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Abstract
In recent years, there has been a significant
amount of research focused on expanding the ex-
pressivity of Graph Neural Networks (GNNs) be-
yond the Weisfeiler-Lehman (1-WL) framework.
While many of these studies have yielded ad-
vancements in expressivity, they have frequently
come at the expense of decreased efficiency or
have been restricted to specific types of graphs.
In this study, we investigate the expressivity
of GNNs from the perspective of graph search.
Specifically, we propose a new vertex colouring
scheme and demonstrate that classical search al-
gorithms can efficiently compute graph represen-
tations that extend beyond the 1-WL. We show
the colouring scheme inherits useful properties
from graph search that can help solve problems
like graph biconnectivity. Furthermore, we show
that under certain conditions, the expressivity
of GNNs increases hierarchically with the ra-
dius of the search neighbourhood. To further
investigate the proposed scheme, we develop a
new type of GNN based on two search strate-
gies, breadth-first search and depth-first search,
highlighting the graph properties they can cap-
ture on top of 1-WL. Our code is available at
https://github.com/seanli3/lvc.

1. Introduction
Graph neural networks (GNNs) have emerged as the de-
facto method for representation learning on graphs. One
popular architecture of GNNs is the message-passing neural
networks (MPNNs) which propagate information between
vertices along edges (Gilmer et al., 2017; Kipf & Welling,
2017; Velickovic et al., 2017). In Xu et al. (2019), it is
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shown that the design of MPNNs aligns with the Weisfeiler-
Lehman (1-WL) test, a classical algorithm for testing graph
isomorphism. Therefore, the expressivity of MPNNs is
upper-bounded by the 1-WL test. Intuitively, if two vertices
have the same computational/message-passing graph in an
MPNN, they are indistinguishable.

Recent studies attempted to increase the expressivity of
GNNs beyond the 1-WL. One direction is to extend GNNs
to match higher-order WL tests (Morris et al., 2019; 2020;
Maron et al., 2019; Geerts & Reutter, 2022). While these
methods offer improved expressivity, they come at the cost
of decreased efficiency, as higher-order WL tests are known
to be computationally expensive. Another line of research
focuses on incorporating graph substructures into feature
aggregation (Bodnar et al., 2021b;a). However, these ap-
proaches often rely on task-specific, hand-picked substruc-
tures. One other strategy is to enhance vertex or edge fea-
tures with additional distance information relative to target
vertices (You et al., 2019; Li et al., 2020). Despite the ef-
forts, Zhang et al. (2023) have shown that MPNNs cannot
solve the biconnectivity problem, which can be efficiently
solved using the depth-first search algorithm (Tarjan, 1974).

In light of the aforementioned understanding, one may ques-
tion how the design of GNNs can surpass the limitations of 1-
WL to address issues that cannot be resolved by MPNNs. In
this work, we systematically study an alternative approach
to MPNN, which propagates information along graph search
trees. This paper makes the following contributions:

• We design a novel colouring scheme, called local ver-
tex colouring (LVC), based on breath-first and depth-
first search algorithms, that goes beyond 1-WL.

• We show that LVC can learn representations to dis-
tinguish several graph properties such as biconnectiv-
ity, cycles, cut vertices and edges, and ego short-path
graphs (ESPGs) that 1-WL and MPNNs cannot.

• We analyse the expressivity of LVC in terms of breadth-
first colouring and depth-first colouring, and provide
systematical comparisons with 1-WL and 3-WL.

• We further design a graph search-guided GNN archi-
tecture, Search-guided Graph Neural Network (SGN),
which inherits the properties of LVC.
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2. Related Work
Graph isomorphism and colour refinement. The graph
isomorphism problem concerns whether two graphs are iden-
tical topologically, e.g. for two graphs G and H , whether
there is a bijection f : VG → VH such that any two vertices
u and v are adjacent in G if and only if f(u) and f(v) are
adjacent in H . If such a bijection exists, we say G and H
are isomorphic (G ≃ H).

Let C be a set of colours. A vertex colouring refinement
function λ : V → C assigns each vertex v ∈ V with
a colour λ(v) ∈ C. This assignment is performed itera-
tively until the vertex colours no longer change. Colour
refinement can be used to test graph isomorphism by com-
paring the multisets of vertex colours {{λ(v) : v ∈ VG}} and
{{λ(u) : u ∈ VH}}, given that λ(·) is invariant under isomor-
phic permutations. A classic example of such tests is the
Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968),
which assigns a colour to a vertex based on the colours of
its neighbours. Cai et al. (1992) extends 1-WL to compute
a colour on each k-tuple of vertices; this extension is known
as the k-dimensional Folklore Weisfeiler-Lehman algorithms
(k-FWL). We may apply a colouring refinement to all ver-
tices in G iteratively until vertex colours are stabilised.

Let (G,λi) denote a colouring on vertices of G after apply-
ing a colour refinement function i times, i.e., after the i-th
iteration, and P (λi) a partition of the vertex set induced by
the colouring (G,λi). For two vertex partitions P (λi) and
P (λj) on G, if every element of P (λi) is a (not necessarily
proper) subset of an element of P (λj), we say P (λi) re-
fines P (λj). When P (λj) ≡ P (λj+1), we call λj a stable
colouring and P (λj) a stable partition of G.

GNNs beyond 1-WL. MPNN is a widely adopted graph
representation learning approach in many applications.
However, there are a few caveats. Firstly, as shown by
Xu et al. (2019), the expressive power of MPNN is upper-
bounded by 1-WL, which is known to have limited power in
distinguishing isomorphic graphs. Secondly, to increase the
receptive field, MPNN needs to be stacked deeply, which
causes over-smoothing (Zhao & Akoglu, 2019; Chen et al.,
2020) and over-squashing (Topping et al., 2022) that de-
grade performance. Recent research aims to design more
powerful GNNs by incorporating higher-order neighbour-
hoods (Maron et al., 2019; Morris et al., 2019). However,
these methods incur high computational costs and thus are
not feasible for large datasets. Other methods alter the
MPNN framework or introduce extra heuristics to improve
expressivity (Bouritsas et al., 2022; Bodnar et al., 2021b;a;
Bevilacqua et al., 2022; Wijesinghe & Wang, 2022). How-
ever, while these methods are shown to be more powerful
than 1-WL, it is still unclear what additional properties they
can capture beyond 1-WL.

GNNs in learning graph algorithms. Velickovic et al.
(2020) show that MPNN can imitate classical graph algo-
rithms to learn shortest paths (Bellman-Ford algorithm) and
minimum spanning trees (Prim’s algorithm). Georgiev &
Lió (2020) show that MPNNs can execute the more complex
Ford-Fulkerson algorithm, which consists of several com-
posable subroutines, for finding maximum flow. Loukas
(2020) further shows that certain GNN can solve graph
problems like cycle detection and minimum cut, but only
when its depth and width reach a certain level. Xu et al.
(2020) show that the ability of MPNN to imitate complex
graph algorithms is restrained by the alignment between its
computation structure and the algorithmic structure of the
relevant reasoning process. One such example, as shown by
Zhang et al. (2023), is that MPNN cannot solve the bicon-
nectivity problem, despite that this problem has an efficient
algorithmic solution linear to graph size.

3. Preliminaries
Let {·} denote sets and {{·}} multisets. We consider undi-
rected simple graphs G = (V,E) where V is the vertex set
and E is the edge set. We use |·| to denote the cardinal-
ity of a set/multiset/sequence, evu = {v, u} an undirected
edge connecting vertices v and u, and e⃗vu = (v, u) a di-
rected edge that starts from vertex v and ends at vertex u.
Thus, evu = euv and e⃗vu ̸= e⃗uv. We use d(v, u) to denote
the shortest-path distance between vertices v and u. A δ-
neighborhood of a vertex v is a set of vertices within the
distance δ from v, i.e. Nδ(v) = {u ∈ V : 1 ≤ d(v, u) ≤ δ}.
A path Pw0wk

of length k in G, called k-path, is a sequence
(w0, w1, ..., wk) of distinct vertices such that (wi−1, wi) ∈
E for i = 1, 2, ..., k.

Graph searching. Graph traversal, or graph searching,
visits each vertex in a graph. Breadth-First Search (BFS)
and Depth-First Search (DFS) are the two most widely used
graph search algorithms, which differ in the order of visiting
vertices. Both methods start at a vertex v. BFS first visits
the direct neighbours in N1(v) of v and then the neighbours
in N2(v) that have not been visited, etc. The idea is to
process all vertices in Ni of distance (or level) i from v
before processing vertices at level i + 1 or greater. The
process is repeated until all vertices reachable from v have
been visited. In DFS we instead go as “deep” as possible
from vertex v until no new vertices can be visited. Then we
backtrack and try other neighbours that were missed from
the farthest in the search paths until all vertices are visited.
The visited vertices and the edges along the search paths
form a BFS/DFS search tree. For example, the solid lines
in Figures 1b and 1c represent two different search trees for
the graph in Figure 1a. Given a graph, generally, there are
many ways to construct different search trees by selecting
different starting points and different edges to visit vertices.

2



Local Vertex Colouring Graph Neural Networks

<latexit sha1_base64="EeK1rDlOYjOZP8NH5Ug2a8pTzTQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf7ZcrbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAF2I2Y</latexit>v0

<latexit sha1_base64="jVoTTmPWPEG6WlwpYnyyiQExR+Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOl7/XLFrboLkHXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgrNRLNSaUjekQu5ZKGqH2s8WpM3JhlQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAHXI2Z</latexit>v1
<latexit sha1_base64="v6QN3jevaL5fQtOGOaTD1DBivRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6tX654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3pX1fp9vdKo53EU4QzO4RI8uIYG3EETWsBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcI4I2a</latexit>v2

<latexit sha1_base64="0ktMuVuY+qIJvavT4lg50GDJ3Tk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdy77JUrbtWdg6wSLycVyNHolb+6/ZilEUrDBNW647mJ8TOqDGcCp6VuqjGhbEQH2LFU0gi1n81PnZIzq/RJGCtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qwhs/4zJJDUq2WBSmgpiYzP4mfa6QGTGxhDLF7a2EDamizNh0SjYEb/nlVfJ0UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGNIHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w8KZI2b</latexit>v3
<latexit sha1_base64="XvnkJpWD1N5PTgrcY743twHRDRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uw1s/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbSuqt51tfZQq9RreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AEL6I2c</latexit>v4

<latexit sha1_base64="KJsuHKtG4jvRw++3NGtAQ/SfukM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2Jj2PAi8eI5gHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO5d9Uplt+LOQVaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOB02I31ZhQNqID7FgqaYTaz+anTsm5VfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14a2fcZmkBiVbLApTQUxMZn+TPlfIjJhYQpni9lbChlRRZmw6RRuCt/zyKmleVrzrSvWhWq5V8zgKcApncAEe3EAN7qEODWAwgGd4hTdHOC/Ou/OxaF1z8pkT+APn8wcNbI2d</latexit>v5

<latexit sha1_base64="EeK1rDlOYjOZP8NH5Ug2a8pTzTQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf7ZcrbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAF2I2Y</latexit>v0

<latexit sha1_base64="jVoTTmPWPEG6WlwpYnyyiQExR+Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOl7/XLFrboLkHXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgrNRLNSaUjekQu5ZKGqH2s8WpM3JhlQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAHXI2Z</latexit>v1
<latexit sha1_base64="KJsuHKtG4jvRw++3NGtAQ/SfukM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2Jj2PAi8eI5gHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO5d9Uplt+LOQVaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOB02I31ZhQNqID7FgqaYTaz+anTsm5VfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14a2fcZmkBiVbLApTQUxMZn+TPlfIjJhYQpni9lbChlRRZmw6RRuCt/zyKmleVrzrSvWhWq5V8zgKcApncAEe3EAN7qEODWAwgGd4hTdHOC/Ou/OxaF1z8pkT+APn8wcNbI2d</latexit>v5

<latexit sha1_base64="0ktMuVuY+qIJvavT4lg50GDJ3Tk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdy77JUrbtWdg6wSLycVyNHolb+6/ZilEUrDBNW647mJ8TOqDGcCp6VuqjGhbEQH2LFU0gi1n81PnZIzq/RJGCtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qwhs/4zJJDUq2WBSmgpiYzP4mfa6QGTGxhDLF7a2EDamizNh0SjYEb/nlVfJ0UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGNIHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w8KZI2b</latexit>v3
<latexit sha1_base64="v6QN3jevaL5fQtOGOaTD1DBivRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6tX654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3pX1fp9vdKo53EU4QzO4RI8uIYG3EETWsBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcI4I2a</latexit>v2

<latexit sha1_base64="XvnkJpWD1N5PTgrcY743twHRDRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uw1s/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbSuqt51tfZQq9RreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AEL6I2c</latexit>v4

(a)

<latexit sha1_base64="EeK1rDlOYjOZP8NH5Ug2a8pTzTQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf7ZcrbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAF2I2Y</latexit>v0

<latexit sha1_base64="jVoTTmPWPEG6WlwpYnyyiQExR+Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOl7/XLFrboLkHXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgrNRLNSaUjekQu5ZKGqH2s8WpM3JhlQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAHXI2Z</latexit>v1
<latexit sha1_base64="v6QN3jevaL5fQtOGOaTD1DBivRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6tX654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3pX1fp9vdKo53EU4QzO4RI8uIYG3EETWsBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcI4I2a</latexit>v2

<latexit sha1_base64="0ktMuVuY+qIJvavT4lg50GDJ3Tk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdy77JUrbtWdg6wSLycVyNHolb+6/ZilEUrDBNW647mJ8TOqDGcCp6VuqjGhbEQH2LFU0gi1n81PnZIzq/RJGCtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qwhs/4zJJDUq2WBSmgpiYzP4mfa6QGTGxhDLF7a2EDamizNh0SjYEb/nlVfJ0UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGNIHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w8KZI2b</latexit>v3
<latexit sha1_base64="XvnkJpWD1N5PTgrcY743twHRDRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uw1s/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbSuqt51tfZQq9RreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AEL6I2c</latexit>v4

<latexit sha1_base64="KJsuHKtG4jvRw++3NGtAQ/SfukM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2Jj2PAi8eI5gHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO5d9Uplt+LOQVaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOB02I31ZhQNqID7FgqaYTaz+anTsm5VfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14a2fcZmkBiVbLApTQUxMZn+TPlfIjJhYQpni9lbChlRRZmw6RRuCt/zyKmleVrzrSvWhWq5V8zgKcApncAEe3EAN7qEODWAwgGd4hTdHOC/Ou/OxaF1z8pkT+APn8wcNbI2d</latexit>v5

<latexit sha1_base64="EeK1rDlOYjOZP8NH5Ug2a8pTzTQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf7ZcrbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAF2I2Y</latexit>v0

<latexit sha1_base64="jVoTTmPWPEG6WlwpYnyyiQExR+Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOl7/XLFrboLkHXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgrNRLNSaUjekQu5ZKGqH2s8WpM3JhlQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAHXI2Z</latexit>v1
<latexit sha1_base64="KJsuHKtG4jvRw++3NGtAQ/SfukM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2Jj2PAi8eI5gHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO5d9Uplt+LOQVaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOB02I31ZhQNqID7FgqaYTaz+anTsm5VfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14a2fcZmkBiVbLApTQUxMZn+TPlfIjJhYQpni9lbChlRRZmw6RRuCt/zyKmleVrzrSvWhWq5V8zgKcApncAEe3EAN7qEODWAwgGd4hTdHOC/Ou/OxaF1z8pkT+APn8wcNbI2d</latexit>v5

<latexit sha1_base64="0ktMuVuY+qIJvavT4lg50GDJ3Tk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdy77JUrbtWdg6wSLycVyNHolb+6/ZilEUrDBNW647mJ8TOqDGcCp6VuqjGhbEQH2LFU0gi1n81PnZIzq/RJGCtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qwhs/4zJJDUq2WBSmgpiYzP4mfa6QGTGxhDLF7a2EDamizNh0SjYEb/nlVfJ0UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGNIHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w8KZI2b</latexit>v3
<latexit sha1_base64="v6QN3jevaL5fQtOGOaTD1DBivRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6tX654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3pX1fp9vdKo53EU4QzO4RI8uIYG3EETWsBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcI4I2a</latexit>v2

<latexit sha1_base64="XvnkJpWD1N5PTgrcY743twHRDRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uw1s/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbSuqt51tfZQq9RreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AEL6I2c</latexit>v4

(b) BFS

<latexit sha1_base64="EeK1rDlOYjOZP8NH5Ug2a8pTzTQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf7ZcrbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAF2I2Y</latexit>v0

<latexit sha1_base64="jVoTTmPWPEG6WlwpYnyyiQExR+Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOl7/XLFrboLkHXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgrNRLNSaUjekQu5ZKGqH2s8WpM3JhlQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAHXI2Z</latexit>v1
<latexit sha1_base64="v6QN3jevaL5fQtOGOaTD1DBivRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6tX654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3pX1fp9vdKo53EU4QzO4RI8uIYG3EETWsBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcI4I2a</latexit>v2

<latexit sha1_base64="0ktMuVuY+qIJvavT4lg50GDJ3Tk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdy77JUrbtWdg6wSLycVyNHolb+6/ZilEUrDBNW647mJ8TOqDGcCp6VuqjGhbEQH2LFU0gi1n81PnZIzq/RJGCtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qwhs/4zJJDUq2WBSmgpiYzP4mfa6QGTGxhDLF7a2EDamizNh0SjYEb/nlVfJ0UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGNIHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w8KZI2b</latexit>v3
<latexit sha1_base64="XvnkJpWD1N5PTgrcY743twHRDRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uw1s/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbSuqt51tfZQq9RreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AEL6I2c</latexit>v4

<latexit sha1_base64="KJsuHKtG4jvRw++3NGtAQ/SfukM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2Jj2PAi8eI5gHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO5d9Uplt+LOQVaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOB02I31ZhQNqID7FgqaYTaz+anTsm5VfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14a2fcZmkBiVbLApTQUxMZn+TPlfIjJhYQpni9lbChlRRZmw6RRuCt/zyKmleVrzrSvWhWq5V8zgKcApncAEe3EAN7qEODWAwgGd4hTdHOC/Ou/OxaF1z8pkT+APn8wcNbI2d</latexit>v5

<latexit sha1_base64="EeK1rDlOYjOZP8NH5Ug2a8pTzTQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf7ZcrbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4a2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAF2I2Y</latexit>v0

<latexit sha1_base64="jVoTTmPWPEG6WlwpYnyyiQExR+Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3dxvT1BpHssnM03Qj+hQ8pAzaqz0OOl7/XLFrboLkHXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgrNRLNSaUjekQu5ZKGqH2s8WpM3JhlQEJY2VLGrJQf09kNNJ6GgW2M6JmpFe9ufif101NeOtnXCapQcmWi8JUEBOT+d9kwBUyI6aWUKa4vZWwEVWUGZtOyYbgrb68TlpXVe+6WnuoVeq1PI4inME5XIIHN1CHe2hAExgM4Rle4c0Rzovz7nwsWwtOPnMKf+B8/gAHXI2Z</latexit>v1
<latexit sha1_base64="KJsuHKtG4jvRw++3NGtAQ/SfukM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV2Jj2PAi8eI5gHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO5d9Uplt+LOQVaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOB02I31ZhQNqID7FgqaYTaz+anTsm5VfokjJUtachc/T2R0UjrSRTYzoiaoV72ZuJ/Xic14a2fcZmkBiVbLApTQUxMZn+TPlfIjJhYQpni9lbChlRRZmw6RRuCt/zyKmleVrzrSvWhWq5V8zgKcApncAEe3EAN7qEODWAwgGd4hTdHOC/Ou/OxaF1z8pkT+APn8wcNbI2d</latexit>v5

<latexit sha1_base64="0ktMuVuY+qIJvavT4lg50GDJ3Tk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdy77JUrbtWdg6wSLycVyNHolb+6/ZilEUrDBNW647mJ8TOqDGcCp6VuqjGhbEQH2LFU0gi1n81PnZIzq/RJGCtb0pC5+nsio5HWkyiwnRE1Q73szcT/vE5qwhs/4zJJDUq2WBSmgpiYzP4mfa6QGTGxhDLF7a2EDamizNh0SjYEb/nlVfJ0UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGNIHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w8KZI2b</latexit>v3
<latexit sha1_base64="v6QN3jevaL5fQtOGOaTD1DBivRo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6tX654lbdBcg68XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPiv1UsMTysZ0yLuWKhpx42eLU2fkwioDEsbalkKyUH9PZDQyZhoFtjOiODKr3lz8z+umGN74mVBJilyx5aIwlQRjMv+bDITmDOXUEsq0sLcSNqKaMrTplGwI3urL66Rdq3pX1fp9vdKo53EU4QzO4RI8uIYG3EETWsBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcI4I2a</latexit>v2
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(c) DFS

Figure 1: Tree edges (green solid lines) and back edges
(black dashed lines) classified by BFS and DFS. The sub-
scripted labels v0, . . . , v5 denote the visit sequence of each
vertex, e.g. v1 is visited after v0.

Visiting order subscripting. Vertices being visited in a
graph search form a linear order. We use subscripts to label
this order based on their discovery/first-visited time (Cor-
men et al., 2022). Given a search tree, we say vi precedes
vj , denoted as vi ≺ vj , if vi is discovered before vj . i and
j are subscripts that indicate the relation: for all i and j,
vi ≺ vj if and only if i < j. Each vertex is discovered once,
so a subscript ranges from 0 to N − 1 in a graph G. v0 is
called the root. Figure 1 shows how the subscripting is used
to indicate vertex visiting orders.

Tree and back edges. For an undirected simple graph
G = (V,E), BFS/DFS categorise the edges in E into tree
edges and back edges.

Tree edges and back edges are both directed, i.e., (v, u) ̸=
(u, v). Let Tv denote a search tree rooted at vertex v. A tree
edge is an edge in the search tree Tv , starting from an early-
visited vertex to a later-visited vertex. A back edge starts
from a later-visited vertex to an early-visited vertex. A di-
rected edge (vi, vj) is either a tree edge (if i < j), or a back
edge (if i > j). For example, dashed lines in Figures 1b
and 1c represent back edges in BFS and DFS search trees,
respectively. In BFS, a back edge (vi, vj) connects vertices
at the same or adjacent level, i.e. d(v0, vi) = d(v0, vj) or
|d(v0, vi)− d(v0, vj)| = 1 (Cormen et al., 2022). For this
reason back edges in BFS are sometimes referred to as cross
edges. In DFS, a back edge (vi, vj) connects a vertex vi
and its non-parent ancestor vj ; therefore we always have
vj ≺ vi (or i > j).

We use ETv
tree and ETv

back to denote the tree edge set and the
back edge set with respect to a search tree Tv rooted at v.

4. Local Vertex Colouring
In this section, we introduce the building blocks of a search-
guided colouring scheme and demonstrate its expressive

power in distinguishing non-isomorphic graphs. We also
discuss how this search-guided colouring scheme can solve
the biconnectivity and ego shortest-path graph problems that
cannot be solved by MPNN.

4.1. Search-guided Vertex Colour Update

We first describe a way to update vertex colours guided by
graph searching. As described in Section 3, graph searching
w.r.t. a search tree Tv categorises edges into two sets: a tree
edge set ETv

tree and a back edge set ETv

back. Instead of prop-
agating messages along all edges like MPNN, we design
a scheme that propagates vertex information, i.e., vertex
colours, along tree edges and back edges. Given a search
tree Tv , we define the vertex colouring refinement function
on each vertex u as follows

λl+1(u) := ρ(λl(u), {{λl+1
v (u) : v ∈ Nδ(u)}}) (1)

where ρ(·) is an injective function and λl+1
v (u) is the vertex

colour computed, based on the search tree Tv , as

λl+1
v (u) :=

ϕ
(
λl(u), ψ

(
{{λlv(w) : w ∈ η(u,ETv

tree, E
Tv

back)}}
)) (2)

where ϕ(·) and ψ(·) are injective functions, and l is the
number of the current iteration. Let P(E) and P(V ) be
the power sets of E and V , respectively. The function
η : V × P(E)× P(E) → P(V ) takes a vertex u ∈ V to be
coloured, a tree edge set ETv

tree ∈ P(E), and a back edge set
ETv

back ∈ P(E) as input, and produces a vertex set in P(V ).

At the first iteration, λ0v(w) and λ0(w) are the initial colours
of w. There are two steps in the colouring scheme. The first
step is search-guided colour propagation (Equation (2)),
where vertex colours are propagated along the search paths
of each Tv based on η(u,ETv

tree, E
Tv

back). After this step, a
vertex u obtains a colour λl+1

v (u) w.r.t. each root vertex
v ∈ Nδ(u). We obtain in total |Nδ(u)| colours for u. The
second step is neighbourhood aggregation (Equation (1)),
where the |Nδ(u)| colours obtained from the first step are
aggregated and used to compute a new colour λl+1(u) for u.
These two steps are repeated with the new vertex colours.

When Nδ(v) ̸= V , we call this vertex colouring scheme δ-
local vertex colouring (LVC-δ). LVC-δ is applied to colour
vertices in G iteratively until vertex colours are stabilised.
We omit superscript and use λ to refer to a stable colouring.

Search order permutation. Graph searching may en-
counter cases where a search algorithm needs to decide
a priority between two or more unvisited vertices (a tie). In
such cases, the search algorithm can visit any vertex in the
tie. This yields different vertex visiting orders, we call this
permutation in vertex visiting order search order permuta-
tion. For example, in Figure 1b, the BFS rooted at vertex v0
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(c)

Figure 2: A graph and its vertex colours after the first BFC
iteration. 2a shows the uncoloured graph, where the vertex
colours obtained from 2b and 2c are shown next to each ver-
tex. 2b and 2c show BFC with two different roots (marked
with *), respectively, where each vertex is assigned a new
colour by BFC. The colour map is shown in the bottom left
corner. The subscripted labels v0, . . . , v5 denote the visit
sequence of each vertex, e.g. v1 is visited after v0. For
brevity, we show BFC with only two roots.

faces a tie, where it can visit either v1 or v2 first since both
v1 and v2 are adjacent to v0. Figure 1b shows the search
trajectory when visiting v1 first; however, if the BFS visits
v2 first, then tree edges and back edges will be different.

Design considerations. A key function that controls the
colouring in Equation 2 is η. For instance, we can make
LVC-δ identical to 1-WL, if we define η(u,ETv

tree, E
Tv

back) =

{w : (u,w) ∈ ETv
tree ∨ (w, u) ∈ ETv

tree ∨ (u,w) ∈ ETv

back ∨
(w, u) ∈ ETv

back}. We name it 1-WL-equivalent LVC. In this
definition, η effectively yields all neighbouring vertices of
u, making it equivalent to 1-WL.

Since the design of η is crucial, we hereby introduce two
key points that should be considered when designing η.

• η should be invariant to search order permutation, i.e.
a change of vertex visiting order should not alter the
output of η. If η is not invariant to search order permu-
tation, the colouring scheme will not be permutation
invariant. The 1-WL equivalent LVC example in the
previous paragraph is invariant to search order permu-
tation.

• η should inherit properties of a search algorithm
that are informative about identifying graph structure.
Graph searches like BFS and DFS are widely used in
graph algorithms to capture structural properties such
as cycles and biconnectivity. η should be designed
to incorporate such structural information in vertex
colours.

4.2. BFS-guided Colouring

BFS is perhaps the most widely used graph search algorithm
and its applications include finding shortest paths, minimum
spanning tree, cycle detection, and bipartite graph test. We
design η for BFS, denoted as ηbfc, as

ηbfc(u,E
Tv
tree, E

Tv

back) = (3){
o : (o, u) ∈ ETv

tree ∨
(
(o, u) ∈ ETv

back ∧ d(v, o) ̸= d(v, u)
)}

The part {o : (o, u) ∈ ETv
tree} preserves vertices that lead

to vertex u via tree edges. {o : (o, u) ∈ ETv

back} preserves
vertices that lead to vertex u via back edges. The condition
d(v, o) ̸= d(v, u) ensures only back edges connecting ver-
tices at different levels are included. The vertex colouring
scheme using ηbfc is called breadth-first colouring (BFC).

Figure 2 shows BFC rooted at two different vertices, where
the grey dashed lines indicate back edges that are excluded
by BFC. In Figure 2b, when u = v4, ηbfc returns v1 and v2,
but excludes v3 because it is at the same level as v4.

An important property of BFS is that tree edges form
the shortest paths between a root to other vertices, e.g.,
in Figure 2b (v0, v1) and (v1, v4) form the shortest path
(v0, v1, v4) between v0 and v4. There are two categories
of back edges in a BFS tree: the ones connecting vertices
across two adjacent levels and the ones connecting vertices
at the same level (Cormen et al., 2022). The first category
of back edges forms alternative shortest paths, e.g., (v0, v2)
and (v2, v4) form another shortest path (v0, v2, v4) between
v0 and v4. The second category of back edges does not
participate in any shortest path. ηbfc only preserves the first
category of back edges and excludes the second category
by the condition d(v, o) ̸= d(v, u). All shortest paths from
a root to a vertex, e.g., (v0, v1, v4) and (v0, v2, v4), form
an induced shortest path graph (SPG) (Wang et al., 2021),
which is permutation invariant. For example, if we swap
the search order between v1 and v2 in Figure 2b, (v1, v4)
becomes a back edge and (v2, v4) becomes a tree edge, but
ηbfc returns the same vertex set. Hence, BFC defined by
Equations 1, 2, and 3 is also permutation invariant.

BFC is referred as BFC-δ if the search range is limited to a
δ-hop neighbourhood for each root vertex.

Distinguishing shortest-path graphs. Velickovic et al.
(2020) show that MPNN can imitate classical graph algo-
rithms to learn shortest paths (Bellman-Ford algorithm)
and minimum spanning trees (Prim’s algorithm). Xu et al.
(2020) further show that MPNN is theoretically suitable for
learning tasks that are solvable using dynamic programming.
Since the base form of BFC (i.e. BFC-1) aligns with MPNN
(will be discussed later), BFC also inherits these properties.
However, we are more interested in tasks which BFC can
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do but MPNN cannot. We show that one of such tasks is to
distinguish ego shortest-path graphs.

Definition 4.1. For two vertices v, u ∈ VG, a shortest-path
graph SPG(v, u) is a subgraph of G, where SPG(v, u)
contains all and only vertices and edges occurring in the
shortest paths between u and v.

Lemma 4.1. Let (u, v) and (u′, v′) be two pairs of vertices.
Then SPG(u, v) ≃ SPG(u′, v′) if and only if one of the
following conditions hold under BFC: (1) λv(u) = λv′(u′)
and λu(v) = λu′(v′); (2) λv(u) = λu′(v′) and λu(v) =
λv′(u′).

Definition 4.2. Given a vertex v ∈ VG and a fixed δ ≥ 1,
an ego shortest-path graph (ESPG) Sv = (VSv

, ESv
) is a

subgraph of G, where VSv
= Nδ(v) and ES is the set of all

edges that form all shortest paths between v and u ∈ Nδ(v).
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Figure 3: A pair of non-isomorphic three-regular graphs.
Pink edges form ESPGs (δ = 2) for vertices v and u.

Lemma 4.2. Let v, u ∈ V be any two vertices and λ(v)
and λ(u) be the corresponding stable colours of v and u by
running BFC. We have Sv ≃ Su if and only if λ(v) = λ(u),
where Sv and Su are the ESPGs of v and u, respectively.

Lemma 4.3. MPNN cannot distinguish one or more pairs
of graphs that have non-isomorphic ESPGs.

Figure 3 shows a pair of graphs with non-isomorphic ESPGs
that BFC is able to distinguish but MPNN cannot.

4.3. DFS-guided Colouring

DFS is also a fundamental graph search method for graph
problems, including detecting cycles, topological sorting,
and biconnectivity. Unlike BFS whose search range grows
incrementally by hop, DFS explores vertices as far as possi-
ble along each branch before backtracking. Before introduc-
ing a DFS-guided vertex colouring, recalling that we must
have vj ≺ vi (or i > j) for any DFS back edge (vi, vj), we
introduce two concepts used in defining η for DFS.

Definition 4.3 (Back edge crossover). Let Tv be a search
tree rooted at vertex v ∈ V and ETv

back be the set of back
edges of Tv. A relation crossover ∤ on ETv

back is defined as
e⃗1 ∤ e⃗2, where e⃗1 = (vi1 , vj1) and e⃗2 = (vi2 , vj2), if one of
the following four conditions is satisfied:

(1) j2 < j1 < i2 < i1

{     }

{     }

{     }

{     }

{     }

{     }{     }

{     }{     }

{ }

{ }
{   }{  }

{    }{  }

{ }

{ }

(a)
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Figure 4: An uneven barbell graph and vertex colours after
the first DFC iteration. 4a shows an uncoloured graph,
where the vertex colours obtained from 4b and 4c are shown
next to each vertex. 4b and 4c show DFC with two different
roots (marked with *), where each vertex is assigned a new
colour by DFC. The colour map is shown on the left. The
subscripted label v0, . . . , v5 denote the visit sequence of
each vertex, e.g. v1 is visited after v0. For brevity, DFC is
shown with only two roots.

(2) j1 < j2 < i1 < i2

(3) j1 = j2, i1 ̸= i2

(4) i1 = i2, j1 ̸= j2

It is easy to see that ∤ is symmetric. That is, e⃗2 ∤ e⃗1 if
and only if e⃗1 ∤ e⃗2. For instance, in Figure 4b we have
(v2, v0) ∤ (v3, v1). In Figure 1c, we have (v3, v1) ∤ (v5, v2)
and (v5, v0) ∤ (v5, v2).
Definition 4.4 (Back edge cover). Let v ∈ V be a vertex,
Tv be a search tree rooted at vertex v, e⃗ ∈ ETv

back be a back
edge of Tv, and e⃗ = (vi, vj). We say that v is covered by e⃗,
denoted as v ⊣ e⃗, if and only if v ∈ PTv

vjvi , where PTv
vjvi is a

path from vj to vi, formed by tree edges of Tv .

In Figure 1c, we have v2 ⊣ (v3, v1). In Figure 4c, we have
v1 ⊣ (v2, v0).

Depth-first colouring (DFC). Given a vertex u ∈ V , we
define the set of back edges that cover vertex u as

QTv
u = {e⃗ : u ⊣ e⃗, e⃗ ∈ ETv

back} (4)

We then find all back edges that are transitively crossovered
by QTv

u . We define DTv,0
u = QTv

u for the first iteration. At
the k-th iteration, we define

∆DTv,k
u = {e⃗2 : e⃗1 ∤ e⃗2, e⃗1 ∈ DTv,k−1

u , e⃗2 ∈ ETv

back}

DTv,k
u := ∆DTv,k

u ∪DTv,k−1
u

5
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We use DTv
u to denote the set of all back edges that are

transitively crossovered by edges in QTv
u , i.e., when the

fixed point is reached. The set of vertices covered by at least
one back edge in DTv

u is defined as

BTv
u = {o : o ⊣ e⃗, e⃗ ∈ DTv

u , o ∈ V }. (5)

We design η for DFS, denoted ηdfc, as

ηdfc(u,E
Tv
tree,E

Tv

back) =

{o : (o, u) ∈ ETv
tree} ∪ {o : o ∈ BTv

u }
(6)

The part {o : (o, u) ∈ ETv
tree} preserves vertices that lead

to u via tree edges. {o : o ∈ BTv
u } preserves vertices that

are covered by the same back edges covering u, or by back
edges that transitively cover u.

The vertex colouring scheme defined using Equations 1,
2, and 6 is called depth-first colouring (DFC). DFC is re-
ferred to as DFC-δ if the search range is limited to a δ-hop
neighbourhood for each u ∈ V . Because ηdfc is permutation
invariant, it is easy to see that DFC-δ is also permutation in-
variant. Figure 4 shows an example of colouring an uneven
barbell graph using DFC. It can be seen that the vertices
at two ends of the barbell share the same colour, while the
vertices on the connecting path have different colours.

Lemma 4.4. ηdfc is invariant under search order permuta-
tion.

Distinguishing biconnectivity. We hereby show that DFC
is expressive for distinguishing graphs that exhibit the bicon-
nectivity property. Graph biconnectivity is a well-studied
topic in graph theory and often discussed in the context of
network flow and planar graph isomorphism (Hopcroft &
Tarjan, 1973). Zhang et al. (2023) first draw attention to
biconnectivity in the context of GNN and show that most
GNNs cannot learn biconnectivity.

A vertex v ∈ V is said to be a cut vertex (or articulation
point) in G if removing the vertex disconnects G. Thus,
the removal of a cut vertex increases the number of con-
nected components in a graph (a connected component is
an inducted subgraph of G in which each pair of vertices is
connected via a path). Similarly, an edge (v, u) ∈ E is a cut
edge (or bridge) if removing (v, u) increases the number of
connected components. A graph is vertex-biconnected if it
is connected and does not have any cut vertices. Similarly,
A graph is edge-biconnected if it is connected and does not
have any cut edges.

Lemma 4.5. Let G and H be two graphs, and {{λ(u) :
u ∈ VG}} and {{λ(u′) : u′ ∈ VH}} be the corresponding
multisets of stable vertex colours of G and H by running
DFC. Then the following statements hold:

• For any two vertices u ∈ VG and u′ ∈ VH , if λ(u) =
λ(u′), then u is a cut vertex if and only if u′ is a cut
vertex.

• For any two edges (u1, u2) ∈ EG and (u′1, u
′
2) ∈ EH ,

if {{λ(u1), λ(u2)}} = {{λ(u′1), λ(u′2)}}, then (u1, u2)
is a cut edge if and only if (u′1, u

′
2) is a cut edge.

• If G is vertex/edge-biconnected but H is not, then
{{λ(u) : u ∈ VG}} ̸= {{λ(u′) : u′ ∈ VH}}.

Corollary 4.1. Let u ∈ VG and u′ ∈ VH be two vertices,
and λ(u) = λ(u′). Then u is in a cycle if and only if u′ is
in a cycle.

4.4. Expressivity Analysis

Comparison with 1-WL. When δ = 1, it is easy to see
that search trees in BFC contain only direct neighbours of
the root and edges between the root and its neighbours, and
there are no back edges. Thus, we have the lemma below.

Lemma 4.6. BFC-1 is equivalent to 1-WL.

When δ = 1, search trees in DFC contain direct neighbours
of the root, edges between the root and the neighbours,
and edges between the neighbours. We have the following
lemma.

Lemma 4.7. DFC-1 is more expressive than 1-WL.

Corollary 4.2. When δ > 1, BFC-δ can distinguish one or
more pairs of graphs that cannot be distinguished by 1-WL.

Corollary 4.3. When δ ≥ 1, DFC-δ can distinguish one or
more pairs of graphs that cannot be distinguished by 1-WL.

Taking a pair of graphs - one is two triangles and the other
is one six-cycle - for example, these two graphs cannot be
distinguished by 1-WL. However, they can be distinguished
by BFC-2 and DFC-1 (Figure 5).

Figure 5: (Left) A graph pair can be distinguished by BFC-2
and DFC-1 but not by BFC-1 and 1-WL. (Right) A graph
pair can be distinguished by BFC-3 and DFC-2 but not by
BFC-2, DFC-1 and 1-WL.

Comparison with 3-WL. We can also show that, regard-
less of the choice of δ, BFC is no more expressive than
3-WL. This leads to the following theorem.
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Theorem 4.1. The expressive power of BFC-δ is strictly
upper bounded by 3-WL.

However, unlike BFS, DFC can distinguish graphs that can-
not be distinguished by 3-WL. For example, DFC-1 can
distinguish the strongly regular graph pair shown in Fig-
ure 6 which cannot be distinguished by 3-WL: the 4x4
Rook’s graph of 16 vertices (Laskar & Wallis, 1999) and the
Shrikhande graph (Shrikhande, 1959). In the 4x4 Rook’s
graph, each vertex’s 1-hop subgraph has a cut vertex, while
there is no cut vertex in the Shrikhande graph. So according
to Lemma 4.5, DFC-1 can distinguish these two graphs. On
the other hand, there are also graphs that 3-WL can distin-
guish but DFC-1 cannot. For example, the right graph pair
in Figure 5. Thus, we have the following theorem.

Theorem 4.2. The expressive powers of DFC-δ and 3-WL
are incomparable.

Figure 6: The 4x4 Rook’s graph and the Shrikhande graph
Arvind et al. (2020). Some edges are dashed for readability.

Expressivity hierarchy. The following theorem states
that there exists a hierarchy among the expressive powers
of BFC-δ when increasing δ.

Theorem 4.3. BFC-δ+1 is strictly more expressive than
BFC-δ in distinguishing non-isomorphic graphs.

Theorem 4.3 implies that BFC can be used as an alternative
way, separating from the WL test hierarchy, to measure the
expressivity of GNNs.

Nevertheless, DFC-δ does not exhibit a hierarchy. Figure 7
depicts two pairs of non-isomorphic graph pairs: one pair
can be distinguished by DFC-1 but not by DFC-2 while the
other pair can be distinguished by DFC-2 but not by DFC-3.
This leads to Theorem 4.4 below.

Theorem 4.4. DFC-δ+1 is not necessarily more expressive
than DFC-δ in distinguishing non-isomorphic graphs.

5. Search Guided Graph Neural Network
We propose a graph neural network that adopts the same
colouring mechanisms as BFC and DFC for feature propa-
gation. Let h(l)u be an embedding of vertex u after the l-th

Figure 7: Non-isomorphic graph pairs. A pair can be distin-
guished by DFC-1 but not by DFC-2 (Left). A pair can be
distinguished by DFC-2 but not by DFC-3 (Right).

layer. Our search-guided graph neural network propagates
embeddings over a graph via the following update rule:

h(l+1)
u = MLP

(
1 + ϵ(l+1)

)
· h(l)u ∥

∑
v∈Nδ(u)

h(l+1)
u←v


(7)

where

h(l+1)
u←v =

h(l)u +
∑

w∈ηv(u)

h(l)w←v

Wc (8)

where, h(0)u is the input vertex feature of u and ∥ is the
concatenation operator. h(l)w←v is the vertex representation
ofw obtained from a graph search rooted at v. When w = v,
we have h(l)v←v = h

(l)
v . Here, Wc ∈ RF×H is a learnable

parameter matrix, where F and H are the dimensions of
the input feature and hidden layer, respectively. Note that
we use the same Wc for all vertices in {u ∈ V : c =
d(u, v)}, which have the same shortest path distance c =
d(u, v) to vertex v. For brevity, we use ηv(u) to denote
η(u,ETv

tree, E
Tv

back).

For the model to learn an injective transformation, we use a
multilayer perceptron (MLP) and a learnable scalar parame-
ter ϵ adopted from Xu et al. (2019). The model architecture
closely matches the one in Equations 1 and 2, except that
ψ(·) is replaced with a summation, ϕ(·) is replaced by ma-
trix multiplication, and MLP is used in place for ρ(·).

We term the model as Search-guided Graph Neural Net-
work (SGN). When ηbfc(·) is used in place for ηv(·), we call
it SGN-BF. When ηdfc(·) is used, we call it SGN-DF.

Theorem 5.1. SGN defined by the update rule in Equations
7 and 8 and with sufficiently many layers is as powerful as
LV C.

Table 1: Time and space complexity comparison.

MPNN Graphormer-GD SGN-BF SGN-DF

Time |V |+ |E| |V |2 |V |+ |V |dδ−1 |V |+ |V |d2δ
Space |V | |V | |V |dδ−1 |V |d2δ
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Choice of δ. As of Theorem 4.3, a larger δ implies
higher expressivity for SGN-BF in distinguishing isomor-
phic graphs. However, increasing δ also increases the size
of ηv(u), which makes it more expensive to compute as
more aggregation operations are needed. Further, a larger δ
means a larger receptive field at each layer, which is more
likely to cause over-squashing (Topping et al., 2022) leading
to degrade performance on vertex-level tasks, e.g. vertex
classification on heterophilic graphs.

For SGN-DF, increasing δ does not necessarily increase ex-
pressivity (Theorem 4.4). However, having a larger δ means
that the model can detect larger biconnected components.
Therefore, in practice, we combine vertex representations
from δ = 1 with a larger δ for SGN-DF. This guarantees
that the model is more expressive than 1-WL and allows the
additional δ to be fine-tuned for each dataset and task.

Complexity. ηv(u) in Equation 8 only needs to be com-
puted once, along with graph searching. Therefore, the time
complexity to compute ηv(u) is on par with the adopted
graph searching. Both BFS and DFS have the worst-
case complexity O(|V | + |E|) for searching the whole
graph. Assuming d is the average vertex degree, when
the search is limited to Nδ(v), we have the complexity
O(dδ(1 + d)). We compute ηv(u) for each v ∈ V so in
total it is O(|V |dδ(1 + d)). Each layer in SGN (Equa-
tion 7) aggregates |Nδ(u)| vertex representation vectors for
each vertex. Each vertex representation further aggregates
|ηv(u)| vector in Equation 8, i.e., |Nδ(u)| · |ηv(u)| opera-
tions, or, O(dδ|ηv(u)|) in total. The magnitude of |ηv(u)|
can be very different for BFS and DFS, and varies from
graph to graph. In the worst case of BFS where every vertex
of hop δ + 1 is connected to every vertex of hop δ; thus
|ηv(u)| = 1−dδ

1−d . In the worst case of DFS, ηv(u) includes
all vertices in Nδ(u) which has the size of dδ . We compare
the time and space complexity of our model in Table 1 with
MPNN and Graphoormer-GD (Zhang et al., 2023).

6. Experiments
We evaluate SGN on two prediction tasks: vertex classifi-
cation and graph classification. SGN is implemented using
Pytorch and Pytorch Geometric (Fey & Lenssen, 2019). Ex-
periments are run on a single NVIDIA RTX A6000 GPU
with 48GB memory.

6.1. Vertex Classification

Datasets. We use three citation graphs, CORA, CITESEER
and PUBMED, and two Amazon co-purchase graphs, COM-
PUTERS and PHOTO. As shown in Chien et al. (2021)
these five datasets are homophilic graphs on which adja-
cent vertices tend to share the same label. We also use two

Table 2: Vertex classification results on homophilic datasets.

COMPUTERS PHOTO CITESEER CORA PUBMED

MLP 82.9±0.4 84.7±0.3 76.6±0.9 77.0±1.0 85.9±0.2

GCN 83.3±0.3 88.3±0.7 79.9±0.7 87.1±1.0 86.7±0.3

GCN+JK† - - 74.5±1.8 85.8±0.9 88.4±0.5

GAT 83.3±0.4 90.9±0.7 80.5±0.7 88.0±0.8 87.0±0.2

APPNP 85.3±0.4 88.5±0.3 80.5±0.7 88.1±0.7 88.1±0.3

ChevNet 87.5±0.4 93.8±0.3 79.1±0.8 86.7±0.8 88.0±0.3

GPRGNN 86.9±0.3 93.9±0.3 80.1±0.8 88.6±0.7 88.5±0.3

BernNet 87.6±0.4 93.6±0.4 80.1±0.8 88.5 88.5±1.0

H2GCN† - - 77.1±1.6 87.8±1.4 89.6±0.3

SGN-BF 90.7 96.1±0.2 78.0±1.0 88.7±0.1 90.2±3.5

SGN-DF 90.9±0.4 95.2±0.8 79.7±0.7 89.5±0.6 89.5±0.6

Table 3: Vertex classification results on heterophilic
datasets.

WISCONSIN CORNELL TEXAS CHAMELEON SQUIRREL

MLP 85.3±3.6 90.8±1.6 91.5±1.1 46.9±1.5 31.0±1.2

GCN 59.8±7.0 65.9±4.4 77.4±3.3 59.6±2.2 46.8±0.9

GCN+JK† 74.3±6.4 74.3±6.4 64.6±8.7 63.4±2.0 40.5±1.6

GAT 55.3±8.7 78.2±3.0 80.8±2.1 63.1±1.9 44.5±0.9

APPNP - 91.8±2.0 91.0±1.6 51.8±1.8 34.7±0.6

ChevNet 82.6±4.6 83.9±2.1 86.2±2.5 59.3±1.3 40.6±0.4

GPRGNN - 91.4±1.8 93.0±1.3 67.3±1.1 50.2±1.9

H2GCN† 86.7±4.7 82.2±4.8 84.5±6.8 59.4±2.0 37.9±2.0

SGN-BF 91.2±1.0 89.5±2.7 88.7±4.3 72.8±0.2 59.0±0.3

SGN-DF 84.1±3.6 83.2±5.8 86.8±5.2 56.6±3.0 47.0±1.5

Wikipedia graphs, CHAMELEON and SQUIRREL, and two
webpage graphs, TEXAS and CORNELL, from WebKB (Pei
et al., 2020). These five datasets are heterophilic datasets on
which adjacent vertices tend to have different labels. Details
about these datasets are shown in Table 7.

Setup and baselines. We adopt the same experimen-
tal setup as He et al. (2021), where each dataset is ran-
domly split into train/validation/test set with the ratio of
60%/20%/20%. In total, we use 10 random splits for each
dataset, and the reported results are averaged over all splits.

We compare SGN with seven baseline models: MLP,
GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2017),
APPNP (Klicpera et al., 2019), ChebNet (Defferrard et al.,
2016), GPRGNN (Chien et al., 2021), and BernNet (He
et al., 2021).

We perform a hyperparameter search on four parameters
in the following ranges: number of layers ∈ {1, 2, 3, 4, 5},
dropout probability ∈ {0.2, 0.5, 0.7, 0.9}, δ ∈ {1, 2, 3, 4},
and hidden layer dimension ∈ {64, 128}.

Observation. Results on homophilic and heterophilic
datasets are presented in Tables 2 and 3, respectively. Re-
sults marked with † are obtained from Zhu et al. (2020), and
other baseline results are taken from He et al. (2021).

From Tables 2 and 3, we can see that SGN generalizes to
both homophilic and heterophilic graphs in vertex classifi-
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cation tasks. Specifically, SGN-BF outperforms baselines
in 7 out of 10 datasets, while SGN-DF outperforms 3 out of
10. SGN-BF performs better than SGN-DF in heterophilic
graphs. We find that the number of vertices in Nδ(v) grows
much faster for SGN-DF than SGN-BF as δ increases. This
can be explained as the paths to reach each u ∈ Nδ(v)
from v are longer in DFS than that of BFS (in BFS the
path lengths are always less than or equal to δ). Therefore
more vertices are included in Nδ(v) for DFS. This further
implies more vertex features are aggregated for each vertex
in SGN-DF, resulting in over-squashing which degrades the
performance of SGN-DF on heterophilic graphs.

We also list the training runtime in Table 4. As expected,
as δ increases, the runtime of SGN-BF increases but stays
on par with GCN. When δ = 1, SGN-DF aggregates more
vertices thus is slower than SGN-BF

Table 4: Training runtime per epoch in seconds.

GCN
SGN-BF
(δ = 1)

SGN-BF
(δ = 2)

SGN-BF
(δ = 3)

SGN-DF
(δ = 1)

CORA 0.177 0.125 0.213 0.239 0.179
PUBMED 0.349 0.224 0.315 1.271 0.219
CHAMELEON 0.205 0.198 0.457 - 0.346

6.2. Graph Classification

Datasets. We evaluate SGN on graph classification
for chemical compounds, using four molecular datasets:
D&D (Dobson & Doig, 2003), PROTEINS (Borg-
wardt et al., 2005), NCI1 (Wale et al., 2008) and EN-
ZYMES (Schomburg et al., 2004). We also include a social
dataset IMDB-BINARY. Following Errica et al. (2020), for
molecular datasets, vertex features are a one-hot encoding
of atom type, with the exception of ENZYMES where ad-
ditional 18 features are used, whereas for IMDB-BINARY
the degree of each vertex is the sole vertex feature. Details
about these datasets are shown in Table 8.

Setup and baselines. We adopt the fair and reproducible
evaluation setup from Errica et al. (2020), which uses an
internal hold-out model selection for each of the 10-fold
cross-validation stratified splits.

We compare SGN against five GNNs: DGCNN (Zhang
et al., 2018), DiffPool (Ying et al., 2018), ECC (Simonovsky
& Komodakis, 2017), GIN (Xu et al., 2019) and Graph-
SAGE (Hamilton et al., 2017), as well as two variants of
the contextual graph Markov model: E-CGMM (Atzeni
et al., 2021) and ICGMM (Castellana et al., 2022). We also
include a competitive structure-agnostic baseline method,
dubbed BASELINE, from Errica et al. (2020).

We perform the hyperparameter search: number of layers ∈
{1, 2, 3, 4, 5}, dropout probability ∈ {0.2, 0.5, 0.7}, δ ∈
{1, 2, 3}, and hidden layer dimension ∈ {64}.

Table 5: Graph classification results.

D&D NCI1 PROTEINS ENZYMES IMDB-BINARY

BASELINE 78.4±4.5 69.8±2.2 75.8±3.7 65.2±6.4 70.8±5.0

DGCNN 76.6±4.3 76.4±1.7 72.9±3.5 38.9±5.7 69.2±3.0

DiffPool 75.0±3.5 76.9±1.9 73.7±3.5 59.5±5.6 68.4±3.3

ECC 72.6±4.1 76.2±1.4 72.3±3.4 29.5±8.2 67.7±2.8

GIN 75.3±2.9 80.0±1.4 73.3±4.0 59.6±4.5 71.2±3.9

GraphSAGE 72.9±2.0 76.0±1.8 73.0±4.5 58.2±6.0 68.8±4.5

E-CGMM‡ 73.9±4.1 78.5±1.7 73.3±4.1 - 70.7±3.8

ICGMM‡ 76.3±5.6 77.6±1.5 73.3±2.9 - 73.0±4.3

SGN-BF 76.3±3.2 78.8±2.9 74.0±3.9 64.8±7.2 71.4±7.1

SGN-DF 78.01±4.0 81.0±1.4 76.1±1.6 66.9±7.5 72.3±5.4

Observation. Results are presented in Table 5. Results
marked with ‡ are obtained from Castellana et al. (2022),
and other baseline results are taken from Errica et al. (2020).

We first observe that SGN-DF outperforms other GNNs and
CGMM variants consistently. SGN-DF also outperforms
BASELINE on 4 out of 5 datasets. Although SGN-BF also
yields competitive results on several benchmarks, it does
not perform better than SGN-DF. This suggests that the
graph properties captured by SGN-DF, such as biconnectiv-
ity, might be useful to classify such graphs.

7. Conclusion
Inspired by the 1-WL test, we propose a new graph colour-
ing scheme, called local vertex colouring (LVC). LVC itera-
tively refines the colours of vertices based on a graph search
algorithm. LVC surpasses the expressivity limitations of
1-WL. We also prove that combining LVC with breath-first
and depth-first searches can solve graph problems that can-
not be solved with 1-WL test.

Based on LVC, we propose a novel variant of graph neural
network, named search-guided graph neural network (SGN).
SGN is permutation invariant and inherits the properties
from LVC by adopting its colouring scheme to learn the
embeddings of vertices. Through the experiments on a
vertex classification task, we show that SGN can generalize
to both homophilic and heterophilic graphs. The result of
the graph classification task further verifies the efficiency of
the proposed model.
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A. Summary of Notations
We summarise the notations used throughout the paper in Table 6 below.

Table 6: Summary of notations.

Symbol Description

{·} a set
{{·}} a multiset
| · | cardinality of a set/multiset/sequence
P(·) a power set
G, H undirected graphs
V a vertex set
E an edge set
e⃗vu directed edge from vertex v to u
(v, u) a vertex sequence of a directed edge
d(v, u) shortest distance between vertex v and u
Nδ(v) a set of vertices within δ hops of vertex v
Pvu a path from vertex v to u
(w0, w1, ..., wk) a vertex sequence in a path
Tv a search tree rooted at vertex v
v ≺ u v precedes u in search visiting order
v ≻ u v succeeds u in search visiting order
ETv

back a back edge set of the search tree Tv rooted at vertex v
ETv

tree a tree edge set of the search tree Tv rooted at vertex v
G ≃ H G and H are isomorphic
C a set of colours
λ : V → C a colour refinement function that assigns a colour in C to a vertex in V
λv : V → C a colour refinement function that assigns a colour in C to a vertex in V , based on a graph search rooted at vertex v
η(u,ETv

tree, E
Tv
back) a function which takes a vertex u, a tree edge set ETv

tree and a back edge set ETv
back as input, outputs a vertex set

∨ logical or
∧ logical and
∥ concatenation
ϕ(·), ψ(·), ρ(·) injective functions
hv vector representation of vertex v
MLP multilayer perceptron
ϵ a learnable parameter
Wc a learnable matrix with respect to the shortest path distance c between two vertices

B. Dataset Statistics
Statistics of the datasets used in our experiments are listed in Table 7 and Table 8.

C. Proofs
We first introduce several lemmas that are useful for later proofs.

Lemma C.1. Given two pairs of vertices (u, v) and (u′, v′), if d(u, v) ̸= d(u′, v′), d(u, v) ≤ δ, and d(u′, v′) ≤ δ, then
λv(u) ̸= λv′(u′) under BFC.

Proof. We only show the case that λv(u) ̸= λv′(u′) when d(u, v) < d(u′, v′). This is because λv(u) ̸= λv′(u′) can
be shown for d(u, v) > d(u′, v′) in the same way. We prove this by contradiction and thus assume that d(u, v) = δ′,
d(u′, v′) = δ′ +∆, and λv(u) = λv′(u′), where δ′ ≤ δ and ∆ ≥ 1.
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Table 7: Statistics of datasets used for vertex classification.

# Vertices # Edges # Features # Classes

CORA 2708 5278 1433 7
CITESEER 3327 4552 3703 6
PUBMED 19717 44324 500 5
COMPUTERS 13752 245861 767 10
PHOTO 7650 119081 745 8
CHAMELEON 2277 31371 2325 5
SQUIRREL 5201 198353 2089 5
TEXAS 183 279 1703 5
CORNELL 183 277 1703 5
WISCONSIN 251 466 1703 5

Table 8: Statistics of datasets used for graph classification.

# Graphs # Classes
Avg. #
vertices

Avg. #
edges # Features

D&D 1178 2 284.32 715.66 89
ENZYMES 600 6 32.63 64.14 3
NCI1 4110 2 29.78 32.30 37
PROTEINS 1113 2 39.06 72.82 3
IMDB-BINARY 1000 2 19.77 96.53 -

Since λv(u) = λv′(u′), by Equations 1 and 2, we know that λl(u) = λl(u′) must hold for any l ≥ δ′; otherwise, the
injectivitity of the functions ρ and ϕ would lead to λv(u) ̸= λv′(u′), contradicting with the assumption.

Then, by Equations 1 and 2 again, we have the following for any l ≥ δ′:

ψ
(
{{λlv(w) : w ∈ ηbfc(u,E

Tv
tree, E

Tv

back)}}
)
=ψ

(
{{λlv′(w′) : w′ ∈ ηbfc(u

′, ETv′
tree , E

Tv′
back)}}

)
. (9)

Because ψ is injective, the above leads to

|ηbfc(u,E
Tv
tree, E

Tv

back)| =|ηbfc(u
′, ETv′

tree , E
Tv′
back)| and d(u, u) = d(u′, u′) = 0. (10)

Again we know that λl−1(w) = λl−1(w′) because of the injectivity of ρ and ϕ. Similarly, we have the following

|ηbfc(w,E
Tv
tree, E

Tv

back)| =|ηbfc(w
′, ETv′

tree , E
Tv′
back)| and d(u,w) = d(u′, w′) = 1. (11)

The above can be shown recursively for all vertices in SPG(u, v) and SPG(u′, v′). So we know that, for any vertex z′ in
SPG(u′, v′), there must exist a vertex z in SPG(u, v) such that the following conditions hold:

|ηbfc(z, E
Tv
tree, E

Tv

back)| =|ηbfc(z
′, ETv′

tree , E
Tv′
back)| and d(u, z) = d(u′, z′). (12)

However, since d(u, v) = δ′ and d(u′, v′) = δ′ + ∆, there must exist at least one vertex z′ in SPG(u′, v′) with δ′ <
d(u′, z′) ≤ δ′+∆, which cannot satisfy the above conditions. This implies that λv(u) = λv′(u′) does not hold, contradicting
our assumption. The proof is done.

Lemma C.2. |Nδ(v)| = |Nδ(u)| if λ(v) = λ(u).

Proof. According to Equation (1), when λ(v) = λ(u), we have

ϕ (λ(v), ψ {{λw1
(v) : w1 ∈ Nδ(v)}})) = ϕ (λ(u), ψ {{λw2

(u) : w2 ∈ Nδ(u)}})) .

Because ϕ(·) and ψ(·) are injective, we have

{{λw1(v) : w1 ∈ Nδ(v)}} = {{λw2(u) : w2 ∈ Nδ(u)}}.

Hence, the number of elements should be the same for the multisets on the left and right sides. This leads to |Nδ(v)| =
|Nδ(u)|. The proof is done.
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Lemma 4.1. Let (u, v) and (u′, v′) be two pairs of vertices. Then SPG(u, v) ≃ SPG(u′, v′) if and only if one of the
following conditions hold under BFC: (1) λv(u) = λv′(u′) and λu(v) = λu′(v′); (2) λv(u) = λu′(v′) and λu(v) =
λv′(u′).

Proof. We first show SPG(u, v) ≃ SPG(u′, v′) if one of the two conditions holds.

We only show the statement holds when the first condition holds, i.e. “SPG(u, v) ≃ SPG(u′, v′) if λv(u) = λv′(u′)
and λu(v) = λu′(v′)”. The case for the second condition, i.e. “SPG(u, v) ≃ SPG(u′, v′) if λv(u) = λu′(v′) and
λu(v) = λv′(u′)”, can be shown in the same way.

Assuming λv(u) = λv′(u′) and λu(v) = λu′(v′), we show SPG(u, v) ≃ SPG(u′, v′) by induction.

• When d(u, v) = 0 and d(u′, v′) = 0, we must have u = v and u′ = v′. Accordingly, both SPG(u, v) and SPG(u′, v′)
contain only one node. Thus we must have SPG(u, v) ≃ SPG(u′, v′).

• When d(u, v) = 1 and d(u′, v′) = 1, we have (u, v) ∈ E and (u′, v′) ∈ E. Then both SPG(u, v) and SPG(u′, v′)
contain only one edge. Thus we must have SPG(u, v) ≃ SPG(u′, v′).

• When d(u, v) = 2 and d(u′, v′) = 2, SPG(u, v) and SPG(u′, v′) can only have one isomorphic type: assuming there
are total N vertices in SPG(u, v) and SPG(u′, v′), there are N − 2 vertices adjacent to both u/u′ and v/v′. It is easy
to see SPG(u, v) ≃ SPG(u′, v′).

• Now assume that the statement “SPG(u, v) ≃ SPG(u′, v′) if λv(u) = λv′(u′) and λu(v) = λu′(v′) under BFC”
holds for any two pairs of vertices (u, v) and (u′, v′) when d(u, v) = d(u′, v′) ≤ ∆. We want to show that this
statement will hold for the case d(u, v) = d(u′, v′) = ∆ + 1. It is easy to see that λv(u) = λv′(u′) if and only if
λu(v) = λu′(v′), so we just need to show SPG(u, v) ≃ SPG(u′, v′) if λv(u) = λv′(u′).

When d(u, v) = ∆ + 1, we may express SPG(u, v) as a tree rooted at vertex u, which has a number of children
{{SPG(u1, v), . . . , SPG(uq, v)}} where d(ui, v) = ∆ for 1 ≤ i ≤ q and (u, ui) ∈ E. Accordingly, we may express
SPG(u′, v′) as a tree rooted at vertex u′, which has a number of children {{SPG(u′1, v′), . . . , SPG(u′q, v)}} where
d(u′i, v

′) = ∆ for 1 ≤ i ≤ p and (u′, u′i) ∈ E.

Because λv(u) = ϕ(λ(u), ψ({{λv(u1), . . . , λvuq}})) and λv′(u′) = ϕ(λ(u′), ψ({{λv′(u′1), . . . , λv′(u′p)}})), we
must have p = q and {{λv(u1), . . . , λv(uq)}} = {{λv′(u′1), . . . , λv′(u′p)}}. Without loss of generality, assuming
λv(u1) = λ′v(u

′
q), . . . , λv(up) = λ′v(u

′
p), by our assumption for the case d(u, v) = d(u′, v′) ≤ ∆, we have

SPG(u1, v) ≃ SPG(u′1, v
′), . . . , SPG(uq, v) ≃ SPG(u′p, v

′). This implies {{SPG(u1, v), . . . , SPG(uq, v)}} ≃
{{SPG(u′1, v′), . . . , SPG(u′p, v′)}}. Thus, we must have SPG(u, v) ≃ SPG(u′, v′). So the statement “SPG(u, v) ≃
SPG(u′, v′) if λv(u) = λv′(u′) and λu(v) = λu′(v′) under BFC” holds for the case d(u, v) = d(u′, v′) = ∆ + 1.

Now we show SPG(u, v) ≃ SPG(u′, v′) only if one of the two conditions holds. Assuming SPG(u, v) ≃ SPG(u′, v′),
we show this by induction.

• When d(u, v) = 0 and d(u′, v′) = 0, we must have u = v and u′ = v′. Accordingly, both SPG(u, v) and SPG(u′, v′)
contain only one node. Thus both conditions hold.

• When d(u, v) = 1 and d(u′, v′) = 1, we have (u, v) ∈ E and (u′, v′) ∈ E. Then both SPG(u, v) and SPG(u′, v′)
contain only one edge. Thus both conditions hold.

• When d(u, v) = 2 and d(u′, v′) = 2, SPG(u, v) and SPG(u′, v′) can only have one isomorphic type: assuming there
are total N vertices in SPG(u, v) and SPG(u′, v′), there are N − 2 vertices adjacent to both u/u′ and v/v′. It is easy
to see both conditions hold.

• Now assume that the statement holds for the first condition, i.e. “SPG(u, v) ≃ SPG(u′, v′) only if λv(u) = λv′(u′)
and λu(v) = λu′(v′) under BFC” holds for any two pairs of vertices (u, v) and (u′, v′) when d(u, v) = d(u′, v′) ≤ ∆.
We want to show that this statement also hold for the case d(u, v) = d(u′, v′) = ∆ + 1.

It is easy to see that λv(u) = λv′(u′) if and only if λu(v) = λu′(v′), so we just need to show SPG(u, v) ≃
SPG(u′, v′) only if λv(u) = λv′(u′). Similar with before, when d(u, v) = ∆ + 1, we express SPG(u, v) as
a tree rooted at vertex u, which has a number of children {{SPG(u1, v), . . . , SPG(uq, v)}} where d(ui, v) = ∆
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for 1 ≤ i ≤ q and (u, ui) ∈ E. Accordingly, we express SPG(u′, v′) as a tree rooted at vertex u′, which has a
number of children {{SPG(u′1, v′), . . . , SPG(u′q, v)}} where d(u′i, v) = ∆ for 1 ≤ i ≤ p and (u′, u′i) ∈ E. Be-
cause SPG(u, v) ≃ SPG(u′, v′), we must have p = q. This further implies {{SPG(u1, v), . . . , SPG(uq, v)}} ≃
{{SPG(u′1, v′), . . . , SPG(u′p, v′)}}. By our assumption for the case d(u, v) = d(u′, v′) ≤ ∆, we have
{{λv(u1), . . . , λv(uq)}} = {{λv′(u′1), . . . , λv′(u′p)}}, which further leads to λv(u) = λv′(u′). So the statement
“SPG(u, v) ≃ SPG(u′, v′) only if λv(u) = λv′(u′) and λu(v) = λu′(v′) under BFC” holds for the case
d(u, v) = d(u′, v′) = ∆+ 1.

Now assume that the statement holds for the second condition, i.e. “SPG(u, v) ≃ SPG(u′, v′) only if λv(u) = λu′(v′)
and λu(v) = λv′(u′) under BFC” holds for any two pairs of vertices (u, v) and (u′, v′) when d(u, v) = d(u′, v′) ≤ ∆.
We can show the statement also holds for the case d(u, v) = d(u′, v′) = ∆+ 1 in the same way as before.

The proof is done.

Lemma 4.2. Let v, u ∈ V be any two vertices and λ(v) and λ(u) be the corresponding stable colours of v and u by running
BFC. We have Sv ≃ Su if and only if λ(v) = λ(u), where Sv and Su are the ESPGs of v and u, respectively.

Proof. We first show that, if λ(v) = λ(u), then we have Sv ≃ Su. We prove this by induction:

• When δ = 0, there is only one vertex in Sv and Su, it is trivial to see Sv ≃ Su.

• When δ = 1, there are only v and its direct neighbours in Sv, and only u and its direct neighbours Su. v and u must
have the same degree for λ(v) = λ(u) to hold, so we have Sv ≃ Su.

• Now assume that the statement “Sv ≃ Su if λ(v) = λ(u) under BFC” holds for any two vertices v and u when
δ ≤ ∆. We want to show that this statement will hold for the case δ = ∆ + 1. When δ = ∆ + 1, we only
consider the case where Sv ≃ Su for δ = ∆; otherwise, we immediately have λ(v) ̸= λ(u) according to Lemma C.1.
Assuming that there are q vertices {v1, . . . , vq} inN∆+1(v)\N∆(v) and p vertices {u1, . . . , up} inN∆+1(u)\N∆(u),
where p ≥ 1 and q ≥ 1. If p ̸= q we have λ(v) ̸= λ(u). So we only consider the case where p = q. In this
case, for λ(v) = λ(u) to hold, we must have {{λv1(v), . . . , λv1(v)}} = {{λu1(u), . . . , λup(u)}}. Then we have
{{SPG(v1, v), . . . , SPG(vq, v)}} ≃ {{SPG(u1, u), . . . , SPG(up, u′)}} according to Lemma 4.1. Thus, we must have
Sv ≃ Su.

We then show that, if Sv ≃ Su we have λ(v) = λ(u). We prove this by induction:

• When δ = 0, there is only one vertex in Sv and Su, it is trivial to see λ(v) = λ(u).

• When δ = 1, there are only v and its direct neighbours in Sv, and only u and its direct neighbours Su. v and u must
have the same degree for Sv ≃ Su to hold, so we have λ(v) = λ(u).

• Now assume that the statement “λ(v) = λ(u) if Sv ≃ Su under BFC” holds for any two vertices v and u when
δ ≤ ∆. We want to show that this statement will hold for the case δ = ∆ + 1. Assuming that there are q vertices
{v1, . . . , vq} in N∆+1(v) \ N∆(v) and p vertices {u1, . . . , up} in N∆+1(u) \ N∆(u), where p ≥ 1 and q ≥ 1. If
p ̸= q we have Sv ̸≃ Su. So we only consider the case where p = q. Because Sv ≃ Su for δ = ∆ + 1, we know
{{SPG(v1, v), . . . , SPG(vq, v)}} ≃ {{SPG(u1, u), . . . , SPG(up, u′)}}. According to Lemma 4.1, we must have
{{λv1(v), . . . , λvq (v)}} = {{λu1

(u), . . . , λup
(u)}}. Thus, we have λ(v) = λ(u).

The proof is done.

Lemma 4.3. MPNN cannot distinguish one or more pairs of graphs that have non-isomorphic ESPGs.

Proof. Consider vertices v and u and their 1-hop neighbour vertex sets N1(v) and N1(u), respectively. We use λWL(·) to
denote the colour mapping of 1-WL. We show an example where λWL(v) = λWL(u) but Sv ̸≃ Su. In Figure 3, Sv and Su

are non-isomorphic; however, we can see λWL(v) = λWL(u) because each vertex is adjacent to the same number of vertices.
We know from Xu et al. (2019) that MPNN’s expressivity is upper-bounded by 1-WL; thus, the proof is done.

Lemma 4.4. ηdfc is invariant under search order permutation.
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Proof. By showing that ηdfc is invariant to vertex search orders, we can prove that ηdfc is permutation invariant.

Note that for DFS rooted at vertex v, there are multiple search trees if and only if there exist back edges. For a DFS tree Tv ,
any alternative DFS tree can be formed by changing a tree edge to a back edge and swap their directions. If there are no
back edges in a DFS tree, the DFS tree is canonical such that the output of ηdfc does not change. So below we only consider
the case where back edges exist.

For a non-root vertex u inG, there must be one and only one tree edge leading to u, i.e. exact one vertex in {o : (o, u) ∈ ETv
tree}.

If QTv
u in Equation (4) is empty, u is not covered by a back edge and u is not in any cycle because a cycle is formed by at

least one back edge (Cormen et al., 2022). Since u is not in any cycle, the vertex w precedes u in Tv is deterministic.

Now we consider the case where QTv
u is not empty, which has two further cases. Let w be a vertex preceding u in the tree

edge (w, u).

• The first case is when w and u are covered together by a back edge, or by two back edges that crossover each other.
In this case, u and w are in the same cycle(s), so w appears in BTv

u . For any alternative search tree to Tv, w and
u must also be covered together by a back edge, or by two back edges that crossover each other. So the union
{o : (o, u) ∈ ETv

tree} ∪ {o : o ∈ BTv
u } in Equation (6) remains the same for all possible search trees.

• The second case is when w and u are not covered by a back edge, or are covered by two back edges that do not
crossover each other. In this case, (w, u) appears as a tree edge in all possible search trees rooted at v, because the
tree edge (w, u) is not in any cycles. In this case, DTv

u remains the same for all search trees, which makes the union
{o : (o, u) ∈ ETv

tree} ∪ {o : o ∈ BTv
u } invariant to traversal order.

Thus, ηdfc is invariant to vertex traversal order. The proof is done.

In the following, we introduce a lemma that is useful for proving Lemma 4.5.

Lemma C.3. Each vertex in a biconnected component is covered by at least one DFS back edge.

Proof. A biconnected component is an induced subgraph ofGwhich stays connected by removing any one vertex. Therefore,
each vertex in a biconnected component should participate in at least one cycle. We know a vertex forms a cycle if and
only if it is covered by a DFS back edge. Hence, vertices in a biconnected component is covered by at least one DFS back
edge.

Lemma 4.5. Let G and H be two graphs, and {{λ(u) : u ∈ VG}} and {{λ(u′) : u′ ∈ VH}} be the corresponding multisets of
stable vertex colours of G and H by running DFC. Then the following statements hold:

• For any two vertices u ∈ VG and u′ ∈ VH , if λ(u) = λ(u′), then u is a cut vertex if and only if u′ is a cut vertex.

• For any two edges (u1, u2) ∈ EG and (u′1, u
′
2) ∈ EH , if {{λ(u1), λ(u2)}} = {{λ(u′1), λ(u′2)}}, then (u1, u2) is a cut

edge if and only if (u′1, u
′
2) is a cut edge.

• If G is vertex/edge-biconnected but H is not, then {{λ(u) : u ∈ VG}} ≠ {{λ(u′) : u′ ∈ VH}}.

Proof. We prove the statements in Lemma 4.5 one by one.

• By the definition that a vertex u is a cut vertex of G if removing u increases the number of connected components,
Hopcroft & Tarjan (1973) shows that u is a cut vertex if one of the following two conditions is true:

1. u is not the root of a DFS tree, and it has a child c such that no vertex in the subtree rooted with c has a back edge
to one of the ancestors in the DFS tree of u.

2. u is the root of a DFS tree, and it has at least two children.

Equation (1) only computes vertex colour based on search trees where u is not the root, so we can just focus on
condition 1. There are two types of cut vertex: one that does not form biconnected components, called the type-1 cut
vertex (e.g. v4 and v5 in Figure 4b), and the other that forms biconnected components, called the type-2 cut vertex (v2
and v6 in Figure 4b). We first show that the first statement holds for the type-1 cut vertex.
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For a type-1 cut vertex u, it is easy to see that we have DTv
u = ∅ because of Lemma C.3. Hence, ηdfc(u,E

Tv
tree, E

Tv

back)
returns a single vertex set containing w, where w is the vertex preceding u in the tree edge (w, u). Note that both a
type-1 cut vertex and a leaf vertex (a vertex without children) obtain a single vertex set from Equation (6); however,
according to Condition 1, a leaf vertex is not a vertex tree. We show that if u is a cut vertex and x is a leaf vertex,
λG(u) ̸= λG(x). We show this by contradiction. A leaf vertex has a degree of 1 while a cut vertex must have a degree
larger than 1 (because it connects at least two biconnected components). For λG(u) = λG(x) to hold, according to
Equation (1), there must be the same number of vertices in Nδ(u) and Nδ(x). Because x is a leaf vertex, there is only
one vertex, w1, that contributes to the colour of u without involving other vertices. Because u is a cut vertex, there are
at least two vertices, w′1 and w′2, that are adjacent to u. Assuming λw1(x) = λw′

1
(u), there must exist another vertex

w2 ∈ Nδ(x) such that λw2
(x) = λw′

2
(u) and w2 does not have an edge with x. For simplicity, we omit the superscript

in Equation (2), and unpack λw2
(x) and λw′

2
(u). We then have λw2

(x) = ϕ
(
λ(x), ψ ({{λw2

(w1)}})
)

and λw′
2
(u) =

ϕ
(
λ(u), ψ

(
{{λw′

2
(w′2)}}

) )
. Hence, we need λw2(w1) = λw′

2
(w′2). Because λw2(w1) = ϕ

(
λ(w1), ψ({{λw2(w2)}})

)
,

λw2
(w2) = λ(w2), and λw2

(w′2) = λ(w′2), we need to have λ(w′2) = ϕ
(
λ(w1), ψ({{λw2

(w2)}})
)

which obviously
does not hold. Therefore, if u is a cut vertex and x is a leaf vertex, λG(u) ̸= λG(x).

For a type-2 cut vertex u, it is obvious that DTv
u ̸= ∅ and thus the colour of u is clearly different from any leaf vertices

or any type-1 cut vertices. So now we just need to show λG(u) ̸= λH(x) when x is a non-cut vertex in a biconnected
component. Because u is a type-2 cut vertex, ηdfc(u,E

Tv
tree, E

Tv

back) includes all vertices in the biconnected components
in which u participates (at least two biconnected components), while for a non-cut vertex x, ηdfc(u,E

Tv
tree, E

Tv

back)
includes only vertices in a single biconnected component. So a type-2 cut vertex has a different number of vertices
in ηdfc(u,E

Tv
tree, E

Tv

back) comparing with a non-cut vertex. Therefore, it is easy to see that λG(u) ̸= λH(x) when u is a
type-2 cut vertex and x is a non-cut vertex in a biconnected component.

Hence, if λG(u) = λG(x), and x is a cut vertex if and only if u is a vertex. The proof for the first statement is done.

• According to Tarjan’s algorithm for finding cut edges (Tarjan, 1974), in a DFS tree, a tree edge (u1, u2) is a
cut edge if there is a path from u1 to u2 and every path from u1 to u2 contains edge (u1, u2). This can be
interpreted as follows: (u1, u2) is a cut edge if u1 and u2 are not covered by the same back edge; otherwise,
these back edges do not crossover each other. We prove the second statement by contradiction. If (u1, u2) is
a cut edge and (x1, x2) is not a cut edge, assuming {{λ(u1), λ(u2)}} = {{λ(x1), λ(x2)}}, then x1 and x2 must
be covered either by the same back edge or by different back edges that do not crossover each other. Hence,
based on Equation (6), ηdfc(x1, E

Tv
tree, E

Tv

back) = ηdfc(x2, E
Tv
tree, E

Tv

back). Since (u1, u2) is a cut edge, we know
ηdfc(u1, E

Tv
tree, E

Tv

back) ̸= ηdfc(u2, E
Tv
tree, E

Tv

back). This contradicts to {{λ(u1), λ(u2)}} = {{λ(x1), λ(x2)}}; thus (x1, x2)
must be a cut edge. We can swap (x1, x2) and (u1, u2) in the proof to show if (x1, x2) is a cut edge, (u1, u2) must
also be a cut edge. The proof is done for the second statement.

• For a graph G to be cut vertex/edge connected, in a DFS tree, there must be a set of back edges that crossover
each other and cover all vertices of G. Therefore, if ηdfc(u,E

Tv
tree, E

Tv

back) includes all vertices of G, then we have
η(u0, E≻, E≺) = η(u1, E≻, E≺) = · · · = η(uN−1, E≻, E≺) for u0, u1, . . . , uN−1 ∈ VG. If H is not cut vertex/edge
connected, then there must exist at least one vertex w ∈ VH such that w is not covered by the same set of crossover
back edges that cover other vertices. Thus, ηdfc(w,E

Tv
tree, E

Tv

back) ̸= ηdfc(x,E
Tv
tree, E

Tv

back) for x ∈ VH \ {w}. We have
{{λ(u) : u ∈ VG}} ≠ {{λ(u′) : u′ ∈ VH}} if G is vertex/edge-biconnected but H is not. The proof is done for the third
statement.

Corollary 4.1. Let u ∈ VG and u′ ∈ VH be two vertices, and λ(u) = λ(u′). Then u is in a cycle if and only if u′ is in a
cycle.

Proof. From the proofs of Lemmas 4.5 and C.3, we know that, if u is in a cycle, u is covered by at least one back edge. So
ηdfc(u,E

Tv
tree, E

Tv

back) contains more than 2 vertices. Since λ(u) = λ(u′), ηdfc(u
′, ETv

tree, E
Tv

back) also needs to contain more than
two vertices, which indicates u′ is in a cycle.

Lemma 4.6. BFC-1 is equivalent to 1-WL.
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Proof. When ∆ = 1, the vertex colouring function in Equation (1) becomes

λi+1(u) := ρ(λi(u), {{λi+1
v (u)|(u, v) ∈ E}}). (13)

Accordingly, we have Equation (2)
λi+1
v (u) := ϕ

(
λi(u), ψ({{λi(v)}})

)
, (14)

which leads to
λi+1(u) := ρ

(
λi(u), {{ϕ

(
λi(u), ψ

(
{{λi(v)}}

))
|(u, v) ∈ E}}

)
. (15)

Elements in the multiset {{ϕ
(
λi(u), ψ

(
{{λi(v)}}

))
|(u, v) ∈ E}} only differ in the input of ψ(·). Thus, we can simplify it

by defining a new injective function κ(λi(v)) = ϕ
(
λi(u), ψ

(
{{λi(v)}}

))
. Equation (15) becomes

λi+1(u) := ρ
(
λi(u), {{κ(λi(v))|(u, v) ∈ E}}

)
, (16)

which is exactly the vertex colouring function of 1-WL. The proof is done.

Lemma 4.7. DFC-1 is more expressive than 1-WL.

Proof. Consider two vertices v and u, and their 1-hop neighbour vertex sets N1(v) and N1(u). We use λdfc(·) and
λwl(·) to denote the colour refinements by DFC-1 and 1-WL, respectively. We first show that if λdfc(v) = λdfc(u), then
λwl(v) = λwl(u). For λdfc(v) = λdfc(u) to hold, the number of vertices in N1(v) must be the same as N1(u) because of
Lemma C.2. This means that v and u have the same degree, and thus λwl(v) = λwl(u) must hold.

We now show that if λwl(v) = λwl(u), λdfc(v) = λdfc(u) may not hold. Consider the left graph pair in Figure 5, each vertex
has a degree of 2 and all vertices have the same colour under 1-WL. However, the number of vertices returned by Equation (6)
is not the same for the vertices in the left graph and the vertices in the right graph. Specifically, ηdfc(u,E

Tv
tree, E

Tv

back) returns a
set of 3 vertices for each vertex in the left graph and a set of 2 vertices for the right graph. Thus, λdfc(v) ̸= λdfc(u). This
means that DFC-1 can distinguish some pairs of non-isomorphic graphs which 1-WL cannot distinguish. The proof is
done.

Corollary 4.2. When δ > 1, BFC-δ can distinguish one or more pairs of graphs that cannot be distinguished by 1-WL.

Proof. The left graph pair in Figure 5 can be distinguished by BFC-2 but not by 1-WL. According to Theorem 4.3, for any
δ > 2, BFC-δ can also distinguish this graph pair. Similarly, the right graph pair in Figure 5 can be distinguished by BFC-3
but not by 1-WL. So for any δ > 3, BFC-δ can also distinguish this graph pair.

Corollary 4.3. When δ ≥ 1, DFC-δ can distinguish one or more pairs of graphs that cannot be distinguished by 1-WL.

Proof. The left graph pair in Figure 5 can be distinguished by DFC-δ for any δ ≥ 1. The right graph pair in Figure 5 can be
distinguished by DFC-δ for any δ ≥ 2. Both graph pairs cannot be distinguished by 1-WL.

Before proving Theorem 4.1, we first define the version of the k-WL test studied by Cai et al. (1992), which is also called
folklore-WL (FWL) (Morris et al., 2019). Let −→v = (v1, v2, v3, . . . , vk) be a k-tuple. Then the neighbourhood of k-FWL is
defined as a set of n = |V | elements:

NF (−→v ) = {NF
w (−→v )|w ∈ V },

where each NF
w (−→v ) is defined as:

NF
w (−→v ) = {(w, v2, v3, . . . , vk), (v1, w, v3, . . . , vk), . . . , (v1, v2, . . . , vk−1, w)}.

It is known that k-WL is equivalent to (k-1)-FWL in distinguishing non-isomorphic graphs when k > 2 (Cai et al., 1992).
Thus, below we only need to show that the expressivity of BFC is strictly upper bounded by 2-FWL.

When k = 2, the neighbourhood of 2-FWL is a set of n elements of a pair of 2-tuples:
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NF (u, v) = {(u,w), (w, v)|w ∈ V }. (17)

Equivalently, the above equation may be written as:

NF (u, v) = {(u,w, v)|w ∈ V }. (18)

Let G = (V,E) be an input graph, 2-FWL assigns colours to all pairs of vertices of G. Initially, there are three colours
being assigned: edge, nonedge, and self. Then the colours of these pairs of vertices are refined iteratively by assigning a new
colour to each pair (u, v) depending on the colours of {(u,w, v)|w ∈ V } in G. This process continues until the colours of
all pairs of vertices stabilize.

Let Col(u, v) denote the colour of the vertex pair (u, v) by 2-FWL, and d(u, v) denote the shortest-path distance between u
and v. We have Lemma C.4.

Lemma C.4. Given two pairs of vertices (u, v) and (u′, v′), if SPG(u, v) ̸≃ SPG(u′, v′), then Col(u, v) ̸= Col(u′, v′).

Proof. We prove this by induction.

• When d(u, v) = 0 and d(u′, v′) = 0, we must have u = v and u′ = v′. Accordingly, both SPG(u, v) and SPG(u′, v′)
contain only one node. Thus SPG(u, v) ≃ SPG(u′, v′) and it is impossible to have SPG(u, v) ̸≃ SPG(u′, v′).

• When d(u, v) = 1 and d(u′, v′) = 1, we have (u, v) ∈ E and (u′, v′) ∈ E. Then both SPG(u, v) and SPG(u′, v′)
contain only one edge. Thus SPG(u, v) ≃ SPG(u′, v′) and it is impossible to have SPG(u, v) ̸≃ SPG(u′, v′).

• When d(u, v) = 2 and d(u′, v′) = 2, we must have (u, v) ̸∈ E and (u′, v′) ̸∈ E. By Equation 18, we also know that

NF (u, v) ={(u,w, v)|(u,w) ∈ E, (w, v) ∈ E,w ∈ V \{u, v}}∪
{(u,w, v)|(u,w) ∈ E, (w, v) ̸∈ E,w ∈ V \{u, v}}∪
{(u,w, v)|(u,w) ̸∈ E, (w, v) ∈ E,w ∈ V \{u, v}}∪
{(u,w, v)|(u,w) ̸∈ E, (w, v) ̸∈ E,w ∈ V \{u, v}}∪
{(u,w, v)|w = u}∪
{(u,w, v)|w = v}

Note that, each of the subsets in the above equation corresponds to a different kind of neighbour in the neighbourhood
of (u, v). In this case, equivalently, SPG(u, v) = (Vuv, Euv) can also be expressed as the subsets of NF (u, v) that
corresponds to three kinds of neighbours in the neighbourhood of (u, v) (Lines 1, 5, and 6 in the above equation):

Vuv ={u, v} ∪ {w|(u,w) ∈ E, (w, v) ∈ E,w ∈ V \{u, v}}
Euv ={(u,w), (w, v)|(u,w) ∈ E, (w, v) ∈ E,w ∈ V \{u, v}}

We know that the colouring of 2-FWL preserves injectivity. Thus, if SPG(u, v) ̸≃ SPG(u′, v′), it means that their
corresponding subsets in NF (u, v) and NF (u′, v′) are not isomorphic. Then Col(u, v) ̸= Col(u′, v′).

• Now assume that the statement “if SPG(u, v) ̸≃ SPG(u′, v′), then Col(u, v) ̸= Col(u′, v′)” holds for any two pairs
of vertices (u, v) and (u′, v′) when d(u, v) = d(u′, v′) ≤ ∆. We want to show that this statement will hold for the
case d(u, v) = d(u′, v′) = ∆+ 1.

When d(u, v) = ∆ + 1, we may express SPG(u, v) as a tree rooted at vertex u, which has a number of children
{SPG(u1, v), . . . , SPG(uq, v)} where d(ui, v) = ∆ for 1 ≤ i ≤ q. Accordingly, we may express SPG(u′, v′) in a
similar way. Thus, if SPG(u, v) ̸≃ SPG(u′, v′), there are two cases:

(1) {SPG(u, u), SPG(v, v)} ̸≃ {SPG(u′, u′), SPG(v′, v′)}
By our assumption for the case d(u, v) = d(u′, v′) ≤ ∆, we have {Col(u, u), Col(v, v)} ̸≃
{Col(u′, u′), Col(v′, v′)}. Hence, we know that Col(u, v) ̸= Col(u′, v′).
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(2) {SPG(u, u), SPG(v, v)} ≃ {SPG(u′, u′), SPG(v′, v′)}
Without loss of generality, we assume that SPG(u, u) ≃ SPG(u′, u′) and SPG(v, v) ≃ SPG(v′, v′).
Then in this case SPG(u, v) ̸≃ SPG(u′, v′) implies that {SPG(u1, v), . . . , SPG(uq, v)} ̸≃
{SPG(u′1, v′), . . . , SPG(u′p, v′)} where (u, ui) ∈ E and d(ui, v) = ∆ for 1 ≤ i ≤ q, and (u′, u′j) ∈ E
and d(u′j , v

′) = ∆ for 1 ≤ j ≤ p. Here, p = q must hold; otherwise we immediately have Col(u, v) ̸=
Col(u′, v′). By our assumption for the case d(u, v) = d(u′, v′) ≤ ∆, we have {Col(u1, v), . . . , Col(uq, v)} ̸≃
{Col(u′1, v′), . . . , Col(u′p, v′)}. Thus, Col(u, v) ̸= Col(u′, v′) must hold.

Theorem 4.1. The expressive power of BFC-δ is strictly upper bounded by 3-WL.

Proof. We first seek to show 3-WL is at least as powerful as BFC-δ. Let G = (VG, EG) and H = (VH , EH) be
two input graphs, according to Lemma 4.2, BFC can distinguish graphs only when they have different ESPGs, e.g.
{{λSv (v) : v ∈ VG}} ≠ {{λSu(u) : u ∈ VH}}. So we just need to show {{Col(v, v′)|v′ ∈ VG}} ≠ {{Col(u, u′)|u′ ∈ VH}}
for any v ∈ VG and u ∈ VH when Sv ̸≃ Su. Sv ̸≃ Su implies {{SPG(v′, v) : v′ ∈ VG}} ̸≃ {{SPG(u′, u) : u ∈ VH}}.
According to Lemma C.4, we must have {{Col(v, v′)|v′ ∈ VG}} ≠ {{Col(u, u′)|u′ ∈ VH}}. Thus 3-WL can distinguish
graphs when they have different ESPGs, so 3-WL is at least as powerful as BFC-δ.

Now we seek to show the strictness of this bound, that is 3-WL is strictly more expressive than BFC. We show this by
introducing an example graph pair in Figure 8. In this example 3-WL can distinguish the graphs but BFC cannot because the
two graphs have isomorphic ESPGs. Therefore the expressiveness of BFC is strictly upper bounded by 3-WL.

Figure 8: A pair of non-isomorphic graphs that can be distinguished by 3-WL but not by BFC.

To prove Theorem 4.3, we first introduce Lemma C.5.

Lemma C.5. BFC-δ + 1 is at least as expressive as BFC-δ in distinguishing non-isomorphic graphs.

Proof. This lemma requires to show that, for any i-th iteration, if BFC-δ + 1 must have the same multiset of vertex colours
for G1 and G2, then BFC-δ must also have the same multisets of vertex colours for G1 and G2. Below we show for any
iteration i, if the colours of any two vertices in G1 and G2 are the same by BFC-δ + 1, then their colours by BFC-δ must
also be the same. We show this by induction.

• For i = 0, it is obvious that the initial vertex colours are the same for BFC-δ + 1 and BFC-δ.

• For i > 0, we assume that this statement “if λi(u1) = λi(u2) for BFC-δ + 1 then λi(u1) = λi(u2) for BFC-δ” holds
for the i-th iteration, and seek to show that the statement also holds for the (i + 1)-th iteration. We show this by
contradiction. Assuming λi+1(u1) = λi+1(u2) hold for BFC-δ + 1 but not for BFC-δ, we have

ρ(λi(u1), {{λiv(u1)|v ∈ Nδ+1(u1)}}) = ρ(λi(u2), {{λiv(u2)|v ∈ Nδ+1(u2)}}) (19)

and
ρ(λi(u1), {{λiv(u1)|v ∈ Nδ(u1)}}) ̸= ρ(λi(u2), {{λiv(u2)|v ∈ Nδ(u2)}}). (20)
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Because λi+1(u1) = λi+1(u2) for BFC-δ + 1, we must have λi(u1) = λi(u2) for BFC-δ + 1. According to our
assumption “if λi(u1) = λi(u2) for BFC-δ + 1 then λi(u1) = λi(u2) for BFC-δ”, we have λi(u1) = λi(u2) hold for
BFC-δ. Thus, we can simplify Equations (19) and (20) as

{{λiv(u1)|v ∈ Nδ+1(u1)}} = {{λiv(u2)|v ∈ Nδ+1(u2)}} (21)

{{λiv(u1)|v ∈ Nδ(u1)}} ̸= {{λiv(u2)|v ∈ Nδ(u2)}} (22)

Because Nδ(u) ⊆ Nδ+1(u) and Nδ+1(u)−Nδ(u) = {v|d(u, v) = δ+1}, there must exist at least one pair of vertices
u′ and u′′, where d(v, u′) = δ + 1 and d(v, u′′) ≤ δ, such that λiv(u

′) = λiv(u
′′). This contradicts Lemma C.1. So

the assumption “λi+1(u1) ̸= λi+1(u2) for BFC-δ” must not hold. Thus, the statement “if λi+1(u1) = λi+1(u2) for
BFC-δ + 1 then λi+1(u1) = λi+1(u2) for BFC-δ” holds.

This means that, for any iteration i, if the colours of any two vertices in G1 and G2 are the same by BFC-δ + 1, then their
colours by BFC-δ must also be the same. The proof is done.

Now we prove Theorem 4.3.

Theorem 4.3. BFC-δ+1 is strictly more expressive than BFC-δ in distinguishing non-isomorphic graphs.

Proof. By Lemma C.5, we know that BFC-δ + 1 is at least as expressive as BFC-δ. Now we just need to show that there
exists at least one pair of non-isomorphic graphs (Ĝ1, Ĝ2) that can be distinguished by BFC-δ + 1 but not by BFC-δ.

Inspired by Wang et al. (2023), we hereby show a specific construction of such graph pairs using cycles. We construct Ĝ1 to
be two cycles of length 2δ + 1, and Ĝ2 to be one cycle of length 4δ + 2, for any δ ≥ 1. Ĝ1 and Ĝ2 can be distinguished
by BFC-δ + 1 but not by BFC-δ. Figure 5 shows two examples graph pairs constructed using this method. The proof is
done.

Theorem 5.1. SGN defined by the update rule in Equations 7 and 8 and with sufficiently many layers is as powerful as
LV C.

Proof. The concatenation operator in Equation 7 preserves injectivity. So Equation 7 is equivalent of replacing ρ(·) in
Equation 1 with an MLP. The summation operator in Equation 8 is the injective variant of ψ(·) in Equation 2. The
multiplication with Wc is a single-layer MLP that used in place for ϕ(·) in Equation 2. As a universal approximator (Hornik,
1991; Hornik et al., 1989), MLP can learn injective functions. Hence, SGN can be shown to be as expressive as LVC
following the proof of Theorem 3 by Xu et al. (2019). We leave the details out for brevity.
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