
Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Jie Ji * 1 Gen Li * 1 Lu Yin 2 Minghai Qin 1 Geng Yuan 3 Linke Guo 1 Shiwei Liu 4 Xiaolong Ma 1

Abstract
Dynamic Sparse Training (DST) has been effec-
tively addressing the substantial training resource
requirements of increasingly large Deep Neural
Networks (DNNs). Characterized by its dynamic
“train-prune-grow” schedule during training, DST
implicitly develops a bi-level structure for train-
ing the weights while discovering a subnetwork
topology. However, such a structure is consis-
tently overlooked by the current DST algorithms
for further optimization opportunities, and these
algorithms, on the other hand, solely optimize
the weights while determining masks heuristi-
cally. In this paper, we extensively study DST
algorithms and argue that the training scheme
of DST naturally forms a bi-level problem in
which the updating of weight and mask is in-
terdependent. Based on this observation, we
introduce a novel efficient training framework
called BiDST, which for the first time, introduces
bi-level optimization methodology into dynamic
sparse training domain. Unlike traditional partial-
heuristic DST schemes, which suffer from sub-
optimal search efficiency for masks and miss
the opportunity to fully explore the topological
space of neural networks, BiDST excels at dis-
covering excellent sparse patterns by optimizing
mask and weight simultaneously, resulting in max-
imum 2.62% higher accuracy, 2.1× faster exe-
cution speed, and 25× reduced overhead. Code
available at https://github.com/jjsrf/
BiDST-ICML2024.

1. Introduction
Deep neural networks (DNNs) have transformed traditional
machine learning technology into an intelligent and scalable

*Equal contribution 1Clemson University, USA 2University
of Aberdeen, Scotland 3University of Georgia, USA
4University of Oxford, England. Correspondence to: Jie Ji
<jji@g.clemson.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

w0 m0 w1 m1w1 m1 w2 m2

w0 m0 w1 m1w1 m1 w2 m2

Update weight Update mask Apply mask on weight

(a) Original DST

(b) BiDST

Figure 1: Training and mask update comparison between
(a) original DST methods, and (b) the proposed BiDST.

ecosystem, fueling a wide range of challenging tasks (Ren
et al., 2015; Li et al., 2023a; Yin et al., 2023; Kirillov et al.,
2023). The arrival of the Artificial General Intelligence
(AGI) era coupled with extensive data has catalyzed the de-
velopment of larger model sizes and an exponential increase
in computational requirements, resulting in a great challenge
for end-users when implementing edge intelligence locally.

A straightforward yet effective solution is to introduce spar-
sity into DNN training (Deng et al., 2020). As pointed out
in Bellec et al. (2018) and Mocanu et al. (2018), weight spar-
sity can be leveraged to potentially satisfy memory bound
along with training computation reduction, with notably
higher accuracy compared with directly training a shrinked-
size DNN model. In order to obtain such merits, a sparse
mask (i.e., a set of binary values that has the same shape
as weights and contains only 0 or 1) needs to be developed,
in which the 1s activate a portion of the original dense net-
work by selecting weights (i.e., usually less than 30% of
the total weights) for training and inference. Under such
circumstances, finding the binary mask before or during
training surges as the key enabler to provide accurate and
efficient learning dynamics (Lee et al., 2019; Wang et al.,
2020b; Mocanu et al., 2018). Among a variety of methods,
the Dynamic Sparse Training (DST) (Mocanu et al., 2018;
Yin et al., 2024; Evci et al., 2020; Yuan et al., 2021; Li et al.,
2023b; Dai et al., 2023) has emerged with the ability to op-
timize weights and find the mask concurrently, and rapidly
becomes the prevailing approach owing to its high accuracy,
efficiency, and ease of implementation.

In prior DST algorithms, a sparse mask keeps the entire
training phase following an “always sparse” regime, and is

1

https://github.com/jjsrf/BiDST-ICML2024
https://github.com/jjsrf/BiDST-ICML2024

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

evolving its topology by iteratively pruning weights with
smallest magnitude and then growing other weights back.
As shown in Figure 1 (a), during training, the updates on
model weights and masks form a bi-level structure: ① de-
pending on the magnitude of the updated weights, the topol-
ogy of the mask is then updated, which forms the upper-level
problem, ② depending on the newly obtained masks, the
weights of the subnetwork will be updated through the stan-
dard SGD process (Amari, 1993), which forms the lower-
level problem. Both problems ① and ② are mutually de-
pendent on the outcome of one another, which indicates
that the formation of the DST essentially falls within the bi-
level optimization (Colson et al., 2005; Zhang et al., 2023)
realm, and both should be solved analytically. However,
current DST optimizes the weight objective with conven-
tional SGD optimization, while leaving the mask objective
updated using non-comprehensive heuristics (e.g., weight
magnitude (Mocanu et al., 2018; Mostafa & Wang, 2019;
Yuan et al., 2021; Liu et al., 2021; Yuan et al., 2022), gra-
dient (Evci et al., 2020; Jayakumar et al., 2020; Schwarz
et al., 2021), momentum (Dettmers & Zettlemoyer, 2019),
etc.). Consequently, the search efficiency for the mask is
relatively low, making it prone to sub-optimal training accu-
racy. For instance, the mask tends to stop evolving early due
to the convergence of weights (Yuan et al., 2021). Increas-
ing mask update frequency along with using large learning
rate and batch size (Evci et al., 2020) may partially alle-
viate the issue but incurs high system overhead (i.e., the
amount of time or resources required in addition to those
for computation in an end-to-end training process) (Chen
et al., 2023a). Additionally, heuristic mask updating loses
the opportunity for exploring the topological space of a
neural network where the learned structure contains latent
expressiveness power (Ramanujan et al., 2020). Although
recent works have observed the performance gain of sub-
networks through optimization (Tai et al., 2022), studies of
their adoption in the DST methods are still lacking.

In this paper, we scrutinize the optimization opportunities
in every phase of the DST, and we argue that the training
scheme of DST essentially forms a bi-level structure, in
which both levels should be solved simultaneously through
optimization techniques. As such, we present a novel frame-
work Bi-level Dynamic Sparse Training (BiDST), which
for the first time, matures the partial-heuristic DST scheme
into a fully optimization-based methodology. In BiDST,
as shown in Figure 1 (b), the mask is optimized based on
both weight and its topology, which are intercorrelated via
implicit gradient (Krantz & Parks, 2002). We show that our
approach not only provides a theoretically-grounded solu-
tion towards sparse training, but also incurs only negligible
extra computations that can be easily compensated through
adjusting the training schedule without degrading accuracy.
We demonstrate that BiDST shows superior mask searching

quality and efficiency. Compared to prior DST methods,
BiDST achieves notably higher accuracy while obtaining a
more meaningful mask that can be used to identify a subnet-
work with better training dynamics. More importantly, the
optimization-based methodology serves as the driving force
behind a more efficient mask searching procedure, which
alleviates the system overhead problem that is primarily
caused by frequently changing mask topology in DST, thus
providing a more practical way to achieve efficient training.
To summarize our contributions:

• We scrutinize every phase in the DST methods and find
the lost treasure – an optimization opportunity on the
mask update part that is long-neglected. This opportu-
nity should be incorporated to reform DST into a bi-level
structure, enabling comprehensive optimization.

• We design a novel sparse training framework – BiDST,
which adopts bi-level optimization techniques to solve
the weight and mask objective functions simultaneously
while only incurring negligible computation costs.

• We demonstrate that BiDST excels in efficiently explor-
ing the mask searching space, thus discovering superior
sparse patterns that result in higher accuracy compared
to other dynamic sparse training methods.

• We analyze that the frequent mask update is the source
of the primary system overhead in the DST family,
and demonstrate that the proposed BiDST framework
is highly practical for the end-to-end implementation
thanks to its optimization nature which reduces update
frequency.

2. Proposed Method
2.1. Notations and Preliminaries

Consider a network function f(·) that is initialized as
f(x;θ0) where x denotes input training samples. We use
ψ to define a sparse mask ψ ∈ {0, 1}|θ| that is obtained
from certain pruning algorithm, and a sparse subnetwork
is defined as (ψ ⊙ θ) where ⊙ is the element-wise multi-
plication. We use s to denote the sparsity ratio, which is
defined as the percentage of the pruned weights in the DNN
model. For an entire training process, t ∈ (1, T) denotes a
certain iteration within the total T iterations. We use ℓ to
characterize the loss of the function f(·). By minimizing
ℓ(f(ψ ⊙ θ)), a learned sparse subnetwork can be written
as f(ψT ⊙ θT), where x is omitted for the ease of notation
purpose.

Dynamic sparse training (DST). To reduce the training
computation cost and save hardware resources, DST trains a
randomly initialized sparse neural network f(ψ0⊙θ0) from
scratch, and adjusts the sparsity topology ψ during training.

2

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

The training scheme of a classic DST can be summarized as
a process of alternating the following two phases:

• Weight training: based on the developed mask ψt−1, we
train the network for t iterations, arriving at weights θt
and network function f(ψt−1 ⊙ θt).

• Mask updating: based on the trained weights θt, we
use a mask updating function MaskUpdate to change
the network topology to a better structure, i.e., ψt ←
MaskUpdate(ψt−1,θt).

In recent literature (Mostafa & Wang, 2019; Evci et al.,
2020; Yuan et al., 2021), MaskUpdate is usually achieved
by a two-step prune-grow process. First, the heuristic
magnitude-based pruning prunes the weights to (s + p),
where p is a hyper-parameter that increases the pruning ra-
tio to a higher level. Then, a new mask ψ is obtained by
growing a number of p × |θ| zero weights back, resetting
the sparsity level back to s. Formally, the MaskUpdate
can be defined as

f(ψt ⊙ θt)|ψt ← ArgGrowTo(Pt, s)

where Pt = ArgPruneTo(f(ψt−1 ⊙ θt), s+ p)
(1)

Bi-level optimization (BO). Bi-level optimization (BO)
serves as a valuable approach for modeling scenarios char-
acterized by a two-tier hierarchy, wherein the upper-level
variables exhibit a dependency on the outcomes derived
from specific lower-level optimization problems. In general,
a standard representation of BO can be expressed as

minimize
x∈X

U(x,v∗(x)); s.t. v∗(x) ∈ argmin
v∈V

L(x,v), (2)

where X and V are the feasible sets for the upper-level
variable x and the lower-level variable v, respectively. Con-
sequently, this two-tier hierarchy can be characterized by
two objectives as

• Upper-level objective: U(·) represents the upper-level
objective, which aims to find an optimal solution x by
considering the impact of the lower-level problem.

• Lower-level objective: L(·) represents the lower-level
objective, which involves finding an optimal v that mini-
mizes L(x,v) given x.

The two levels of optimization are interdependent, and the
solution to the upper-level problem depends on the outcome
of the lower-level problem.

Why dynamic sparse training is a bi-level optimization
problem? From the above discussion, it is clear that the two
phrases in the DST training scheme are interdependent, that

the development of mask is based on the trained weights
while the topology of the weights is characterized by the
developed mask. This process is very much similar to the
formulation of a BO problem in equation 2. Considering the
goal of DST is to train the weights while obtaining a good
sparse topology (i.e., mask), the previous DST scheme can
be informally written as

MaskUpdate(f(ψt−1 ⊙ θt));
s.t. θt ∈ argmin ℓ(f(ψt−1 ⊙ θt−1)),∀ t ∈ (0, T),

(3)

where the dependency between ψ and θ is characterized by
how the solutions are obtained given certain conditions, i.e.,
given θt, MaskUpdate(·) finds ψt, while θt is trained
from θt−1 that is structured by ψt−1. It can be inferred
that upper-level objective in equation 2 can be extended
to U(x,v∗(x)) ← MaskUpdate(f(ψt−1 ⊙ θt)), and
the lower-level objective in equation 2 can be extended
to L(x,v)← ℓ(f(ψt−1 ⊙ θt−1)). Therefore, equation 2 is
symbolically equivalent to equation 3, thus DST is essen-
tially a bi-level optimization problem.

2.2. BiDST - Bi-Level Dynamic Sparse Training
Framework

The intuition in Section 2.1 asserts that the DST is a BO
problem, particularly because of the strong resemblance to
the structure and characteristics of the latter one. In equa-
tion 3, we can see that the current mask ψt is developed
from ψt−1 using current weights θt, and in the meantime,
θt is trained from θt−1 with previous topology guided by
ψt−1. The two phrases are interdependent on each other,
where the mask determines which portions of the weights
are subjected to training, and the weights, in turn, influence
the subsequent sparse topology. Concretely, the solution
to the upper-level problem in equation 3 is given by equa-
tion 1, which usually relies on rule-based heuristics that
lead to sub-optimal solutions. Inspired by the fact that mask
is embedded in the network computation graph due to its
association with weights, we find that mask is implicitly
characterized by a single unified loss function, and can be
optimized through gradient-based techniques. Therefore,
we rewrite equation 3 into the following bi-level dynamic
sparse training (BiDST) formulation:

minimize
ψ∈Ψ

ℓ(f(ψ ⊙
Trained θ︷ ︸︸ ︷
θ∗(ψ)))︸ ︷︷ ︸

Loss of the mask

;

s.t. θ∗(ψ) ∈ argmin
θ∈R|θ|

ℓ(f(ψ ⊙ θ)) +
λ

2
∥ψ ⊙ θ∥2︸ ︷︷ ︸

Optimize weight θ given fixed maskψ

,
(4)

where ℓ is the cross-entropy loss, and the regularization
term in the lower-level problem with hyper-parameter λ sta-
bilizes the gradient flow (Shaham et al., 2015; Hong et al.,

3

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Mask Updating

Upper Level

Weight Updating

Lower Level

ψ2

......

Random
Initialization

ψ2topological space

train

apply
parameter space

ψ1ψ0

θ0 θ1 θ2

Figure 2: Overview of the two-level dynamic mask updating scheme of BiDST. The upper level learns the mask using
topological space information from the previous mask and parameter space information from weights, and the lower level
trains the sparse weights guided by mask.

2020). Depending on different objective variables, equa-
tion 4 decomposes a DST problem into two sub-problems:

• Upper-level problem: given trained weights θ, the upper-
level problem aims to find a better mask ψ by minimizing
the loss in terms of the mask.

• Lower-level problem: given a fixed mask ψ, the lower-
level problem updates the subnetwork weights by min-
imizing the loss in terms of weights, which is usually
achieved by SGD.

By changing the upper-level objective from
MaskUpdate(·) to the loss function of the network,
BiDST exhibits better mask search ability by systematically
exploring the solution space. Comparing to the trial-and-
error strategies used in prior DST methods, BiDST can
find globally near-optimal solutions more efficiently. In
BiDST, a single loss function couples the topological space
(i.e., mask) and the parameter space (i.e., weights) for
joint optimization (see Figure 1(b) and Figure 2), which
leverages the latent expressiveness power of the learned
structure of the neural network. Additionally, the proposed
optimization approach only incurs negligible computations
by reusing gradients in the computation graph, and can be
practically implemented by using Gumbel-Softmax (Jang
et al., 2017) (please see Section 2.3).

To solve the BiDST optimization problem, we apply chain
rule on the mask loss function ℓ(f(ψ ⊙ θ∗(ψ))), we have:

dℓ(f(ψ⊙θ∗(ψ)))
dψ = ∇ψℓ(f(ψ ⊙ θ∗(ψ)))

+dθ∗(ψ)⊤

dψ ∇θℓ(f(ψ ⊙ θ∗(ψ))),
(5)

where dℓ(f(ψ⊙θ∗(ψ)))
dψ denotes the full derivative of ℓ,

∇ψℓ(f(ψ ⊙ θ∗(ψ))) and∇θℓ(f(ψ ⊙ θ∗(ψ))) denote the
partial derivative of the loss function with respect to mask
and weights, respectively. Therefore, the optimization of the
upper-level problem jointly considers both the topological
space (∇ψ) and the parameter space (∇θ).

According to the implicit function theory (Gould et al.,
2016), we refer to dθ∗(ψ)⊤

dψ as implicit gradient (IG). For

ease of notations, the transpose operation ⊤ is omitted in
the rest of the paper. In equation 5, with the first-order
stationary condition of BO (Ghadimi & Wang, 2018), we
have

∇ψℓ(f(ψ ⊙ θ∗(ψ))) + λθ∗ = 0. (6)

By taking derivative with respect to ψ on both sides, we
have:

∇2
ψθℓ(f(ψ ⊙ θ∗(ψ))) +dθ∗(ψ)

dψ ∇2
θℓ(f(ψ ⊙ θ∗(ψ)))

+λdθ∗(ψ)
dψ = 0.

(7)

So that we can get

dθ∗(ψ)

dψ
= −∇2

ψθℓ(f(ψ ⊙ θ∗(ψ)))(∇2
θℓ(f(ψ ⊙ θ∗(ψ))) + λI)−1.

(8)

Since directly computing the second-order partial deriva-
tives is theoretically challenging, inspired by Finn et al.
(2017) and Liu et al. (2022a), we replace∇2

θ with zero and
therefore

dℓ(f(ψ⊙θ∗(ψ)))
dψ = ∇ψℓ(f(ψ ⊙ θ∗(ψ)))

− 1
λ∇ψ⊙θ∗(ψ)ℓ(f(ψ ⊙ θ∗(ψ))).

(9)

At this point, solving the upper-level problem for mask up-
date is to compute the first-order partial derivatives. Based
on Hong et al. (2023), the analytical solution for the BiDST
defined in equation 4 is derived following the classic DST
regime in Section 2.1 as

• Weight training: at iteration t, we solve the lower-level
problem using SGD, which is given by

θt = θt−1 − α∇θ [ℓ(f(ψ ⊙ θ)) +
λ

2
∥ψ ⊙ θ∥2]t−1. (10)

• Mask updating: after obtaining θt, we solve the upper-
level problem with

ψt = ψt−1 − α
dℓ(f(ψ ⊙ θt))

dψ
|ψ=ψt−1

(11)

4

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Table 1: Accuracy comparison using ResNet-32 on CIFAR-10/100.

Datasets Sparsity CIFAR-10 (dense: 94.9) CIFAR-100 (dense: 74.9)Distribution

Pruning ratio 90% 95% 98% 90% 95% 98%

LT [13] non-uniform 92.31 91.06 88.78 68.99 65.02 57.37
SNIP [26] non-uniform 92.59 91.01 87.51 68.89 65.02 57.37
GraSP [51] non-uniform 92.38 91.39 88.81 69.24 66.50 58.43

Deep-R [2] non-uniform 91.62 89.84 86.45 66.78 63.90 58.47
SET [35] non-uniform 92.30 90.76 88.29 69.66 67.41 62.25
DSR [38] non-uniform 92.97 91.61 88.46 69.63 68.20 61.24
RigL 11 ERK 93.55 92.39 90.22 70.62 68.47 64.14
RigL-ITOP 32 ERK 93.70 92.78 90.40 71.16 69.38 66.35
BiDST (ours) ERK 94.12±0.11 93.26±0.12 92.21±0.09 73.42±0.14 71.50±0.07 68.19 ±0.15

RigL-ITOP [32] uniform 93.19 92.08 89.36 70.46 68.39 64.16
RigL [11] uniform 93.07 91.83 89.00 70.34 68.22 64.07
MEST [54] uniform 92.56 91.15 89.22 70.44 68.43 64.59
BiDST (ours) uniform 93.68±0.11 92.93±0.14 91.99±0.12 72.97±0.08 70.03±0.12 67.21 ±0.06

Algorithm 1 BiDST implementation details
Input: A DNN model with randomly initialized weight θ0; a

random mask ψ0 with sparsity s. A flag parameter F
indicating when to change the subnetwork topology based
on ψ.

Output: A sparse model satisfying the target sparsity s.
Set t = 0. Set the number of non-zero weights to be k = s× |θ|.

while t < T do
if F then

ψ′
t ← Binarize(ψt,argmax(ψt, k))

Train the subnetwork f(ψ′
t ⊙ θt) by solving Eq. 10.

Update mask ψ by solving Eq. 11.
t = t+ 1.

where α is the learning rate. We set α for upper- and lower-
level solution to be the same for easy implementation. Al-
gorithm 1 briefly shows the training process of the proposed
BiDST.

2.3. Computation Analysis for BiDST

In BiDST, the key parameters within the computation graph
(e.g., weight, mask) are performing sparse computation (i.e.,
in both forward and backward propagation) to reduce the
training cost. From Algorithm 1, weight and mask are
two components that majorly contribute to the computation
budget. Compared to prior DST methods, BiDST relaxes
the mask variable to a continuous variable and computes
its gradients, thus involving extra computation that arises
from optimizing the mask. To minimize such extra cost, we
apply argmax(·) function on mask to index a subset of
weights for forward propagation. During backward propa-
gation, mask gradients are derived from the same copy of
activation gradients that is used to compute weight gradi-
ents. Therefore, mask doesn’t take any input for forward
computation, and we certainly do not need to re-compute
activation gradients when applying chain rule. Specifically,

BiDST only learns a subset of mask that covers the current
DNN topology and an extra space for mask updating (i.e.,
please see Appendix A for settings and discussion), which
not only guarantees sparse computation on regular DNN
computation, but also ensures sufficient search space (Lee
et al., 2014) for mask updating.

2.4. Overhead Reduction for Practical Implementation

Unlike other approaches that frequently change mask topol-
ogy in their DST schedule (Evci et al., 2020; Mocanu
et al., 2018), BiDST learns the subset of relaxed mask
continuously but only changes the network topology pe-
riodically (i.e., Binarize through argmax operation of
mask, please refer to F in Algorithm 1 and its setting in
Appendix A). In practice, frequently changing the network
topology incurs huge system overhead, which means more
time and hardware resources are required to perform end-to-
end learning due to computation graph reconstruction and
static machine code recompilation (Chen et al., 2018). We
show that BiDST only requires limited topology updates
thanks to more principled and data-driven solutions (please
see results in Section 3.4), which significantly reduces over-
head and promotes practical implementations.

3. Experimental Results
In this section, we carry out experiments to comprehensively
demonstrate the advantages of BiDST. We evaluate BiDST
in comparison with the state-of-the-art (SOTA) DST meth-
ods, and show superior accuracy, effective mask searching
ability, as well as great applicability for implementations.
We follow the traditional network and dataset selection used
in prior DST methods. We use ResNet-32 (Zagoruyko
& Komodakis, 2016), VGG-19 (Simonyan & Zisserman,
2014) and MobileNet-v2 (Sandler et al., 2018) on CIFAR-

5

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

(a) ResNet-32 CIFAR-10 (b) VGG-19 CIFAR-10 (c) MobileNet-v2 CIFAR-10

Figure 3: We perform high sparsity experiments on ResNet-32, VGG-19 and MobileNet-v2 on CIFAR-10 dataset, and
compare with different DST methods. Note that MobileNet-v2 is already a compact model, so the extreme sparsity range is
different from the other two networks.

(a) ResNet-32 CIFAR-10 (b) ResNet-32 CIFAR-100 (c) ResNet-50 ImageNet-1K

Figure 4: Evaluation of BiDST mask development progress. We use ResNet-32 on CIFAR-10/100, and ResNet-50 on
ImageNet-1K at a target sparsity of 90%.

10 and CIFAR-100 datasets (Krizhevsky, 2009), and we use
ResNet-34 and ResNet-50 (He et al., 2016) on ImageNet-1K
dataset (Deng et al., 2009). We test the on-device training
performance using a Samsung Galaxy S21 with Snapdragon
888 chipset. We repeat training experiments for 3 times for
all experiments.

3.1. Experimental Settings

We use standard training recipe following Yuan et al. (2021)
and Wang et al. (2020b). To ensure fair comparison, all
BiDST experiments have a slight scale down on the number
of training epochs to compensate the mask learning compu-
tation cost. We use standard data augmentation, and cosine
annealing learning rate schedule is used with SGD optimizer.
For CIFAR-10/100, we use a batch size of 64 and set the
initial learning rate to 0.1. For ImageNet-1K, we use a batch
size of 1024 and learning rate of 1.024 with a linear warp-up
for 5 epochs. Due to limited space, we put detailed settings
in Appendix A.

3.2. BiDST Accuracy

CIFAR-10 and CIFAR-100. We test BiDST using uni-
form and ERK (Evci et al., 2020) sparsity with 90%, 95%,

and 98% overall sparsity. We demonstrate the accuracy
with standard deviation results of ResNet-32 in Table 1.
Due to space limitation, the results of all ERK sparsity,
VGG-19 and MobileNet-v2 are included in Appendix B.
According to the results, BiDST establishes a new state-
of-the-art accuracy bar for various sparse training methods.
When compared to state-of-the-art DST methods such as
RigL and MEST, BiDST consistently outperforms the prior
approaches by a significant margin. At varying levels of
sparsity, we can see that BiDST achieves higher accuracy
compared to the best baseline accuracy on CIFAR-10 by
0.49%, 1.1% and 2.62%, respectively, and on CIFAR-100
by 2.52%, 2.12% and 2.62%, respectively. With VGG-19
and MobileNet-v2, similar outperforming results can also
be observed. Note that MobileNet-v2 is commonly consid-
ered a compact network that is hard to incorporate sparsity,
BiDST still achieves promising results, which indicates that
a more meaningful mask, though hard to find, can still be
discovered by our method.

ImageNet-1K. Table 2 shows ResNet-50 on ImageNet-
1K accuracy with uniform sparsity (ResNet-34 results in
Appendix B). We stress all experiments are performed
three times. We report the average accuracy and omit
the standard deviation since the training is relatively sta-

6

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Table 2: Accuracy comparison using ResNet-50 on ImageNet-1K with uniform sparsity.

Method
Top-1 Training Inference # of Top-1 Training Inference # of

Accuracy FLOPS FLOPS Mask Accuracy FLOPS FLOPS Mask
(%) (×e18) (×e9) Updates (%) (×e18) (×e9) Updates

Dense 77.1 4.8 8.2 n/a - - - -

Sparsity ratio 80% 90%

SNIP [26] 69.7 1.67 2.8 Static 62.0 0.91 1.9 Static
GraSP [50] 72.1 1.67 2.8 Static 68.1 0.91 1.9 Static

DeepR [2] 71.7 n/a n/a n/a 70.2 n/a n/a n/a
SNFS [10] 73.8 n/a n/a n/a 72.3 n/a n/a n/a
DSR [38] 73.3 1.28 3.3 n/a 71.6 0.96 2.5 n/a
SET [35] 72.6 0.74 1.7 n/a 70.4 0.32 0.9 n/a
RigL [11] 74.6 0.74 1.7 320 72.0 0.39 0.9 320
MEST0.67× [54] 75.4 0.74 1.7 45 72.6 0.39 0.9 45
SpFDE [55] 75.4 0.74 1.7 45 - - - -
BiDST0.67× (ours) 75.8 0.74 1.7 12 72.9 0.39 0.9 12

MEST [54] 75.7 1.27 1.7 60 75.0 0.65 0.9 60
RigL2×

∗ 75.5 1.49 1.7 640 74.6 0.78 0.9 640
Top-KAST [22] - - - - 73.0 0.63 0.9 320
BiDST (ours) 76.1 1.26 1.7 18 75.3 0.65 0.9 18

MEST1.7× 76.7 1.84 1.7 110 75.9 0.80 0.9 110
RigL5× [11] 76.6 3.65 1.7 1,600 75.7 1.95 0.9 1,600
BiDST1.7× (ours) 76.9 1.84 1.7 31 76.2 0.88 0.9 31

MEST8×
∗ 77.6 8.80 1.7 550 77.0 3.84 0.9 550

RigL12×
∗ 77.4 8.90 1.7 3,840 76.8 4.69 0.9 3,840

C-GaP [34] 77.9 12.07 1.7 28 76.3 9.69 0.9 28
BiDST8× (ours) 77.9 8.80 1.7 146 77.3 3.85 0.9 146
∗ Our implementation with original source code using long training time.

ble (i.e., usually less than 0.1% standard deviation) on
large-scale datasets. Once again, BiDST achieves domi-
nating performance against all baseline methods with reg-
ular training recipe. At similar training FLOPs, BiDST
achieves significantly higher accuracy and requires fewer
mask updates. When increasing the training time, BiDST ex-
hibits promising accuracy gain. We extend training epochs
to match RigL2× (200 epochs), MEST1.7× (250 epochs),
RigL5× (500 epochs), C-GaP (Ma et al., 2022) (990 epochs),
MEST8× and RigL12× (1200 epochs). Note that C-GaP has
partially-dense model during training, which has notably
higher training FLOPs.

Extreme Sparsity. In dynamic sparse training, layer-wise
sparsity ratios are pre-defined (e.g., uniform or ERK) to
avoid layer collapse (Tanaka et al., 2020) in high sparsity
(i.e., an entire layer is pruned). Nonetheless, different layers
still experience different learning dynamics (Chen et al.,
2023b), and high sparsity may prevent gradient from flowing
smoothly. We conduct extreme sparsity ratios (e.g., up
to s = 99.9999%) on BiDST and compare the results to
different DST methods. As shown in Figure 3, BiDST
demonstrates better stability in extreme sparsity, indicating
that a more accurate mask can be identified from the network
topology in any condition, such as large sparsity settings in
training or when sparsifying a compact network structure
(e.g., MobileNet family).

3.3. Sparse Mask Evaluation and Analysis

The optimization-based BiDST achieves higher mask
searching efficiency compared to the prior heuristic-based
approaches. For instance, the magnitude-based pruning and
gradient (momentum) -based growing methods for mask
updating may be significantly affected by the convergence
of weights with the magnitude of the parameters oscillating
within a very small range after certain times of training.
Therefore, the commonly-used hard thresholding for such
methods may not work effectively since the fluctuation is not
sufficient enough to exceed certain thresholds. In BiDST,
the mask updating is determined by jointly considering the
importance of both network topology and weight value (i.e.,
please refer to Figure 2). We use Intersection over Union
(IoU) to describe the development of mask during training
process. As shown in Figure 4, at the same sparsity and
within the same searching space, we compute the mask IoU
of fixed intervals between two mask updates, and the results
show that BiDST achieves better mask development (i.e.,
lower IoU means a higher portion of mask is updated). Com-
pared to baseline methods that either suffer from high IoU
or manually enforce the values within a certain range (e.g.,
MEST-EM&S), BiDST demonstrates a sufficient searching
space and natural mask learning curves.

7

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

0 10 15 25205 hr hr hr30

ResNet-32 CIFAR-10

CPU

Training Time Training Time Training Time

GPU

0 10 15 25205 30 0 75 12510025 50 150

VGG-19 CIFAR-10

CPU

GPU

ResNet-50 ImageNet-1K

CPU

GPU

Dense

RigL

DSR

BiDST

OverheadAcc: ~92%

s=96% s=91%
s=94%

s=99%

s=85%
s=82%

s=96%
s=92%

s=97%

Acc: ~92% Acc: ~73%

Figure 5: System overhead in DST when implemented on Snapdragon 888. We compare representative DST methods (e.g.,
uniform sparsity RigL (Evci et al., 2020), global reparameterization DSR (Mostafa & Wang, 2019)) with BiDST in uniform
sparsity at similar accuracy.

3.4. Training Speedup and System Overhead of
Dynamic Sparse Training

To demonstrate practical implementation of BiDST, we ex-
tend the code generation of TVM (Chen et al., 2018) and de-
sign a training engine on the Snapdragon 888. For DST, the
on-device computation is done by static code (e.g., OpenCL
for GPU and C++ for CPU), and the training acceleration
is obtained from compiler optimization that skips the zeros
in weights. We set a target accuracy and perform exper-
iments using representative DST methods. According to
Figure 5, BiDST achieves the best training acceleration
performance (i.e., highest sparsity) among all other meth-
ods. Compared to dense training, BiDST achieves train-
ing speedup with ResNet-32-CIFAR10 (CPU: 2.01×, GPU:
2.14×), VGG19-CIFAR10 (CPU: 1.88×, GPU: 2.04×),
and ResNet-50-ImageNet (CPU: 1.88×, GPU: 1.83×), re-
spectively. Meanwhile, dynamic topology switching on the
hardware requires code re-compilation, which is the source
of the major system overhead in DST. The mask update
frequency of BiDST is the lowest among other methods,
resulting in 16-25× reduced overhead time. Additionally,
the uniform sparsity of BiDST alleviates the resource allo-
cation burden, which further contributes to better speedup
compared to the global reparameterization method such as
DSR (Mostafa & Wang, 2019).

4. Related Works
Dynamic sparse training. Parameter importance estima-
tion plays a pivotal role in DST, aiding in the identifica-
tion of parameters worthy of retention or pruning. Var-
ious heuristic-based methods are employed for this pur-
pose. For example, SET (Mocanu et al., 2018) removes
the least magnitude-valued weights during training and re-
grows an equivalent number of weights randomly at the
end of each epoch. SNFS (Dettmers & Zettlemoyer, 2019)
uses exponentially smoothed momentum to identify impor-
tant weights and layers, redistributing pruned weights based
on mean momentum magnitude. RigL (Evci et al., 2020)
updates the sparsity topology of the network during train-
ing using magnitude-based weight dropping method and
regrows weights using the top-k absolute largest gradients.
ITOP (Liu et al., 2021) highlights the benefits of dynamic

mask training, considering all possible parameters across
time. Top-KAST (Jayakumar et al., 2020) offers a scalable
and consistently sparse DST framework for improved effec-
tiveness and efficiency. MEST (Yuan et al., 2021) employs
a gradually decreasing drop and grow rate with a more re-
laxed range of parameters for growing. AD/AC (Peste et al.,
2021) proposes a co-training of dense and sparse models
method, which generates accurate sparse–dense model pairs
at the end of the training process. ToST(Jaiswal et al., 2022)
provide a plug and play toolkit to find a better sparse mask
for current pruning method. (Nowak et al., 2023) proposes
that pruning criterion affects the update of network typology,
thus impacting the final performance.

Heuristic- and Optimization-based Sparsity Learning.
There are various heuristic-based methods for learning a
sparse network, such as (Han et al., 2015; Molchanov et al.,
2017; 2019; Frankle & Carbin, 2018). To improve the perfor-
mance, data-driven approaches emerged to better optimize
the mask finding process. SNIP (Lee et al., 2019) sparsifies
the network at early stage of training by studying gradients
of the training loss at initialization. GraSP (Wang et al.,
2020b) preserves the gradient flow and prunes the network
at initialization. SynFlow (Tanaka et al., 2020) studies the
layer-collapse issue in sparse training and propose to use
network synaptic flow to guide early pruning of the network.
Additionally, numerous studies incorporate optimization
techniques. ADMM (Zhang et al., 2018; Ren et al., 2019)
transfers the non-convex optimization problem into two sub-
problems that are solved iteratively. OLMP (Li et al., 2018)
transforms the threshold tuning problem into a constrained
optimization problem and employs powerful derivative-free
optimization algorithms to solve it. Spartan (Tai et al.,
2022) combines soft masking and dual averaging-based
updates, enabling flexible sparsity allocation policies. Liu
et al. (2022b) uses the energy estimate of each layer as the
Frobenius norm optimization constraint for the convolution
kernel weights.

5. Conclusion
In this paper, we establish a full optimization-based dynamic
sparse training framework BiDST, which reformulates the
prior partial-heuristic-based dynamic sparse training into

8

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

a bi-level optimization problem, and solves the problem
of each level (e.g., mask finding and weight training) si-
multaneously and analytically. BiDST achieves prominent
accuracy in the parameter-sparse training regime due to a
more principled and data-driven approach, while promoting
great applicability for on-device implementation by reduc-
ing system overhead brought by dynamism in DST methods.

Acknowledgment
This work is partly supported by the National Sci-
ence Foundation CCF-2312616, CCF-2008049, NASA
80NSSC23K1393, and the Army Research Office W911NF-
24-1-0044. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the NSF, NASA, Army Research Office or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

Impact Statement
The advocate of integrating bi-level optimization into dy-
namic sparse training domain will revolutionize most of the
current efficient training frameworks deployed in edge com-
puting systems. The most significant impact of this paper
is to extend the knowledge of bi-level optimization theory
into the realm of sparse network computing to proactively
address the heuristic nature of the previous methods. The
success of the proposed BiDST will inspire novel theoreti-
cal and systematical integration in emerging areas such as
IoT in smart city, next-generation computing systems, and
advanced edge computing paradigm, therefore driving both
theoretical progress and tangible benefits. The research,
characterized by its scientific nature, is not anticipated to
engender any negative societal consequences.

References
Amari, S.-i. Backpropagation and stochastic gradient de-

scent method. Neurocomputing, 5(4-5):185–196, 1993.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep net-works. In Interna-
tional Conference on Learning Representations (ICLR),
2018.

Chen, S., Wei, S., Liu, C., and Yang, W. Dycl: Dynamic
neural network compilation via program rewriting and
graph optimization. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pp. 614–626, 2023a.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,

H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. Tvm: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 578–594, 2018.

Chen, Y., Yuille, A., and Zhou, Z. Which layer is learning
faster? a systematic exploration of layer-wise conver-
gence rate for deep neural networks. In The Eleventh
International Conference on Learning Representations,
2023b.

Colson, B., Marcotte, P., and Savard, G. Bilevel program-
ming: A survey. 4or, 3:87–107, 2005.

Dai, Y., Li, G., Luo, F., Ma, X., and Wu, Y. Coupling fair-
ness and pruning in a single run: a bi-level optimization
perspective. arXiv preprint arXiv:2312.10181, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pp. 248–255. IEEE, 2009.

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. Model com-
pression and hardware acceleration for neural networks:
A comprehensive survey. Proceedings of the IEEE, 108
(4):485–532, 2020.

Dettmers, T. and Zettlemoyer, L. Sparse networks from
scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning (ICML),
pp. 2943–2952. PMLR, 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. ICLR, 2018.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv preprint arXiv:1802.02246,
2018.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz,
R. S., and Guo, E. On differentiating parameterized
argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

9

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hong, M., Wai, H., Wang, Z., and Yang, Z. A two-timescale
framework for bilevel optimization: Complexity analysis
and application to actor-critic. arxiv e-prints, art. arXiv
preprint arXiv:2007.05170, 2020.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale stochastic algorithm framework for bilevel op-
timization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180,
2023.

Jaiswal, A. K., Ma, H., Chen, T., Ding, Y., and Wang, Z.
Training your sparse neural network better with any mask.
In International Conference on Machine Learning, pp.
9833–9844. PMLR, 2022.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations, 2017.

Jayakumar, S., Pascanu, R., Rae, J., Osindero, S., and Elsen,
E. Top-kast: Top-k always sparse training. Advances
in Neural Information Processing Systems, 33:20744–
20754, 2020.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4015–4026, 2023.

Krantz, S. G. and Parks, H. R. The implicit function theorem:
history, theory, and applications. Springer Science &
Business Media, 2002.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Lee, N., Ajanthan, T., and Torr, P. Snip: Single-shot network
pruning based on connection sensitivity. In International
Conference on Learning Representations (ICLR), 2019.

Lee, S., Kim, J. K., Zheng, X., Ho, Q., Gibson, G. A.,
and Xing, E. P. On model parallelization and scheduling
strategies for distributed machine learning. Advances in
neural information processing systems, 27, 2014.

Li, G., Qian, C., Jiang, C., Lu, X., and Tang, K. Optimiza-
tion based layer-wise magnitude-based pruning for dnn
compression. In IJCAI, pp. 2383–2389, 2018.

Li, G., Ji, J., Qin, M., Niu, W., Ren, B., Afghah, F., Guo,
L., and Ma, X. Towards high-quality and efficient video
super-resolution via spatial-temporal data overfitting. In
2023 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 10259–10269. IEEE,
2023a.

Li, G., Yin, L., Ji, J., Niu, W., Qin, M., Ren, B., Guo, L., Liu,
S., and Ma, X. Neurrev: Train better sparse neural net-
work practically via neuron revitalization. In The Twelfth
International Conference on Learning Representations,
2023b.

Liu, B., Ye, M., Wright, S., Stone, P., and qiang liu. BOME!
bilevel optimization made easy: A simple first-order ap-
proach. In Oh, A. H., Agarwal, A., Belgrave, D., and
Cho, K. (eds.), Advances in Neural Information Process-
ing Systems, 2022a.

Liu, S., Yin, L., Mocanu, D. C., and Pechenizkiy, M. Do we
actually need dense over-parameterization? in-time over-
parameterization in sparse training. In International Con-
ference on Machine Learning, pp. 6989–7000. PMLR,
2021.

Liu, S., Li, Q., Peng, B., Qiao, Y., Lin, M., and Zeng, Q. An
energy-constrained optimization-based structured prun-
ing method for deep neural network compression. In 2022
IEEE 22nd International Conference on Communication
Technology (ICCT), pp. 1903–1907. IEEE, 2022b.

Ma, X., Qin, M., Sun, F., Hou, Z., Yuan, K., Xu, Y., Wang,
Y., Chen, Y.-K., Jin, R., and Xie, Y. Effective model
sparsification by scheduled grow-and-prune methods. In
International Conference on Learning Representations
(ICLR), 2022.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications, 9
(1):1–12, 2018.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In Interna-
tional Conference on Machine Learning, pp. 2498–2507.
PMLR, 2017.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz,
J. Importance estimation for neural network pruning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11264–11272, 2019.

Mostafa, H. and Wang, X. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Ma-
chine Learning (ICML), pp. 4646–4655. PMLR, 2019.

Nowak, A. I., Grooten, B., Mocanu, D. C., and Tabor, J. Fan-
tastic weights and how to find them: Where to prune in dy-
namic sparse training. arXiv preprint arXiv:2306.12230,
2023.

10

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. Ac/dc:
Alternating compressed/decompressed training of deep
neural networks. Advances in neural information process-
ing systems, 34:8557–8570, 2021.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
11893–11902, 2020.

Ren, A., Zhang, T., Ye, S., Li, J., Xu, W., Qian, X., Lin,
X., and Wang, Y. Admm-nn: An algorithm-hardware
co-design framework of dnns using alternating direction
methods of multipliers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp.
925–938, 2019.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. Advances in neural information processing
systems, 28, 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Schwarz, J., Jayakumar, S., Pascanu, R., Latham, P. E., and
Teh, Y. Powerpropagation: A sparsity inducing weight
reparameterisation. Advances in neural information pro-
cessing systems, 34:28889–28903, 2021.

Shaham, U., Yamada, Y., and Negahban, S. Understanding
adversarial training: Increasing local stability of neu-
ral nets through robust optimization. arXiv preprint
arXiv:1511.05432, 2015.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Tai, K. S., Tian, T., and Lim, S. N. Spartan: Differen-
tiable sparsity via regularized transportation. Advances in
Neural Information Processing Systems, 35:4189–4202,
2022.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS), vol-
ume 33, 2020.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
International Conference on Learning Representations
(ICLR), 2020a.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
International Conference on Learning Representations,
2020b.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Pechenizkiy, M., Liang, Y., Wang, Z., and Liu, S. Out-
lier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint
arXiv:2310.05175, 2023.

Yin, L., Li, G., Fang, M., Shen, L., Huang, T., Wang, Z.,
Menkovski, V., Ma, X., Pechenizkiy, M., Liu, S., et al.
Dynamic sparsity is channel-level sparsity learner. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Yuan, G., Ma, X., Niu, W., Li, Z., Kong, Z., Liu, N., Gong,
Y., Zhan, Z., He, C., Jin, Q., Wang, S., Qin, M., Ren, B.,
Wang, Y., Liu, S., and Lin, X. Mest: Accurate and fast
memory-economic sparse training framework on the edge.
In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Yuan, G., Li, Y., Li, S., Kong, Z., Tulyakov, S., Tang, X.,
Wang, Y., and Ren, J. Layer freezing & data sieving:
Missing pieces of a generic framework for sparse training.
Advances in Neural Information Processing Systems, 35:
19061–19074, 2022.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M.,
and Wang, Y. A systematic DNN weight pruning frame-
work using alternating direction method of multipliers.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 184–199, 2018.

Zhang, Y., Khanduri, P., Tsaknakis, I., Yao, Y., Hong, M.,
and Liu, S. An introduction to bi-level optimization:
Foundations and applications in signal processing and ma-
chine learning. arXiv preprint arXiv:2308.00788, 2023.

Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q.,
Huang, J., and Zhu, J. Discrimination-aware channel
pruning for deep neural networks. Advances in neural
information processing systems, 31, 2018.

11

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Appendix
A. Experiment Settings
Table A.1 lists training hyerparatemer settings for BiDST.
For on-device speed evaluation, we scale down batch size
to 64 for all network and dataset. Since we can use gradient
accumulation to obtain larger batch size training, the accu-
racy for on-device experiments is not affected by different
batch size. To make BiDST search efficiently, we use an
extra space for mask to learn, which constitutes a very small
portion of the mask beyond the space occupied by existing
non-zero weights. We define this small portion of search
space as S, which is the ratio of the number of extra mask
values to the total number of mask elements. During train-
ing, this small portion of mask is updating normally, but
their corresponding weights and weight gradients are zeros.
Therefore, this part of the mask is learning the importance
of structure. Please note that mask learning in BiDST does
not need any input, and reuses the activation gradient with
Gumbel-Softmax for backward propagation, thus incurring
very limited computation compared to traditional convolu-
tion operation. The epoch settings in Table A.1 can reflect
how efficient our mask learning scheme is: we scale down
the training time to match the training computation with
other baselines, and the degree of epoch reduction is small
compared to the total training epochs. For instance, our
training epoch setting inherits MEST (Yuan et al., 2021) and
GraSP (Wang et al., 2020a) as 160 epochs to train CIFAR-
10/100, but we only train BiDST 158 epochs to compensate
those extra computation of mask learning. For ImageNet-
1K, we scale down training time from 150 epochs to 148
epochs to match computation with our comparison base-
lines.

B. Experimental Results Continue
B.1. CIFAR-10 and CIFAR-100 on VGG-19 and

MobileNet-v2

We inlude the extra experimental results in this section.
We demonstrate the results of VGG-19 and MobileNet-v2
on CIFAR-10/100, and both with uniform and ERK spar-
sity scheme. Table B.1 shows the VGG-19 results and
Table B.2 shows the MobileNet-v2 results. As MobileNet-
v2 is a compact network structure, we follow the classic
settings (Zhuang et al., 2018) of training MobileNet-v2 and
set the training epoch to 350 for better loss convergence.

B.2. ImageNet-1K on ResNet-34

Table B.3 shows the top-1 accuracy results of ResNet-34 on
ImageNet-1K. For ImageNet-1K results, we use the uniform
sparsity distribution. Similar to the settings in our main pa-

per, we also extend the training time to 5× training epochs.
We can see from the results that the accuracy increase is
consistently observed for 5× setting, but not similarly sig-
nificant compared to Resnet-50 network. We believe that
the reason is that ResNet-34 is smaller than ResNet-50, thus
the capacity of the network is not sufficient enough for fully
capturing the complex patterns and features in the data.

C. Ablation Study
❖ Mask search space S variation. In BiDST, the mask
search space is an extra space for mask to learn. The size of
this space is related to the efficiency of the mask learning
procedure. We manually set S with different value, and
test the accuracy of ResNet-32 on CIFAR-10. We set the
searching space ranging from 0.01 to 0.1, and show the
results with different sparsity in Figure C.1 (a). As we can
notice, the search space is not the larger the better. We
choose to use the current setting because smaller space
incurs less extra computation. We leave the research of
BiDST search space optimization for future study.

❖ Regularization coefficient λ. We test BiDST at different
regularization coefficient λ in Figure C.1 (b). λ controls
the strength of a regularization term that discourages dras-
tic changes in the mask by penalizing large gradients. A
smaller λ allows for larger changes in the mask, while a
larger λ enforces a stronger constraint on the changes to the
mask. We set λ from 1e-7 to 1e-1 and perform BiDST with
ResNet-32 on CIFAR-10. Please note that a larger change
in mask update is not necessarily beneficial for accuracy
(e.g., MEST-EM enforce strict search space). The high accu-
racy of BiDST is due to the optimization that systematically
connects parameter space and topological space.

12

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

Table A.1: Hyperparameter settings.

Experiments VGG-19 ResNet-32 MobileNet-v2 ResNet-50/34

Dataset CIFAR CIFAR CIFAR ImageNet-1K

Training hyperparameter settings

Training epochs 158 158 347 148

Batch size 64 64 64 1024

Learning rate scheduler cosine cosine cosine cosine

Initial learning rate 0.1 0.1 0.1 1.024

Ending learning rate 4e-8 4e-8 4e-8 0

Momentum 0.9 0.9 0.9 0.875

ℓ2 regularization 5e-4 1e-4 5e-5 3.05e-5

Warmup epochs 5 0 5 8

BiDST hyperparameter settings

Mask update frequency 8 8 8 5

Mask search space (S) s = 0.90,S = 0.05 s = 0.90,S = 0.05 s = 0.90,S = 0.08 s = 0.90,S = 0.05
s = 0.95,S = 0.03 s = 0.95,S = 0.03 s = 0.95,S = 0.05 s = 0.95,S = 0.03
s = 0.98,S = 0.02 s = 0.98,S = 0.02 s = 0.98,S = 0.04 s = 0.98,S = 0.02

Regularization coefficient λ 1e-4 1e-4 1e-4 5e-5

Table B.1: Test accuracy of VGG-19 on CIFAR-10/100.

Methods Sparsity CIFAR-10 (dense: 94.2) CIFAR-100 (dense: 74.2)Distribution

Pruning ratio 90% 95% 98% 90% 95% 98%

LT [13] non-uniform 93.51 92.92 92.34 72.78 71.44 68.95
SNIP [26] non-uniform 93.63 93.43 92.05 72.84 71.83 58.46
GraSP [51] non-uniform 93.30 93.43 92.19 71.95 71.23 68.90

Deep-R [2] non-uniform 90.81 89.59 86.77 66.83 63.46 59.58
SET [35] non-uniform 92.46 91.73 89.18 72.36 69.81 65.94
DSR [38] non-uniform 93.75 93.86 93.13 72.31 71.98 70.70
RigL-ITOP [32] uniform 93.19 92.08 89.36 70.46 68.39 64.16
RigL [11] uniform 93.12 92.43 90.65 71.14 69.02 64.87
MEST+EM [54] uniform 93.07 92.59 90.55 71.23 69.08 64.92
BiDST (ours) uniform 93.76±0.20 93.18±0.17 91.45±0.19 72.26±0.21 69.87±0.16 65.82 ±0.22

RigL [11] ERK 93.77 92.75 90.87 71.34 69.21 65.02
RigL-ITOP [32] ERK 93.81 92.81 90.53 71.46 69.58 66.72
BiDST (ours) ERK 94.04±0.21 93.74±0.24 91.52±0.19 72.31±0.19 70.94±0.15 69.01 ±0.22

Table B.2: MobileNet-v2 on CIFAR-10/100.

Method Sparsity Sparsity Test Sparsity Test
Distribution Ratio Accuracy Ratio Accuracy

CIFAR-10 CIFAR-100

Dense accuracy: 94.1% 73.5%

BiDST
Uniform 0.9 91.8 0.95 71.0
Uniform 0.95 91.1 0.95 69.8
Uniform 0.98 89.7 0.98 68.3

BiDST
ERK 0.9 92.3 0.9 71.7
ERK 0.95 91.7 0.95 70.6
ERK 0.98 90.4 0.98 69.8

Table B.3: ResNet-34 on ImageNet.

Method Sparsity Sparsity Test
Distribution Ratio Accuracy

ImageNet-1K (dense top-1 accuracy: 74.1%)

BiDST

Uniform 0.6 74.66
Uniform 0.7 74.35
Uniform 0.8 73.99
Uniform 0.9 73.08

BiDST5×

Uniform 0.6 74.82
Uniform 0.7 74.59
Uniform 0.8 74.20
Uniform 0.9 73.19

13

Advancing Dynamic Sparse Training by Exploring Optimization Opportunities

(b) Ablation study of λ

ResNet-32 CIFAR-10 ResNet-32 CIFAR-10

(a) Ablation study of S

Figure C.1: Ablation study of the important hyperparameters of BiDST.

14

