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Abstract

Recent literature demonstrates that times-series forecasting/classification are sen-
sitive to input perturbations. However, the defenses for time-series models are rel-
atively under-explored. In this paper, we propose Masking Imputing Aggregation
(MIA), a plug-and-play framework to provide an arbitrary deterministic time-
series model with certified robustness against temporally-localized perturbations
(also known as ℓ0-norm localized perturbations), which is to our knowledge the
first ℓ0-norm defense for time-series models. Our main insight is to let an occluding
mask move across the input series, guaranteeing that, for an arbitrary localized per-
turbation there must exist at least one mask that completely occlude the perturbed
area, so that the prediction on this masked series is certifiably unaffected. MIA
is flexible as it still works even if we only have the query access to the pretrained
model. To further validate the superior effectiveness of MIA, we specifically com-
pare MIA to two baselines extended from prior randomized smoothing approaches.
Extensive experiments show that MIA yields stronger robustness.

1 Introduction

Time series forecasting/classification (TSF/TSC) have been widely applied to help businesses make
informed decisions and plans (Miyato et al., 2017; Zhou et al., 2019; Schlegl et al., 2019; Park et al.,
2018). However, a wide range of literature demonstrate that time-series models are vulnerable to
adversarial input perturbations (Connor et al., 1994; Gelper et al., 2010; Ding et al., 2022; Yang
et al., 2020; Dang-Nhu et al., 2020; Oregi et al., 2018; Han et al., 2020), e.g., an elaborately designed
imperceptible perturbation could control the prediction (Karim et al., 2020; Fawaz et al., 2019). So
far related literature is mainly focusing on detecting the outliers (Ruff et al., 2018; Yairi et al., 2017),
the adversarial robustness of time-series models is relatively under-explored, especially ℓ0-norm
robustness, e.g., (Yoon et al., 2022) only explore the ℓ2-norm adversarial robustness for probabilistic
forecasting models. In the present work, we focus on the robustness against temporally-localized
perturbations, as we notice there already exists corresponding powerful attacks (Yang et al., 2022).

Generally, defenses can be divided into two types, heuristic defenses and certified defenses. Heuristic
defense can yield better empirical robustness but lack robustness guarantees. From the experience
on image classification (Athalye et al., 2018; Carlini & Wagner, 2017; Athalye & Carlini, 2018), the
heuristic defenses would be useless when confronted with the newly designed adaptive attacks, e.g.,
Athalye et al. (2018) leverage Backward Pass Differentiable Approximation technique to successfully
circumvent almost all the heuristic defenses at that time. To end such a ”cat and mouse” game between
the adaptive attacks and the heuristic defenses, the concept of certified defense is proposed, with
unbreakable robustness certificates.

Current certified defenses can produce robustness certificates but often require the user to retrain
the base model from scratch, e.g., Yoon et al. (2022); Li et al. (2020); Cohen et al. (2019) retrain
the base model as these defenses do perform poorly on naturally-trained models. The requirement
for retraining could bring additional challenges when it comes to the real-world deployments. In
addition, the certified defenses on sequence-based data are quite under-explored, since almost all the
certified defenses are focusing on matrix-based data (e.g. image).
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Figure 1: Overview of MIA pipeline. Inputted a series x1:t0 , MIA first masks different periods of
x1:t0 to construct the masked series x1:t0 ⊙M(k), k = 0, . . . ,M . Then MIA imputes the masked
series with the imputation model G(·). We classify the imputed series with the pretrained model.
If the predictions of all the imputed series are Class 0, MIA will return Class 0 with the robustness
guarantee that the output is clean, otherwise MIA will return Abstain.

To address these issues, in this paper, we propose Masking Imputing Aggregation (MIA), a flexible
framework to arm an arbitrary TSF/TSC deterministic model with robustness certificates against
temporally-localized perturbations. Different from the requirement for retraining in prior defenses,
MIA only an imputation model for recovering the masked areas, which can be easily learned in an
unsupervised setting. Specifically, MIA works as follows: 1) masking: MIA first masked series via
sliding a mask through the input series; 2) imputing: MIA imputes the masked series with the impu-
tation model; 3) aggregation (checking agreement): MIA only returns the the class if the pretrained
model outputs the same for all the imputed series, otherwise returns Abstain. With the above three
steps, we can guarantee that all the predictions from MIA is clean. Furthermore, we compare MIA
to two baselines extended from randomized smoothing, as we notice that randomized smoothing has
achieved a widespread success in defending different adversarial attacks. The contributions are:

1) We propose MIA, a plug-and-play framework to arm an arbitrary TSF/TSC model with certified
robustness against temporally-localized perturbations, which is to our knowledge the first ℓ0-norm
certified defense in time series domain.

2) We propose randomized masked training, a specialized training algorithm for training the impu-
tation model of MIA, to further boost the performance of MIA.

3) We compare MIA to two baseline methods comprehensively on three aspects. 1) robustness:
extensive experiments on different datasets validate that superior robustness of MIA. 2) Practicality:
MIA is stronger as it is plug-and-play and do not require retraining. 3) Inference cost: the inference
time of MIA is comparable to the time cost of two baselines.

2 Related Work

Heuristic defenses for time-series models. Prior works on robust TSF/TSC can be divided into
two general categories: outlier detection and deep learning. The former is to filter the outliers in a
statistical way, including k-Means clustering (Yang et al., 2017), one-class SVM clustering (Schölkopf
et al., 2001), Kalman filters (de Bézenac et al., 2020) and support vector data description (Tax &
Duin, 2004). The latter leverages the strong representation ability of neural networks to recover
the perturbed series, including robust feature-based approaches (Guo et al., 2016; Yang & Fan,
2022), reconstruction-based methods (Li et al., 2021; 2019; Xu et al., 2018; Schlegl et al., 2019),
GNN-based methods (Zhao et al., 2020; Deng & Hooi, 2021), association discrepancy (Xu et al.,
2022), LSTM-based methods (Hundman et al., 2018; Tariq et al., 2019). However, these empirical
methods lack robustness guarantees, hinting that they would be meaningless once a new adaptive
attack is found. For that reason, certified defenses are crucial because their mathematical robustness
certificates are permanently unbreakable.

Certified adversarial defenses. In the field of image classification, there has been much work on the
certified defenses, including randomized smoothing (Cohen et al., 2019; Salman et al., 2020), convex
polytope (Wong & Kolter, 2018), CROWN-IBP (Zhang et al., 2019) and Lipschitz bounding (Cisse
et al., 2017). Among them, the ℓ0-norm defenses include derandomized smoothing (Levine & Feizi,
2020a), randomized ablation (Levine & Feizi, 2020b; Zhang et al., 2020) and a series of mask-based
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defenses (Xiang & Mittal, 2021; McCoyd et al., 2020; Han et al., 2021; Xiang et al., 2021; 2022).
In stark contrast, the certified defenses for time-series data are rarely explored. To our knowledge,
(Yoon et al., 2022) and (Li et al., 2020) are the only two defenses that produce ℓ2-norm robustness
certificates, but a common downside is that they both additionally require retraining the base model
over Gaussian augmented samples, which imposes a large amount of additional training costs.

3 Preliminaries
Time series classification (TSC). The time series classification is modeled as: inputted a t0-length
series (denoted by x1:t0 = [x1, x2, . . . , xt0 ]), TSC model returns a class f(·) : x1:t0 → y.

Time series forecasting (TSF). Given the “past observations” x1:t0 , the forecasting model returns
the “future values” f(·) : x1:t0 → xt0+1,t0+τ . In this paper we mainly focus on the classic and
commonly studied short-term forecasting setting (Ke et al., 2017), which is to forecast a single time
point f(·) : x1:t0 → R (not necessarily the next point xt0+1). The short-term forecasting problem
is sufficiently representative as the problem of long-term forecasting f(x1:t0) → xt0+1:t0+τ can be
decomposed into τ short-term forecasting subproblems, in which the i-th (i = 1, . . . , τ ) forecaster
predicts the (t0 + i)-th time point. We discuss the multivariate tasks later in this paper.
Definition 1 (Temporally-localized perturbation δ[tadv+1:tadv+Ladv]). In a temporally-localized per-
turbation attack, the adversary is allowed to perturb an arbitrary subseries w.r.t. the given ℓ0-norm
constraint. Let Ladv be the ℓ0-norm constraint on the localized perturbation. We can formulate all
the perturbed series w.r.t. the ℓ0-norm constraint as follows:

x1:t0 + δ[tadv+1:tadv+Ladv]

=x1:t0 + [0, . . . , 0, δtadv+1, . . . , δtadv+Ladv
, 0, . . . , 0]

=[x1, . . . , xtadv+1 + δtadv+1, . . . , xtadv+Ladv
+ δtadv+Ladv︸ ︷︷ ︸

Perturbed subseries

, . . . , xt0 ]
(1)

where unbold δt refers to the single perturbation value added to the t-th time point. tadv + 1 and
tadv + Ladv refer to the starting point and the ending point of the perturbation respectively, which
explicitly restricts its ℓ0 norm as ∥δ[tadv+1:tadv+Ladv]∥ℓ0 = (tadv +Ladv)− (tadv +1)+1 = Ladv.
Significance of temporally-localized perturbation. Temporally-localized perturbation is espe-
cially representative in real-world scenarios. Temporally-localized perturbation can represent short-
term volatility and local anomaly, both of which can be regarded as the normal data added with
temporally-localized perturbation. The resistance to short-term volatility is important in long-term
forecasting/prediction, in which the long-term value is considered unaffected by the short-term
volatility. A typical example is the well-known investment philosophy, ”Value Investing” (Piotroski,
2000), where the ”intrinsic value” of a business is considered to be robust against short-term volatil-
ity. Moreover, the detection of local anomaly is practically useful in real-world scenarios. For
instance, detecting a subsequent time interval of abnormal heart rate in electronic health records is a
problem of local anomaly detection. We can also adopt the method of detecting temporally-localized
perturbation for detecting the abnormal network traffic for IoT Time-Series Data. Furthermore, to
highlight the risk of temporally-localized perturbations, we empirically show how much a ℓ0-norm
perturbation can change the output of an undefended forecaster in Appendix. We also compare the
attacking performance of ℓ0-norm perturbation to ℓ0-norm perturbation, and the empirical results
suggest that forecasting models might be more sensitive to ℓ0-norm perturbations.

4 Proposed Framework: Masking Imputing Aggregation
4.1 Pipeline Overview
MIA includes three steps: 1) masking; 2) imputing; 3) aggregation (checking agreement).

1. Masking. We denote a mask by M[u:v], where x1:t0 ⊙ M[u:v] is replacing the values of xu:v

among x1:t0 with zeros. Let Lmask be the size of the mask. Inputted a series x1:t0 and the ℓ0 norm
of the temporally-localized perturbation Ladv, we slide the mask thorough the input series with the
step size α = Lmask − Ladv + 1, and then obtain the following masked series1 :

x1:t0 ⊙M[1+kα : min(Lmask+kα,t0)], k = 0, . . . , ⌈(t0 − Lmask)/α⌉
where α = Lmask − Ladv + 1

(2)

1⌈c⌉ returns the smallest integer larger than or equal to c
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Algorithm 1: Algorithm of Masking Imputing Aggregation.
Input: The pretrained TSF/TSC model f(·), the imputation model G(·), the input series x1:t0 ,

the mask size Lmask, the length of temporally-localized perturbation Ladv, the
discretization parameter ∆ for TSF task.

1 Compute the step size of masking α← Lmask − Ladv + 1;
2 Generate the masked series via sliding the Lmask-size mask

x1:t0 ⊙M[1+kα:min(t0,Lmask+kα)], k = 0, . . . , ⌈(t0 − Lmask)/α⌉ ;
3 Utilize the imputation model to impute the masked series

x(k)
1:t0

= G(x1:t0 ⊙M[1+kα:min(t0,Lmask+kα)]);
4 Compute the output (denoted by y(k)) for each imputed series, as follows:

y(k) =

{
f(x(k)

1:t0
) for TSC task

fdis(x
(k)
1:t0

) fdis(·)for TSF task

# fdis(x
(k)
1:t0

) is computed as Eq. (5);
5 if y(0) = y(1) = . . . = y(k) then

Output: y(0).
6 else

Output: Abstain.

We set the step size to Lmask −Ladv +1 for guaranteeing all the temporally-localized perturbations
of Ladv can be covered. min(Lmask + kα, t0) is to prevent the mask from exceeding t0.
2. Imputing. Our second step is to recover the masked values with the imputation model G(·):

x(k)1:t0
= G(x1:t0 ⊙M[1+kα:min(t0,Lmask+kα)]) k = 0, 1, . . . , ⌈(t0 − Lmask)/α⌉ (3)

This step is to make x(k)1:t0
approximate the normal time series, so that the pretrained model could

perform similarly on these imputed series. We discuss G(·) later this section.
3. Aggregation (Checking Agreement). We input the imputed series x(k)1:t0

into the pretrained model
f(·). If the pretrained model’s ouputs on all x(k)1:t0

reach agreement unanimously, MIA classifier
fMIA(x1:t0) will output this unanimously approved label/prediction, otherwise output Abstain to
alert that the input series might have been attacked by the temporally-localized perturbations.

fMIA(x1:t0) =

{
f(x(0)1:t0

) f(x(0)1:t0
) = f(x(1)1:t0

) = . . . = f(x(⌈(t0−Lmask)/α⌉)
1:t0

)

Abstain Otherwise
(4)

Discretization technique for MIA on TSF. We note that TSF models are impossible to forecast
exactly the identical value on different series, so that MIA would output Abstain all the time on
TSF. To address this, we substitute the original pretrained forecaster f(·) with its discretized version
fdis(·) in Eq. (4), where fdis(x

(k)
1:t0

), k = 0, . . . , ⌈(t0 − Lmask)/α⌉ compute as follow:
fdis(x

(k)
1:t0

) = ∆ · ⌊f(x(k)1:t0
)/∆⌋ (5)

where ∆ is a discretization parameter that controls the trade-off between the discretization error
and the success rate of achieving agreement. As ∆ decreases, the discretized forecasts retain more
information from the original forecasts while the agreement rate decreases. If we take ∆ = 0.5,
fdis(x

(k)
1:t0

) is to round up the value of fdis(x
(k)
1:t0

) to the nearest integer.
4.2 Discussion on the mask size Lmask.
The only requirement of Masking (Step 1) is to ensure for an arbitrary temporally-localized
perturbation of Ladv, there always exists a mask to occlude that perturbation. Thus a prerequisite
is Lmask ≥ Ladv. We can control the trade-off between the the imputation quality and the inference
cost with Lmask. As we increase Lmask, the imputation quality will decrease since the number of
missing values increases. Meanwhile, the number of masked series decreases subsequently, so the
inference cost is reduced. In the extreme case where Lmask = t0 where the masked series are all
equal 01:t0 , MIA always outputs f(G(01:t0)) regardless of the input series. The imputation quality
is extremely poor and the inference cost is the smallest. The practical implementation of MIA is
showed in Algorithm 1.
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Remark 1 (MIA on Probabilistic Models). We notice a line of time-series forecasting models are
probabilistic (e.g., DeepAR (Salinas et al., 2020)), which models the forecasted value f(x1:t0) as a
random distribution q[y | x1:t0 ] rather than a single value, as follows:

f(x1:t0) = Eq[xt0+1|x1:t0 ] [xt0+1] (6)
The exact forecasting value of probabilistic models is inaccessible (prior works perform Monte-Carlo
inference for approximation). which makes applying MIA to probabilistic models challenging. Al-
though we can utilize Clopper-Pearson method (Clopper & Pearson, 1934) to estimate the discretized
forecasts fdis(x1:t0) with a confidence level, the inference cost would be expensive for confidence
interval estimation. 2

4.3 Robustness Certificate of MIA
Proposition 1 (Robustness Certificate of MIA). The forecast/label (not Abstain) returned by Algo-
rithm 1 cannot be changed by any temporally-localized perturbation whose ℓ0 norm is no larger than
Ladv (see proof in Appendix).
Remark 2 (Robustness Certificate). The robustness certificate is for fMIA(x1:t0) rather than f(x1:t0)
because it is almost impossible to derive the certificate for a pretrained model without any require-
ment. Our aggregation does not allow any tolerance because the certificate would not hold once a
disagreement is allowed. Note that, with Masking (Step 1), we can guarantee there exists a masked
series that is unaffected, and all other masked series retain the perturbed area. If we allow a dis-
agreer, the ensemble prediction would be totally under the adversary’s control, because all except one
masked series are perturbed (the only one not affected would become the disagreer). We point out
that the certificate also holds for multivariable TSC/TSF. We can easily apply MIA to multivariable
tasks through repeating Masking (Step 1) and Imputing (Step 2) on each variable.

4.4 Training Imputation Model G(·)
The performance of MIA highly depends on the imputation model G(·). We notice that there already
exists much work on time series imputation (Cao et al., 2018; Du et al., 2022; Moritz & Bartz-
Beielstein, 2017; Fortuin et al., 2020; Cao et al., 2018; Luo et al., 2019; Yozgatligil et al., 2013).
However, all these imputation models aim to recover the discrete missing values, which is not we
want. To train an imputation model to recover consecutive missing values, we propose randomized
masked training algorithm, which minimizes the MSE loss over the masked noisy series, as follows:

Eδ[1:t0]∼N (0,σ2)
1

C + 1

C∑
k=0

∥G
(
(x1:t0 + δ[1:t0]

)
⊙M[1+kα:min(Lmask+kα,t0)])− x1:t0∥22 (7)

where C = ⌈(t0 − Lmask)/α⌉ and δ[1:t0] ∼ N (0, σ2) is a Gaussian noise series, of which each
entry is i.i.d. sampled from Gaussian distribution. We specifically add Gaussian noise is to make the
imputation model robust to the random noise and avoid overfitting, since prior works (Foster et al.,
1992; Passalis et al., 2021; Hwang et al., 1998) show the time series data is generally noisy. We
emphasize that we do not add any noise in inference stage.

4.5 Comparison to Randomized Smoothing Defenses
Randomized smoothing (Cohen et al., 2019) is a well-know model-agnostic method in the field of
certified defenses, which has been applied to defend various types of attacks and achieves superior
certified robustness in their respective fields. Comparing MIA to randomized smoothing can better
demonstrate the advance of our method. We extend two image-specific randomized smoothing
defenses, Derandomized Smoothing (Levine & Feizi, 2020a) and Randomized Ablation (Levine &
Feizi, 2020b) to the time series domain, as the baselines.

Derandomized smoothing for time-series models. In the time-series version of DS, given a time
series x1:t0 and the base classifier f(·), DS (denoted by fDS) classifies as follows3:

fDS(x1:t0) = argmax
y∈Y

 ∑
xsub∈Sub(x1:t0 ,η)

I{f(xsub) = y}

 (8)

2We notice that a recent work (Yoon et al., 2022) derives robustness certificate for probabilistic forecasters,
but our definitions of robustness are different. Yoon et al. (2022) bounds the local Lipschitz constant, while
our objective is much stricter, aiming to guarantee the forecast is invariant under the perturbation.

3I{} is the indicator function.
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Table 1: (DistalPhalanxTW) Comparison among three defenses on a TSC dataset.
Defense 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 %
MIA (Lmask = 10%) 67.3% 66.3% 67.3% 67.3% 66.3% 64.4% 66.3% 64.4% 64.4% 63.4%
DS (η = 10%) 28.1% 28.1% 28.1% 28.1% 28.1% 28.1% 28.1% 28.1% 28.1% 28.1%
RA (η = 10%) 5.8% 5.8% 5.8% 5.8% 5.8% 5.8% 5.8% 5.8% 5.8% 5.8%
MIA (Lmask = 15%) 62.4% 65.3% 65.3% 64.4% 64.4% 62.4% 63.4% 65.3% 63.4% 64.4%
DS (η = 15%) 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2%
RA (η = 15%) 9.4% 9.4% 9.4% 9.4% 9.4% 9.4% 9.4% 9.4% 9.4% 9.4%

where Sub(x1:t0 , η) consists of the subsequences x1:η, xη+1:2η, x2η+1:3η, . . . , xt0−η+1,t0 . We first let
the base classifier make predictions on these subsequences, and then fDS(x1:t0) outputs the majority
label. The prediction is robust if∑

xsub∈Sub(x1:t0 ,η)

I{f(xsub) = ŷ} −max
y ̸=ŷ

∑
xsub∈Sub(x1:t0 ,η)

I{f(xsub) = y} > 2(η + Ladv − 1) (9)

Randomized ablation for time-series models. RA (denoted by fRA(·)) classifies as follows:

fRA(x1:t0) = argmax
y∈Y

[
Pr

xsub∼Sample(x1:t0 ,η)
[f(xsub) = y]

]
(10)

where xsub ∼ RA(x1:t0 , η) is to randomly sample η time points without replacement to construct
the subseries xsub, and ablate all other points. fRA(x1:t0) returns the label that f(·) is most likely to
classify xsub as. ŷ = fRA(x1:t0) is robust if

Pr
xsub∼Sample(x1:t0 ,η)

[f(xsub) = ŷ] >
3

2
−

(
t0−Ladv

η

)(
t0
η

) (11)

Comparison to DS and RA. We note that the pretrained models of DS and RA make predictions
on subseries f(xsub) instead of normal series. Since the data distribution of the subseries are
fundamentally different from the normal data, we can expect that these two defenses would perform
poorly on the naturally-trained models. Therefore, we need to train the base classifiers from scratch
on the subseries. In stark contrast, MIA is a plug-and-play framework that can be directly applied
to TSF/TSC pretrained models. In MIA, the main cost of training stage is preparing the imputation
model. We point out that the imputation model of MIA can be trained in an unsupervised manner,
saving us from labeling the data. Furthermore, we empirically show that MIA attains a significantly
better robustness than DS and RA in Section 5.

5 Experiments
Experimental setup. We evaluate MIA on both TSC and TSF datasets. TSF includes Exchange Rate,
Traffic and UCI Electricity (Alexandrov et al., 2019), and TSC datasets include DistalPhalanxTW,
MiddlePhalanxTW and ProximalPhalanx (Ismail Fawaz et al., 2019a). We use MLP-Mixer (Tol-
stikhin et al., 2021), MLP and LSTM (Hochreiter & Schmidhuber, 1997) as the pretrained model.
Our experiments are conducted on the clean trainsets, following the common setting of certified
adversarial defenses (Yoon et al., 2022; Li et al., 2020; Cohen et al., 2019; Chiang et al., 2020; Zhang
et al., 2019). Unless otherwise specified, We use MLP-Mixer as the base model for MIA, DS and
RA, and ∆ = 1.5. The experiments are conducted on CPU (16 Intel(R) Xeon(R) Gold 5222 CPU
@ 3.80GHz) and GPU (one NVIDIA RTX 2080 Ti). More details are omitted to Appendix.

Evaluation metrics. For TSC, we evaluate the defense by certified accuracy (CA) under the
temporally-localized perturbation, which is defined by the fraction of the test samples that are
correctly classified and certifiably robust to the perturbation. For TSC, we evaluate the defense
by: forecasting rate (FR), mean square error (MSE) and mean absolute error (MAE)4. FR is the
fraction of the test samples on which MIA outputs the forecast instead of Abstain. MSE/MAE
measures the mean square error/mean absolute error between MIA forecasts (Abstain are excluded)
and groundtruth. We omit the evaluation on multivariate tasks to Appendix due to space limitations.5
5.1 Comparison to Peer Methods
Comparison on TSC. Table 1 reports the certified accuracy of three methods in defending
temporally-localized perturbations. The pretrained/base model architectures of three defenses are all

4We omit the evaluation of MAE to Appendix.
5In our experiments, Lmask = c% or Ladv = c% or η = c% refer to c% · t0.
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Table 2: (Exchange) Comparison among three certified defenses on TSF dataset.
Metric Defense 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 %

FR (%)

MIA (Lmask = 10%) 82.2 82.2 83.2 82.2 82.2 81.2 81.2 81.2 80.2 79.2
DS (η = 10%) 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8
RA (η = 10%) 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
MIA (Lmask = 15%) 64.4 71.3 69.3 69.3 71.3 68.3 69.3 71.3 62.4 65.3
DS (η = 15%) 20.8 20.8 20.8 14.9 14.9 11.9 11.9 11.9 11.9 10.9
RA (η = 15%) 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8

MSE

MIA (Lmask = 10%) 0.143 0.141 0.145 0.141 0.141 0.139 0.137 0.137 0.135 0.134
DS (η = 10%) 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192
RA (η = 10%) 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202
MIA (Lmask = 15%) 0.126 0.134 0.130 0.132 0.137 0.132 0.129 0.130 0.123 0.125
DS (η = 15%) 0.144 0.144 0.144 0.065 0.065 0.069 0.069 0.069 0.069 0.060
RA (η = 15%) 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248

Table 3: Comparison of the inference time (millisecond) of three defenses on TSC datasets.

Defense
Model FCN MLP-Mixer MLP ResNet-18

2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10%
MIA (Lmask = 10%) 2.0 2.0 3.0 2.7 2.7 4.6 1.7 1.7 2.7 3.8 3.8 5.3
DS (η = 10%) 0.6 0.6 0.6 2.0 2.0 2.0 0.3 0.3 0.3 2.6 2.6 2.6
RA (η = 10%) 25.2 25.2 25.2 259.7 259.7 259.7 0.8 0.8 0.8 130.3 130.3 130.3
MIA (Lmask = 15%) 2.0 2.0 2.0 2.7 2.7 2.7 1.7 1.7 1.7 3.8 3.8 3.8
DS (η = 15%) 0.6 0.6 0.6 1.9 1.9 1.9 0.3 0.3 0.3 2.6 2.6 2.6
RA (η = 15%) 25.3 25.3 25.3 260.6 260.6 260.6 0.8 0.8 0.8 130.4 130.4 130.4

Table 4: (Traffic) The performance of MIA on different pretrained models. (c1 c2%) reports (MSE,
FR%) of MIA. Baseline is MSE of the pretrained model without MIA. The lowest MSE and the
highest FR for each pretrained model is shown in bold-face.

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer 0.224
2% 0.065 72.3% 0.072 77.2% 0.144 89.1%
5% 0.067 75.2% 0.068 73.3% 0.079 80.2% 0.075 78.2% 0.141 90.1% 0.143 89.1%

10% 0.068 77.2% 0.069 76.2% 0.066 69.3% 0.079 80.2% 0.079 80.2% 0.075 76.2% 0.143 91.1% 0.141 90.1% 0.139 88.1%

GRU 0.243
2% 0.067 66.3% 0.070 73.3% 0.143 89.1%
5% 0.072 72.3% 0.070 68.3% 0.075 76.2% 0.073 74.3% 0.145 91.1% 0.141 88.1%

10% 0.070 74.3% 0.071 72.3% 0.069 63.4% 0.074 77.2% 0.074 77.2% 0.066 70.3% 0.145 91.1% 0.143 90.1% 0.137 86.1%

LSTM 0.229
2% 0.068 66.3% 0.071 76.2% 0.152 91.1%
5% 0.069 66.3% 0.070 65.3% 0.073 77.2% 0.071 76.2% 0.149 89.1% 0.147 88.1%

10% 0.070 65.3% 0.071 66.3% 0.066 61.4% 0.073 77.2% 0.073 77.2% 0.064 72.3% 0.150 89.1% 0.153 90.1% 0.149 87.1%

MLP 0.222
2% 0.064 67.3% 0.064 72.3% 0.148 90.1%
5% 0.067 71.3% 0.064 68.3% 0.064 72.3% 0.064 72.3% 0.148 92.1% 0.148 90.1%

10% 0.067 70.3% 0.067 70.3% 0.063 66.3% 0.064 72.3% 0.064 72.3% 0.063 70.3% 0.146 91.1% 0.146 91.1% 0.144 89.1%

ResNet18 0.248
2% 0.074 64.4% 0.087 75.2% 0.149 88.1%
5% 0.077 68.3% 0.077 65.3% 0.088 79.2% 0.089 76.2% 0.150 89.1% 0.146 87.1%

10% 0.077 67.3% 0.078 67.3% 0.076 60.4% 0.086 76.2% 0.086 76.2% 0.083 73.3% 0.150 88.1% 0.149 86.1% 0.145 83.2%

MLP-Mixer. An interesting observation is that the certified accuracy of DS and RA keeps constant
to different Ladv. The reason is that, the probability score of DS/RA models often concentrates on
a single class, causing most classifications (including both (correct and wrong classifications) of DS
and RA are of high robustness. The results show that the certified accuracy of MIA is more than
twice of DR and RA across different Ladv. The reason is that the pretrained model of MIA classifies
the masked series, while the base model in RS/DS classifies the subseries. MIA can attain a higher
certified accuracy because the masked series contains much more information (t0−Lmask unmasked
time points) than the subseries (η sampled time points).

Comparison on TSF. Table 2 reports FR and MSE of three defenses on Exchange, where the model
predicts the next 30 values. Here we utilize discretization technique to make the TSF task feasible to
DS and RA. The table shows that MIA offers a significantly higher FR than DS and RA, implying
that MIA return the forecasting results much more frequently than other two defenses. The reason
for the superior FR is same as TSC. We also observe that DS (η = 15%) achieves a lower MSE than
MIA at Ladv ≥ 4%, which partially owing to its low FR. Since a low FR implies that the aggregation
step of MIA filters a large portion of distrustful forecasts, reducing the difficulty of achieving lower
MSE for the remained forecasts. Based on the results, MIA is better than other two defenses when
we jointly consider FR and MSE.
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Table 5: (Electricity) (c1 c2%) report (MSE FR%) of MIA on different pretrained models.

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer 0.388
2% 0.093 66.3% 0.094 64.4% 0.136 77.2%
5% 0.095 69.3% 0.093 68.3% 0.096 67.3% 0.094 66.3% 0.134 78.2% 0.134 78.2%

10% 0.095 67.3% 0.095 67.3% 0.089 55.4% 0.091 64.4% 0.091 64.4% 0.089 59.4% 0.134 77.2% 0.134 77.2% 0.116 66.3%

GRU 0.420
2% 0.099 62.4% 0.086 60.4% 0.135 68.3%
5% 0.100 64.4% 0.101 63.4% 0.087 62.4% 0.087 62.4% 0.139 69.3% 0.139 69.3%

10% 0.102 65.3% 0.099 62.4% 0.103 49.5% 0.085 61.4% 0.087 61.4% 0.086 53.5% 0.139 69.3% 0.139 69.3% 0.120 64.4%

LSTM 0.438
2% 0.100 64.4% 0.082 52.5% 0.142 70.3%
5% 0.100 66.3% 0.101 65.3% 0.092 55.4% 0.092 55.4% 0.140 71.3% 0.142 70.3%

10% 0.100 66.3% 0.100 64.4% 0.110 51.5% 0.091 56.4% 0.092 55.4% 0.094 48.5% 0.140 71.3% 0.142 70.3% 0.119 59.4%

MLP 0.402
2% 0.106 73.3% 0.082 61.4% 0.136 74.3%
5% 0.108 77.2% 0.105 75.2% 0.087 65.3% 0.085 63.4% 0.131 77.2% 0.132 76.2%

10% 0.105 75.2% 0.105 75.2% 0.098 60.4% 0.087 61.4% 0.087 61.4% 0.084 55.4% 0.131 77.2% 0.126 76.2% 0.108 66.3%

ResNet18 0.554
2% 0.093 51.5% 0.080 59.4% 0.136 66.3%
5% 0.089 51.5% 0.089 50.5% 0.080 60.4% 0.080 60.4% 0.140 68.3% 0.140 68.3%

10% 0.094 52.5% 0.093 51.5% 0.092 43.6% 0.079 56.4% 0.081 58.4% 0.076 54.5% 0.141 67.3% 0.136 66.3% 0.121 61.4%

Table 6: Comparison of different training algorithms on 3 TSC datasets.
Model Training Lmask

DistalPhalanxTW MiddlePhalanxTW ProximalPhalanxTW
5% 10% 15% 5% 10% 15% 5% 10% 15%

MLP-Mixer
Random

5% 62.4% 52.5% 65.3%
10% 61.4% 58.4% 53.5% 50.5% 73.3% 71.3%
15% 59.4% 59.4% 58.4% 59.4% 54.5% 49.5% 68.3% 67.3% 61.4%

Masked
5% 65.3% 64.4% 72.3%
10% 66.3% 63.4% 67.3% 60.4% 76.2% 74.3%
15% 64.4% 64.4% 60.4% 66.3% 62.4% 59.4% 76.2% 75.2% 74.3%

FCN
Random

5% 63.4% 53.5% 68.3%
10% 66.3% 63.4% 52.5% 52.5% 70.3% 67.3%
15% 66.3% 65.3% 65.3% 57.4% 57.4% 56.4% 66.3% 66.3% 65.3%

Masked
5% 70.3% 64.4% 75.2%
10% 70.3% 69.3% 66.3% 65.3% 73.3% 71.3%
15% 70.3% 67.3% 66.3% 65.3% 63.4% 63.4% 75.2% 73.3% 73.3%

MLP
Random

5% 62.4% 65.3% 72.3%
10% 62.4% 60.4% 59.4% 54.5% 76.2% 73.3%
15% 63.4% 61.4% 61.4% 61.4% 55.4% 55.4% 71.3% 71.3% 68.3%

Masked
5% 64.4% 69.3% 79.2%
10% 65.3% 64.4% 70.3% 67.3% 79.2% 78.2%
15% 66.3% 63.4% 63.4% 69.3% 66.3% 66.3% 78.2% 78.2% 77.2%

ResNet-18
Random

5% 61.4% 57.4% 65.3%
10% 59.4% 57.4% 57.4% 56.4% 74.3% 67.3%
15% 58.4% 56.4% 55.4% 58.4% 58.4% 58.4% 74.3% 73.3% 66.3%

Masked
5% 65.3% 67.3% 78.2%
10% 66.3% 64.4% 63.4% 63.4% 78.2% 76.2%
15% 64.4% 61.4% 59.4% 65.3% 62.4% 62.4% 78.2% 78.2% 78.2%

Comparison on inference time. Table 3 compares the inference time of three defenses, which is
averaged among three TSC datasets. We observe that the inference time of MIA is larger than DS,
but significantly smaller than RA. Specifically, MIA’s larger inference time than DS is owing to
the cost in running the imputation model. RA’s large inference time is for the confidence interval
estimation6. We also observe that the inference time of MIA increases with Ladv, and decreases
with Lmask, because the number of masked series is ⌈(t0 − Lmask)/(Lmask − Ladv + 1)⌉+ 1. We
omit the inference time analysis on TSF datasets to Appendix.
5.2 Analysis of MIA on Different Pretrained Models

Table 4 and Table 5 report the performance of MIA on different pretrained models, where the model
forecasts the next 24 points. We observe that MIA (∆ = 1.0, 1.5) consistently lowers MSE as
compared to that of the original pretrained models, suggesting MIA could also be an effective plugin
for performance improvement. Specifically, MIA improves the forecasting performance in the way
of filtering these distrustful forecasts, sacrificing the availability (the decrease of FR) for lower MSE
as well as certified robustness, which is a common trade-off in the field of certified defenses (Cohen
et al., 2019; Levine & Feizi, 2020a;b; Liu et al., 2021; Han et al., 2021). We can control the trade-off
between MSE and FR by ∆, as the decrease of ∆ can reduce MSE and FR.

5.3 Analysis on Imputation Model of MIA and Ablation Study

Impact of training algorithm. Table 6 compares our masked training to random training, which
trains the imputation model on the randomly masked series. Through extensive comparisons on
different imputation model architectures and datasets, we convince that masked training consistently

6Following the official implementation of RA (Levine & Feizi, 2020b), we take 100, 000 samples for the
confidence interval estimation.
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Figure 2: Top: impact of Lmask on TSC dataset ProximalPhalanxTW. Bottom: impact of ∆ on TSF
dataset Traffic (Ladv = 3%).

Table 7: Comparison of four imputation models. The best results are shown in bold-face.
Model Lmask

Electricity Exchange Traffic
2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer
2% 0.136 77.2% 0.158 87.1% 0.144 89.1%
5% 0.134 78.2% 0.134 78.2% 0.144 83.2% 0.138 81.2% 0.141 90.1% 0.143 89.1%

10% 0.134 77.2% 0.134 77.2% 0.116 66.3% 0.141 82.2% 0.141 82.2% 0.134 79.2% 0.143 91.1% 0.141 90.1% 0.139 88.1%

BRITS
2% 0.118 65.3% 0.118 40.6% 0.142 87.1%
5% 0.110 71.3% 0.099 59.4% 0.118 49.5% 0.098 15.8% 0.136 84.2% 0.130 75.2%

10% 0.099 61.4% 0.100 60.4% 0.094 45.5% 0.207 10.9% 0.277 1.0% 0.000 0.0% 0.128 79.2% 0.129 77.2% 0.123 73.3%

SAITS
2% 0.101 58.4% 0.095 25.7% 0.120 67.3%
5% 0.091 53.5% 0.090 52.5% 0.137 43.6% 0.101 27.7% 0.128 73.3% 0.121 68.3%

10% 0.104 56.4% 0.103 54.5% 0.094 44.6% 0.070 7.9% 0.048 6.9% 0.001 4.0% 0.125 67.3% 0.132 69.3% 0.124 59.4%

Transformer
2% 0.085 52.5% 0.145 23.8% 0.130 68.3%
5% 0.110 52.5% 0.113 42.6% 0.072 6.9% 0.001 2.0% 0.127 74.3% 0.123 65.3%

10% 0.096 60.4% 0.093 58.4% 0.093 34.7% 0.029 8.9% 0.036 7.9% 0.001 5.0% 0.124 75.2% 0.127 74.3% 0.123 61.4%

outperforms random training for MIA by a non-trivial gap. The gap becomes even larger at larger
Ladv. The results suggest that masked training is suitable for MIA imputation model.

Impact of architecture of imputation models. Table 7 reports the performances of different
imputation model architectures on MIA. Our results show that MLP-Mixer can offer higher FR and
lower MSE simultaneously, suggesting MLP-Mixer is intrinsically more robust than other models.

Impact of Lmask. Fig. 2a, 2b show: 1) MSE roughly keeps constant w.r.t. Lmask, because the
discretization technique can diminish the difference between the forecasts that are close to each
other. 2) FR decreases with the increase of Lmask, because our imputation quality decreases with
Lmask, making it harder to reach agreement unanimously. Fig. 2c show that the impact of Lmask on
CA is not significant. Although the increase of Lmask reduces our imputation quality, it reduces the
number of masked series simultaneously.

Impact of ∆. Fig. 2d, 2e report the impact of ∆. As ∆ increases, we observe that MSE and FR
increase, validating our statement about ∆ in Section 4.1.

6 Conclusion

In this paper, we propose the first framework for time-series models to certifiably defend against
ℓ0-norm perturbations. Notably, MIA is a plug-and-play defense, which can be easily applied to any
TSF/TSC pretrained model. The only requirement of deploying MIA is to train an imputation model,
which has been extensively explored in this work. Moreover, our extensive experiments validate the
effectiveness of MIA. We expect our work can inspire more studies on the ℓ0-norm robustness for
time-series models. Interesting future works include applying MIA to probabilistic models.
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A Proof for Proposition 1

Proposition 2 (Robustness Certificate of MIA). The forecast/label (not Abstain) returned by Algo-
rithm 1 cannot be changed by any temporally-localized perturbation whose ℓ0 norm is no larger than
Ladv (see proof in Appendix).

Proof. Here we prove the robustness certificate for MIA (TSC). The proof for MIA (TSF) is analogous
to this proof. Assume that the adversary has changed the classification result of MIA from y1 to y2
via the temporally-localized perturbation δ (ℓ0 norm is Ladv). For notational simplicity we denote
M[1+kα:min(Lmask+kα,t0)] by M(k), k = 0, . . . , ⌈(t0 − Lmask)/α⌉ and denote δ[tadv+1:tadv+Ladv] by
δ(tadv), tadv = 0, . . . , t0 − Ladv. Then, we have:

f(x1:t0 ⊙M(0)) = f(x1:t0 ⊙M(1)) = . . . = y1 (12)

f((x1:t0 + δ(tadv))⊙M(0)) = f((x1:t0 + δ(tadv))⊙M(1)) = . . . = y2 (13)

Then our next step is to prove that there exists a mask M(m̂), m̂ ∈ {0, . . . , ⌈t0−Lmask)/α⌉} that can
occlude the perturbation. Specifically, we show that the mask M(⌊ tadv

α ⌋) can cover the perturbation.
First, we show the presence of the mask M(⌊ tadv

α ⌋) by proving ⌊ tadvα ⌋ ≤ ⌈(t0−Lmask)/α⌉, as follow:
tadv
α
− t0 − Lmask

α
≤ t0 − Ladv − t0 + Lmask

Lmask − Ladv + 1
=

Lmask − Ladv

Lmask − Ladv + 1
< 1 (14)

Second, we show that M(⌊ tadv
α ⌋) covers the perturbation by comparing the starting/end point of the

mask M(
tadv
α ) and the perturbation δ. For the starting point, we have:

(α⌊ tadv
α
⌋+ 1)︸ ︷︷ ︸

Mask

− (tadv + 1)︸ ︷︷ ︸
Perturbation

≤ 0 (15)

In terms of the end points, we have:

(α⌊ tadv
α
⌋+ 1 + Lmask)︸ ︷︷ ︸

Mask

− (tadv + Ladv)︸ ︷︷ ︸
Perturbation

(16)

=α⌊ tadv
α
⌋+ (Lmask − Ladv + 1)− tadv (17)

=α(⌊ tadv
α
⌋+ 1)− tadv ≥ 0 (18)

As M(m̂) occludes the perturbation, thus (x1:t0) ⊙M(m̂) = (x1:t0 + δ(tadv)) ⊙M(m̂) ⇒ y1 = y2.
Our proof is completed.

B Empirical Evaluation on Risk of Temporally-Localized Perturbations

To support our statement about the risk of temporally-localized perturbations, we specifically propose
an algorithm for generating the temporally-localized perturbations. We then evaluate the attack
performance visually.

B.1 Restate Definition of temporally-localized Perturbation

Definition 2 (Temporally-localized perturbation). Temporally-localized perturbation is to perturb
consecutive time points of x1:t0 w.r.t. ℓ0-norm constraint. The perturbed series is:

x1:t0 + δ[tadv+1:tadv+Ladv] subject to ∥δ[tadv+1:tadv+Ladv]∥0 ≤ Ladv

=x1:t0 + [0, . . . , δtadv+1, . . . , δtadv+Ladv
, 0, . . . , 0]

=[x1, . . . , xtadv+1 + δtadv+1, . . . , xtadv+Ladv
+ δtadv+Ladv︸ ︷︷ ︸

Perturbed subsequence

, . . . , xt0 ]
(19)

where tadv+1 andLadv are the starting point and the ℓ0-norm of the temporally-localized perturbation
δ[tadv+1:tadv+Ladv].
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Table 8: (Traffic) Evaluate MSE between the clean forecasts and the perturbed forecasts. The
temporally-localized perturbations is generated subject to different ℓ0-norm constraints (Ladv =
2%, 5%, 10%) and ℓ2-norm constraints (1.0, 1.5, 2.0, 2.5, 3.0, 3.5).

Model Ladv 1.0 1.5 2.0 2.5 3.0 3.5

MLP
2% 1.614 1.675 1.731 1.547 1.482 1.469
5% 1.437 1.375 1.295 1.288 1.472 1.590
10% 1.318 1.204 1.137 1.418 1.686 1.865

MLP-Mixer
2% 0.156 0.156 0.188 0.283 0.400 0.425
5% 0.154 0.502 0.322 0.148 0.148 0.148
10% 0.071 0.321 0.282 0.201 0.220 0.150

LSTM
2% 0.059 0.132 0.152 0.422 0.212 0.176
5% 0.323 0.503 0.646 0.630 0.852 0.929
10% 0.166 0.290 0.652 0.803 1.301 1.753

B.2 Algorithm of Generating Temporally-Localized Perturbations.

The objective of our algorithm is to maximize MSE between the original forecasts and the perturbed
forecasts, with respect to the ℓ0-norm constraint. Specifically, given the forecasting model f(x1:t0)→
xt0+1,t0+τ , our objective can be formulated as follows:

argmax
δ

|f(x1:t0 + δ)− f(x1:t0)|22 (20)

where δ corresponds to the perturbation defined in Eq.(19). Actually, the problem of computing the
temporally-localized perturbation can be decomposed into two sub-problems: P1 ) Search for the
period [tadv+1, tadv+Ladv] to perturb. P2 ) Fix the period [tadv+1, tadv+Ladv], compute the value
of the perturbation δtadv+1, . . . , δtadv+Ladv

. Here solving P2 is not hard. If we have determined
δtadv+1, . . . , δtadv+Ladv

, we can maximize the following loss to compute the perturbation values via
projected gradient descent (PGD).

max
δtadv+1,...,δtadv+Ladv

|f(x1:t0 + δ)− f(x1:t0)|22 (21)

Then the main challenge is to determined which period to perturb. Here we solve P1 by enumerating
all the possible perturbing positions [tadv +1 : tadv +Ladv], tadv = 0, . . . , t0−Ladv and compute
the corresponding attacks. Finally, we return the one with the largest MSE loss among t0−Ladv+1
perturbations. However, in practice we found that computing the values of perturbation (P2 ) w.r.t.
to the fixed period is hard to converge, as the ℓ2 norm of the temporally-localized perturbation will
approach∞. We believe that a perturbation attack with∞ ℓ2 norm is meaningless in practice. In
the sake of practicality, we additionally consider ℓ2 norm for the temporally-localized perturbations
besides ℓ0-norm constraint for the sub-problem P2 , as follows:

max
δtadv+1,...,δtadv+Ladv

|f(x1:t0 + δ)− f(x1:t0)|22subject to∥δ∥22 ≤ ϵ (22)

where ϵ is the preset upper bound of the perturbation ℓ2 norm.

B.3 Empirical Evaluation of Temporally-localized Perturbations.

B.4 Quantify the risk of temporally-localized perturbations.

Table 8 quantifies the risk of temporally-localized perturbations via computing MSE between the
clean forecasts and the perturbed forecasts w.r.t. the ℓ0-norm (Ladv) and the ℓ2-norm (ϵ) constraints.
We observe that MLP-Mixer model provides the highest empirical robustness among three models,
which partially explains why MLP-Mixer outperforms other models on MIA. In particular, we further
compare MLP to MLP+MIA (δ = 1.5) in Table 4 of the main paper. Specifically, MSE of MLP
under temporally-localized perturbations (ϵ = 3.0) is 5% : 1.472, 10% : 0.1.686 while MLP+MIA
is 5% : 0.146, 10% : 0.144. MIA reduces the MSE to roughly one tenth of the original, which
indicates that MIA can effectively prevent our forecasting results from being influenced by the
temporally-localized perturbations.
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Table 9: Dataset information for TSF and TSC.

Dataset Context length Forecasting length Number of classes
Electricity 96 24 N/A
Exchange 120 30 N/A
Traffic 96 24 N/A
DistalPhalanxTW 80 N/A 6
MiddlePhalanxTW 80 N/A 6
ProximalPhalanxTW 80 N/A 6

B.5 Compare Attacking Performance of ℓ0 Attack to ℓ2 Attack

We compare the ℓ0 attack and ℓ2 attack under under norm constraints β (attack rate) on time series
forecasting task. Results are shown in Table 30, 31 and 32. The values in tables are calculated as
MSEℓ0

−MSEℓ2

MSEℓ2
× 100%.

B.6 Visualize the risk of temporally-localized perturbations.

Fig. 3 illustratively shows the effect of temporally-localized perturbations on our forecasting results.
We observe that temporally-localized perturbations of Latk = 10% can significantly change our
forecasts.

C Experimental Setups

C.1 Dataset Information

Table 9 shows the details of each dataset, including context length, forecasting length (for TSF
datasets) and number of classes.

Traffic Hourly occupancy rate, between 0 and 1, of 963 San Francisco car lanes (Salinas et al.,
2019).

Electricity Hourly time series of the electricity consumption of 370 customers (Salinas et al.,
2019).

Exchange Daily exchange rate between 8 currencies (Salinas et al., 2019).

DistalPhalanxTW, MiddlePhalanxTW, ProximalPhalanxTw 7 This series of 11 classification
problems were created as part of Luke Davis’s PhD titled ”Predictive Modelling of Bone Ageing”.
They are designed to test the efficacy of hand and bone outline detection and whether these outlines
could be helpful in bone age prediction. Note that these problems are aligned by subject, and
hence can be treated as a multi-dimensional TSC problem. The final three bone classification
problems, DistalPhalanxTW, MiddlePhalanxTW and ProximalPhalanxTW, involve predicting the
Tanner-Whitehouse score (as labelled by a human expert) from the outline.

Data Pre-Processing We pre-process the input series with scipy.signal.savgol filter with window
length 15 and polyorder 5 on both training and testing datasets. Besides, we normalize each input
series with its mean value and standard deviation. Mean value and standard deviation will be 0 and
1 respectively for each normalized input series. We use the instance normalization method on both
trainsets and testsets.

7https://timeseriesclassification.com/description.php
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Figure 3: The effect of temporally-localized perturbations (Latk = 10% and ϵ = 3.0) on different
datasets. Clean and Perturbed refer to the normal input series and the temporally-localized pertur-
bations respectively. Row 1, 2, 3: Traffic. Row 4, 5: Electricity. Row 6, 7: Exchange rate. The red
background denotes the position of the location of the perturbation. The blue background denotes
the output series.
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Table 10: MLP structure

Input dim Output dim Activation
Length of sequence 96 LeakyReLU(α = 0.2)

96 96 LeakyReLU(α = 0.2)
96 96 LeakyReLU(α = 0.2)
96 96 LeakyReLU(α = 0.2)
96 Length of sequence LeakyReLU(α = 0.2)

Table 11: LSTM/GRU structure

Number of layers Hidden dim
4 32

Table 12: The structure of MLP-Mixer Block, and we stack 4 MLP-Mixer blocks to construct MLP-
Mixer for forecasting and imputation.

Type Input dim Output dim Activation
LayerNorm 96 96 /

Linear 128 128 GELU Hendrycks & Gimpel (2016)
Linear 128 128 GELU

LayerNorm 96 96 /
Linear Length of sequence Length of sequence GELU
Linear Length of sequence Length of sequence GELU

Table 13: The structure of Fully Convolutional Network (FCN) for TSC.

Layer Input channel Output channel Kernel size
Conv1d 1 96 3
BatchNorm1d 96 96 N/A
ReLU 96 96 N/A
Conv1d 96 96 3
BatchNorm1d 96 96 N/A
ReLU 96 96 N/A
Conv1d 96 96 3
BatchNorm1d 96 96 N/A
ReLU 96 96 N/A
Conv1d 96 96 3
BatchNorm1d 96 96 N/A
ReLU 96 96 N/A
GlobalPooling 96 96 N/A
Linear 96 6 N/A

D Introduction to Pretrained Models

Model architecture. We use the classical forecasting and classification models, MLP, MLP-
Mixer (Tolstikhin et al., 2021), GRU (Cho et al., 2014), LSTM (Hochreiter & Schmidhuber, 1997),
FCN (Ismail Fawaz et al., 2019b) and ResNet-18 (He et al., 2016) as the pretrained models. We
show the architecture of these models in Table 10, 11, 12, 13.

Training. we uniformly adapt Adam optimizer (Kingma & Ba, 2014) with lr = 0.0001, β =
(0.9, 0.999), ϵ = 10−8,weight decay = 0, epochs = 20 for all the pretrained models.

E More Experimental Results

Comparison to peer methods on Mean Absolute Error (MAE). Table 15 compares MAE and
FR of three defenses on Traffic. Analogous to the comparison (Table 2 in main paper) on MSE, MIA
achieves both the lowest MAE and highest FR on Ladv = 1%, 2%, 3%. DS outperforms MIA at
Ladv = 4%, . . . , 10% for the great sacrifice on its FR.
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Table 14: Comparison of imputation quality (MSE between the imputed series and the original
series) of different imputation models on imputing the masked series of different mask length
Lmask = 5%, 10%, 15%, 20%. Fixing Lmask, we first construct t0 − Lmask + 1 masked series of
Lmask and compute the average imputation MSE over imputing these t0−Lmask +1 masked series.
Bold indicates the best among four generators.

Generator Traffic Electricity Exchange
5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

MLP-Mixer 0.0007 0.0082 0.0170 0.0240 0.0033 0.0320 0.0458 0.0631 0.0002 0.0028 0.0104 0.0212
SAITS 0.0652 0.1110 0.1786 0.2476 0.0878 0.1654 0.2687 0.3586 0.0191 0.0410 0.0631 0.0824
Transformer 0.0642 0.1183 0.1854 0.2629 0.0821 0.1836 0.2404 0.3271 0.0210 0.0389 0.0595 0.0787
BRITS 0.0159 0.0419 0.0656 0.0927 0.0410 0.1192 0.1613 0.2109 0.0099 0.0252 0.0516 0.0705

Table 15: (Exchange) Comparison among three certified defenses on TSF dataset.
Metric Defense 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 %

FR (%)

MIA (Lmask = 10%) 82.2 82.2 83.2 82.2 82.2 81.2 81.2 81.2 80.2 79.2
DS (η = 10%) 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8
RA (η = 10%) 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
MIA (Lmask = 15%) 64.4 71.3 69.3 69.3 71.3 68.3 69.3 71.3 62.4 65.3
DS (η = 15%) 20.8 20.8 20.8 14.9 14.9 11.9 11.9 11.9 11.9 10.9
RA (η = 15%) 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8

MAE

MIA (Lmask = 10%) 0.332 0.330 0.334 0.330 0.330 0.327 0.326 0.326 0.323 0.320
DS (η = 10%) 0.408 0.408 0.408 0.408 0.408 0.408 0.408 0.408 0.408 0.408
RA (η = 10%) 0.413 0.413 0.413 0.413 0.413 0.413 0.413 0.413 0.413 0.413
MIA (Lmask = 15%) 0.307 0.320 0.313 0.316 0.322 0.317 0.311 0.314 0.301 0.306
DS (η = 15%) 0.320 0.320 0.320 0.215 0.215 0.222 0.222 0.222 0.222 0.204
RA (η = 15%) 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446

Table 16: (Traffic) The performance of MIA on different pretrained models. (c1 c2%) reports (MAE,
FR%) of MIA. Baseline is MAE of the pretrained model without MIA. The lowest MAE and the
highest FR for each pretrained model is shown in bold-face.

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer 0.265
2% 0.227 72.3% 0.213 77.2% 0.340 89.1%
5% 0.231 75.2% 0.233 73.3% 0.225 80.2% 0.218 78.2% 0.336 90.1% 0.340 89.1%

10% 0.233 77.2% 0.233 76.2% 0.227 69.3% 0.225 80.2% 0.225 80.2% 0.216 76.2% 0.338 91.1% 0.336 90.1% 0.333 88.1%

GRU 0.283
2% 0.234 66.3% 0.210 73.3% 0.339 89.1%
5% 0.242 72.3% 0.239 68.3% 0.219 76.2% 0.214 74.3% 0.340 91.1% 0.337 88.1%

10% 0.237 74.3% 0.239 72.3% 0.236 63.4% 0.217 77.2% 0.217 77.2% 0.203 70.3% 0.340 91.1% 0.338 90.1% 0.329 86.1%

LSTM 0.274
2% 0.235 66.3% 0.212 76.2% 0.350 91.1%
5% 0.237 66.3% 0.237 65.3% 0.215 77.2% 0.213 76.2% 0.345 89.1% 0.343 88.1%

10% 0.237 65.3% 0.239 66.3% 0.231 61.4% 0.215 77.2% 0.215 77.2% 0.201 72.3% 0.347 89.1% 0.349 90.1% 0.344 87.1%

MLP 0.268
2% 0.226 67.3% 0.201 72.3% 0.344 90.1%
5% 0.231 71.3% 0.226 68.3% 0.201 72.3% 0.201 72.3% 0.343 92.1% 0.344 90.1%

10% 0.230 70.3% 0.230 70.3% 0.225 66.3% 0.201 72.3% 0.201 72.3% 0.199 70.3% 0.341 91.1% 0.341 91.1% 0.338 89.1%

ResNet18 0.290
2% 0.244 64.4% 0.238 75.2% 0.343 88.1%
5% 0.249 68.3% 0.249 65.3% 0.239 79.2% 0.241 76.2% 0.345 89.1% 0.340 87.1%

10% 0.249 67.3% 0.251 67.3% 0.246 60.4% 0.235 76.2% 0.235 76.2% 0.231 73.3% 0.345 88.1% 0.343 86.1% 0.337 83.2%

Table 17: (Electricity) (c1 c2%) report (MAE FR%) of MIA on different pretrained models.

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer 0.430
2% 0.260 66.3% 0.262 64.4% 0.312 77.2%
5% 0.264 69.3% 0.262 68.3% 0.266 67.3% 0.263 66.3% 0.308 78.2% 0.308 78.2%

10% 0.264 67.3% 0.264 67.3% 0.257 55.4% 0.259 64.4% 0.259 64.4% 0.255 59.4% 0.308 77.2% 0.308 77.2% 0.287 66.3%

GRU 0.441
2% 0.269 62.4% 0.247 60.4% 0.312 68.3%
5% 0.273 64.4% 0.274 63.4% 0.250 62.4% 0.250 62.4% 0.317 69.3% 0.317 69.3%

10% 0.275 65.3% 0.270 62.4% 0.282 49.5% 0.247 61.4% 0.251 61.4% 0.250 53.5% 0.317 69.3% 0.317 69.3% 0.295 64.4%

LSTM 0.447
2% 0.273 64.4% 0.243 52.5% 0.319 70.3%
5% 0.273 66.3% 0.275 65.3% 0.257 55.4% 0.257 55.4% 0.316 71.3% 0.319 70.3%

10% 0.273 66.3% 0.272 64.4% 0.298 51.5% 0.257 56.4% 0.257 55.4% 0.262 48.5% 0.316 71.3% 0.320 70.3% 0.294 59.4%

MLP 0.421
2% 0.283 73.3% 0.242 61.4% 0.313 74.3%
5% 0.287 77.2% 0.283 75.2% 0.249 65.3% 0.245 63.4% 0.304 77.2% 0.306 76.2%

10% 0.283 75.2% 0.283 75.2% 0.273 60.4% 0.250 61.4% 0.250 61.4% 0.246 55.4% 0.304 77.2% 0.299 76.2% 0.280 66.3%

ResNet18 0.569
2% 0.256 51.5% 0.243 59.4% 0.318 66.3%
5% 0.248 51.5% 0.248 50.5% 0.242 60.4% 0.242 60.4% 0.324 68.3% 0.324 68.3%

10% 0.257 52.5% 0.256 51.5% 0.255 43.6% 0.240 56.4% 0.244 58.4% 0.237 54.5% 0.323 67.3% 0.318 66.3% 0.302 61.4%

Evaluation of MAE on Traffic and Electricity. Table 16, Table 17 report MAE and FR of MIA
on Traffic, Electricity and Exchange respectively, as a supplement to Table 4 and Table 5 in the
main paper. We observe that MIA consistently reduces MAE of the pretrained models, similar to
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Table 18: (Exchange) c1 c2% report MSE FR% of MIA at different Latk and Ldef .

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer 0.030
2% 0.060 88.1% 0.100 87.1% 0.158 87.1%
5% 0.055 83.2% 0.053 80.2% 0.096 84.2% 0.096 84.2% 0.144 83.2% 0.138 81.2%

10% 0.056 83.2% 0.053 81.2% 0.051 78.2% 0.095 84.2% 0.095 84.2% 0.088 80.2% 0.141 82.2% 0.141 82.2% 0.134 79.2%

GRU 0.040
2% 0.062 83.2% 0.104 83.2% 0.152 84.2%
5% 0.060 79.2% 0.058 75.2% 0.105 85.1% 0.099 80.2% 0.150 83.2% 0.140 77.2%

10% 0.061 82.2% 0.060 80.2% 0.058 68.3% 0.103 86.1% 0.100 84.2% 0.098 75.2% 0.152 84.2% 0.152 84.2% 0.142 78.2%

LSTM 0.042
2% 0.061 83.2% 0.098 87.1% 0.162 85.1%
5% 0.062 82.2% 0.058 78.2% 0.099 86.1% 0.098 83.2% 0.159 83.2% 0.152 79.2%

10% 0.063 82.2% 0.062 80.2% 0.055 75.2% 0.099 86.1% 0.099 85.1% 0.098 82.2% 0.160 84.2% 0.160 84.2% 0.155 82.2%

MLP 0.658
2% 0.065 27.7% 0.110 41.6% 0.210 56.4%
5% 0.057 26.7% 0.072 19.8% 0.105 44.6% 0.094 27.7% 0.209 53.5% 0.231 40.6%

10% 0.057 26.7% 0.057 26.7% 0.069 18.8% 0.107 44.6% 0.106 43.6% 0.105 35.6% 0.213 51.5% 0.216 52.5% 0.240 39.6%

ResNet18 0.053
2% 0.060 78.2% 0.096 83.2% 0.163 88.1%
5% 0.058 79.2% 0.058 77.2% 0.093 81.2% 0.093 80.2% 0.163 87.1% 0.157 85.1%

10% 0.058 78.2% 0.060 78.2% 0.059 72.3% 0.091 78.2% 0.092 78.2% 0.090 76.2% 0.163 87.1% 0.163 87.1% 0.159 85.1%

Table 19: (Exchange) c1 c2% report MAE FR% of MIA at different Ladv and Lmask.

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer 0.133
2% 0.209 88.1% 0.270 87.1% 0.349 87.1%
5% 0.199 83.2% 0.194 80.2% 0.264 84.2% 0.264 84.2% 0.333 83.2% 0.326 81.2%

10% 0.200 83.2% 0.195 81.2% 0.190 78.2% 0.263 84.2% 0.263 84.2% 0.252 80.2% 0.330 82.2% 0.330 82.2% 0.320 79.2%

GRU 0.152
2% 0.211 83.2% 0.274 83.2% 0.342 84.2%
5% 0.206 79.2% 0.203 75.2% 0.276 85.1% 0.267 80.2% 0.339 83.2% 0.325 77.2%

10% 0.210 82.2% 0.209 80.2% 0.203 68.3% 0.274 86.1% 0.270 84.2% 0.263 75.2% 0.342 84.2% 0.342 84.2% 0.330 78.2%

LSTM 0.159
2% 0.209 83.2% 0.266 87.1% 0.352 85.1%
5% 0.210 82.2% 0.203 78.2% 0.266 86.1% 0.264 83.2% 0.348 83.2% 0.340 79.2%

10% 0.213 82.2% 0.211 80.2% 0.199 75.2% 0.266 86.1% 0.266 85.1% 0.263 82.2% 0.350 84.2% 0.350 84.2% 0.344 82.2%

MLP 0.639
2% 0.213 27.7% 0.284 41.6% 0.409 56.4%
5% 0.196 26.7% 0.229 19.8% 0.274 44.6% 0.260 27.7% 0.405 53.5% 0.447 40.6%

10% 0.196 26.7% 0.196 26.7% 0.227 18.8% 0.277 44.6% 0.274 43.6% 0.275 35.6% 0.412 51.5% 0.416 52.5% 0.458 39.6%

ResNet18 0.181
2% 0.205 78.2% 0.263 83.2% 0.355 88.1%
5% 0.201 79.2% 0.201 77.2% 0.257 81.2% 0.257 80.2% 0.354 87.1% 0.347 85.1%

10% 0.202 78.2% 0.205 78.2% 0.201 72.3% 0.254 78.2% 0.256 78.2% 0.253 76.2% 0.354 87.1% 0.354 87.1% 0.349 85.1%

the results on MSE. Our comprehensive experiments suggest that MIA can effectively improve our
forecasting quality in the way of filtering the unconfident forecasts.

Evaluation of MSE and MAE for MIA on Exchange. Table 18 and Table 19 evaluate MSE/MAE
of MIA on exchange. We observe that, MIA moderately increase MSE/MAE of the pretrained
models because of the information loss for the discretization technique. Specifically, we can see that
MSE/MAE of the pretrained models are commonly much smaller than that of Traffic and Electricity
because Exchange dataset is much simpler. The better forecasting performance implies that we
might lose more information for the discretization technique. On Exchange, information loss plays a
more conspicuous role than the filtering function of MIA, causing the increase of MSE/MAE. This
suggests that discretization technique might lower the forecasting performance when the pretrained
models are precise enough.

Analysis of training algorithm of imputation models. Table 20 reportS MSE and FR of masked
training and random training on the TSF dataset Traffic. Similar to the comparison on TSC datasets
(Table 6 in the main paper), our masked training consistently achieves lower MSE than random
training on different imputation models.

Analysis of Different Pretrained Models on MIA. Table 21 reports the MAE of MIA with
different pretrained models, as a supplement to Table 7 in the main paper. The results demonstrate
that MLP-Mixer outperforms all the other defenses.

F MIA on Multivariate Time Series Forecasting (MTSF)

Apply MIA to Multivariate. Suppose the input series is a d0-dimension t0-length matrix
X ∈ Rt0×d0 . We can represent the multivariate series uniquely by d0 univariate series
x(d)1:t0

, d = 1, 2, . . . , d0.

X = [x(1)1:t0
, x(2)2:t0

, . . . , x(d0)
1:t0

]T (23)
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Table 20: (Traffic) Comparison between mask methods. c1 c2% report MSE TPR% of MIA across
Ldef = 2%, 5%, 10%, Latk = 2%, 5%, 10%, ∆ = 1.0, 1.2, 1.5. c1. MSE(c1) reports the forecasting
performance.

Model Mask Method Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2% 5% 10% 2% 5% 10% 2% 5% 10%

GRU
random

2% 0.068 53.5% 0.071 63.4% 0.144 76.2%
5% 0.071 42.6% 0.075 28.7% 0.063 50.5% 0.057 43.6% 0.145 73.3% 0.135 62.4%
10% 0.073 30.7% 0.069 26.7% 0.075 23.8% 0.052 49.5% 0.048 45.5% 0.051 40.6% 0.140 66.3% 0.138 64.4% 0.132 59.4%

block
2% 0.074 64.4% 0.073 66.3% 0.148 84.2%
5% 0.073 66.3% 0.075 61.4% 0.073 66.3% 0.073 65.3% 0.148 83.2% 0.145 80.2%

10% 0.073 64.4% 0.074 63.4% 0.070 57.4% 0.074 65.3% 0.074 64.4% 0.065 59.4% 0.148 84.2% 0.148 84.2% 0.145 79.2%

LSTM
random

2% 0.064 55.4% 0.073 62.4% 0.144 81.2%
5% 0.063 37.6% 0.050 25.7% 0.051 49.5% 0.055 38.6% 0.129 67.3% 0.130 58.4%
10% 0.065 37.6% 0.053 27.7% 0.049 14.9% 0.050 48.5% 0.053 45.5% 0.046 30.7% 0.134 68.3% 0.128 64.4% 0.120 53.5%

block
2% 0.071 61.4% 0.069 68.3% 0.144 85.1%
5% 0.067 59.4% 0.067 56.4% 0.069 68.3% 0.068 66.3% 0.144 85.1% 0.141 82.2%

10% 0.068 60.4% 0.067 58.4% 0.067 56.4% 0.069 67.3% 0.069 66.3% 0.067 65.3% 0.144 85.1% 0.144 85.1% 0.142 83.2%

MLP-Mixer
random

2% 0.073 54.5% 0.085 66.3% 0.147 75.2%
5% 0.074 44.6% 0.067 27.7% 0.072 59.4% 0.061 47.5% 0.137 74.3% 0.142 63.4%
10% 0.072 42.6% 0.073 40.6% 0.059 26.7% 0.065 57.4% 0.067 53.5% 0.061 43.6% 0.134 74.3% 0.130 70.3% 0.130 61.4%

block
2% 0.079 67.3% 0.085 74.3% 0.151 86.1%
5% 0.076 67.3% 0.078 61.4% 0.083 76.2% 0.079 72.3% 0.151 86.1% 0.149 83.2%

10% 0.079 63.4% 0.077 61.4% 0.076 55.4% 0.081 72.3% 0.077 71.3% 0.078 69.3% 0.151 86.1% 0.150 85.1% 0.145 82.2%

MLP
random

2% 0.069 53.5% 0.074 61.4% 0.145 75.2%
5% 0.072 44.6% 0.071 37.6% 0.059 58.4% 0.044 47.5% 0.138 78.2% 0.138 67.3%
10% 0.072 42.6% 0.073 40.6% 0.077 34.7% 0.061 53.5% 0.062 52.5% 0.055 48.5% 0.140 78.2% 0.140 75.2% 0.133 67.3%

block
2% 0.072 60.4% 0.068 68.3% 0.146 84.2%
5% 0.071 61.4% 0.071 58.4% 0.070 66.3% 0.070 66.3% 0.145 86.1% 0.147 85.1%

10% 0.073 58.4% 0.072 59.4% 0.069 52.5% 0.065 66.3% 0.065 66.3% 0.065 62.4% 0.146 84.2% 0.147 85.1% 0.144 82.2%

ResNet18
random

2% 0.071 57.4% 0.083 66.3% 0.143 82.2%
5% 0.073 33.7% 0.072 29.7% 0.063 54.5% 0.057 46.5% 0.136 62.4% 0.139 55.4%
10% 0.067 32.7% 0.070 27.7% 0.076 17.8% 0.059 49.5% 0.061 49.5% 0.047 37.6% 0.143 61.4% 0.130 53.5% 0.117 45.5%

block
2% 0.073 63.4% 0.089 71.3% 0.146 86.1%
5% 0.074 62.4% 0.074 62.4% 0.085 68.3% 0.084 67.3% 0.147 87.1% 0.146 86.1%

10% 0.075 60.4% 0.072 59.4% 0.070 57.4% 0.087 68.3% 0.084 69.3% 0.076 62.4% 0.143 84.2% 0.143 84.2% 0.140 82.2%

Table 21: Comparison of four imputation models. The best results are shown in bold-face.
Generator Metric Lmask

Electricity Exchange Traffic
2% 5% 10% 2% 5% 10% 2% 5% 10%

MLP-Mixer MAE
2% 0.312 77.2% 0.349 87.1% 0.340 89.1%
5% 0.308 78.2% 0.308 78.2% 0.333 83.2% 0.326 81.2% 0.336 90.1% 0.340 89.1%

10% 0.308 77.2% 0.308 77.2% 0.287 66.3% 0.330 82.2% 0.330 82.2% 0.320 79.2% 0.338 91.1% 0.336 90.1% 0.333 88.1%

BRITS MAE
2% 0.290 65.3% 0.299 40.6% 0.338 87.1%
5% 0.283 71.3% 0.264 59.4% 0.288 49.5% 0.246 15.8% 0.327 84.2% 0.320 75.2%

10% 0.271 61.4% 0.272 60.4% 0.265 45.5% 0.381 10.9% 0.526 1.0% Inf 0.0% 0.315 79.2% 0.319 77.2% 0.312 73.3%

SAITS MAE
2% 0.269 58.4% 0.258 25.7% 0.307 67.3%
5% 0.261 53.5% 0.256 52.5% 0.317 43.6% 0.264 27.7% 0.321 73.3% 0.308 68.3%

10% 0.274 56.4% 0.278 54.5% 0.263 44.6% 0.179 7.9% 0.123 6.9% 0.035 4.0% 0.316 67.3% 0.325 69.3% 0.315 59.4%

Transformer MAE
2% 0.253 52.5% 0.329 23.8% 0.322 68.3%
5% 0.288 52.5% 0.291 42.6% 0.164 6.9% 0.030 2.0% 0.318 74.3% 0.312 65.3%

10% 0.266 60.4% 0.263 58.4% 0.274 34.7% 0.112 8.9% 0.135 7.9% 0.037 5.0% 0.313 75.2% 0.317 74.3% 0.312 61.4%

1. We generate the masks in the same way as Masking (Step 1). The main difference is the
way we mask the multivariate series with the univariate mask. Masking multivariate series
X with the mask M[u:v] is computed as follow:

X ⊙M[u:v] =
[
x(1)1:t0

⊙M[u:v], x(2)
2:t0
⊙M[u:v], . . . , x(d0)

1:t0
⊙M[u:v]

]T
(24)

2. With the imputation model G(·), Imputing (Step 2) for multivariate series X is computed
as follow:

G(X ⊙M[u:v]) =
[
G
(

x(1)1:t0
⊙M[u:v]

)
, G

(
x(2)
2:t0
⊙M[u:v]

)
, . . . , G

(
x(d0)
1:t0
⊙M[u:v]

)]T
(25)

3. We aggregate all the predictions of the imputed multivariate series in the same way as
Aggregation (Step 3) for univariate series.

Evaluation of MIA on multivariate tasks. In terms of the multivariate time series forecasting
(MTSF) task, we follow the work (Wu et al., 2021) and evaluate our MIA framework on four datasets
(ETTh2 (Zhou et al., 2021), ETTm2 (Zhou et al., 2021), weather 8 and illness 9. Corresponding
results are presented in Table 22 to 29. Extensive experiments demonstrate that MIA behaves
similarly to that of univariate forecasting tasks.

8https://www.bgc-jena.mpg.de/wetter/
9https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 22: (ETTh2) Evaluate MAE of MIA with pretrained models on multi-variate time series
forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 0.712
2 % 0.363 74.9% 0.434 82.4% 0.550 90.3%
5 % 0.363 75.8% 0.360 73.8% 0.435 83.6% 0.432 81.8% 0.552 90.8% 0.547 89.8%

10 % 0.360 75.0% 0.356 74.2% 0.346 70.1% 0.431 82.6% 0.427 82.2% 0.415 77.5% 0.548 90.5% 0.542 90.1% 0.528 86.9%

MLP 0.815
2 % 0.368 68.4% 0.436 76.5% 0.542 85.5%
5 % 0.371 69.0% 0.365 66.7% 0.438 76.6% 0.434 75.5% 0.547 86.6% 0.541 85.1%

10 % 0.368 67.0% 0.365 66.5% 0.356 64.4% 0.438 76.1% 0.435 75.9% 0.424 73.3% 0.545 86.3% 0.541 85.8% 0.527 83.5%

LSTM 0.802
2 % 0.374 69.1% 0.444 76.6% 0.556 85.7%
5 % 0.375 68.7% 0.372 67.9% 0.447 77.1% 0.443 76.0% 0.558 85.9% 0.552 84.7%

10 % 0.373 68.4% 0.373 68.0% 0.370 66.7% 0.445 76.7% 0.443 76.0% 0.436 74.0% 0.556 85.9% 0.551 85.2% 0.542 83.6%

GRU 0.782
2 % 0.373 71.6% 0.441 78.1% 0.563 87.1%
5 % 0.374 72.4% 0.371 70.0% 0.442 78.3% 0.440 77.2% 0.565 87.6% 0.560 85.9%

10 % 0.372 72.0% 0.372 71.6% 0.369 68.1% 0.440 78.0% 0.439 77.6% 0.435 75.4% 0.562 87.3% 0.556 86.9% 0.545 84.2%

RNN 0.809
2 % 0.384 69.9% 0.454 79.0% 0.560 87.6%
5 % 0.383 70.2% 0.382 68.8% 0.454 79.2% 0.453 78.4% 0.560 87.6% 0.559 87.0%

10 % 0.381 69.3% 0.380 68.4% 0.378 67.1% 0.452 78.7% 0.451 78.3% 0.448 76.9% 0.559 87.5% 0.556 87.0% 0.551 86.1%

TransformerNormal 0.852
2 % 0.405 67.0% 0.481 75.2% 0.593 83.8%
5 % 0.404 66.6% 0.403 66.1% 0.480 75.1% 0.480 74.8% 0.592 83.4% 0.591 83.3%

10 % 0.400 65.1% 0.397 64.6% 0.393 63.1% 0.478 74.5% 0.477 74.3% 0.473 73.4% 0.589 83.1% 0.587 82.4% 0.583 81.9%

TransformerPadding 0.981
2 % 0.346 57.9% 0.427 65.3% 0.553 76.7%
5 % 0.346 57.8% 0.346 57.8% 0.426 65.3% 0.426 65.3% 0.552 76.5% 0.552 76.5%

10 % 0.344 57.8% 0.344 57.8% 0.344 57.8% 0.425 65.4% 0.425 65.4% 0.424 65.3% 0.550 76.5% 0.550 76.5% 0.550 76.5%

TransformerConv 0.934
2 % 0.353 61.1% 0.427 70.2% 0.538 79.4%
5 % 0.352 61.0% 0.351 60.6% 0.426 70.3% 0.424 69.7% 0.537 79.4% 0.536 79.4%

10 % 0.350 60.2% 0.349 60.1% 0.348 59.7% 0.423 69.7% 0.423 69.6% 0.419 68.7% 0.535 79.3% 0.534 79.3% 0.531 79.1%

Table 23: (ETTh2) Evaluate MSE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 0.930
2 % 0.159 74.9% 0.230 82.4% 0.367 90.3%
5 % 0.159 75.8% 0.157 73.8% 0.231 83.6% 0.228 81.8% 0.370 90.8% 0.365 89.8%

10 % 0.157 75.0% 0.155 74.2% 0.149 70.1% 0.228 82.6% 0.225 82.2% 0.215 77.5% 0.366 90.5% 0.360 90.1% 0.347 86.9%

MLP 1.143
2 % 0.162 68.4% 0.230 76.5% 0.357 85.5%
5 % 0.163 69.0% 0.160 66.7% 0.231 76.6% 0.228 75.5% 0.362 86.6% 0.356 85.1%

10 % 0.162 67.0% 0.159 66.5% 0.153 64.4% 0.230 76.1% 0.228 75.9% 0.219 73.3% 0.360 86.3% 0.357 85.8% 0.342 83.5%

LSTM 1.072
2 % 0.165 69.1% 0.235 76.6% 0.370 85.7%
5 % 0.165 68.7% 0.164 67.9% 0.237 77.1% 0.234 76.0% 0.371 85.9% 0.366 84.7%

10 % 0.164 68.4% 0.164 68.0% 0.162 66.7% 0.236 76.7% 0.233 76.0% 0.228 74.0% 0.369 85.9% 0.365 85.2% 0.357 83.6%

GRU 1.042
2 % 0.166 71.6% 0.236 78.1% 0.378 87.1%
5 % 0.167 72.4% 0.165 70.0% 0.237 78.3% 0.235 77.2% 0.380 87.6% 0.376 85.9%

10 % 0.166 72.0% 0.165 71.6% 0.161 68.1% 0.235 78.0% 0.233 77.6% 0.229 75.4% 0.377 87.3% 0.373 86.9% 0.364 84.2%

RNN 1.074
2 % 0.171 69.9% 0.244 79.0% 0.375 87.6%
5 % 0.171 70.2% 0.170 68.8% 0.243 79.2% 0.243 78.4% 0.375 87.6% 0.373 87.0%

10 % 0.170 69.3% 0.169 68.4% 0.166 67.1% 0.242 78.7% 0.241 78.3% 0.238 76.9% 0.373 87.5% 0.370 87.0% 0.366 86.1%

TransformerNormal 1.241
2 % 0.186 67.0% 0.264 75.2% 0.406 83.8%
5 % 0.185 66.6% 0.184 66.1% 0.263 75.1% 0.262 74.8% 0.404 83.4% 0.403 83.3%

10 % 0.182 65.1% 0.180 64.6% 0.177 63.1% 0.261 74.5% 0.259 74.3% 0.256 73.4% 0.401 83.1% 0.398 82.4% 0.394 81.9%

TransformerPadding 1.576
2 % 0.149 57.9% 0.222 65.3% 0.362 76.7%
5 % 0.149 57.8% 0.149 57.8% 0.222 65.3% 0.222 65.3% 0.361 76.5% 0.361 76.5%

10 % 0.148 57.8% 0.148 57.8% 0.148 57.8% 0.221 65.4% 0.221 65.4% 0.221 65.3% 0.359 76.5% 0.359 76.5% 0.359 76.5%

TransformerConv 1.424
2 % 0.154 61.1% 0.224 70.2% 0.353 79.4%
5 % 0.154 61.0% 0.153 60.6% 0.224 70.3% 0.222 69.7% 0.352 79.4% 0.351 79.4%

10 % 0.153 60.2% 0.152 60.1% 0.151 59.7% 0.222 69.7% 0.221 69.6% 0.219 68.7% 0.350 79.3% 0.349 79.3% 0.347 79.1%

G Imputation Models.

For the imputation model architectures, we take SAITS, Transformer and BRITS and MLP-Mixer.
Specifically, for SAITS, we use the code from 10. For SAITS (Du et al., 2022), we set dmodel =
32, nlayers = 2, dinner = 16, nhead = 4, dk = 8, dv = 8. For Transformer (Vaswani et al., 2017),
we set dmodel = 32, nlayers = 2, dinner = 16, nhead = 4, dk = 8, dv = 8. For BRITS (Cao et al.,
2018), we set hhidden = 32. For MLP-Mixer (Tolstikhin et al., 2021), we use the same structure
as Table 12. In terms of training, we use optimizer Adam with lr = 0.0001, β = (0.9, 0.999), ϵ =
10−8,weight decay = 0 and train the model for 30 epochs.

G.1 Choice of Imputation Model Architecture.

Table 14 compares the imputation quality of different imputation models on Traffic. The imputation
quality is quantified by the mean square error (MSE) between the imputed series and the original
series. We observe that MLP-Mixer consistently outperforms other three models across different
datasets and Ladv, indicating the superior imputation ability of MLP-Mixer architecture.

10https://github.com/WenjieDu/PyPOTS
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Table 24: (ETTm2) Evaluate MAE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 0.858
2 % 0.329 67.6% 0.404 75.5% 0.526 83.7%
5 % 0.340 68.2% 0.312 62.3% 0.421 76.1% 0.385 70.7% 0.548 84.3% 0.504 80.1%

10 % 0.337 67.2% 0.336 66.7% 0.299 56.4% 0.414 75.3% 0.411 75.0% 0.361 65.0% 0.538 82.9% 0.533 82.8% 0.467 75.6%

MLP 0.755
2 % 0.350 74.2% 0.427 82.0% 0.546 86.5%
5 % 0.366 76.3% 0.325 70.2% 0.453 85.1% 0.408 80.7% 0.577 87.4% 0.527 86.0%

10 % 0.357 74.6% 0.351 72.0% 0.324 61.9% 0.445 83.8% 0.440 82.4% 0.411 72.5% 0.569 86.8% 0.567 87.0% 0.529 80.8%

LSTM 1.034
2 % 0.364 64.6% 0.462 72.9% 0.594 82.4%
5 % 0.363 64.2% 0.357 63.9% 0.460 72.1% 0.454 71.3% 0.594 81.9% 0.589 81.6%

10 % 0.359 63.8% 0.355 63.2% 0.347 62.1% 0.456 71.3% 0.452 70.6% 0.444 69.2% 0.591 81.7% 0.589 81.8% 0.583 81.4%

GRU 1.065
2 % 0.388 62.4% 0.479 69.9% 0.619 78.9%
5 % 0.388 61.8% 0.371 60.2% 0.479 69.6% 0.463 67.6% 0.620 78.3% 0.604 76.8%

10 % 0.382 59.9% 0.375 59.0% 0.353 54.7% 0.476 67.5% 0.468 66.5% 0.445 62.3% 0.616 77.2% 0.610 77.1% 0.589 74.2%

RNN 1.024
2 % 0.299 61.7% 0.363 70.1% 0.462 77.4%
5 % 0.310 64.2% 0.273 56.9% 0.375 71.6% 0.338 65.6% 0.481 78.2% 0.448 73.3%

10 % 0.308 64.6% 0.299 60.5% 0.260 49.7% 0.372 71.6% 0.358 68.0% 0.310 59.9% 0.478 77.6% 0.465 75.2% 0.410 69.5%

TransformerNormal 0.989
2 % 0.322 57.7% 0.382 67.5% 0.468 77.6%
5 % 0.318 56.5% 0.309 51.2% 0.382 66.8% 0.369 61.8% 0.473 76.4% 0.455 73.8%

10 % 0.311 53.4% 0.305 51.4% 0.283 41.0% 0.377 64.5% 0.369 62.4% 0.353 54.6% 0.466 75.7% 0.457 74.1% 0.435 68.7%

TransformerPadding 1.096
2 % 0.376 51.8% 0.445 60.7% 0.559 73.3%
5 % 0.392 48.5% 0.393 44.0% 0.459 59.5% 0.459 54.0% 0.552 71.4% 0.551 68.3%

10 % 0.374 38.2% 0.377 34.8% 0.373 27.0% 0.447 48.5% 0.445 46.1% 0.434 37.3% 0.556 63.0% 0.553 61.6% 0.543 54.6%

TransformerConv 0.869
2 % 0.331 67.5% 0.401 72.3% 0.519 78.8%
5 % 0.314 66.7% 0.294 58.9% 0.390 72.8% 0.362 66.4% 0.511 79.2% 0.478 75.3%

10 % 0.312 61.7% 0.308 60.0% 0.298 50.4% 0.384 68.8% 0.375 66.5% 0.362 58.7% 0.504 77.5% 0.488 75.1% 0.467 68.4%

Table 25: (ETTm2) Evaluate MSE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 1.750
2 % 0.139 67.6% 0.206 75.5% 0.339 83.7%
5 % 0.145 68.2% 0.128 62.3% 0.219 76.1% 0.192 70.7% 0.362 84.3% 0.319 80.1%

10 % 0.143 67.2% 0.142 66.7% 0.121 56.4% 0.214 75.3% 0.212 75.0% 0.176 65.0% 0.352 82.9% 0.348 82.8% 0.287 75.6%

MLP 1.508
2 % 0.149 74.2% 0.222 82.0% 0.358 86.5%
5 % 0.161 76.3% 0.134 70.2% 0.243 85.1% 0.208 80.7% 0.385 87.4% 0.337 86.0%

10 % 0.156 74.6% 0.152 72.0% 0.134 61.9% 0.237 83.8% 0.233 82.4% 0.211 72.5% 0.377 86.8% 0.376 87.0% 0.336 80.8%

LSTM 2.858
2 % 0.158 64.6% 0.242 72.9% 0.391 82.4%
5 % 0.157 64.2% 0.154 63.9% 0.241 72.1% 0.236 71.3% 0.391 81.9% 0.386 81.6%

10 % 0.155 63.8% 0.152 63.2% 0.149 62.1% 0.238 71.3% 0.235 70.6% 0.229 69.2% 0.387 81.7% 0.386 81.8% 0.381 81.4%

GRU 2.685
2 % 0.174 62.4% 0.260 69.9% 0.426 78.9%
5 % 0.174 61.8% 0.163 60.2% 0.261 69.6% 0.247 67.6% 0.426 78.3% 0.410 76.8%

10 % 0.171 59.9% 0.168 59.0% 0.154 54.7% 0.260 67.5% 0.254 66.5% 0.236 62.3% 0.422 77.2% 0.417 77.1% 0.395 74.2%

RNN 2.598
2 % 0.121 61.7% 0.177 70.1% 0.280 77.4%
5 % 0.127 64.2% 0.104 56.9% 0.185 71.6% 0.159 65.6% 0.297 78.2% 0.266 73.3%

10 % 0.125 64.6% 0.120 60.5% 0.096 49.7% 0.183 71.6% 0.173 68.0% 0.138 59.9% 0.295 77.6% 0.285 75.2% 0.233 69.5%

TransformerNormal 2.150
2 % 0.131 57.7% 0.186 67.5% 0.286 77.6%
5 % 0.128 56.5% 0.121 51.2% 0.187 66.8% 0.174 61.8% 0.288 76.4% 0.269 73.8%

10 % 0.124 53.4% 0.120 51.4% 0.108 41.0% 0.181 64.5% 0.173 62.4% 0.163 54.6% 0.279 75.7% 0.268 74.1% 0.249 68.7%

TransformerPadding 2.828
2 % 0.168 51.8% 0.238 60.7% 0.375 73.3%
5 % 0.175 48.5% 0.174 44.0% 0.245 59.5% 0.243 54.0% 0.369 71.4% 0.367 68.3%

10 % 0.166 38.2% 0.168 34.8% 0.164 27.0% 0.236 48.5% 0.235 46.1% 0.226 37.3% 0.367 63.0% 0.365 61.6% 0.353 54.6%

TransformerConv 1.918
2 % 0.139 67.5% 0.203 72.3% 0.332 78.8%
5 % 0.129 66.7% 0.118 58.9% 0.195 72.8% 0.175 66.4% 0.323 79.2% 0.291 75.3%

10 % 0.128 61.7% 0.124 60.0% 0.117 50.4% 0.192 68.8% 0.184 66.5% 0.174 58.7% 0.318 77.5% 0.304 75.1% 0.283 68.4%

G.2 Impact of Gaussian Augmentation

Table 33, Table 34, Table 35, Table 36 and Table 37 report the impact of Gaussian augmentation
at σ = 0.01, 0.02, 0.03, 0.04, 0.05 on time series classification dataset DistalPhalanxTW (Lmask =
15%) respectively. We compare the MIA with Gaussian augmentation to MIA without Gaussian
augmentation (baseline) on **Certified Accuracy** at Latk = 5%, 10%, 15%. The table reports the
relative improvement (abs %) on certified accuracy.

G.3 Visualize the imputation quality.

Fig. 4 intuitively shows the imputation performance of different imputation models on dataset Traffic.
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Table 26: (Illness) Evaluate MAE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 0.712
2 % 0.232 81.3% 0.251 86.5% 0.314 90.6%
5 % 0.217 77.2% 0.238 76.6% 0.236 81.3% 0.227 80.7% 0.309 88.3% 0.263 87.7%

10 % 0.216 77.2% 0.220 77.2% 0.230 73.1% 0.254 84.8% 0.252 84.2% 0.247 82.5% 0.315 88.9% 0.313 88.9% 0.286 88.9%

MLP 0.930
2 % 0.287 54.4% 0.333 66.1% 0.394 82.5%
5 % 0.258 51.5% 0.255 50.9% 0.306 62.6% 0.301 61.4% 0.377 80.1% 0.376 79.5%

10 % 0.268 50.9% 0.263 50.3% 0.256 50.3% 0.328 65.5% 0.325 65.5% 0.311 63.7% 0.388 81.9% 0.389 81.9% 0.373 79.5%

LSTM 1.079
2 % 0.239 45.6% 0.291 59.6% 0.356 77.8%
5 % 0.244 45.6% 0.243 45.6% 0.297 59.6% 0.290 59.6% 0.355 77.2% 0.348 77.2%

10 % 0.244 45.6% 0.243 45.6% 0.239 45.6% 0.296 59.6% 0.296 59.6% 0.292 59.6% 0.358 77.2% 0.355 76.6% 0.351 76.6%

GRU 0.987
2 % 0.300 54.4% 0.336 67.3% 0.373 80.1%
5 % 0.296 54.4% 0.299 52.0% 0.334 67.3% 0.343 66.7% 0.368 78.9% 0.373 78.9%

10 % 0.294 54.4% 0.294 54.4% 0.296 54.4% 0.332 67.3% 0.331 67.3% 0.333 67.3% 0.374 80.1% 0.373 80.1% 0.368 79.5%

RNN 1.150
2 % 0.296 38.6% 0.365 55.0% 0.390 63.7%
5 % 0.300 38.0% 0.288 38.0% 0.361 52.6% 0.353 52.6% 0.394 63.2% 0.388 63.2%

10 % 0.297 38.0% 0.297 38.0% 0.293 38.0% 0.360 52.6% 0.357 52.0% 0.354 52.0% 0.394 63.2% 0.390 62.6% 0.387 62.6%

TransformerNormal 0.877
2 % 0.244 58.5% 0.301 70.2% 0.376 82.5%
5 % 0.253 55.0% 0.255 55.0% 0.289 67.8% 0.285 66.7% 0.337 79.5% 0.327 78.4%

10 % 0.242 56.7% 0.231 55.6% 0.232 54.4% 0.280 67.8% 0.277 67.8% 0.272 66.1% 0.336 80.1% 0.330 79.5% 0.326 79.5%

TransformerPadding 0.945
2 % 0.290 54.4% 0.326 69.0% 0.362 84.2%
5 % 0.307 52.6% 0.305 50.3% 0.328 66.1% 0.326 64.3% 0.353 81.3% 0.358 81.3%

10 % 0.297 50.9% 0.298 49.7% 0.296 48.0% 0.341 67.3% 0.348 66.7% 0.351 65.5% 0.372 83.6% 0.374 82.5% 0.381 81.9%

TransformerConv 0.820
2 % 0.272 66.1% 0.316 73.7% 0.395 80.1%
5 % 0.266 63.2% 0.276 60.8% 0.317 74.9% 0.315 72.5% 0.385 79.5% 0.372 78.9%

10 % 0.258 63.2% 0.263 61.4% 0.263 56.7% 0.303 70.8% 0.302 70.2% 0.309 67.8% 0.392 78.9% 0.385 78.9% 0.380 77.8%

Table 27: (Illness) Evaluate MSE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 0.970
2 % 0.075 81.3% 0.095 86.5% 0.156 90.6%
5 % 0.067 77.2% 0.076 76.6% 0.084 81.3% 0.078 80.7% 0.148 88.3% 0.120 87.7%

10 % 0.069 77.2% 0.071 77.2% 0.075 73.1% 0.095 84.8% 0.093 84.2% 0.090 82.5% 0.148 88.9% 0.146 88.9% 0.130 88.9%

MLP 1.265
2 % 0.104 54.4% 0.137 66.1% 0.203 82.5%
5 % 0.085 51.5% 0.084 50.9% 0.116 62.6% 0.112 61.4% 0.186 80.1% 0.186 79.5%

10 % 0.092 50.9% 0.089 50.3% 0.086 50.3% 0.132 65.5% 0.131 65.5% 0.121 63.7% 0.195 81.9% 0.195 81.9% 0.181 79.5%

LSTM 1.536
2 % 0.074 45.6% 0.120 59.6% 0.178 77.8%
5 % 0.077 45.6% 0.076 45.6% 0.122 59.6% 0.120 59.6% 0.176 77.2% 0.172 77.2%

10 % 0.076 45.6% 0.076 45.6% 0.074 45.6% 0.123 59.6% 0.123 59.6% 0.121 59.6% 0.179 77.2% 0.176 76.6% 0.173 76.6%

GRU 1.407
2 % 0.114 54.4% 0.143 67.3% 0.195 80.1%
5 % 0.110 54.4% 0.112 52.0% 0.141 67.3% 0.145 66.7% 0.190 78.9% 0.191 78.9%

10 % 0.109 54.4% 0.109 54.4% 0.110 54.4% 0.140 67.3% 0.140 67.3% 0.139 67.3% 0.195 80.1% 0.195 80.1% 0.190 79.5%

RNN 1.727
2 % 0.111 38.6% 0.165 55.0% 0.201 63.7%
5 % 0.114 38.0% 0.106 38.0% 0.161 52.6% 0.154 52.6% 0.203 63.2% 0.194 63.2%

10 % 0.113 38.0% 0.113 38.0% 0.110 38.0% 0.160 52.6% 0.158 52.0% 0.155 52.0% 0.202 63.2% 0.198 62.6% 0.194 62.6%

TransformerNormal 1.126
2 % 0.086 58.5% 0.126 70.2% 0.197 82.5%
5 % 0.087 55.0% 0.089 55.0% 0.122 67.8% 0.118 66.7% 0.171 79.5% 0.163 78.4%

10 % 0.084 56.7% 0.078 55.6% 0.078 54.4% 0.116 67.8% 0.114 67.8% 0.110 66.1% 0.165 80.1% 0.159 79.5% 0.157 79.5%

TransformerPadding 1.236
2 % 0.115 54.4% 0.144 69.0% 0.187 84.2%
5 % 0.122 52.6% 0.121 50.3% 0.143 66.1% 0.142 64.3% 0.183 81.3% 0.188 81.3%

10 % 0.119 50.9% 0.121 49.7% 0.120 48.0% 0.153 67.3% 0.157 66.7% 0.160 65.5% 0.191 83.6% 0.190 82.5% 0.194 81.9%

TransformerConv 1.175
2 % 0.105 66.1% 0.144 73.7% 0.219 80.1%
5 % 0.099 63.2% 0.103 60.8% 0.146 74.9% 0.143 72.5% 0.210 79.5% 0.202 78.9%

10 % 0.095 63.2% 0.097 61.4% 0.095 56.7% 0.137 70.8% 0.137 70.2% 0.137 67.8% 0.215 78.9% 0.210 78.9% 0.206 77.8%

Table 28: (Weather) Evaluate MAE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 0.793
2 % 0.362 71.1% 0.440 78.0% 0.566 84.6%
5 % 0.367 71.5% 0.359 68.7% 0.445 78.0% 0.436 76.5% 0.571 84.5% 0.560 83.3%

10 % 0.362 70.2% 0.361 70.0% 0.347 66.1% 0.439 77.3% 0.438 77.3% 0.425 74.5% 0.563 84.0% 0.561 83.9% 0.545 82.0%

MLP 0.831
2 % 0.405 70.0% 0.476 78.1% 0.586 85.9%
5 % 0.406 71.9% 0.396 66.6% 0.478 79.6% 0.468 75.1% 0.587 86.6% 0.578 84.1%

10 % 0.405 71.3% 0.402 70.4% 0.389 63.0% 0.478 79.8% 0.475 79.2% 0.461 73.3% 0.586 86.2% 0.584 86.2% 0.572 84.1%

LSTM 0.898
2 % 0.432 72.3% 0.516 77.2% 0.645 83.6%
5 % 0.432 72.3% 0.431 71.8% 0.517 77.2% 0.516 76.7% 0.646 83.5% 0.644 83.0%

10 % 0.432 72.6% 0.432 72.3% 0.428 71.4% 0.516 77.0% 0.516 77.1% 0.511 76.5% 0.646 83.6% 0.646 83.6% 0.640 83.2%

GRU 1.135
2 % 0.417 51.7% 0.514 63.3% 0.654 73.8%
5 % 0.419 52.3% 0.414 49.8% 0.516 63.8% 0.512 61.8% 0.655 74.3% 0.652 72.8%

10 % 0.419 52.4% 0.417 52.1% 0.410 49.4% 0.515 63.7% 0.513 63.3% 0.506 59.6% 0.654 74.1% 0.652 73.7% 0.646 70.9%

RNN 0.777
2 % 0.385 73.1% 0.465 77.6% 0.587 82.8%
5 % 0.388 74.8% 0.367 71.2% 0.471 79.3% 0.447 75.3% 0.593 83.7% 0.568 79.6%

10 % 0.391 74.7% 0.389 73.6% 0.363 65.4% 0.475 79.6% 0.473 78.7% 0.446 72.0% 0.598 83.7% 0.595 83.1% 0.567 77.7%

TransformerNormal 0.891
2 % 0.412 68.4% 0.491 73.1% 0.619 80.0%
5 % 0.412 68.2% 0.409 66.9% 0.491 73.1% 0.489 72.6% 0.616 79.2% 0.614 78.6%

10 % 0.406 66.6% 0.407 66.4% 0.399 65.2% 0.485 72.8% 0.486 72.5% 0.479 71.9% 0.609 78.8% 0.609 78.5% 0.601 77.7%

TransformerPadding 0.844
2 % 0.392 70.1% 0.480 76.9% 0.611 83.5%
5 % 0.392 70.0% 0.387 69.3% 0.479 76.5% 0.474 76.1% 0.611 83.4% 0.606 83.2%

10 % 0.387 69.5% 0.385 69.0% 0.382 68.2% 0.474 76.3% 0.473 76.0% 0.469 75.5% 0.604 82.8% 0.603 82.7% 0.600 82.6%

TransformerConv 0.886
2 % 0.394 66.9% 0.475 74.5% 0.598 82.3%
5 % 0.393 66.6% 0.391 66.1% 0.475 74.3% 0.472 73.7% 0.598 82.2% 0.596 81.6%

10 % 0.389 65.6% 0.388 65.5% 0.384 63.9% 0.468 72.4% 0.466 72.0% 0.459 70.5% 0.592 81.4% 0.592 81.1% 0.582 79.9%
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Table 29: (Weather) Evaluate MSE of MIA with different pretrained models on multi-variate time
series forecasting (MTSF).

Model Baseline Lmask
∆ = 1.0 ∆ = 1.2 ∆ = 1.5

2 % 5 % 10 % 2 % 5 % 10 % 2 % 5 % 10 %

MLP-Mixer 1.227
2 % 0.159 71.1% 0.235 78.0% 0.378 84.6%
5 % 0.162 71.5% 0.157 68.7% 0.238 78.0% 0.232 76.5% 0.383 84.5% 0.373 83.3%

10 % 0.159 70.2% 0.158 70.0% 0.149 66.1% 0.234 77.3% 0.233 77.3% 0.222 74.5% 0.376 84.0% 0.375 83.9% 0.359 82.0%

MLP 1.485
2 % 0.187 70.0% 0.262 78.1% 0.403 85.9%
5 % 0.187 71.9% 0.180 66.6% 0.263 79.6% 0.255 75.1% 0.405 86.6% 0.395 84.1%

10 % 0.187 71.3% 0.184 70.4% 0.176 63.0% 0.263 79.8% 0.261 79.2% 0.250 73.3% 0.404 86.2% 0.402 86.2% 0.390 84.1%

LSTM 1.900
2 % 0.204 72.3% 0.293 77.2% 0.455 83.6%
5 % 0.204 72.3% 0.204 71.8% 0.293 77.2% 0.292 76.7% 0.456 83.5% 0.455 83.0%

10 % 0.205 72.6% 0.204 72.3% 0.202 71.4% 0.293 77.0% 0.293 77.1% 0.289 76.5% 0.456 83.6% 0.456 83.6% 0.451 83.2%

GRU 2.167
2 % 0.194 51.7% 0.290 63.3% 0.465 73.8%
5 % 0.195 52.3% 0.192 49.8% 0.292 63.8% 0.289 61.8% 0.467 74.3% 0.464 72.8%

10 % 0.195 52.4% 0.194 52.1% 0.189 49.4% 0.291 63.7% 0.290 63.3% 0.283 59.6% 0.466 74.1% 0.464 73.7% 0.457 70.9%

RNN 1.591
2 % 0.171 73.1% 0.249 77.6% 0.392 82.8%
5 % 0.173 74.8% 0.160 71.2% 0.252 79.3% 0.234 75.3% 0.397 83.7% 0.371 79.6%

10 % 0.176 74.7% 0.174 73.6% 0.158 65.4% 0.256 79.6% 0.253 78.7% 0.234 72.0% 0.402 83.7% 0.399 83.1% 0.371 77.7%

TransformerNormal 1.457
2 % 0.190 68.4% 0.272 73.1% 0.432 80.0%
5 % 0.190 68.2% 0.189 66.9% 0.272 73.1% 0.271 72.6% 0.430 79.2% 0.427 78.6%

10 % 0.187 66.6% 0.187 66.4% 0.182 65.2% 0.268 72.8% 0.268 72.5% 0.262 71.9% 0.423 78.8% 0.422 78.5% 0.414 77.7%

TransformerPadding 1.502
2 % 0.178 70.1% 0.263 76.9% 0.418 83.5%
5 % 0.178 70.0% 0.175 69.3% 0.262 76.5% 0.258 76.1% 0.418 83.4% 0.413 83.2%

10 % 0.175 69.5% 0.174 69.0% 0.171 68.2% 0.258 76.3% 0.257 76.0% 0.255 75.5% 0.411 82.8% 0.410 82.7% 0.407 82.6%

TransformerConv 1.599
2 % 0.179 66.9% 0.261 74.5% 0.410 82.3%
5 % 0.179 66.6% 0.178 66.1% 0.261 74.3% 0.259 73.7% 0.410 82.2% 0.407 81.6%

10 % 0.176 65.6% 0.175 65.5% 0.171 63.9% 0.256 72.4% 0.254 72.0% 0.248 70.5% 0.405 81.4% 0.404 81.1% 0.395 79.9%

Table 30: Compare ℓ0-norm localized perturbation to ℓ2-norm perturbation (computed by the
algorithm [2]) on the MSE between the original forecast and the perturbed forecast. The table
reports the relative improvement of the ℓ0-norm perturbation over the ℓ2-norm perturbation (averaging
among 128 randomly selected samples). The positive value indicates that our ℓ0-norm perturbation
outperforms ℓ0-norm perturbation. For fairness, the ℓ0 or ℓ2 norm of the perturbation is restricted to
be no larger than β× the average value among the ℓ0 or ℓ2 norm of all the testing samples. Values
in tables are calculated as (MSEℓ0 −MSEℓ2)/MSEℓ2 .

Model Attack Rate (β)
10 % 20 % 30 % 40 % 50 %

MLP-Mixer +769.9 % +89.5 % +73.3 % +12.3 % +53.1 %
GRU +2.5 % -1.6 % -8.3 % -3.3 % -6.5 %
LSTM +23.1 % +15.1 % -33.5 % -14.8 % +2.0 %
MLP +265.0 % +376.3 % +211.6 % +114.1 % +58.3 %

Table 31: (Exchange) Time series attack. Difference of MSE between ℓ0 and ℓ2 attack.

Model Attack Rate (β)
10 % 20 % 30 % 40 % 50 %

MLP-Mixer +1000.1 % +332.2 % +114.7 % +131.7 % +84.6 %
GRU -48.6 % -45.1 % -39.7 % -31.7 % -20.9 %
LSTM -8.8 % -28.3 % -24.9 % -16.2 % -6.6 %
MLP +528.9 % +101.8 % +36.9 % +8.8 % +6.2 %

Table 32: (Traffic) Time series attack. Difference of MSE between ℓ0 and ℓ2 attack.

Model Attack Rate (β)
10 % 20 % 30 % 40 % 50 %

MLP-Mixer +3310.1 % +841.8 % +328.5 % +317.7 % +205.5 %
GRU +147.0 % +28.2 % +7.3 % -4.7 % +21.6 %
LSTM +239.0 % +66.8 % +14.9 % +2.5 % -2.8 %
MLP +1760.4 % +145.7 % +38.4 % +7.5 % -7.6 %
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Table 33: (DistalPhalanxTW Lmask = 15%) σ = 0.01

Model Metric, σ = 0.010 Lmask
DistalPhalanxTW MiddlePhalanxTW ProximalPhalanxTW

5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

FCN ACC
5 % 1.0 % -3.0 % 0.0 %

10 % -1.0 % 0.0 % 0.0 % -1.0 % -1.0 % -3.0 %
15 % 1.0 % 3.0 % 0.0 % -4.0 % -3.0 % -4.0 % -1.0 % 1.0 % 3.0 %

MLP-Mixer ACC
5 % 0.0 % 0.0 % 1.0 %

10 % -2.0 % -2.0 % 0.0 % -1.0 % -1.0 % -1.0 %
15 % -2.0 % 0.0 % -2.0 % -1.0 % 1.0 % -2.0 % 1.0 % 0.0 % 2.0 %

MLP ACC
5 % -1.0 % 2.0 % 0.0 %

10 % -1.0 % -1.0 % -1.0 % 0.0 % 0.0 % 0.0 %
15 % 1.0 % 1.0 % 3.0 % 2.0 % 4.0 % 2.0 % 1.0 % 0.0 % 0.0 %

ResNet-18 ACC
5 % -2.0 % -1.0 % 0.0 %

10 % 3.0 % 0.0 % 0.0 % 0.0 % 0.0 % 1.0 %
15 % -1.0 % -3.0 % -1.0 % 0.0 % 1.0 % 1.0 % -1.0 % -2.0 % -1.0 %

Table 34: (DistalPhalanxTW Lmask = 15%) σ = 0.02

Model Metric, σ = 0.020 Lmask
DistalPhalanxTW MiddlePhalanxTW ProximalPhalanxTW

5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

FCN ACC
5 % -1.0 % 0.0 % 0.0 %

10 % 0.0 % 1.0 % 0.0 % 0.0 % 0.0 % 0.0 %
15 % 5.0 % 6.9 % 3.0 % 0.0 % -1.0 % -2.0 % 0.0 % 1.0 % 2.0 %

MLP-Mixer ACC
5 % 0.0 % 1.0 % 1.0 %

10 % 1.0 % 0.0 % 0.0 % 2.0 % 1.0 % -1.0 %
15 % -1.0 % 3.0 % 5.0 % 2.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

MLP ACC
5 % 0.0 % 2.0 % 0.0 %

10 % 3.0 % 0.0 % 1.0 % 2.0 % 0.0 % 1.0 %
15 % 0.0 % 2.0 % 3.0 % 2.0 % 3.0 % 3.0 % 0.0 % 0.0 % 0.0 %

ResNet-18 ACC
5 % -3.0 % 0.0 % 0.0 %

10 % 5.0 % 1.0 % -1.0 % 1.0 % 0.0 % 0.0 %
15 % 0.0 % 1.0 % 1.0 % 1.0 % 2.0 % 2.0 % 0.0 % -1.0 % -1.0 %

Table 35: (DistalPhalanxTW Lmask = 15%) σ = 0.03

Model Metric, σ = 0.030 Lmask
DistalPhalanxTW MiddlePhalanxTW ProximalPhalanxTW

5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

FCN ACC
5 % -2.0 % 0.0 % 1.0 %

10 % -2.0 % 0.0 % -1.0 % -3.0 % -3.0 % -2.0 %
15 % 2.0 % 3.0 % 2.0 % -2.0 % -3.0 % -2.0 % -1.0 % 2.0 % 2.0 %

MLP-Mixer ACC
5 % 0.0 % 1.0 % 2.0 %

10 % 0.0 % 1.0 % -1.0 % 1.0 % 1.0 % 0.0 %
15 % -1.0 % 3.0 % 3.0 % 1.0 % 0.0 % 0.0 % 1.0 % 1.0 % 0.0 %

MLP ACC
5 % 0.0 % 2.0 % 0.0 %

10 % 1.0 % 1.0 % 0.0 % 1.0 % 0.0 % 1.0 %
15 % 1.0 % 3.0 % 4.0 % 0.0 % 1.0 % 1.0 % -1.0 % 0.0 % -1.0 %

ResNet-18 ACC
5 % -4.0 % 2.0 % 0.0 %

10 % 0.0 % -1.0 % 0.0 % 1.0 % 0.0 % 1.0 %
15 % -1.0 % -1.0 % 0.0 % 0.0 % 1.0 % 1.0 % 0.0 % 0.0 % 0.0 %

Table 36: (DistalPhalanxTW Lmask = 15%) σ = 0.04

Model Metric, σ = 0.040 Lmask
DistalPhalanxTW MiddlePhalanxTW ProximalPhalanxTW

5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

FCN ACC
5 % 2.0 % -1.0 % 0.0 %

10 % 2.0 % 3.0 % -2.0 % -2.0 % -2.0 % -2.0 %
15 % 2.0 % 1.0 % 0.0 % -1.0 % -2.0 % -2.0 % -3.0 % 1.0 % 1.0 %

MLP-Mixer ACC
5 % -1.0 % 1.0 % 0.0 %

10 % 0.0 % 1.0 % 0.0 % -1.0 % 0.0 % 0.0 %
15 % 0.0 % 2.0 % 0.0 % 0.0 % 1.0 % -2.0 % -1.0 % 2.0 % 0.0 %

MLP ACC
5 % 1.0 % 1.0 % 1.0 %

10 % 1.0 % 0.0 % 0.0 % 1.0 % 1.0 % 1.0 %
15 % 1.0 % 3.0 % 4.0 % 1.0 % 3.0 % 3.0 % -1.0 % 0.0 % 0.0 %

ResNet-18 ACC
5 % -1.0 % 1.0 % -1.0 %

10 % 0.0 % 0.0 % 0.0 % 1.0 % 1.0 % 1.0 %
15 % 2.0 % 2.0 % 0.0 % 1.0 % 1.0 % 2.0 % 0.0 % 0.0 % -1.0 %
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Table 37: (DistalPhalanxTW Lmask = 15%) σ = 0.05

Model Metric, σ = 0.050 Lmask
DistalPhalanxTW MiddlePhalanxTW ProximalPhalanxTW

5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

FCN ACC
5 % 1.0 % 0.0 % 1.0 %

10 % 0.0 % 1.0 % -1.0 % -4.0 % -1.0 % 0.0 %
15 % 5.0 % 4.0 % 2.0 % 0.0 % -1.0 % -2.0 % 0.0 % 2.0 % 1.0 %

MLP-Mixer ACC
5 % -1.0 % -2.0 % 1.0 %

10 % 1.0 % 1.0 % -2.0 % -1.0 % -1.0 % -2.0 %
15 % 2.0 % 5.0 % 0.0 % 3.0 % 1.0 % 0.0 % 0.0 % -1.0 % 2.0 %

MLP ACC
5 % 1.0 % 2.0 % 0.0 %

10 % 4.0 % 1.0 % -1.0 % 1.0 % 0.0 % 0.0 %
15 % 2.0 % 3.0 % 3.0 % 2.0 % 4.0 % 1.0 % -1.0 % 0.0 % 0.0 %

ResNet-18 ACC
5 % -2.0 % 0.0 % -1.0 %

10 % 3.0 % -1.0 % -1.0 % -1.0 % 0.0 % -1.0 %
15 % 1.0 % 1.0 % 0.0 % 1.0 % 1.0 % 1.0 % -1.0 % 0.0 % -1.0 %
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Figure 4: (Traffic) Imputation quality with different imputation models. We set Lmask = 10%.
Original and imputed refer to the original time series and the imputed time series respectively.
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