl’
k=1

i=to
N
<2 ZpkE2ozfoG2
k=1
§4E2a3G2
O

Based on the results of Lemma [4] [5] we now prove the upper bound of one step SGD progress. This proof
improves on the previous work |Li et al.| (2020b]) and is the first to reveal the linear speedup of convergence of
FedAvg.

Proof of lemma[3 We have

(W1 — W = (Wi — cuge) — W = [[(We — w8, — W") — au(ge — 8) |1
= |[W: — w" — a8 || + 200 (Wy — W — 8, 8, — 8t) + o lge — Bl
Aq As As

where we denote:
Ap = |[W - w* — g, ?
AQ = 20lt<Wt — W* - Oétgtvgt - gt>
Az = ofllg: — gl

By definition of g; and g, (see Eq ), we have EA; = 0. For Az, we have the following upper bound (see
Lemma 4):

N
a7Ellg: — gl° < of > pioi
k=1

Next we bound Aj:

I?

[We = w* = ugyl|* = [We — w*||* + 2(w; — w", —ug) + [l |I®

and we will show that the third term |o;g,||?> can be canceled by an upper bound of the second term, which
is one of major improvement comparing to prior art |Li et al.| (2020b)). The upper bound of second term can
be derived as follows, using the strong convexity and L-smoothness of Fj:

- 20ét<Wt - W*7gt>

N
=— 2w Zpk<Wt —w*, VE,(wh))
k=1

N N
=—2ay ZZWe(Wt — Wf, VFk(Wf» — 204 Zp;&wf —w", VFk(Wf»
k=1 k=1
N N N
< - 2003 prlWs — wE, VE(wE)) + 200 3 pr(Fu(w*) — Fi(wh)) — a3 prllwh — w2
k=1 k=1 k=1
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N

N
L * *
<20 Y e [Flwh) = Fulsw) + 51w, whP + Fw) = Fulwd)| - auull 3wt = w2
k=1 k=1

N N
=LY prllWi — WiI* + 200 Y pi [Fr(w*) = Fi(W1)] — appa|[ W, — w*||?
k=1 k=1

We record the bound we have obtained so far, as it will also be used in the proof for convex case:

N
E[Wer1 — W[ <E(1 = pag)|[We — w*|* + a1y pr|[W: — wi||?
k=1
N N
+20; Y pr [Fr(w") = Fe(Wo)l + of Y piot + o7&l (10)
k=1 k=1

For the term 20y Z,ivzl pr [Fr(w*) — Fj.(W;)], which is negative, we can ignore it, but this yields a suboptimal
bound that fails to provide the desired linear speedup. Instead, we upper bound it using the following
derivation:

N
20; ) pi [Fr(w") — Fi(wWy)]
k=1

<20 [F(Wi1) — F(Wy)]

L2ouE(VE (W), W1 — W) +  LE|[Wiy g — W

= — 20;E(VF (W), g) + o/ LE||g:*

= — 20/E(VF (W), 8;) + o LE| g:||”

== o} [IVE)I? + [&l* — IVF (W) — &%) + of LE| g ||

= —af [IVEW) | + l[gl* = IVE(W:) = > mVE(w))|? | + o LE| g )*
L k

< —af [IVE)IP + & ° = Y pel VE(We) = VE(WE)IP| + of LE| g |”
L k

< —af |IVEE)IP + llgl* — L* ) pullwe — wi|*| + of LE| /g
L k

< —aflgl® +afL? Y pilWe — wi|® + o} LE|lgi|* — of [ VF (W)
k

where we have used the smoothness of F' twice.

Note that the term —a?||g,||* exactly cancels the o?|/g,||* in the bound in Eq , so that plugging in the
bound for —2a,(W; — w*,g,), we have so far proved

N N
E[Wis1 — W S B~ pa) [Wy = wIP + 0, LY prelWe = wil* + of Y pioi
k=1 k=1
N
+aiL? Yy pelWe = Wi P + of LE|g|)* — of [ VF (W) | (11)
k=1

Under Assumption {4l we have E||g;||?> < G2. Furthermore, we can check that our choice of oy satisfies ay
is non-increasing and o; < 2a44 g, so we may plug in the bound E ZIJLI pi||[ W — wF||2 < 4E202G? to the
above inequality (see Lemma [5)).

Therefore, we can conclude that, with v,,q, := N - maxy pr and Vp,p := N - ming py,

E|[Wey1 — w*||?
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<E(1 — pay)|[W — w*||? + 4E2LadG? + 4FE% L2} G? 4 o Zpkak + o} LG?
k=1

N
=E(1 — pay) | — w*||?> + 4E* Lol G? + 4E? L2t G? + o2 — W Z (peN)20% + @3 LG?
k=1

. 1
<E(1 — poy)|[We — w*||? + 4E2LalG? + AE* L2l G? + o2 — Nz Vmas Z 0} +alLG?
k=1

91
<E(1 — pay)|[Wy — w*||? + 6E*LalG? + of — N V2 00

where in the last inequality we use o2 = Zgzl pkU,%, and that by construction oy satisfies Loy < %.
O
2 2
One may ask whether the dependence on F in the term % can be removed, or equivalently whether
pr||wk —w,||? = O(1/T?) can be independent of E. We provide a simple counterexample that shows
k t
that this is not possible in general.

Proposition 1. There exists a dataset such that if E = O(T?) for any B > 0 then Y, pr||wF — w¢|? =
Ugotp) -

Proof. Suppose that we have an even number of devices and each Fj(w) = n% >

*,k

J

" (x), — w)? contains data

j=1
points x,; = w** with n, = n. Moreover, the w**’s come in pairs around the origin. As a result, the global
objective F' is minimized at w* = 0. Moreover, if we start from Wy = 0, then by design of the dataset the
updates in local steps exactly cancel each other at each iteration, resulting in w; = 0 for all £. On the other
hand, if E = T#, then starting from any ¢ = O(T') with constant step size O(%) after E iterations of local
steps, the local parameters are updated towards w** with [|[wF, ;[|? = Q((T” - £)?) = Q(7%135). This implies
that

k — k
Y oelwiip — Wersl® =Y pulwi gl
k k
1

T2—25)

which is at a slower rate than % for any 8 > 0. Thus the sampling variance E|W; ; — Vi 1|*> =
Q> peE[WF y — Wi 1]|?) decays at a slower rate than -, resulting in a convergence rate slower than O()
with partial participation. O

=

E.2 Convex Smooth Objectives

In this section we provide the proof of the convergence result for FedAvg with convex and smooth objectives.
The key step is a one step progress result analogous to that in the strongly convex case, and their proofs
share identical components as well.

Lemma 6 (One step progress, convex case). Let W, = Zi\’=1 prwr in FedAvg. Under assumptions E
the following bound holds for all t:

51
E|[Wer — W + au(F(W:) = F(w") S E[[W, - w"[|* + af Zriaxo” + 60f B*LG?

Proof. The first part of the proof follows directly from Eq in the proof of Lemma (3| Setting =0 in
Eq (since we are in the convex setting instead of strongly convex), we obtain

N
— WP < W = WP e LY W - wE
k=1

Wit
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200 Y pi [Fe(w?) — Fi(W0)] + o?gi)1> + o Zpkak
k=1

The difference of this bound with that in the strongly convex case is that we no longer have a contraction
factor of 1 — pay in front of ||[W, — w*||%. In the strongly convex case, we were able to cancel o7 ||g,||* with

20y Zszl i [Fr(W*) — F,(W;)] and obtain only lower order terms. In the convex case, we use a different
strategy and preserve Zszl i [Fx(W*) — F,(W;)] in order to obtain the desired optimality gap.

We have
(=R szchFk(Wf)ll2

= ZkaFk (wy) ZPkVFk (We) +ZPkVFk (Wo)”
< 2||Zpkm wh) Zpkm ()l +2\|Zpkvzrk w2
<2r? Zpk”Wt = wil® 20 Y peVE (W)

e k

=20 pillwi — We|® + 2 VE(W,)|?
k

using VF(w*) = 0. Now using the L smoothness of F, we have |VF(W;)||?> < 2L(F(w;) — F(w")), so that

[Wier1 — w*||?
N N

<o =W+ el Yy pul| W — Wil 200 Y p [Fi(w”) — Fi(We)]
k=1 k=1

+ 207 L2 Zpk”Wt W% + 407 L(F(W;) — Pioi

HMZ

=W — W[ + (20§ L* + o L) ZkaIWt wi +atzpk Fi(wW") = Fi(w)]
k=1 k=1

N
+a7 > pioq + a(1 — 40, L) (F(w*) — F(W))

k
Since F(w*) < F(W;), as long as 4oL < 1, we can ignore the last term, and rearrange the inequality to
obtain

[Wer1 = W[ + ou(F (W) — F(w™"))

N
< Wy — w1 + (20717 + aeL) Y il — Wf\\2+atzpk0k
k=1

— 3 —
<[|we —w* + gatLZpkHWt - wi|? +aj Zpkak
k=1

The same argument as before yields E Eszl pr|[W: — wh||? < 4E%a2G? which gives
e — W+ o (F(57) ~ F(w*)) < % — W'+ 02 3" po? + 602 E2LG2
k=1

51
S ||Wt - VV*H2 + at Nl/maxo— + 6at E2LG2
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With the one step progress result, we can now prove the convergence result in the convex setting, which we
restate below.

Theorem 2. Under assumptions E and constant learning rate oy = O(4/ %), FedAug satisfies

min F(W;) — F(w*) = O (

Vmax 0> n NE?LG?
t<T

VNT T
with full participation, and with partial device participation with K sampled devices at each communication
round and learning rate oy = O(\/g%

min F(%,) — F(w*) = O (

Vmaxo—2 E2G2 I(EQL(;2
t<T

VKT (VET T

Proof. We first prove the bound for full participation. Applying Lemma [f] we have

[Wei1 = w|* + au(F(We) = F(w")) < [[W0 = w"[|* + af Triaxo” + 607 B LG
Summing the inequalities from ¢ = 0 to ¢t = T, we obtain
T T 1
D an(F(Wi) = F(w")) < [lwo — w*[|* + > a7 - Vim0 + Zat 6E*LG?
t=0 t=0 t=0
so that
T
?%i:rpl F(w:) — F(w") < Z <||W0 — w2+ Z ol N Vi 0%+ Zat 6E2LG2>
t=0 & t=0
By setting the constant learning rate a; = %, we have
1 1 N 1 1 N ..
min F(W;) — F(w*) < — - |lwo — W*||? + —=T - — - —v2,.0° + —=T(y/ = )6 E*LG?
t<T ( t) ( ) = \/W || 0 H \/ﬁ T N \/ﬁ ( T)
1 1 N N
<— wo = WP+ —=T " = - =V’ 0%+ =6E*LG?

1
0?)—— + —6F%LG?
)\/NT T

)

(”WO -w ||2 + Vmax

v: o2 NE?LG?

_ ( max

VNT T

For partial participation, the one step progress bound in Lemma [6] is updated in a similar manner as the
strongly convex case in @ to incorporate the sampling variance. More precisely, with partial participation,

E|Wis1 — w*|? = E[Wig1 — Vi1 + Ve — w||?

= E|[Wit1 — Veg || + E[|[Vegr — w7,

where Ew, 1 = V41 for all ¢, by the unbiasedness of our sampling schemes. Since v; = Zszl pkvf always
averages over all devices, the full participation one step progress bound in Lemma [f] applied to ¥; implies

" 5 1
E[[Vis1 = w|* + au(F(¥:) = F(w) S E[[¥: = WI* + af T 150x0” + 607 E*LG?

< E|w; — w*|? o? + 60 E*LG?

+ at N Vmax
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The bound for E||[W;, 1 —V¢1]|? for the two sampling schemes we consider is provided in Eq @), and applying
it to the above bound we can write the one step progress for partial participation as

E[Wi1 — w2 + a(F (W) - F(w") < E|[W, - w*[]* + o 0% +C) + 6E°La}C?,

1
(N max
where C' = %EQG2 or %%EQGQ depending on the sampling scheme.

Summing up the one-step progress over ¢,

min F(w;) — F(w*) < <||w0 — w2+ Zat . z/maxa +0O)+ Zat 6E2LG2>

t<T
= Zt:o t=0
so that with a; = %, we have

o . Umaxo?  E?G?  KE?LG?
rtlél%lF(wt)—F(w) (’)(\/7—1-\/7 T ).

F Proof of Convergence Results for Nesterov Accelerated FedAvg

F.1 Strongly Convex Smooth Objectives

Recall that the Nesterov accelerated FedAvg follows the updates

Vi =W = ik, Wi = Vis1  BuVE = Vi) if£+1¢ Lo,
+ ) + ZkGSf,-H qx [V?—H + Bt(vf—&-l - Vf)} ift+1eZg.

The proofs of convergence results for Nesterov Accelerated FedAvg consists of components that are direct
analogues of the FedAvg case. We first state these analogue results before proving the main theorem. Like
before, the proofs of the lemmas are deferred to after the main proof.

Lemma 7 (One step progress, Nesterov). Let v, = Zk 1pkvt mn Nestemv accelerated FedAvg, and
suppose our functions satisfy Assumptions E E and set step sizes oy = ﬁ el Bi_1 = 14(t+7)(177) ST PTY!
t+y

with v = max{32k, E} and k = %, the updates of Nesterov accelerated FedAvg satisfy

E[Vert — w2 < E(L— pae) (14 Bi—)*[¥: — W' + 20E2LadC? + (1 — ag) B2, [|(Fim1 — w1

1 * — *
+ 0 S thn0® + 201 (14 Br-a) (1= o) [0 = |- [y = |

The one step progress result makes use of the same bound on the gradient variance in Lemma [4] as well as a
divergence bound analogous to Lemma |5, which we state below.

Lemma 8 (Bounding the divergence of w?, Nesterov). Given Assumption and assume that oy is

non-increasing, oy < 20q1 g, and 287, +2a2 < 1/2 for allt >0, W, = ZIJLI prwF in Nesterov accelerated
FedAvg satisfies

N
E [zpkuwt . waQ] < 16(F — 123G

k=1
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Theorem 3. Let vp = Z,ivzl pkvl} in Nesterov accelerated FedAvg and set learning rates oy =

o 3 . . . .. .
Bi_1 = T (0 25 ma] Then under Assumptions E ﬁ | with full device participation,

2 212m2
EF(VT)F*O(””“‘""‘U /“+”EG/”),

NT T2

and with partial device participation with K sampled devices at each communication round,

KVmax02 /1t n kE?G? /1 n K2E*G?/p
NT KT T2 '

EF(vr) — F* =0 <

Proof. We first prove the result for full participation. Applying the one step progress bound in Lemma [7] we
have

E[[virr — wi? <E(L — pai)(1+ Bi-1)?|[9e — w*||* + 20E°LaG? + (1 — aups) 371 | (Ve — w12
1 € = *
+ afNVmaXUQ + 26114 Br—1) (1 — ) [[7¢ — W™ - |[Vp—1 — W7

Recall that we require oy, < 2y for any t —tg < E— 1, Lay < L, and 282 | + 2a} < 1/2 in order for
Lemmas [§ and [7] to hold, which we can check by definition of and By.

2 2 2 2 2
We show next that E||v; — w*[|? = O(¥=ezZ /ny B Lg /17 by induction. Assume that we have shown

E|¥; — w*|?> < b(Ca? + Day)

for all iterations until ¢, where C = 20E2LG?, D = ]1, V2.0, and b is some constant to be chosen later. For
; [izes 3 6_1 - 3
step sizes recall that we choose ay = /7= and Bi—1 = T (0 25 max (1] where v = max{32k, E'}, so
that 8;_1 < oy and
(1= pae)(1 + 14B,1) £ (1= )1+ ————)
— po 1 - e
t+y t+71 - %)
o 6 n 3 1 3 _ g Mo
t+v t+7v t+ 2

Moreover, E[|v;—; — w*|? < b(Ca?_; + Day_1) < 4b(Ca? + Day) with the chosen step sizes. Therefore the
bound for E|[¥v;;; — w*||? can be further simplified with

26;-1(1+ Bi-1)(1 = app)B[[ve — W™ - [[Vi—1 = W[ <4B1(1+ Br—1)(1 — apps) - b(Caf + Davy)
and
(1 = atp) B E[[(Fem1 — W) < 4(1 — aup) B7_y - b(Caf + Day)
so that
E[[Veir — w[? < (1= pae) (1 + Be-1)? + 481 (1 + Be1) +457_1) - b(Caf + Day)
+ 20E2LafG2 + a?%umaxaz
E(1 - ,uat)(l +14B;_1) - b(Ca? + Day) +20E?LaG? + af%umax(ﬂ
<b(1 - )(Caf + Day) + Ca? + Da?

o pove

= (b(1 — 5 N+ a)e?C + (b(1 - T) + o)y D
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and so it remains to choose b such that

(67
(b(l — %) + Ott)Oét S bat+1
(b(1 = E51) + ar)a < baty,

from which we can conclude E||v;41 — w*||? < a?,;C + oy 11 D.

With b= %, we have

o 3 6 6
b(l — — = (b(1 —
P =St adac= 00 = () L) e+ )
7(bt+'y—3 6 ) 6
Oty ()t + )
t+v—1 6
<b
< t+y )Mt+v)
6
b—— =b
SVt + D) Q41

t4y—1 1

where we have used Gz S Tt

Similarly

Hoey 2 _ _ 3 6 0
(b1 = =) +a)ar = 00 = (72 + 57 Gy

)2
t+~y—3 6 6

_ 2
= t+y u(t+7))(u(t+v))
oty =2 6 9
= t+ 7y )(u(t+v))

< L_boﬂ
TRty +1)2 0

t+v—2 < 1

where we have used Gr? S G

Finally, to ensure ||vop — w*||? < b(Ca + Day), we can rescale b by c||vg — w*||? for some c. It follows that
E||v; — w*||? < b(Ca? + Day) for all t > 0. Using the L-smooothness of F,

E(F(Vr)) - F* = E(F(vr) - F(w"))
L L 6
< SE[vr = w'|* < Sclvo — w*|*=(Dar + Cai)
2 2 n
= 3c||vo — w*||*s(Dar + Ca2)

6 1 ) o 6
02+ 20E2LG? (————
w(T+~) N™ (M(T+7)

K 1 s 1 K2

1
= O(= —vpax0° - — + —E*G? - —
O(MNV o T+N G T2)

)2

< 3c|vo — w*|*k

With partial participation, the same argument with an added term for sampling error yields

KlVmax 0> kE?G? KZE?G?
N 2 /1

EF(Wr) = F" = O(—x7 KT 7= )
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F.1.1 Deferred proofs of key lemmas

Proof of lemma[8 The proof of bound for E Zi\f:l pr||[W¢ — w¥||? in the Nesterov accelerated Fed Avg follows
a similar logic as in Lemma [5] but requires extra reasoning. Since communication is done every E steps,
for any ¢t > 0, we can find a ty < ¢ such that t —tg < E — 1 and w,’fo = Wy, for all k. Moreover, using a; is
non-increasing, ay, < 204, and B < o for any t —tg < E — 1, we have

N N

EY il W = whl> =B prllwi — Wi, — (W0 — We,)|1?
k=1 k=1
N

<EY  prllwy — Wi, |
k=1

N
= EZpkHwt WtOH2

t—1
= EZPkH Z Bi(viy —vE) =) cuginl?

= to i_to
< QZPkEZ — 1)o?||gikll® +22pk]EZ — DB (vE = vD)I?
1= to i= to
< 22%2 o2 (lgil2 + 11w,y = vE)2)
1=to
N t—1
<4y pEY (B -1)aiG?
k=1 i=to

<4(E —1)%a;, G* < 16(E — 1)%a;G?
where we have used E|[vF —vF | ||? < G2. To see this identity for appropriate s, 8;, note the recursion

k k k k
Vit1 = Ve = Wy =Wy — (08t — t—18t—1,k)
k

k k k
Wip) — Wy = —q8k + ﬁt(vt+1 - Vi)
so that

Vf+1 - Vf = ——18t-1k T 6t71(vf - Vf_l) —(0uger — —18t—1k)

= 5t71(Vf - fol) — 8tk
Since the identity vi,; — v = B,_1(vF — vi_;) — aug: 1 implies
EHVfﬂ = Vil <287 Ellvi - viiy|? + 207G

as long as ay, ;1 satisfy 262 ; +2a2 < 1/2, we can guarantee that E||[vF —v¥_,||2 < G2 for all k by induction.
This together with Jensen’s inequality also gives E||¥; — v;_1]|? < G? for all ¢. O

Now we are ready to prove the one step progress result for Nesterov accelerated FedAvg. The first part of the
proof is identical to that of the FedAvg case, while the main recursion takes a different form.

Proof of lemma[7 We again have

[Vesr — w1 = [|(W; — cvegy) — w|?
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and using exactly the same derivation as the FedAvg case, we can obtain the following bound (same as Eq
in the proof of Lemma |3):

N

E[Wes1 = w*|* S E(1 — pae) [We = w*|* + e L) pil|We — wi|* + o Zpkak
k=1

+ajL? ZPkHWt wil|? + of LE|ge||* — of [ VF (W) ||
k=1

Different from the FedAvg case, we no longer have w; = v;. Instead,

W = w*1” = Ve + i1 (Ve = Veor) — w|?
= [[(1+ Be-1) (Ve = W*) = Bro1 (V1 — W) |2
= (L4 Be-1)* 9 = W = 2801 (1 + Bo-1) (Ve — W, Vi1 = W) + B4 | (Vo1 — W)
< (14 B9 = W12 + 2801 (1 + B ) IVe = W - Vo1 — W[ + B2 [[(Femr — wH)|1?

which gives a recursion involving both ¥; and v;_1:

[We1 = wH? < (1 — o) (L4 Beo1)? Ve = w12+ 2(1 — app) B (1 + Be1) |9 — W' - [[We1 — W + of Zpio’i

N

+ 671 (1= aup)|(Veoy = WP + L Y pullwe — wi | + oL Y pul|we — wi | + o LG?
k=1 k

and we will using this recursive relation to obtain the desired bound.

We can check that our choice of ay and 3 satisfy ay is non-increasing, oy < 2a44 g, and 282 | +2a? < 1/2

for all ¢t > 0, so that we can apply the bound from Lemma |8l on E Z,If:l pr|[W¢ — wF||? to conclude that, with

Vmax ‘= N - maxg Pk,

E|[vip1 — w2 <EQ — poy)(1+ Bi—1)? ||, — w*||2 + 16 E2La’G? + 16 E* L% 0t G? + o LG?
N

+ (1= )i l|(Vemr = WP+ af Y- pRoft +26-1(1+ Be-1) (L — ) [Ve — W[ - [Femr — w7
k=1

S E(1 — pae) (1 + Be-1)?[[Ve — w*I|* +20E°Lag G? + (1 — awpt) B | (Vo1 — W)

1 —_ * — *
+ 0F S Vimax0® + 2001 (1+ Bioa) (L= o) 9 = W |- [y = W'

where we have used 02 = Zk pka,%, and by construction our «; satisfies Lo, < %

F.2 Convex Smooth Objectives

In this section we provide proof of the convergence result for Nesterov accelerated FedAvg with convex
and smooth objectives. Unlike with the Fed Avg algorithm, where convex and strongly convex results share
identical components, the proof for the convergence result in the convex setting for Nesterov FedAvg uses
a change of variables, although the general ideas are in the same vein: we have a one step progress bound
for E||[Wy 11 — w*||? + n:(F(W;) — F(w*)), which is then used to form a telescoping sum that gives an upper
bound on min;<p F(W;) — F(w*).

Lemma 9 (One step progress, convex case, Nesterov). Let W; = Zk | PEWY in Nesterov accelerated

FedAvg, and define ny = 13% . Under assumptions E the following bound holds for all t:

B
ﬁG

1
E|We1 — W2 + 0 (F(We) = F(W")) < E[We — w*||* + 32LE*a{neG? + 1} Vinax

NO' —+ 277t
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Theorem 4. Set learning rates oy = B = O(4/ %) Then under Assumptions 4 Nesterov accelerated
FedAvg with full device participation has rate

. _ N Umax02  NE?LG?
ItTél%lF(Wt)—F —O(W-I— T >,

and with partial device participation with K sampled devices at each communication round,

min F(w,) — F* = (9(

Umax02  E?G? KE?LG?
t<T

VKT ' VET T

Proof. Applying the bound from Lemma |§|7 with 7, = 12@ we have

E[[Wei1 — w|* + 0 (F(We) — F(w")) < E[W, — w*||” + 32LE*a{1:G* + 1} Vmax tﬁ G

NU + 277t

Summing the inequalities from ¢t = 0 to ¢t = T, we obtain

T
S m(F(w) — F(w")) < |[wo — *H2+Zm vmaxo +Zmat 32LE2G2+Z27% B

t=0 t=0 6

so that

min F'(w;) — F(w*) <
t<T Zt o7l

2
<w0—w ||2+Z77t‘  VmnaxO —|—Zntat 32LE2GQ+Z2ntlﬁtﬁ G2>
t=0 TPt

/N
By setting the constant learning rates a; = ,/% and f; = ¢4/ % so that n; = 1%—@ =L <2 %, we

1—c

have

1 (2 2 N 1 2 1 N3 22 2 N 32
< Nwo —wH|* + —=T " = —Vmax0” + —=T(\/ =)°32LE*G" + —T(\/ =)°G
ST [wo | ~TL TN ~T W 7) ~T W 7)

+ = (32LE*G? + 2G?)

Vimax 0> n NE?LG?
VvVNT T

O(
Similarly, for partial participation, we have

T
min F(w;) — F(w") < E <||W0— *H2—|—Zat l/maxO' +C)+ Zaf.GEQLG2>
t=0 O

t<T
t=0

where C' = %EQG2 or %%EQGQ, so that with oy = 1/% and By =¢ %, we have

Umax02  E?G?  KE?LG?
min F(w;) — F(w*) = O(2— + +
W) = P = OO Y kst )
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F.2.1 Deferred proofs of key lemmas

2

Proof of lemma[9 Define p, := lf—tﬂt [Wi — W1 + augi1] = f—tﬂt(vt — V1) for ¢ > 1 and 0 for t = 0. We
can check that

«
Wit + P = Wi P — &
1—5
Now we define z; := W; + P, and n, = 12‘—%1 for all ¢, so that we have the recursive relation
Zi11 =2 — N8t
Now
[Ze 1 — w*I* = ||z — mege) — w2

= ||(Ze — mg — W) — ne(ge — gt)HQ

=A1+ Ay + A3
where

Ay = |7 — w* —mg)?

Ay = 2ny(Zs — W — 118, 8y — 8t)
As =}l — &
where again EA; = 0 and EA; < n? >, pioi. For A; we have
[~ W~ = 7~ I 20— W)+ [

Using the convexity and L-smoothness of Iy,

—20,(Z — W, &)

N
= =20, Y p(Z — w*, VE(w}))
k=1
N N
= =20 pr(@ — wi, VE(W)) = 200 Y pi(wi — w*, VF(wy))
k=1 k=1
N N N
= =2 Y pi(Z — Wy, VER(WE)) — 200 Y pie(We — WE, VER(WE)) = 2 > pr(wi — w*, VE(w}))
k=1 k=1 k=1
N N N
< =200 Y (T — Wi, VER(WE)) = 200 D pr (Wi — Wi, VER(WE)) + 200 > pr(Fr(w™) — Fi(w}))
k=1 k=1 k=1
al L
<20 Y e [Fulwh) = Filw) + £ o~ wh1 + Fyfw) — Fi(o)]
k=1
N
— 200y pi(Z — Wi, VEL(WE))
k=1
N N N
=Ly prl[We = WP 4200 Y pr [Fe(w*) = Fo(Wo)] = 200 Y pr(@e — Wi, VEL(w)))
k=1 k=1 k=1

which results in

N N
E[Wi — w2 <E[W, — w2 + 5L S pillw — whI2 + 2003 p [Fr(w*) — Fi(w0)]
k=1 k=1
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+ ntQHEt”Q + 1 ZpkUk —2n Zpk Zy — Wt7VFk(Wt )
k=1 k=1

As before, ||g,||? < 2L% Y, prllwh — Wi||2 + 4L(F(W;) — F(w*)), so that

N
81 + e Y pr [Fi(w™) = Fi(We)] < 2L ZpkHwt = Wil|* +0e(1 — dne L) (F(w") — F(Wy))
k=1

< 2L%n; ZpkHWt - wi|?
k

for 1 < 1/4L. Using S p_, pil[W: — wh[? < 16E202G? and Y5, p07 < Umax 02, it follows that
N
E[Wer1 — W |* +m(F(W,) = F(w*)) < E[We — w*||* + (L + 2L%07) Y pel[we — wi||* + 777 Zpk%

— 20> pi(Ze — Wi, VE(w)))

1
< E|w; — w*|* + 32LE*a?n,G* + n?umaxﬁag
— 2n, Zpk<2t — Wy, VFk:(W?»

if ny < i It remains to bound Eszzlpk@t — Wy, VFi(wF)).  Recall that z, — W; =

2
25 W = Wi+ g = 125 (Vi — Vi) and B[V, — 9,42 < G2, B[ VE(wh)|? < G2

Cauchy-Schwarz gives

N
IEZpk<zt Wi, VE (W) Zpk\/IEHzt Wi |2 - \/E||VEL(wF)[]2
k=1
? >
G
T 10
Thus
o * (12 = * = *(12 2 2 2 2 1 2 BtQ 2
El[Wirr = W™ + 0 (F(We) = F(w")) < E[Wy = w™[[" + 32LE i G + 1 Vinax 370 + 21t 3 G
— Bt
O

G Proof of Geometric Convergence Results for Overparameterized Problems

G.1 Geometric Convergence of FedAvg for general strongly convex and smooth objectives

Theorem 5. For the overparameterized setting with general strongly convex and smooth objectives, FedAvg
with local SGD updates and communication every E iterations with constant step size & = ﬁ%
gives the exponential convergence guarantee

N

L e
(W) < 5 (1= @) [[wo = w'lI* = Ofexp(—5 5y —

2

)t) [lwo —w?)

Proof. To illustrate the main ideas of the proof, we first present the proof for £ = 2. Let t — 1 be a
communication round, so that wf_l = W;_1. We show that
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[Wer = w* < (1= aep) (1 = a1 p) [Wey — w72

for appropriately chosen constant step sizes oy, a;—1. We have

(W1 — W = [(We — cuge) — W

= [We — w|* = 200(W: — w*, g0) + o | |®
and the cross term can be bounded as usual using p-convexity and L-smoothness of Fj:

— 204 B (W — W™, g1)

= 2 Zpk<Wt —w*, VE,(wh))
k=1

N N
= 2 ZPk(Wt — WP, VE(wh)) — 204 Zpk(wf —w*, VF(wh))

k=1 k=1
N N
< =20y Y pr(Wi — Wi, VE(WE)) + 200 Y pr(Fr(wW*) = Fi(WF)) — aepe > pl|wf — w*|>
k=1 k=1
al L
<3003 | Pl Bl + 1% w14 () Fito)] o Zpk -
N N
— 0oL ol - wEIP 42003 e [Fe(w?) — Fu(w)] — aupllwi — w2
k=1 k=1
N N
= LY pellWi — will® = 200 Y pFi(W) — [ W — w*|°
k=1 k=1
and so
N
E[Wer1 — W[ E(— ap)|[W; — w*|* = 20, F (W) + of g > + e LY pie[We — wi||?
k=1

Applying this recursive relation to |w; — w*||? and using ||W;_; — w¥_,||> = 0, we further obtain

E[[Wei1 —w|> SE(1 = ap) (1= ap1p)[[We1 — WH[|* = 2001 F(We1) + oy g1 %)
N
— 20, F(We) + of |lgel|® + LY pi[ W — wi||?
k=1
wi[?

Now instead of bounding ng Pr||We — using the arguments in the general convex case, we follow [Ma

et al| (2018) and use the fact that in the overparameterized setting, w* is a minimizer of each ¢(w, xi)

and that each ¢ is I-smooth to obtain ||V Fy(W;_1,&F 1)||? < 20(Fy(Wi_1,&F 1) — Fp(w*,£F 1)), where recall
Fy(w, &k ) = t(w,&F 1), so that

Zpk”Wt th2 Zpk”Wt 1~ ¢—18t—1 —

k=1

N
Zpka?—l lge—1 — gtfl.,k”?
k=1
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N
=ai, ZPk(Hgt_LkHz — llge-1ll?)
k=1

N

=i, ZPkHVFk(Wt—hgfq)HQ — iy llgall
k=1
N

<ai,y ZkaZ(Fk(Wt—hff—l) — F(w* 680) —af_y gl
k=1

again using W, _; = w¥ ;. Taking expectation with respect to & ;’s and using the fact that F(w*) = 0, we
have

N

N
Eia Y el W — wil® < 2007 Y peFu(Wi1) — oy l|gif?
k=1 k=1

=20} \F(Wi—1) — o}y |lge—1 ]

Note also that

N
lge-1l? = 1Y oV Ex(Weo1, 6502

k=1
while
N N N
lgell® = 1Y peVE(wE, €7 < 20 S pe V(W )17 + 21D pe(VEF(We, §F) — VE(wE, )]

k=1 k=1 k=1

N N

<2 e VE(WL )P+ 2> pul® [ — wi||?
k=1 k=1

Substituting these into the bound for |[W;y; — w*||?, we have

E[[Wi1 — W[ SE(1 = ayp)((1 — ar1p) [Wi1 — W[ = 204 1 F(Wi1) + of 4 [|ge1][?)
N
— 20, F(Wy) + 207 || Y pe V(W1 )| + (21707107 + avaf L) (2LF(Wi—1) — |lge-1?)
k=1
=E(1l - ap)(1 — apap)[[Wer — w2

N
=200 (F(W¢) — au| ZkaFk(Wt7§f)||2)
k=1

lay—1 (2020 L
— 20, 1 (1 — aup) <(1_ a1 (200 + au L)

N
— A — —
P - “|2pkvmwt_1,§f_1>|ﬁ>

2
k=1
from which we can conclude that
E[Wiyr — w*[? < (1 — ) (1 — a1 p) B[, — w2
if we can choose ay, ;1 to guarantee

N

E(F(W:) — cu| > peVE(Wi, £))17) > 0
k=1
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lag_1 (20202 + oy L 1,
E((l— AR 0, i, ) M S VR €I 2 0

1 —ap —
Note that
N N N
Bl > e VE(We, €)1 = B ) o VEFR(We, ), > pe V(W &F))
k=1 k=1 k=1

=

N
= PRENVE(W, )P+ )Y  pipkB(VE (W, &), VF; (W, &)

1 k=1j#k

N
piEtHVFk(Wt,ﬁf)HQ + Z ijpk<VFk(Wt)a VE;(We))

k=1 j 2k
N N N

= PREVE(WL NP+ DD pipn(VE(W), VE;(W1)) — > pil VEe(Wy)]
k=1j=1 k=1

IN

PREIVEL(We, €)% + 1) pu V(W)

1
k - NVminH Zk:kaFk(Wt)||2

= 11+ I+ 1+

1 _
— 5 Vanin) [V F (W) |

PRV Ey (W, £)]1> + (1 N

=
Il
—

1—

and so following [Ma et al.| (2018) if we let iy = min{ 52 2lumxv ST } for a g € [0,1] to be optimized later,

we have

N
Ei(F(We) — o] Y piVE(W:, 6)I)

k=1
N N ]
> K, ZPka(Wt) -y szEtHVFk(Wtagf)Hz +01- Nl/min)HVF(Wt)”2
k=1 k=1
- <. ¢k 1 = kY2 - 1 — V|12
> D pr(aFi(We,§7) = 0 5 Vmax | VR (W1, €0)I17) + (1= @) F(W1) = (1 = Sovmin) [VE (W)|2)
k=1

N

> 4B Y (Fu(0,68) — 5 [VE (0 €8)[) + (1 = ) (F(w) = 5[V F(w)P)
k=1

>0

again using w* optimizes Fj(w,&F) with Fj(w*,&F) =0
1—

_7umul)
the fastest convergence, and this translates to a; =

1 N 0
2 Wmax+L(N—vmin)

} over ¢ € [0 1], we see that ¢ = MW results in
N

2m. Next we claim that a1 =

o . gN
Maximizing oy = min{5Z"—, ST
c

also guarantees

lag_1(21%02 + oy L)
1 —ap

Qi1

N
1Y ok VE(Wi1, &8P > 0
k=1

E(1 - VF(Wyi—1) —
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Note that by scaling a;_1 by a constant ¢ < 1 if necessary, we can guarantee
condition is equivalent to

l—op

N

F(Wi—1) — o] ZkaFk(Wt_1,§f_1)||2 >0
k=1

which was shown to hold with [e T} S %m
For the proof of general F > 2, we use the following two identities:

N N
lgel® <20 peVE( )17 + 2> pil® (W — wi|?
k=1 k=1

lag 1 (2l2o¢f+at L)

< %, and so the

N N
B ol — whl? < E2(1+ 2202 _1) Y pul W1 — whoy P + 82 IR (W0 1) — 202, g
k=1

k=1

where the first inequality has been established before. To establish the second inequality, note that

N N

ZpkHWt —wi|* = ZPkHWt—l — 181 — Wi+ o181

k=1 k=1
N

<23 pe (IWemt — Wiy 2 + w181 — 18— 1))

k=1

and

? — lge-1ll)

> ollge-re =gl =D prlllge-1e
k k

= ZpkHVFk(Wtflvff—l) + VF/C<W§;17§§71) - VFk<Wt—17§ff1)||2 - ||gt71H2
k

<2 pi (IVFe(Wio1, )17 + Pllwi_y — Wi ]) = llga |l
k

so that using the l-smoothness of £,

N
EY pillw, — wi
k=1

N
< E2(1+21%af_4) ZPkHWt—l —wi_y|? +4ai Zpk”VFk(Wt—laff_l)”Q — 2074 [|ge—1 12
k=1 k
N

<E2(1+20%07 1) Y pillWeo1 — Wiy [P + 407120 pr(Fi(Weo1, &) — Fr(w™, €5.1)) — 207 [|ge-1 |
1 k

k

Prl[Weo1 = Wiy [|* + 8af yLF(Wi—1) = 207, [|ge—1

] =

=E2(1 +21%a7_,)

=
Il
—

Using the first inequality, we have

E[Wir1 - w2 < E(L - ag)|[W, — w'[?

N
— 20, F(W1) + 207 | Y pp VE(We, €6)1?
k=1
N
+ (20217 + L) Y pil| Wy — w2
k=1
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and we choose a; and a;—; such that E(F(W;) — oyl Ziv:l PV Fe(Wi, E))?) > 0 and (20212 + a4 L) <
(1 — azp) (202112 + ay—1L)/3. This gives

N
E[[Wi1 — w|> SE(1 = ae)[(1 = apo1p)[Weoy — W*|)? = 204 1 F(Wio1) + 207, | > ppVEe(Wio1, 65|
k=1
N N
+ (207117 + ar 1 L) prl[ W1 — wisy [P+ ) pellwe — wi[1%)/3]
k=1 k=1
Using the second inequality
N N
D ool W = Wil < E2(1 42007 1) Y prl|[We1 — Wi [* + 807 1 1P (W) — 2074 [lge |
k=1 k=1
and that 2(1 + 21202 ;) <3, 2a? 1> + a1 L < 1, we have
El[w — wl? < E(L— a1 — ar 1)W1 — |
N
— 2041 F(Wy_1) 4 207, || Zpkak(WtflaEfflﬂﬁ +8af 1 IF(W;-1)
k=1

N
+ (20717 + oy 1 L) 2D pel[ Wiy — wiy )]
k=1
and if a;_1 is chosen such that

N
(F(Wi-1) — 4oy lF(Wi-1)) — a1 | Y oV E(Wio1,620)[7 > 0
k=1

and
(202 1> + oz 1 L)(1 — cp_1p) < (202 51% + 0y _oL)/3

we again have

N
E[Wes1 — w1 < E(1 - ap) (1 — armap)[[Wim1 — w*|2 + (20750 + araL) - (23 pulWios — wh_[2)/3]
k=1

Applying the above derivation iteratively 7 < F times, we have

E[[Wipr — WP SE(1—am) - (1 = rorp1p)[(1 = apr o) [ Wiy — w2
N
=204 F (Wi r) + 207 || Y ok VE(Wir, &P + 8707 IF (W)
k=1
N
+ (207 P 4o D) (T + 1)) prlWir — Wi |?)]
k=1

as long as the step sizes a;_, are chosen such that the following inequalities hold

(207 PP+ a; L)1 — o rp) < (207 1P +a; 7 1L)/3
2(1+20%a?_ ) <3
207 PP+ L<1
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N

(F(Wi—r) =417 F(Wi—r)) — ar || ZkaFk(Wt—T7£f—T)H2 >0
k=1

- .1 N . . ,
We can check that setting cay—r = ¢ T LN —om) for some small constant ¢ satisfies the requirements.

Since communication is done every E iterations, W, = Wfo for some ty >t — E , from which we can conclude
that

t—to—1
Elw, —wl? < ( [[ (1 - news))llwe, — w|?
T=1
N _
<(1-ck )t [y, — w2

- a CE leax + L(N - Vmin)

and applying this inequality to iterations between each communication round,

_ X W N .
Bllw, WP < (1= e ) wo — w7
max min
Iz N .
= O(exp( t))l[wo — w*|>

FE leax + L(N - Vmin)

With partial participation, we note that
E|[Wir1 — W = E[Wis1 — Vo1 + Vi — w2

= E[[Wer1 — Ve + El[Vir — w*|

1 ) _ — *
=% > pkBIwh = W || + Bl — w2
!

and so the recursive identity becomes

B[t — w2 < E(L— arp) - - (1= arrpan) [(1 — g pa) [Wir — w1

N
=20 F(Wir) + 207 || Y ok VFe(Wi 7, &5 )|” + 8707 IF (W, )
k=1
1 N
# (20F P o Lot (4 1) D iy = w1
which requires
1 1
(20&?_7_12 + Oét_TL + ?)(1 - Oét_.,-u) § (20&?_7_112 + Oét_.,-_lL + ?)/3
2(1+20%a?_ ) <3
1
207 1> +ay_ L+ 7 <1
N
(F(Wt,-,-) — 4T0[t77—lF(Wt,7—)) — Oétf.,—H Zpkak(Wtf‘ﬁ 5577')”2 2 0
k=1

to hold. Again setting ay;_,
requirements.

= cﬁm for a possibly different constant from before satisfies the

Finally, using the L-smoothness of F,

N

1% * (|2
L T _
F lvmm 7 LN — o) ))|lwo —w|

L
F(wr) = F(w") < JE|[wr - w*|* = O(Lexp(~
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G.2 Geometric Convergence of FedAvg for Overparameterized Linear Regression

We first provide details on quantities used in the proof of results on linear regression in Section [5} Recall

that the local device objectives are now given by the sum of squares Fi(w) = 5.— Z?ﬁl(wai —z])?, and
there exists w* such that F(w*) = 0. Define the local Hessian matrix as H* := - 37%F, x (x])7, and
the stochastic Hessian matrix as Hf := £F(¢)T, where ¢F is the stochastic sample on the kth device at

time ¢. Define [ to be the smallest positive number such that E||¢F||2¢F(¢F)T < IH” for all k. Note that
| < maxy ; ||x7|/%. Let L and p be lower and upper bounds of non-zero eigenvalues of H*. Define r1 :=1/u
and k := L/u. The condition number x; is important in the characterization of convergence rates for FedAvg
algorithms. Note that k1 > k.

Let H=)", prH”. In general H has zero eigenvalues. However, because the null space of H and range of H
are orthogonal, in our subsequence analysis it suffices to project w; — w* onto the range of H, thus we may
restrict to the non-zero eigenvalue of H.

A useful observation is that we can use w*Tx] — z] = 0 to rewrite the local objectives as Fi(w) =
Hw—w H (w—w*)) = 3||lw— w*|%,:
T 1
F(w) = 5= 3 (Whxpy =25 = (Wy = 25))" = 5— ) (W= w")Tx )
ki k=

1 * * 1 *
:§<W—W 7Hk(W—W )>:§HW—W ||%{k-

so that F(w) = %[|lw — w*[|%.

Finally, note that EH} = LS xi(xi)T = H* and g, = VF.(wF, &) = HF(w} — w*) while

Nk J

& = Yoo PRV ER (W, &F) = 00 pHE (wf — w*) and g, = 331, peHM (wf — w?)

Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every E

iterations with constant step size @ = O(%W) has geometric convergence:

NT
E(Vmax'k;l + (N - l/min))

BF(wr) < O (Lex(- wo —w[).

Proof. We again show the result first when £ = 2 and ¢ — 1 is a communication round. We have

W1 — W = (Wi — cuge) — W
= ||[W: — w*|? — 20 (W, — W, g) + a7 llg:)?
and

—204Ei (W — W™, g¢)
N

= 2y ZPk(Wt —w", VFk(Wf»
k=1

N N
= 2 Zpk<Wt —wF VEL(wh)) — 204 Zpk(wf —w*, VF(wh))
k=1

k=1
N N
= 2 Zpk<Wt —wF VEL (W) — 24 Zp;&wf —w* HY(wh — w"))
k=1 k=1
N N
= 20y Zpk<Wt — Wi VEF(wh)) — day Zkak(wf)
k=1 k=1
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N N
L
< 200> pr(Fu(wh) = Fu(wi) + 5 [W0 = whI?) — 400 3 prF(w)
k=1 k=1

N N N
=LY plWe — Wil = 200 Y prFu(Wy) — 200 Y prFi(w))
k=1 k=1
N

N
=LY pelWe — Wil — Y pi{(We — w*), B (Wy — W) — 200 Y prFi(wr)
k=1

and

N
'k k *
lgell® = 1Y peHF (wh —w)|>

k=1

N
=Y o Hi (W — w") + ZP}«H - wy)|I?
k=1

N
<2/ Y peHE (W — w)|* + 2] Zpkﬂf(Wf - W)l

k=1 k=1
which gives
N N
B[ — w2 < B~ w? = a0 Y p(we - w B - w) o+ 202 0 ek (- w2

k=1 k=1

N N

+ ol prll e — Wi + 202 Zpka — W)l 200 3 prFi(w))
k=1 k=1

following Ma et al.| (2018) we first prove that

N
E|w, —w*|* — o > pi{(Wr — w"), H (W, —w +2at\|zpkH w, —w)|?
k=1
N
8(Vmaxl‘q/l + (N - Vmin))
with appropriately chosen a;. Compared to the rate O(m) = (Mm) for general

strongly convex and smooth objectives, this is an improvement as linear speedup is now available for a larger
range of V.

We have

IN

(1- JE|[W: —w*|?

N
Eo|| Y peHE (W, — w)|?

k=1

N N
> peHE (W —w*), Y pHE (W — W)
=1 k=1

Il Il
M= D= 1= &
B

N
PRENEF W — w2+ pipkE (L (W — w*), H (W, — w*))

k=1 j#£k

N
PREHE (W, — wh)[P + DY pipiE(H (W, — w*), B (W, — w"))

k=1 j#k
N N N
= S REEE - WP+ D0 pim B H (- ), B (% - w)) = Y p [HE (- w)
k=1 k=1j=1 k=1

41



Under review as submission to TMLR

N N
= D BREEF (W — WP+ || D peH (W - WP = Y pi|HN (W — W)
k=1 k k=1

1 *
~Vmin|| § pka(Wt - W )”2
k

N
< YA = W)+ | - -
k

k=
N

1 1 *
>~ Nymax ;pkEtHHf(Wt - W )”2 + (1 -

A

1 — %
N”min)” > peHF (W, —wh)|)?
k

/\

1 1
< Numaxl Zpk (W —w*), H¥ (W, — w*)) + (1 — Nl/min)” %:Pka(Wt —wh)|?
1

= —Vnmaxl (W — W), H(W; — w*)) + (1 = —Vpin) (W — W, H2(W; — w*))

N N
using ||[HF|| < 1.

Now we have

N N
E[w, —w*|* —a: Y pi((w, — w*), HY (W, — w")) + 207 Y peHE (W, — w")|* =
k=1 k=1
Vrnaxl N — Vmin — *
(W — w*, (I — oy H 4 203( H+ H?))(W, — w"))
N N
and it remains to bound the maximum eigenvalue of
Vimax! N — v
T — H 9 2/ Ymax H mlnHQ

and we bound this following [Ma et al.| (2018). If we choose a; < ( then

N
2(Vmax!+(N—vmin)L)’

Vmaxl N — Vmin ¢42
—a;H + 207 H + H?) <0
¢ i(—y N )
and the convergence rate is given by the maximum of 1 — ay A + 20(?(”‘#“1)\ + %/\2) maximized over
the non-zero eigenvalues A of H. To select the step size o that gives the smallest upper bound, we then
minimize over o4, resulting in

i Vmaxl N — v
o e s )
U< s (N D) A>0:3v,Hv=M\v

Since the objective is quadratic in A, the maximum is achieved at either the largest eigenvalue Apax of H or
the smallest non-zero eigenvalue A, of H.

When N < 4”““" + 4Vmin, i.e. when N = O(l/Amin) = O(k1), the optimal objective value is achieved at

Amin

Amin and the optimal step size is given by ay = The optimal convergence rate (i.e. the

N
4(Vmax!+(N—Vmin ) Amin) ©

optimal objective value) is equal to 1 — (V‘naxl+(lyv)‘“‘u‘:;“])/\m‘n) 1- %(umaxm+]2]N—um;n))' This implies that

when N = O(ky), the optimal convergence rate has a linear speedup in N. When N is larger, this step size is

no longer optimal, but we still have 1 — 8 O ﬁ?’Nﬂ, ) s an upper bound on the convergence rate.

Now we have proved

1 N

B~ w P < (1 g ))>E||Wt —w?
max min
N N
oLy pellw, = wh | + 207 ZpkH F- WP~ 200 prFr(wh)
k=1 k=1
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Next we bound terms in the second line using a similar argument as the general case. We have

N N
207> prHF(wWh —W)[I° < 20717 pel[Wr — wh|?
k=1 k=1
and
N N
B pullw — whll? < E2(1+ 2202 ) S pul[ Wi — wh_y |2 + 8aZ_ LF(W,_1)
k=1 k=1

=402 1wy — W HW,_ —w"))

and if a4, a1 satisfy

1 N

1L+ 207
8(Vmax'%1+(N_Vmin)))(at 1L+ at—l)/3

oL +202 < (1—

2(1+2%a? ) <3
o L+ 201? <1

we have

E|[We 1 —w*[|?

N
1 N -
<(1-=2= Ellw, ;1 — *(12 W1 — *Hif— * 22 ka_ *\ (|2
<( S(Vmamer(N—umin)))[ [We—1 = w[* — ar(Wimy — w", HWi oy — ™) + at||kz::1pk (W —wo
N
+ (1L +2071) -2 pil[Wia — Wi [P +daf_ [(Wy g — W H(W o — W)
k=1

. . o N
and again by choosing a1 = ¢ S N =) for a small constant ¢, we can guarantee that

E[[Wi—1 — w*[|* — a1 (W1 — w*, HWy_q — w™)
N
+207 1> e L (Wi = W)+ daf (W1 — w L H(Wo1 — w'))
k=1
N
16(Vmaxl + (N - Vmin))\min)

<(1-c JE[[wi_ — w|?

For general E, we have the recursive relation

1 N 1 N
E||Wipr — w||2 <E(1 — ¢= o (l—ec— Wiy — W2
|| i || - ( 8 (l/maxh:l + (N - l/min))) ( 8T (Vmaxﬂl + (N - Vmin)))[H k ||
N ~
e (W — W W, — w207 | S pHE (W, — w2
k=1
+ 4T04t2_1l<Wt_1 — W*, H(Wt_l — W*)>
N
+ (207 P+ a L) (T 4+ 1) Y pl Wi — Wi )]
k=1

N
Vmax !4 (N —=Vmin) Amin

as long as the step sizes are chosen a;_, = ¢ e 3 such that the following inequalities hold

(202 1> +ay_.L)

< (1= arp)(20]_; 1 I* + asr1L)/3
2(1+20%af ) <3
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207 P+o; L<1
and

HWtf‘r -w" H2 - Oéth(Wth - W*7 Hwtfr - W*>
N
+207 | S B (W — WP + 470l [(Wey — w (W, — W)
k=1
N
8(7 + 1) (Vmaxti1 + (N — Vmin))

<(l-c JE|[Wi—r — w1

which gives

1 N
E <5 * (12 < 1 o t _ * (12
Hwt w || = ( C8E (Vmax/il I (N — Vmin))> HWO w ||
1 N
= O(exp(—— t)||wo — w*||?
(exp(~ o T (N = om)) DlIwo I
and with partial participation, the same bound holds with a possibly different choice of c. O

H Details on Experiments and Additional Results

We describe the precise procedure to reproduce the results in this paper. As we mentioned in Section [6]
we empirically verified the linear speed up on various convex settings for both FedAvg and its accelerated
variants. For all the results, we set random seeds as 0, 1,2 and report the best convergence rate across the
three folds. For each run, we initialize wy = 0 and measure the number of iteration to reach the target
accuracy €. We use the small-scale dataset w8a [Platt| (1999), which consists of n = 49749 samples with
feature dimension d = 300. The label is either positive one or negative one. The dataset has sparse binary
features in {0,1}. Each sample has 11.15 non-zero feature values out of 300 features on average. We set the
batch size equal to four across all experiments. In the next following subsections, we introduce parameter
searching in each objective separately.

H.1 Strongly Convex Objectives

We first consider the strongly convex objective function, where we use a regularized binary logistic regression

with regularization A = 1/n & 2e — 5. We evenly distributed on 1,2, 4,8, 16, 32 devices and report the number

of iterations/rounds needed to converge to e—accuracy, where ¢ = 0.005. The optimal objective function value

f* is set as f* = 0.126433176216545. This is determined numerically and we follow the setting in [Stich (2019).
nc

The learning rate is decayed as the 7; = min(ny, ?), where we extensively search the best learning rate

c€ {27 ey, 27%¢y, ¢, 2co, 2%¢o}. In this case, we search the initial learning rate ng € {1,32} and ¢o = 1/8.

H.2 Convex Smooth Objectives

We also use binary logistic regression without regularization. The setting is almost same as its regularized
counter part. We also evenly distributed all the samples on 1,2,4,8,16,32 devices. The figure shows the
number of iterations needed to converge to e—accuracy, where ¢ = 0.02. The optiaml objective function
value is set as f* = 0.11379089057514849, determined numerically. The learning rate is decayed as the
1 = min(no, 1"—;5), where we extensively search the best learning rate ¢ € {27 tcg, 272¢q, ¢g, 2¢, 2%¢o}. In this
case, we search the initial learning rate ny € {1,32} and ¢y = 1/8.

H.3 Linear regression

For linear regression, we use the same feature vectors from w8a dataset and generate ground truth [w*, b*|
from a multivariate normal distribution with zero mean and standard deviation one. Then we generate label
based on y; = xtw* + b*. This procedure will ensure we satisfy the over-parameterized setting as required
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in our theorems. We also evenly distributed all the samples on 1,2,4,8,16,32 devices. The figure shows
the number of iterations needed to converge to e—accuracy, where ¢ = 0.02. The optiaml objective function
value is f* = 0. The learning rate is decayed as the 1 = min(7o, 1”—_@), where we extensively search the best

learning rate ¢ € {27 ¢, 272¢, o, 2¢o, 22¢o }. In this case, we search the initial learning rate 1o € {0.1,0.12}
and c¢g = 1/256.

H.4 Partial Participation

To examine the linear speedup of FedAvg in partial participation setting, we evenly distributed data on
4,8,16, 32,64, 128 devices and uniformly sample 50% devices without replacement. All other hyperparameters
are the same as previous sections.

H.5 Nesterov accelerated FedAvg

The experiments of Nesterov accelerated FedAvg (the update formula is given as follows) uses the same
setting as previous three sections for vanilia Fed Avg.

Yf+1 = Wf — 8tk
Wb Yt Byt —vi) ift+1¢7Ip
t+1 = )
Skesi, Wha T Byl —yt)) ift+lelp

We set 8; = 0.1 and search a; in the same way as 7; in FedAvg.

H.6 The impact of E.

In this subsection, we further examine how does the number of local steps (E) affect convergence. As shown
in Figure [2] the number of iterations increases as E increase, which slow down the convergence in terms of
gradient computation. However, it can save communication costs as the number of rounds decreased when
the F increases. This showcases that we need a proper choice of E to trade-off the communication cost and
convergence speed.
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Figure 2: The convergence of FedAvg w.r.t the number of local steps E.
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