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ABSTRACT

Foundation models have become essential tools for AI. In this paper, we study the
problem of adapting foundation models, pre-trained using contrastive learning, to
downstream tasks with limited labels. We explore the paradigm of finetuning a
foundation model before adapting to a target task, using a set of related tasks with
a few labeled samples. We show both theoretically and empirically that with a
diverse set of related tasks this finetuning leads to reduced error in the target task,
when compared with directly adapting the same pre-trained model, e.g., at least
6% target accuracy improvements on the miniImageNet.

1 INTRODUCTION

Foundation models, pre-trained on broad data, promise to adapt to a wide range of downstream
tasks. These models celebrate recent success in both vision and language, and have emerged as
an essential tool in AI, with examples including BERT (Devlin et al., 2018), GPT-3 (Brown et al.,
2020), CLIP (Radford et al., 2021), and DALL-E 2 (Ramesh et al., 2022). A foundation model is first
pre-trained on large-scale data to learn a representation function, often with self-supervised learning
(e.g., contrastive learning), and then finetuned to adapt to downstream tasks with potential novel
classes. This paradigm is particularly helpful for tasks with limited labels, as only a simple function
(e.g., linear) needs to be learned on top of the representation from the foundation model. Despite
the tremendous success, effective adaptation of foundation models, especially to tasks with limited
labels, remains an open practical question (Wortsman et al., 2022) that lacks theoretical insight.

Inspired by meta learning (Finn et al., 2017), we explore a paradigm that further finetunes a foun-
dation model with multiple relevant tasks, before adapting the pre-trained model to a target task.
The crux of this approach lies in a multitask finetuning stage, during which the model is trained
using supervised learning on a set of tasks related to the target task, obtained from a handy source.
Each of these tasks might have a small number of labeled samples, and the classes of these samples
might not overlap with those in the target task. Our key intuition is that a sufficiently diverse set of
relevant tasks can capture similar latent characteristics as the target task, thereby producing better
representation and reducing errors in the target task.

We study the effect of this approach theoretically and empirically. In particular, we present a theo-
retical framework for analyzing pre-training followed by multitask finetuning. Our analysis shows
that with limited but diverse labeled data, finetuning can improve the prediction performance on
the downstream task. Empirically, we perform controlled experiments in finetuning while varying
the task size and sample size. Our results suggest that finetuning increases the prediction accuracy
compared to direct adaptation with a small amount of data. Further, our results show that with suf-
ficient number of tasks, increasing the sample size per task does not provide notable improvement.
While these results are still preliminary, we consider our analysis and experiments point towards a
promising direction for effective adaptation of foundation models.

Related Work. Contrastive learning is one of the most effective self-supervised learning tech-
niques recently, in both language and vision pre-training tasks (Oord et al., 2018; Chen et al., 2020;
He et al., 2020; Tian et al., 2020a; Reed et al., 2022). Zoph et al. (2020) study the empirical effect
of supervised pre-training and self-supervised training on pre-training representations. Arora et al.
(2019) establish theoretical guarantees on downstream classification performance. HaoChen et al.
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(2021) provide analysis on spectral contrastive loss. Their analysis assumes the pre-training and
target tasks share the same data distribution. Multitask supervised learning has been used to obtain
the representation models for downstream target tasks. A line of theoretical work provides the error
bound of the target task in terms of sample complexity (Du et al., 2020; Tripuraneni et al., 2021;
Shi et al., 2023). Tripuraneni et al. (2020) establish a unified framework of multitask learning and
proposed the notion of task diversity for the training data. Their work mainly analyzes the super-
visedly pre-trained representations by multitasks. Our work focuses on self-supervised pre-trained
representations and proposes to use multitasks for finetuning the pre-trained model. Our approach
and analysis guarantee that limited but diverse finetuning data can improve the prediction perfor-
mance on the target task with novel classes. Multitasks have also been used to finetune supervisedly
pre-trained representations, and it is observed that direct training with limited data may lead to over-
fitting so few-shot learning techniques like meta-learning are often used (Wang et al., 2020; Tian
et al., 2020b; Chen et al., 2021; Yang et al., 2022).

2 THEORETICAL ANALYSIS

Contrastive Learning. Let X denote the input space (e.g., images) and Z ⊆ Rd the output space
of the foundation model. Let Φ denote the hypothesis class of foundation models ϕ : X 7→ Z . Con-
trastive learning pre-trains a foundation model via contrastive loss: First sample a point x and then
apply some transformation (e.g., flipping, cropping) to obtain x+; independently sample another
point x−. The population contrastive loss is then

Lun(ϕ) := E
[
ℓu

(
ϕ(x)⊤

(
ϕ(x+)− ϕ(x−)

))]
, (1)

where the loss function ℓu is non-negative decreasing function. In particular, logistic loss ℓu(v) =
log (1 + exp (−v)) recovers the typical contrastive loss in related work (Logeswaran & Lee, 2018;
Oord et al., 2018; Chen et al., 2020). For training set Sun :=

{
xi, x

+
i , x

−
i

}N

i=1
with N samples, the

empirical contrastive loss is L̂un(ϕ) :=
1
N

∑N
i=1

[
ℓu

(
ϕ(xi)

⊤ (
ϕ(x+

i )− ϕ(x−
i )

))]
.

For theoretical analysis, we follow the setup of Arora et al. (2019). Assume the data are generated
from a set of latent classes C. There is a distribution η over the classes, and each class z ∈ C
has a distribution D(z) over inputs x. Then to generate the contrastive data (x, x+, x−), sample
(z, z−) ∼ η2 and x, x+ ∼ D(z), x− ∼ D(z−). Let Dcon(η) denote this distribution of (x, x+, x−).

Downstream Prediction Tasks. A pre-trained foundation model ϕ can be used for downstream
prediction tasks by learning linear classifiers on ϕ. Consider binary classification T = {z1, z2}
where z1, z2 are two classes. (The general multiclass setting is in Appendix B.) A linear classifier
on ϕ is given by g(x) = Wϕ(x) where W ∈ R2×d, and the supervised loss on data point (x, z) is

ℓ(g(x), z) := ℓu ((g(x))z − (g(x))z′ ̸=z) . (2)

The data in task T is by uniformly drawing z ∈ {z1, z2} (denote as z ∼ T ) and then drawing
x ∼ D(z). The supervised loss of ϕ w.r.t the task T is then

Lsup(T , ϕ) := min
W

E
z∼T

E
x∼D(z)

[ℓ (Wϕ(x), z)] . (3)

In few-shot learning on novel classes, there are limited labeled data points for learning the linear
classifier, and furthermore, the target task T0 can contain classes different from those in pre-training
(i.e., T0 ⊆ C0 where the label classes C0 may or may not overlap with the pre-training latent classes
C). We are interested in obtaining a model ϕ such that Lsup(T0, ϕ) is small.

Multitask Finetuning. To improve the performance on the target task T0, we explore using mul-
titask finetuning on a pre-trained model ϕ̂. Suppose we have M tasks, and each task contains m
labeled sample. Let S := {(xi

j , z
i
j) : i ∈ [M ], j ∈ [m]} denote the finetuning data. Suppose the

pre-training ensures L̂un(ϕ̂) ≤ ϵ0, we further finetune to get a new model ϕ′ by

min
Wi∈Rd,ϕ∈Φ

1

M

M∑
i=1

1

m

m∑
j=1

ℓ(Wi · ϕ(xi
j), z

i
j), s.t. L̂un(ϕ) ≤ ϵ0. (4)
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Main Results. We are interested in comparing the performance of ϕ̂ (the model from pre-training)
and ϕ′ (the model from pre-training + multitask finetuning) on a target task T0, i.e., comparing
Lsup(T0, ϕ̂) and Lsup(T0, ϕ′). For the analysis, we assume there is a model ϕ∗ that allows low
average supervised loss on all tasks T . More precisely, let ζ denote the conditional distribution of
(z1, z2) ∼ η2 conditioned on z1 ̸= z2, and define the average supervised loss of a model ϕ as

Lsup(ϕ) = E
T ∼ζ

[Lsup(T , ϕ)] . (5)

Suppose Lsup(ϕ
∗) and Lsup(T0, ϕ∗) are small. We will also need some mild regularity assumptions:

(R) ∥ϕ∥2 ≤ R and linear operator ∥W∥2 ≤ B. We assume loss ℓu are bounded by [0, C] and
ℓu(·) is L-Lipschitz and supervised loss Lsup(T , ϕ) is L̃-Lipschitz with respect to ϕ.

Finally, we use a slight generalization of the task diversity notion from Tripuraneni et al. (2020).

Definition 1. The averaged representation difference for two model ϕ, ϕ̃ on a distribution ζ over
tasks is d̄ζ(ϕ, ϕ̃) := E

T ∼ζ

[
Lsup(T , ϕ)− Lsup(T , ϕ̃)

]
= Lsup(ϕ) − Lsup(ϕ̃). The worst-case rep-

resentation difference between representations ϕ, ϕ̃ on the family of classes C0 is dC0(ϕ, ϕ̃) :=

supT0⊆C0

[
Lsup(T0, ϕ)− Lsup(T0, ϕ̃)

]
. We say the model class Φ has (ν, ϵ)-diversity for ζ and C0

if for any ϕ, ϕ̃ ∈ Φ, dC0
(ϕ, ϕ̃) ≤ d̄ζ(ϕ, ϕ̃)/ν + ϵ.

If we only perform pre-training without multitask finetuning, then we have

Theorem 1. Assume Assumption (R) and that Φ has (ν, ϵ)-diversity for ζ and C0. Suppose ϕ̂ satisfies
L̂un(ϕ̂) ≤ ϵ0. Let τ := Pr

(z1,z2)∼η2
{z1 = z2}. Then for any target task T0 ⊂ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
1

1− τ
(2ϵ0 − τ)− Lsup(ϕ

∗)

]
+ ϵ. (6)

We now consider pre-training followed by multitask finetuning. Define the subset of models with
contrastive loss smaller than ϵ0 as Φ(ϵ0) :=

{
ϕ ∈ Φ : L̂un(ϕ) ≤ ϵ0

}
. Recall the Rademacher com-

plexity of Φ on n points is Rn(Φ) := E
{σi}n

j=1,{xj}n
j=1

[
supϕ∈Φ

∑n
j=1 σjϕ(xj)

]
.

Theorem 2. Assume Assumption (R) and that Φ has (ν, ϵ)-diversity for ζ and C0. Suppose for some
small constant α ∈ (0, 1), we solve (4) with empirical loss lower than ϵ1 = α

3
1

1−τ (2ϵ0 − τ) and
obtain ϕ′. For any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

[
α

1

1− τ
(2ϵ0 − τ)− Lsup(ϕ

∗)

]
+ ϵ. (7)

With sufficient samples in finetuning, we can get a ϕ′ such that the prediction performance Lsup(ϕ
′)

is significantly better than that of pre-training alone Lsup(ϕ̂). The task sample complexity is
O(RM (Φ(ϵ0))

ϵ1
+ log(1/δ)

ϵ21
). The first term is the Rademacher complexity of reduced representation

space Φ(ϵ0) with tasks number M . The second term relates to the generalization bound. The total
labeled sample complexity is O(RMm(Φ(ϵ0))

ϵ1
+ log(1/δ)

ϵ21
). Theorem 2 shows finetuning will reduce

target task error bound from 1
ν

[
1

1−τ (2ϵ0 − τ)− ϵ∗
]
+ϵ to 1

ν

[
α 1

1−τ (2ϵ0 − τ)− ϵ∗
]
+ϵ, resulting in

1
ν

[
(1− α) 1

1−τ (2ϵ0 − τ)
]

reduction, where labeled sample complexity is proportional to 1
αϵ0

. Note
that multitask training has been used to train representations directly (Tripuraneni et al., 2020; Du
et al., 2020) (instead of finetuning representations pre-trained via self-supervised learning). Their
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analysis shows training needs O
(

RMm(Φ)
ϵ1

+ log(1/δ)
ϵ21

)
to get the same error. Thus, pre-training

narrows down the hypothesis search space, and the sample complexity of labeled data is reduced by
O
(

1
ϵ1

[RMm(Φ)−RMm (Φ(ϵ0))]
)

by pre-training. Equivalently, the error bound is reduced by

O
(

1
Mm [RMm(Φ)−RMm (Φ(ϵ0))]

)
. See full proof in Appendix A.2.

3 EXPERIMENTS AND RESULTS

Backbone Direct Adaptation Finetuning
ViT-B32 83.03 ± 0.24 89.07 ± 0.20
ResNet50 78.36 ± 0.25 81.19 ± 0.25

Table 1: Effects of multitask finetuning.

We experiment with CLIP models (Radford
et al., 2021) as an exemplary foundation model.
The pre-trained ViT-B/32 and ResNet50 were
used as image encoders. We perform evalua-
tion and finetuning in form of few-shot tasks. A
target task typically contains N classes with K
support samples and Q query samples in each
class. The goal is to classify query samples into the N classes based on the support samples. We use
the nearest-centroid method on top of representations for evaluation. During finetuning, the image
encoder is directly optimized on few-shot classification tasks. We conduct experiments on a widely
used few-shot image recognition benchmark: miniImageNet (Vinyals et al., 2016). Table 1 compares
the performance of the CLIP model between direct adaption to target task and multitask finetuning
with limited data. There are 200 finetuning tasks, each containing 50 images. After only 10 epochs,
finetuning improves the average accuracy by 6% and 2.8% for ViT-B32 and ResNet50 respectively.
We also provide results for vision language models and language models. More experimental details
and results can be found in Appendix C.

Task (M ) vs Sample (m). We vary the task size and sample size per task during finetuning. We
verify the trend of different numbers of tasks and numbers of images per task. Each task contains
5 classes. For finetuning tasks, m = 40 indicates each class contains the 1-shot image and 7-query
images. m = 200 indicates each class contains 5-shot and 35-query images. m = 1000 indicates
each class contains 25-shot and 175-query images. M = m = 0 indicates direct evaluation without
finetuning. For target tasks, each class contains the 1-shot image and 15 query images.

Task (M)
Sample (m) 0 40 200 1000

0 83.03 ± 0.24
200 88.53 ± 0.22 89.50± 0.20 89.93 ± 0.20
1000 89.37 ± 0.20 90.81 ± 0.19 90.97 ± 0.19
5000 89.95 ± 0.20 90.94 ± 0.19 91.16 ± 0.18

Table 2: Accuracy with varying number of tasks and samples (ViT-B32 backbone).

Table 2 shows the results on the pre-trained CLIP model using ViT backbone. For direct adaptation
without finetuning, the model achieves 83.03% accuracy. Multitask finetuning improves the average
accuracy at least by 5.5%. For a fixed number of tasks or samples per task, increasing samples or
tasks improves the accuracy. These results suggest that the total number of samples (M ×m) will
determine the overall performance, supporting our main theorem.

4 CONCLUSIONS

In this work, we considered using multitask finetuning to adapt pre-trained foundation models to
downstream tasks with limited labels. Our key contribution lies in the theoretical guarantees that
finetuning using a diverse set of relevant tasks can improve the performance on the target task,
in comparison to direct adaptation. Our analysis was confirmed empirically by our preliminary
results. Admittedly, our work is at an early stage. Yet we consider that our analysis and results
provide useful insight to the critical problem of effective adaptation of foundation models. We will
further develop our work, and explore directions such as (1) concrete and well-motivated problem
instances satisfying the task diversity assumptions for instantiating the error guarantees; and (2)
better finetuing methods and strategies for constructing and choosing finetuning tasks.
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Appendix

A DEFERRED PROOFS

In this section, we provide a formal setting and proof. We first formalize our setting in K classes:

Contrastive Learning. In contrastive learning, we sampled one image x from any latent class z,
then apply data augmentation module that randomly transforms such image into another view of the
original example denoted x+. We also sample other K images {x−

k }Kk=1 from other latent classes
{z−k }Kk=1. We treat (x, x+) as a positive pair and (x, x−

k ) as negative pairs. We define Dcon(η) over
sample (x, x+, x−

1 , . . . , x
−
K) by following sampling procedure

(z, z−1 , . . . , z−K) ∼ ηK+1 (8)

x ∼ D(z), x+ ∼ D(z), x−
k ∼ D(z−k ), k = 1, . . . ,K. (9)

We consider general contrastive loss ℓu
({

ϕ(x)⊤
(
ϕ(x+)− ϕ(x−

k )
)}K

k=1

)
, where loss function ℓu

is non-negative decreasing function. Minimizing the loss is equivalent to maximizing the sim-
ilarity between positive pairs while minimizing it between negative pairs. In particular, logis-
tic loss ℓu(v) = log (1 +

∑
i exp (−vi)) for v ∈ RK recovers the one used in most empirical

works: − log

(
exp{ϕ(x)⊤ϕ(x+)}

exp{ϕ(x)⊤ϕ(x+)}+
∑K

i=1 exp{ϕ(x)⊤ϕ(x−
i )}

)
. The population contrastive loss is defined

as Lun(ϕ) := E
[
ℓu

({
ϕ(x)⊤

(
ϕ(x+)− ϕ(x−

k )
)}K

k=1

)]
. Let Sun :=

{
xj , x

+
j , x

−
j1, . . . , x

−
jK

}N

j=1

denote our contrastive training set with N samples, sampled from Dcon(η), we have empirical con-
trastive loss L̂un(ϕ) :=

1
N

∑N
i=1

[
ℓu

({
ϕ(x)⊤

(
ϕ(x+)− ϕ(x−

k )
)}K

k=1

)]
.

Supervised Tasks. Given a representation function ϕ, we apply a task-specific linear transforma-
tion W to the representation to obtain the final prediction. Consider (K + 1)-way supervised task
T consist a set of distinct classes (z1, . . . , zK+1) ⊆ C. We define DT (z) as the distribution of
randomly drawing z ∈ (z1, . . . , zK+1), we denote this process as z ∼ T . Let ST := {xj , zj}mj=1

denote our labeled training set with m samples, sampled i.i.d. from zj ∼ T and xj ∼ D(zj). Define
g(ϕ(x)) := Wϕ(x) ∈ RK+1 as prediction logits, where W ∈ R(K+1)×d. The typical supervised
logistic loss is ℓ(g ◦ ϕ(x), z) := ℓu

(
{g(ϕ(x))z − g(ϕ(x))z′}z′ ̸=z

)
. Similar to Arora et al. (2019),

define supervised loss w.r.t the task T

Lsup(T , ϕ) := min
W∈R(K+1)×d

E
z∼T

E
x∼D(z)

[ℓ (W · ϕ(x), z)] . (10)

Define supervised loss with mean classifier as Lµ
sup(T , ϕ) := E

z∼T
E

x∼D(z)
[ℓ (Wµ · ϕ(x), z)] where

each row of Wµ is the mean of each class in T , Wµ
zk

:= µzk = E
x∼zk

(ϕ(x)), k = 1, . . . , (K + 1).

In the target task, suppose we have K + 1 distinct classes from C with equal weights. Consider T
follows a general distribution ζ. Define expected supervised loss as Lsup(ϕ) := E

T ∼ζ
[Lsup(T , ϕ)].

We formalize our assumption (R) below.

Assumption 1 (Regularity Conditions). The following regularity conditions hold:

(A1) Representation function ϕ satisfies ∥ϕ∥2 ≤ R.

(A2) Linear operator W satisfies bounded sprectral norm ∥W∥2 ≤ B.

(A3) The loss function ℓu are bounded by [0, C] and ℓ(·) is L-Lipschitz.

(A4) The supervised loss Lsup(T , ϕ) is L̃-Lipschitz with respect to ϕ for ∀T .

7
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A.1 PRE-TRAINING ERROR

In this section, we present pre-training error in binary classification (i.e. K = 1) and DT (z) as
uniform. See Theorem 6 for the result for the general condition with multi-class in Appendix B.

We re-state the theorem below.
Theorem 1. Assume Assumption (R) and that Φ has (ν, ϵ)-diversity for ζ and C0. Suppose ϕ̂ satisfies
L̂un(ϕ̂) ≤ ϵ0. Let τ := Pr

(z1,z2)∼η2
{z1 = z2}. Then for any target task T0 ⊂ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
1

1− τ
(2ϵ0 − τ)− Lsup(ϕ

∗)

]
+ ϵ. (6)

The contrastive sample complexity is O(RN (Φ)
ϵ0

+ log(1/δ)
ϵ20

). The first term is the Rademacher com-
plexity of the entire representation space Φ with sample size N . The second term relates to the
generalization bound.

Proof of Theorem 1. Recall in binary classes, Sun =
{
xj , x

+
j , x

−
j

}N

j=1
denote our contrastive train-

ing set, sampled from Dcon(η). Then by Lemma A.2 in Arora et al. (2019), with (A1) and (A3), we
have for ∀ϕ ∈ Φ with probability 1− δ,

Lun(ϕ)− L̂un(ϕ) ≤
4LRRN (Φ)

N
+ C

√
log 1

δ

N
. (11)

To have above ≤ ϵ0, we have sample complexity

N ≥ 1

ϵ0

[
8LRRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

Consider in pre-training we have ϕ̂ such that

L̂un(ϕ̂) ≤ ϵ0.

Then with the above sample complexity, we have pre-training ϕ̂

Lun(ϕ̂) ≤ 2ϵ0.

Recall with (ν, ϵ)-diversity, for any task T , we have that for ϕ̂ and ϕ∗,

Lsup(T , ϕ̂) ≤ Lsup(T , ϕ∗) +
1

ν
d̄ζ(ϕ̂, ϕ

∗) + ϵ (12)

≤ Lsup(T , ϕ∗) +
1

ν

[
Lsup(ϕ̂)− Lsup(ϕ

∗)
]
+ ϵ (13)

≤ Lsup(T , ϕ∗) +
1

ν

[
1

1− τ
(Lun(ϕ̂)− τ)− Lsup(ϕ

∗)

]
+ ϵ, (14)

where last inequality comes from Lemma 4.3 in Arora et al. (2019): for ∀ϕ ∈ Φ, Lsup(ϕ) ≤
Lµ
sup(ϕ) ≤ 1

1−τ (Lun(ϕ)− τ).

For such ϕ̂ and ϕ∗, we have for target task T0, the bound reduces to

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
1

1− τ
(Lun(ϕ̂)− τ)− ϵ∗

]
+ ϵ (15)

≤ 1

ν

(
1

1− τ
(2ϵ0 − τ)− ϵ∗

)
+ ϵ. (16)

8
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A.2 FINETUNING ERROR

In this section, we provide proof of Theorem 2. We consider binary classification for simplicity for
now, see Theorem 7 for the result with multi-class in Appendix B.

Following the intuition in (Garg & Liang, 2020), we first re-state the definition of representation
space.
Definition 2. The subset of representation space is

Φ(ϵ0) =
{
ϕ ∈ Φ : L̂un(ϕ) ≤ ϵ0

}
.

Recall S = {(xi
j , z

i
j) : i ∈ [M ], j ∈ [m]} as finetuning dataset.

We define two function classes and associated Rademacher complexity.
Definition 3. Consider function class

Gℓ =
{
gW,ϕ(x, z) : gW,ϕ(x, z) = ℓ(W · ϕ(xi

j), z
i
j), ϕ ∈ Φ(ϵ0), ∥W∥2 ≤ B

}
.

We define Rademacher complexity as

Rn(Gℓ) = E
{σi}n

j=1,{xj ,zj}n
j=1

sup
ℓ∈Gℓ

n∑
j=1

σjℓ(W · ϕ(xj), zj)

 .

Definition 4. Consider function class

G(ϵ0) = {gϕ : gϕ(T ) = Lsup(T, ϕ), ϕ ∈ Φ(ϵ0)} .

We define Rademacher complexity as

RM (G(ϵ0)) = E
{σi}M

i=1,{Ti}M
i=1

[
sup

ϕ∈Φ(ϵ0)

M∑
i=1

σiLsup(Ti, ϕ)

]
.

We re-state the theorem below.
Theorem 2. Assume Assumption (R) and that Φ has (ν, ϵ)-diversity for ζ and C0. Suppose for some
small constant α ∈ (0, 1), we solve (4) with empirical loss lower than ϵ1 = α

3
1

1−τ (2ϵ0 − τ) and
obtain ϕ′. For any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

[
α

1

1− τ
(2ϵ0 − τ)− Lsup(ϕ

∗)

]
+ ϵ. (7)

Proof of Theorem 2. Recall with (ν, ϵ)-diversity, for any task T , we have that for ϕ′ and ϕ∗,

Lsup(T , ϕ′) ≤ Lsup(T , ϕ∗) +
1

ν
d̄ζ(ϕ

′, ϕ∗) + ϵ (17)

≤ Lsup(T , ϕ∗) +
1

ν
[Lsup(ϕ

′)− Lsup(ϕ
∗)] + ϵ (18)

≤ 1

ν

[
α

1

1− τ
(2ϵ0 − τ)− ϵ∗

]
+ ϵ, (19)

where the last inequality comes from Lemma 3.
Lemma 3. Consider the notation and sample complexity in Theorem 2, solving (4) with empirical
risk lower than ϵ1 is sufficient to learn an ϕ′ with expected supervised loss Lsup(ϕ

′) ≤ α 1
1−τ (2ϵ0−

τ), with probability 1− δ.

9
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Proof. Consider in (4) we have Ŵ := (Ŵ1, . . . , ŴM ) and ϕ′ such that 1
M

∑M
i=1

1
m

∑m
j=1 ℓ(Ŵi ·

ϕ′(xi
j), z

i
j) ≤ ϵ1 < α

3 ϵ0.

We tried to bound

Lsup(ϕ
′)− 1

m

m∑
j=1

ℓ(Ŵi · ϕ′(xi
j), z

i
j).

Recall that
Lsup(Ti, ϕ) = min

W∈R(K+1)×d
E

z∼Ti

E
x∼D(z)

[ℓ (W · ϕ(x), z)] .

For ∀ϕ ∈ Φ(ϵ0)

Lsup(ϕ) = ET ∼ζ [Lsup(T , ϕ)] = ET ∼ζ

[
min

W∈R(K+1)×d
E

z∼T
E

x∼D(z)
[ℓ (W · ϕ(x), z)]

]
.

We have for ∀ϕ ∈ Φ(ϵ0), by uniform convergence (see Mohri et al. (2018) Theorem 3.3), we have
with probability 1− δ/2

ET ∼ζ [Lsup(T , ϕ)]− 1

M

M∑
i=1

Lsup(Ti, ϕ) ≤
2RM (G(ϵ0))

M
+

√
log(2/δ)

M
(20)

≤2
√
2L̃RM (Φ(ϵ0))

M
+

√
log(2/δ)

M
, (21)

where the last inequality comes from (A4) and Corollary 4 in Maurer (2016). To have above ≤ ϵ1/2,
we have sample complexity

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
.

Then we consider generalization bound for ∀ϕ and W := (W1, . . . ,WM )

Lsup(ϕ,W) =
1

M

M∑
i=1

E
zi∼Ti

E
xi∼D(zi)

ℓ
(
Wi · ϕ(xi), zi

)
(22)

L̂sup(ϕ,W) =
1

M

M∑
i=1

1

m

m∑
j=1

ℓ(Wi · ϕ(xi
j), z

i
j), (23)

where W = (W1, . . . ,WM ).

By uniform convergence (see Mohri et al. (2018) Theorem 3.3), we have with probability 1− δ/2,

Lsup(ϕ,W)−L̂sup(ϕ,W) ≤ 2RMm(Gℓ)

Mm
+

√
log(2/δ)

Mm
≤ 8

√
KLBRMm(Φ(ϵ0))

Mm
+C

√
log(2/δ)

Mm
,

where the last inequality comes from Lemma 4. Recall in binary classification we have K = 1, to
have above ≤ ϵ1/2, we have sample complexity

Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
,

satisfying ∀ϕ ∈ Φ(ϵ0)

1

M

M∑
i=1

Lsup(Ti, ϕ) =
1

M

M∑
i=1

min
W∈R(K+1)×d

E
z∼Ti

E
x∼D(z)

[ℓ (W · ϕ(x), z)]

≤ 1

M

M∑
i=1

E
z∼Ti

E
x∼D(z)

[
ℓ
(
Ŵi · ϕ(x), z

)]
= Lsup(ϕ,Ŵ)

≤ L̂sup(ϕ,Ŵ) + ϵ1/2.

10
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Then combine above with (20)

Lsup(ϕ) = E
T ∼ζ

[Lsup(T , ϕ)]

≤ L̂sup(ϕ,Ŵ) + ϵ1.

We have

Lsup(ϕ
′)− 1

m

m∑
j=1

ℓ(Ŵi · ϕ′(xi
j), z

i
j) ≤ ϵ1

Lsup(ϕ
′) ≤ 2ϵ1 ≤ α

1

1− τ
(2ϵ0 − τ).

Lemma 4 (Bounded Rademacher complexity). By (A2) and (A3), we have for ∀n

Rn(Gℓ) ≤ 4
√
KLBRn(Φ(ϵ0)).

Proof. We first prove ℓ(g(ϕ(x)), z) is
√
2KLB-Lipschitz with respect to ϕ for all ∀z ∈ C. Consider

fz(g(ϕ(x))) = {g(ϕ(x))z − g(ϕ(x))z′}z′ ̸=z ,

where fz : RK+1 7→ RK . Note that

ℓ(g ◦ ϕ(x), z) = ℓ
(
{g(ϕ(x))z − g(ϕ(x))z′}z′ ̸=z

)
= ℓ(fz(g(ϕ(x)))).

By (A3), we have ℓ is L-Lipschitz. We then prove fz is
√
2K-Lipschitz. Without loss generality,

consider z = K + 1. We have fz(y) = [yK+1 − yi]
K
i=1. We have ∂fj

yi
= −1{j = i}, i = 1, . . . ,K,

∂fj
yK+1

= 1. The Jacobian J satisfies ∥J∥2 ≤ ∥J∥F =
√
2K.

g is B-Lipschitz by (A2):∥W∥2 ≤ B. Then ℓ(g(ϕ(x)), z) is
√
2KLB-Lipschitz with respect to ϕ

for all ∀z ∈ C. The conclusion follows Corollary 4 in Maurer (2016).

B MULTI-CLASS CLASSIFICATION

In this section, we provide a general result for multi-classes with general distribution DT (z).

Lemma 5 (Theorem 6.1 in Arora et al. (2019)). For multi-classes, we have

Lsup(ϕ) ≤ Lµ
sup(ϕ) ≤

1

1− τK
Lun(ϕ), (24)

where τK = E
(z,z−

1 ,...,z−
K)∼ηK+1

1{z does not appear in (z−1 , . . . , z−K)}.

The proof of Lemma 5 follows the first two steps in the proof of Theorem B.1 of Arora et al. (2019).

Theorem 6 (Pre-training sample complexity in multi-classes). Consider a pre-training set Sun ={
xj , x

+
j , x

−
j1, . . . , xjK

}N

j=1
, by pre-training we get ϕ̂ with empirical contrastive loss L̂un(ϕ̂) ≤ ϵ0.

For target task T0, with sample complexity

N ≥ 1

ϵ0

[
8LR

√
KRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
,

it’s sufficient to learn an ϕ̂ with classification error Lsup(T0, ϕ̂) − Lsup(T0, ϕ∗) ≤
1
ν

[
1

1−τ (2ϵ0 − τ)− ϵ∗
]
+ ϵ, with probability 1− δ.

11
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Proof of Theorem 6. Following similar step of proof of Theorem 1, we have with

N ≥ 1

ϵ0

[
8LR

√
KRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

We have pre-training ϕ̂

Lun(ϕ̂) ≤ 2ϵ0.

With (ν, ϵ)-diversity, for any task T , we have that for ϕ̂ and ϕ∗,

Lsup(T , ϕ̂) ≤ Lsup(T , ϕ∗) +
1

ν
d̄ζ(ϕ̂, ϕ

∗) + ϵ (25)

≤ Lsup(T , ϕ∗) +
1

ν

[
Lsup(ϕ̂)− Lsup(ϕ

∗)
]
+ ϵ. (26)

Consider Lemma 5, we have for target task T0

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
1

1− τK
Lun(ϕ̂)− ϵ∗

]
+ ϵ (27)

=
1

ν

(
2ϵ0

1− τK
− ϵ∗

)
+ ϵ. (28)

Below, we provide our main result similar to Theorem 2 for multi-classes setting.
Theorem 7. For target evaluation task T0, consider the error bound in pre-training is Lsup(T0, ϕ̂)−
Lsup(T0, ϕ∗) ≤ 1

ν

[
2ϵ0

1−τK
− ϵ∗

]
+ ϵ. Consider α as any small constant, for any ϵ1 < α

3
2ϵ0

1−τK
,

consider a multitask finetuning set S = {(xi
j , z

i
j) : i ∈ [M ], j ∈ [m]}, with M number of tasks, and

m number of samples in each task. Then, with sample complexity

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
Mm ≥ 1

ϵ1

[
16LB

√
KRMm(Φ(ϵ0)) +

4C2

ϵ1
log(

2

δ
)

]
.

Solving (4) with empirical risk lower than ϵ1 is sufficient to learn an ϕ′ with classification error
Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν (α
2ϵ0

1−τK
− ϵ∗) + ϵ, with probability 1− δ.

The proof follows the same steps in the proof of Theorem 2.

C EXPERIMENTAL RESULTS

C.1 VISION TASKS

C.1.1 DATASETS

The miniImageNet dataset contains 100 classes sampled from ILSVRC-2012 (Russakovsky et al.,
2015), then are randomly split into 64, 16, and 20 classes as training, validation, and testing set
respectively following the protocol in (Chen et al., 2021).

The tieredImageNet dataset contains 608 classes from 34 super-categoriessampled from ILSVRC-
2012. They are then split into 20, 6, 8 supercategories, resulting in 351, 97, 160 classes as training,
validation, testing set respectively.

C.1.2 EXPERIMENTAL SETUP

We use the SGD optimizer with momentum 0.9. The learning rate is fixed as 10−5. The weight
decay is 5.0×10−6. In each few-shot task, we sample shot images and query images sum to m. We
apply sampling for evaluating the performance. For the novel class split in a dataset, the sampling of
testing few-shot tasks follows a deterministic order. We sample 1500 tasks and show the accuracy
confidence interval below.

12
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C.1.3 MORE RESULTS

Task (M ) vs Sample (m). We vary the task size and sample size per task during finetuning. We
verify the trend of different numbers of tasks and numbers of images per task. Each task contains
5 classes. For finetuning tasks, m = 50 indicates each class contains the 1-shot image and 9-query
images. m = 100 indicates each class contains 2-shot and 18-query images. m = 200 indicates
each class contains 4-shot and 36-query images. M = m = 0 indicates direct evaluation without
finetuning. For target tasks, each class contains the 1-shot image and 15 query images.

Task (M)
Sample (m) 0 50 100 200

0 83.03 ± 0.24
200 89.07 ± 0.20 89.95± 0.19 90.09 ± 0.19
400 89.31 ± 0.19 90.11± 0.19 90.70 ± 0.18
800 89.71 ± 0.19 90.27± 0.19 90.80 ± 0.18

Table 3: Accuracy with varying number of tasks and samples (ViT-B32 backbone).

Table 3 shows the results on the pre-trained CLIP model using ViT backbone. For direct adaptation
without finetuning, the model achieves 83.03% accuracy. Multitask finetuning improves the average
accuracy at least by 6%. For a fixed number of tasks or samples per task, increasing samples or
tasks improves the accuracy. These results suggest that the total number of samples (M ×m) will
determine the overall performance, supporting our main theorem.

Task Diversity. Task diversity is crucial for the foundation model to perform well on novel classes
in target tasks. Task diversity can be measured by class diversity in finetuning stage. We vary the
number of classes model access to in finetuning stage. The number of classes varies from all classes,
i.e., 64 classes, to 8 classes. Each task contains 5 classes. For finetuning tasks, each class contains 1
shot image and 10 query images. For target tasks, each class contains the 1-shot image and 15 query
images.

# limited classes 64 32 16 8 0
Accuracy 90.02 ± 0.15 88.54 ± 1.11 87.94 ± 0.22 87.07 ± 0.20 83.03 ± 0.24

Table 4: Class diversity on ViT-B32 backbone on miniImageNet.

Table 4 shows the accuracy of ViT-B32 on different numbers of classes in finetuning stage, where
class 0 indicates direct evaluation without finetuning. Finetuning improves the average accuracy by
4%. As class diversity increases, performance increases.

Few Shot Effect. We perform experiments on the few-shot effects of finetuning tasks. We evaluate
whether increasing few-shot images in finetuning task will provide significant improvement. Each
task contains 5 classes. For finetuning tasks, each class contains 10 query images. For target tasks,
each class contains 1 shot image and 15 query images.

# shot images 20 10 5 1 0
Accuracy 91.03 ± 0.18 90.93 ± 0.18 90.54 ± 0.18 90.02 ± 0.15 83.03 ± 0.24

Table 5: Few shot effect on ViT-B32 backbone on miniImageNet.

Table 5 shows the accuracy of ViT-B32 on different numbers of few-shot images in finetuning tasks.
Increasing the few shot images, which will increase the sample number in each task, improves the
performance. This corresponds to our sample complexity statement.

13
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C.1.4 TASK DIVERSITY FOR OMNIGLOT

For task diversity, we also use dataset Omniglot (Lake et al., 2015). The Omniglot dataset is de-
signed for developing more human-like learning algorithms. It contains 1623 different handwritten
characters from 50 different alphabets. The 1623 classes are divided into 964, 301, and 358 classes
as training, validation, and testing set respectively. We sample multitask in finetuning stage from
training data and the target task from testing data.

# limited classes 964 482 241 50 10 0
Accuracy 95.35 ± 0.14 95.08 ± 0.14 94.29 ± 0.15 88.48 ± 0.20 80.26 ± 0.24 74.69 ± 0.26

Table 6: Class diversity on ViT-B32 backbone on Omniglot.

Table 6 shows the accuracy of ViT-B32 on different numbers of classes in finetuning stage, where
class 0 indicates direct evaluation without finetuning. Finetuning improves the average accuracy by
5.5%. As class diversity increases, performance increases.

C.2 VISION LANGUAGE TASKS

C.2.1 IMPROVING ZERO-SHOT PERFORMANCE

We also examine how well CLIP models perform on miniImageNet in a zero-shot manner, using
the protocol established for our vision tasks. Each task consists of 10 classes, with 15 query images
per class. We use text features along with class information as the centroid to classify query images
among the 10 classes. The text template utilized in this experiment was adapted from the CLIP
documentation.

a photo of a {}
itap of a {}.

a bad photo of the {}.
a origami {}.

a photo of the large {}.
a {} in a video game.

art of the {}.
a photo of the small {}.

Table 7: Templates adapted from CLIP.

To obtain the centroid feature vector, we forward the text through the CLIP text encoder and calculate
the average.

Backbone Zero-shot Multitask finetune
Accuracy 94.43 ± 0.05 95.03 ± 0.05

Table 8: Multitask finetune on zero-shot performance with ViT-B32 backbone on miniImageNet.

Table 8 demonstrates that CLIP already exhibits a high level of zero-shot performance. This is due
to the model classifying images based on text information rather than relying on another image from
the same class, which enables the model to utilize more accurate information to classify among
query images. It is noteworthy that our multitask finetune paradigm still improves the zero-shot
performance of the model.
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Prompt-based zero-shot 83.6 35.0 80.8 79.5 67.6 51.4 32.0 2.0
Multitask FT zero-shot 92.9 37.2 86.5 88.8 73.9 55.3 36.8 -0.065

Prompt-based FT† 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0) 84.7 (2.2) 91.2 (1.1) 84.8 (5.1) 9.3 (7.3)
Multitask Prompt-based FT 92.0 (1.2) 48.5 (1.2) 86.9 (2.2) 90.5 (1.3) 86.0 (1.6) 89.9 (2.9) 83.6 (4.4) 5.1 (3.8)
+ task selection 92.6 (0.5) 47.1 (2.3) 87.2 (1.6) 91.6 (0.9) 85.2 (1.0) 90.7 (1.6) 87.6 (3.5) 3.8 (3.2)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)

Prompt-based zero-shot 50.8 51.7 49.5 50.8 51.3 61.9 49.7
Multitask FT zero-shot 63.2 65.7 61.8 65.8 74.0 81.6 63.4

Prompt-based FT† 68.3 (2.3) 70.5 (1.9) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3)
Multitask Prompt-based FT 70.9 (1.5) 73.4 (1.4) 78.7 (2.0) 71.7 (2.2) 74.0 (2.5) 79.5 (4.8) 67.9 (1.6)
+ task selection 73.5 (1.6) 75.8 (1.5) 77.4 (1.6) 72.0 (1.6) 70.0 (1.6) 76.0 (6.8) 69.8 (1.7)

Table 9: Our main results using RoBERTa-large. †: Result in (Gao et al., 2020); We report mean
(and standard deviation) performance over 5 different splits of few-shot examples as in (Gao et al.,
2020)

D LANGUAGE MODEL RESULTS

We also tested our pipeline for multitask finetuning on masked language models following the pro-
cedure described in Gao et al. (2020).

D.1 DATASETS

The text datasets contains 8 single-sentence and 7 sentence-pair English tasks, including 8 tasks
from the GLUE benchmark (Wang et al., 2018), SNLI (Bowman et al., 2015), and 6 other popular
sentence classification tasks (SST-5, MR, CR, MPQA, Subj, TREC). The goal is to predict the label
based on a single sentence or a sentence-pair. For single sentences, we predict their semantics,
whether they are positive or negative, while for sentence-pairs, we predict the relationship between
them. We use K = 16 (per class) for few-shot experiments.

D.2 MULTITASK FINETUNING

To perform multitask finetuning, we select few-shot examples from other tasks as training finetuning
examples for a specific target task (e.g., QNLI). We then multitask finetune the model using these
selected finetuning examples, followed by prompt-based finetuning as described in Gao et al. (2020).

D.2.1 TASK SELECTION

We first forward text examples through the BERT backbone to obtain text features for each data
point in the dataset. We then compute the first principal component and get one feature vector per
dataset. We further perform training task selection based on the relative distance among the feature
vectors extracted from each task. Our multitask finetuning protocol provided improvements for most
of the datasets, as shown in Table 9.
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